Under review as a conference paper at ICLR 2025

A MECHANISTICALLY INTERPRETABLE NEURAL NET-
WORK FOR REGULATORY GENOMICS

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep neural networks excel in mapping genomic DNA sequences to associated
readouts (e.g., protein—~DNA binding). Beyond prediction, the goal of these net-
works is to reveal to scientists the underlying motifs (and their syntax) which drive
genome regulation. Traditional methods that extract motifs from convolutional
filters suffer from the uninterpretable dispersion of information across filters and
layers. Other methods which rely on importance scores can be unstable and un-
reliable. Instead, we designed a novel mechanistically interpretable architecture
for regulatory genomics, where motifs and their syntax are directly encoded and
readable from the learned weights and activations. We provide theoretical and
empirical evidence of our architecture’s full expressivity, while still being highly
interpretable. Through several experiments, we show that our architecture excels in
de novo motif discovery and motif instance calling, is robust to variable sequence
contexts, and enables fully interpretable generation of novel functional sequences.

1 INTRODUCTION

Transcription factors (TFs) are proteins that regulate genes by recognizing and binding to specific
short DNA sequence patterns—or “motifs”—in the genome (Lambert et al., 2018} |Siggers & Gordan|
2014). High-throughput experiments measure regulatory activity—such as protein—-DNA binding or
associated readouts—across the genome (Consortium, [2012). In general, the regulatory function of a
DNA sequence is defined by the combination of motifs in that sequence, and these combinations have
a soft syntax (i.e., density, spacing, orientation, and co-binders). These syntactical rules also depend
on surrounding context and cell type. Although challenging, understanding the motifs (and their
syntax) which regulate the genome is crucial for many scientific and medical tasks, such as disease
diagnosis and design of novel therapies (e.g., CRISPR). There is thus a great need for techniques
which perform de novo motif discovery (i.e., extracting motifs and syntax from these experiments).

Recently, de novo motif discovery has been chiefly performed by sequence-to-function deep neural
networks (DNNs). These DNNs take a DNA sequence as an input, and predict a functional label
measured by a biological experiment (e.g., a binary label denoting if a TF bound to that sequence).
These expressive models have achieved state-of-the-art performance in mapping DNA sequences to
regulatory labels, thus proving that they accurately learn underlying motifs and their syntax (Kelley:
et al., 2016; Ziga Avsec et al.,|2021bj [Linder et al.| 2023)). The common goal of these DNNs is to
ultimately reveal these learned motifs and syntax that underpin genome regulation (Novakovsky et al.|
2022a). Notably, recent work has shown that motif discovery from these sequence-to-function DNNs
has far surpassed the ability of traditional statistical methods (Tseng, [2022).

There are two main classes of methods that extract motifs from a trained DNN. As these DNNSs are
almost universally convolution-based in early layers (Novakovsky et al., [2022a)), a very common
approach is to extract a motif from each first-layer filter (Kelley et al.|[2016). This method, however,
suffers from the critical limitation that information (including motifs) tends to be distributed or
dispersed across filters and layers, thus there is no guarantee that any single filter will learn a
biologically meaningful motif (Figure 2p). The second class of methods relies on importance scores,
which attempt to measure the contribution of individual DNA bases to the output prediction, with
the assumption that bases in motifs have elevated importance. By integrating throughout the whole
DNN, importance scores bypass the problem of distributed information. Unfortunately, importance
scores are known to be highly unstable and unreliable approximations of a model’s decision making

Under review as a conference paper at ICLR 2025

(Ghorbani et al., [2017; |Alvarez-Melis & Jaakkola, [2018), and in genomic DNNs, importance scores
typically only show noisy and fragile motif instances (Supplementary Figure [ST) (Tseng et al., 2020).
In practice, to improve robustness, motif discovery via importance scores requires complex pipelines
composed of many computationally expensive steps, which tend to be delicate and require constant
human intervention (Novakovsky et al.| 2022a}; |Shrikumar et al., 2018).

In this work, we propose a new method of recovering motifs from a sequence-to-function DNN,
based on mechanistic interpretability. Mechanistic interpretability (MI) has recently emerged as a
key research direction to explain complex models (Bereska & Gavves), |2024)). Our method, Analysis
of Regulatory Genomics via Mechanistically Interpretable Neural Networks (ARGMINN),
enables motifs and their syntax to be directly readable from the network architecture, without
compromising expressivity or relying on complex post hoc pipelines. In Section 3| we formally
describe the ARGMINN architecture, including several novel architectural contributions including:
1) a regularizer designed to ensure that the first layer’s convolutional-filter weights directly encode a
non-redundant set of relevant motifs; and 2) a modified attention mechanism which reveals motif
instances and their syntax in any query sequence with a single forward pass.

In Section 4] we show experimental results which demonstrate ARGMINN’s interpretability and
its main contributions to regulatory genomics, including: 1) superior motif discovery and motif-
instance/syntax analysis compared to existing approaches for de novo motif discovery; 2) robustness
against natural or adversarial sequence modifications; and 3) the novel ability for fully interpretable
sequence generation. In Section [5} we provide theoretical results on ARGMINN’s expressivity,
showing that it can learn any motifs and syntax, whereas previous MI architectures cannot.

2 RELATED WORK

Practically all prevalent genomic DNN architectures have convolutional filters as the first layer (Kelley
et al., |2016; 2iga Avsec et al., |2021b; [Linder et al., 2023)). To recover motifs, most works directly
visualize the filter weights or average subsequences which highly activate each filter (Alipanahi et al.}
2015; [Kelley et al.,[2016). Although this has shown some limited success, these methods assume
that each filter learns one motif, and each motif is learned by one filter. This is generally not true
because—without special constraints—motifs are typically learned in a distributed fashion, where
each motif is learned across many filters and layers (Figure [Zp).

As a result, more sophisticated post hoc pipelines were developed to extract motifs from trained
DNNGs. These pipelines integrate over the entire DNN to compute importance scores across the dataset
(e.g., via integrated gradients or DeepLIFTShap (Sundararajan et al.| [2017} [Shrikumar et al.| [2017)),
resulting in an importance score at each position for each sequence. These scores are then segmented
into high-importance regions as putative motif instances. Due to the noisiness of importance scores,
however, these instances must be clustered into clean motifs by tools like MoDISco (Shrikumar
et al.| [2018). Each step of this pipeline is computationally expensive, and for most datasets, the time
required to recover motifs is typically over an order of magnitude longer than the time needed to
train the model. Furthermore, these pipelines heavily rely on importance scores from a black-box
model, which can be extremely fragile, as importance scores frequently fail to reveal a model’s true
decision-making process (Ghorbani et al.,|2017; Kindermans et al.l 2017; |Alvarez-Melis & Jaakkolal
2018; Tseng et al., 2020).

Within the field of explainable Al, there has been some burgeoning work exploring MI, where the
patterns and rules learned by a DNN are reflected in its physical computation (Bereska & Gavves),
2024)). In particular, our work is a type of intrinsic MI, where the DNN’s architecture (e.g., weights
and activations) directly encode learning (Liu et al., 2023} Barbiero et al., [2023}; [Kasioumis et al.}
2021)). This is typically done by increasing sparsity, modularity, and the proportion of monosemantic
neurons (i.e., neurons which learn a single concept). DNNs may also improve their intrinsic MI by
learning logical rules in a more structured way (Riegel et al., [2020; |[Friedman et al.| [2023]).

Despite these promising works, constructing intrinsically MI architectures for very general problems
remains difficult. However, focusing on more constrained predictive tasks (e.g., motif discovery)
makes MI more feasible, allowing us to restrict computation and the solution space. ARGMINN uses
similar principles as other intrinsic MI works (e.g., sparsity, modularity, monosemanticity, and explicit
logic), but in a biologically grounded manner, making it both highly interpretable and expressive.

Under review as a conference paper at ICLR 2025

a) ATTATTGGTTGTGAACCCCTATAACCATATTAC C) 1 ? § §
Motif scanners .
Y Motif
Motif 1 1 activations —
Motif 2 ? § § 8 § §
Motif 4 Pos. enc.
Motif 5 § §
Motif 6 ¥
\"

Syntax'builder

Attention

Memory
stream
o)

N — X-=

y
b)ATTATTGGTTGTGAACCCCTATAACCATATTAC

—>Q

J— C—— Attention
If both neurons fire, | |
the boxed weights o
- should not both be non-zero | NI Syntax builder
y

Motif scanners

Filters

Figure 1: Schematic of the ARGMINN architecture. a) The motif-scanner module produces activations denoting
which motifs were found at each position, where activation magnitude reflects match strength. The activations
are passed to the syntax builder, which learns higher-order logic between motif instances for the final prediction.
b) The motif-scanner module is a single convolutional layer which learns all motifs de novo. Regularization
ensures that each filter learns one motif (and vice versa), penalizing different filters from activating based on
the same underlying subsequences. ¢) The syntax builder is a series of uniquely designed attention layers. An
explicit memory stream tracks the model’s state. Each attention layer derives a single query vector from the
memory stream, and key/value vectors from the original activations, to update the memory stream.

Recently, the ExplaiNN architecture also aimed to interpretably learn motifs from DNA sequences
(Novakovsky et al.l 2022b). ExplaiNN consists of a set of single-filter convolutional networks. Each
network ideally learns a distinct motif, and outputs a scalar summarizing binding strength over the
input. The final output is a learned linear combination of these scalars. In later sections, we will show
that ARGMINN surpasses ExplaiNN in both interpretability and expressivity.

Our work also relates to concept bottleneck models (CBMs) (Koh et al., 2020; |Ghorbani et al.,[2019;
Kim et al.| [2017)), which force decisions to be based on interpretable concepts from an intermediate
layer. While CBMs can provide meaningful explanations, they require pre-defined concepts and
concept-labeled inputs, which are labor-intensive to obtain. In our work, ARGMINN can be viewed as
a type of CBM, but the concepts are motifs, and the concepts are learned entirely from the data, thus
overcoming the typical limitations of CBMs. Furthermore, ARGMINN elucidates syntax between
motifs—rules relating to positioning between concepts—in addition to the motifs themselves.

3 ARGMINN ARCHITECTURE

We propose a mechanistically interpretable DNN architecture designed to 1) accurately predict
regulatory function (e.g., protein binding) from DNA sequence; 2) reveal crucial motifs responsible
for function across the dataset; and 3) reveal motif instances and their syntax in any given query
sequence. Importantly, 2) and 3) are directly encoded in the model’s weights and activations.

Our architecture consists of two modules trained end to end (Figure[Th). The motif-scanner module
is a single convolutional layer which identifies motifs from the input sequence. We developed a novel
regularizer for the filters so that the filter weights directly encode non-redundant motifs, thereby
accomplishing goal 2) above. The convolutional activations are passed to the second module—the
syntax builder—consisting of several layers of modified attention that assemble the syntax and logic
between motifs to produce a final prediction. The syntax builder is designed such that the activations
and attention scores immediately reveal motif instances and syntax, thus achieving goal 3).

3.1 MODULE 1: MOTIF SCANNERS

The “motif scanners” are a set of n; convolutional filters of width w, which are scanned across the
input sequence to produce a set of activations (Figure[Ip). Thus, a filter’s activation is maximized
when it scans over a one-hot-encoded sequence that exactly matches the encoded motif (motifs
are learned de novo). The activations are then thresholded by a ReLU function. The additive

Under review as a conference paper at ICLR 2025

bias parameter of the filters and the ReLLU allow the network to selectively cut off weak matches,
thereby producing more sparse activations. For a 1-hot encoded DNA sequence S € {0, 1}¢*4, the

convolutional weights W € R™ *®*4 (and bias b € R"™/) yield activations A € Rffwﬂ)xnf:

A = ReLU(Conv(S, W, b)). (1

Importantly, the filters are regularized so that each filter learns one distinct motif, and each motif is
learned by one filter. This allows motifs to be directly read from the filter weights after training. We
propose a novel secondary objective which penalizes different filters from activating on overlapping
sequences. This is combined with a simple L1-penalty on the filter weights themselves to induce
sparse filters that directly reveal distinct, non-redundant motifs.

At each position ¢ in sequence S, each filter aggregates values S[i, i + w]. Let a = argmax{A;} €
{0,...,ny — 1} be the index of the maximally activated filter at ¢. For all other filters b # a, if filters
a and b both achieve non-zero activation in the same neighborhood of S, then they should not both
have non-zero weights in the overlapping region (i.e., they should not be attending to the same part
of the sequence). In other words, every position of S is “protected”: at most one filter can activate
while attending to any position. If another filter is activated nearby, then its weights should not be
attending to the protected part of the sequence. Our filter-overlap regularization then can be defined
as the following loss function:

i+(w—1)

L—w
LAm=% ¥ > A

=0 b#argmax{A;} j=i—(w—1)
HWargmax{Ai}[maX{Ovj - i}7 w—1-— maX{O,i - .7}]”1
[[Wp[max{0,¢ — j},w — 1 —max{0,j —i}]||+|. (2)

At each position 7, we compare the filter weights of the maximally activated filter W, with the weights
of all other filters (W},), at every possible overlapping window j. We penalize the L1 norm of the
overlapping weights, multiplied by the activation of filter b (i.e., if W} is not activated, there is no
penalty). Importantly, this is a soft regularization which the model can choose to ignore if needed for
performance. This regularization helps prevent: 1) two filters learning the same motif (or the same
part of the same motif); and 2) two filters learning a motif in an interleaved fashion. However, our
regularization still allows for a long motif to be learned by two filters, split somewhere down the
middle (or similarly, two half-sites directly next to each other, each learned by one filter).

In practice, this loss is computed efficiently by caching all possible windows of weight sums (for
each value of j) once, and at each ¢ scaling the window products with the activation of W,

3.2 MODULE 2: SYNTAX BUILDER

After the motif-scanner module, positional encodings P are concatenated to the activations A. The
second module of ARGMINN is the syntax builder, which consists of ny, layers of a custom attention
mechanism that learns syntax between motifs (Figure[Ik). In contrast to typical attention, our modified
attention layer has an explicit “memory stream” m; which is updated after each layer (inspired by
Friedman et al.|(2023)). Each layer derives a single query from my, resulting in a linear vector of
attention scores rather than a quadratic matrix (this improves both interpretability and efficiency).
Importantly, every layer derives key and value vectors directly from the original “tokens” (i.e., A||P).
Each attention layer can be described as follows:

qp ‘= WQ,lmlfl, Kl = WK’I[AHP], W = Wv’l[AHP]
_ K
V dth 7

where my is initialized as a vector of ones, and d,, is the dimension of the query vector. We also
include ny, attention heads, but do not show the reshaping operations above for clarity.

(€)

aj: my = my_1 + MLP(q;V}),

Under review as a conference paper at ICLR 2025

Each layer can attend to multiple motifs (due to the multiple attention heads), and successive layers
allow the model to capture interactions between motifs (e.g., with k layers, the model can reason
about kth-order interactions between motifs). All together, our final loss function becomes:

L(Sa A7 W) = £p7'ed(f(5)7 y) + Ao‘co(‘Aa W) +)‘ZHW”l (4)

4 EXPERIMENTAL RESULTS

In this section, we show experimental results demonstrating ARGMINN’s advantages in motif
discovery, motif instance calling, robustness, and interpretable generation.

4.1 IMPROVED MOTIF DISCOVERY

To extract motifs from ARGMINN, we applied the procedure from Kelley et al. (2016) to the first-
layer convolutional filters. Specifically, we obtained a motif from each filter by averaging test-set
subsequences which highly activate the filter (filters which were never activated in the test set were
dropped) (Supplementary Methods [C.4).

Over several simulated and real-world experimental datasets (Supplementary Methods [C.1), we
compared the motifs discovered by ARGMINN to those identified by several other methods: inter-
preting the filters of a standard CNN, ExplaiNN (Novakovsky et al., 2022b), and importance-score
clustering via DeepLIFTShap and MoDISco (Shrikumar et al.,[2018]). We systematically matched
each discovered motif to the closest known relevant motif. For simulated datasets, we matched
to ground-truth motifs; for experimental datasets, we matched to the closest relevant human mo-
tif. ARGMINN identified known, biologically relevant motifs, and compared to other methods, it
generally missed the fewest relevant motifs and discovered the fewest redundant motifs (Figure
[2b-b, Supplementary Figures Supplementary Table[ST). For example, ARGMINN trained
on FOXA2 in HepG?2 (a pioneer factor) revealed factors in the FOX, HNF4, and CEBP families, all
known to co-localize or co-bind with FOXA (Seachrist et al., 2021}, |Geusz et al.l [2021}; [Liu et al.|
2020). Notably, in the experimental datasets, the singular most similar motif (an extremely strict
requirement) to an ARGMINN filter is typically a known relevant motif (e.g., on this FOXA dataset,
ARGMINN identified 4 motifs whose top match was a relevant motif, whereas the traditional CNN
only identified 2, with much weaker similarities). Additionally, ARGMINN’s motifs were generally
most similar to the ground truth (Figure 2k, Supplementary Table[S2), thus highlighting their guality.
ARGMINN was also the method which consistently identified the fewest extraneous motifs—patterns
which do not match any biologically relevant motif (Figure[2d, Supplementary Table [S6).

In contrast, other methods significantly underperformed compared to ARGMINN. Even when the
standard CNN or ExplaiNN encoded motifs in their filters, ARGMINN’s filters were far more similar
to the true motifs. ARGMINN also outperformed MoDISco (Shrikumar et al.| [2018), which—despite
recovering many relevant motifs—consistently identified less-accurate motifs than ARGMINN
(Figure 2k). Due to the unreliability and noisiness of the importance scores themselves, as well as the
frailty of clustering, MoDISco also found many redundancies and extraneous motifs (Figure [2b, [2d).

4.2 IMPROVED MOTIF INSTANCE CALLING AND SYNTAX DISCOVERY

With previous DNN-based methods, identifying motif syntax required first learning motifs (e.g., via
MoDISco) and then scanning sequences to “call” motif instances. Not only is this computationally
expensive, but instance calling by sequence scanning tends to be highly inaccurate (e.g., due to partial
hits or missing context which the DNN would have considered).

Instead, ARGMINN reveals motif instances by tracing attention scores from a single forward pass
on any sequence (Figure [3p). Since every attention layer derives keys/values directly from the
motif-scanner activations, high attention scores directly point to the precise motif instances which the
network deemed important for prediction. Specifically, for any input query sequence, we examine the
attention scores across all layers/heads on the forward pass. For each high score (e.g., > 0.9), we
identify the corresponding sequence position. We then check the motif activations at that position,
and call a motif instance if a motif/filter has high activation (Supplementary Methods [C.4). For
example, trained on an experimental dataset of REST binding, ARGMINN directly recovered the

Under review as a conference paper at ICLR 2025

a) True motifs

sdlilers caclTCrer

Standard CNN

ARGMINN (ours)

ExplaiNN

achiilere eacTTCCrer

DeepLIFTShap/MoDISco
delfecre . .G cleTl(Crer
 eCTTCCT o s Ca
s:AcIICCIQ; s €.

o X

LAexzesIel . an

e s 40T Batsce T aboen le, ar o1 cender
co oxeBCy xagh BsGr QSIIQQEI — ? SRR, o [¢ SN ¥ P -
—onaszha hfe;‘}j[sgg — - QIIQQEL caarllere, asseh o 1rer oo el
€ Sex <o AT T e‘L‘ﬁAAgL; coche o cadlilller .. a4 .2,

L ?AS;IICCEQI., IV T G

b) Number of relevant motifs found
TAL/GATA REST CTCF (HepG2)
E2F6_ JUND SPI1/CTCF| FOXA (HepG2) DNase (HepG2) DNase (HL-60) DNase (K562)
ARGMINN (ours)
M Found Traditional CNN
B Not found ExplaiNN
DeepLIFTShap/MoDISco
10+ ARGMINN (ours)
Traditional CNN
g ExplaiNN
2 DeepLIFTShap/MoDISco
=3
? \Z &
g 999,\‘» 23 ,.‘g ff«q. c:. ¢ \&\eqv&o? &o? : &?‘\‘x «o? 0&9. ?):\3“‘2‘0 9909 «cﬁ <»
o
1 \‘ () \¢
: 9 1‘ < &

e

SPI1 '{I'AL/GATAF E2F6 T.JUND

Accuracy of discovered motifs
CTCF (HepG2)
REST SPIT/CTCF | FOXA (HepG2)

DNase (HepG2) DNase (HL-60)

& s s /\e- (g; & P & Qot\@?“ & &P S @9 S \,e* & & s q¢' e ,\cﬁ <P

%25 mEm ARGMINN (ours)
£ 9o, ™Wm Traditional CNN
g mmm ExplaiNN
§15 EEE DeepLIFTShap/MoDISco
210
K}
z s
£
° AN
R)
d) Number of extraneous motifs

40

30

S EFLELS PP PSS

F TG E €

S A
[N R

0 v
<€ 2
O

Examples of extraneous motifs
in CTCF (HepG2) dataset

ExplaiNN DeepLIFTShap/MoDISco
ARGMINN (ours)
Traditional CNN P & /1 | R
ExplaiNN
DeepLIFTShap/MoDISco
Igf Lo Ala I 2o ew S .

o ?%E,Ta, = sm,,.f,:g,m:;s%,s,,.;“

Figure 2: Motif discovery. a) Example of SPI1 motifs discovered by ARGMINN, compared to interpreting the
first-layer filters of a standard CNN, using ExplaiNN, and by clustering DeepLIFTShap importance scores using
MoDISco. Note that MoDISco combines forward and reverse-complement orientations. b) For each dataset,
we show whether or not each method successfully recovered each relevant motif (above), and the amount of
redundancy as the number of times each motif was discovered (below). ¢) To quantify accuracy of the discovered
motifs, for each relevant motif we show the maximum similarity to motifs discovered by each method. d)
For each dataset, we show the number of extraneous motifs—those which do not match any known relevant
motif—that each method discovered (left). We show a few examples of such extraneous motifs discovered for

the CTCF (HepG2) experimental dataset (right).

Under review as a conference paper at ICLR 2025

[2))
~

O
~r

Input sequence Discovered spacing between REST-motif half-sites

TCAGATAACTTATCTTACCAGATGGA

! i The

. G

0.0 |
0123 456 7 8 910111213 14 15 16 17 18 19
Spacing (bp
AECATéT, FI)

Frequency
o o
- o

e
N

Filter
activations

c
.g % ORO00000000000000000000000
€ 5 OOO0OODOROO000000000000000 C c; A
5} -—
z $ DOOOOOOOOO0O0000E000000000 Forward ;eéggée ,,,igégzgg
Each high attention score is traced back to an
original filter activation, and each filter encodes Reverse I
-—> T
a unique motif =5 g;x — Qf,;%fof:
C) TAL/GATA CTCF (HepG2) DNase (HepG2)
0.040 0.014
0.7
o o o
o @ 0.035 o
306 5] 5 0.012
3 3 3
o 8 0.030 o
2os @ @ 0.010
4 3 0.025 3
g o o
<04 < £ 0.008
k7 % 0.020 b
£ £ = 0.006
0.3 -
] S o015 E]
o2 G G 0.004
S —— ARGMINN (ours) 5 o.010 s
g 0.1 —— FIMO/ARGMINN (ours) *g 0.005 g 0.002
[FIMO/MoDISco il fin
0.0 0.000 0.000
0 1000 2000 3000 4000 5000 6000) 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Top k called instances Top k called instances Top k called instances

Figure 3: Motif instance calling and syntax discovery. a) ARGMINN calls motif instances in any query
sequence in only a forward pass. High attention scores in any attention layer trace directly back to original filter
activations, which directly map to sequence motifs. b) After training on an experimental dataset of REST binding
in HepG2, ARGMINN revealed the unique binding syntax of REST in both the forward and reverse-complement
orientations, where the half-sites (left and right) bind either adjacently or around 9-14 bp apart. ¢) We compare
motif instances discovered by ARGMINN to the traditional approach of using MoDISco to discover motifs
and subsequently scanning for them with FIMO. We rank motif instances by confidence (attention score from
ARGMINN, or FIMO hit g-value), and compute the fraction of true instances that are covered in a top-k fashion.
We also compare to motif instances discovered by scanning for ARGMINN-discovered motifs with FIMO.

unique binding syntax—including spacing preferences—of the two halves of the REST motif in both
directions/orientations (Tang et al., [2021)) (Figure).

We then quantitatively evaluated motif instances identified by ARGMINN versus a traditional
pipeline. Namely, using FIMO (Bailey et al., [2015)), we called instances of MoDISco-discovered
motifs (Shrikumar et al.,2018)) in test sequences. For each method, we ranked instances by confidence
and computed the number of ground-truth instances recovered by the top-k called instances. For
experimental datasets, we used independently derived binding footprints as ground truth (Vierstra
et al.|[2020). In general, ARGMINN’s motif instances were far more accurate than those found by the
baseline (Figure 3k, Supplementary Figure [S6| Supplementary Table[S4). To gain further intuition,
we also compared to motif instances found by using FIMO to scan for ARGMINN-discovered motifs.
ARGMINN identified more accurate motif instances than FIMO, even when FIMO was given the
same set of ARGMINN motifs. This comparison also shows the direct benefit of using ARGMINN
to perform motif instance calling, compared to the traditional method of sequence scanning.

Finally, to further demonstrate that ARGMINN’s attention scores match underlying biological signal,
we show that the positions of high attention scores in experimental test-set sequences closely track
the measured biological strength of protein binding along the sequence (Supplementary Figure[S7).

4.3 QTL PRIORITIZATION

Next, we evaluated ARGMINN’s ability to classify and prioritize a set of causal DNase-sensitivity
quantitative trait loci (dsQTLs) from a background set of non-causal dsQTLs. dsQTLs are mutations

Under review as a conference paper at ICLR 2025

a) Causal QTL classification b) chr1:28306667

originel TACAGGAAGTGCAGC Prec 05460
utated TACAGGA -GTGCAGC prec: 03296
I o e GOMTen

Precision

chr1:207997972

original GCCCTCTGCTGGTCA Pred: 0.7213
Mutated GTCCTCTGCTGGTCA Pred: 0.3875

T %, & Y, ARGMINN
Ry O, g "o / c I
W, o, M Y motif LSNEFWL TV
r"o 4'4' 61,
5 ‘9

Figure 4: QTL classification. a) On a set of known DNase-sensitivity QTLs, we evaluated the ability of
ARGMINN to prioritize true causal dsQTLs by quantifying the difference in predictions with and without the
dsQTL mutation. b) We show two examples of causal dsQTLs, which fall in ARGMINN-discovered motif
instances. In both cases, by making the dsQTL mutation, the ARGMINN-discovered binding site is disrupted,
leading to a reduced prediction of accessibility.

which change the DNase accessibility of a sequence. A predictive model which makes decisions
based on biological signals (and not spurious correlates) should predict a larger change for causal
dsQTLs compared to non-causal dsQTLs, which are merely correlated with the causal changes. On a
held-out chromosome, we found that compared to other architectures, ARGMINN was capable of
classifying/prioritizing the causal dsQTLs much more accurately (Figure @p). In particular, these
causal dsQTLs tended to overlap specific motif instances which ARGMINN used for its prediction
of accessibility (Figure @b). This further shows that ARGMINN makes biologically meaningful
predictions on sequence changes, based on interpretable motif biology rather than spurious signals.

4.4 ROBUSTNESS OF ARGMINN

Because ARGMINN makes decisions based on biologically meaningful motifs, it is more robust to
background variations. On several simulated datasets, we trained ARGMINN (along with a standard
CNN and ExplaiNN) with a 50% GC background. We then computed predictive performance on test
sequences with GC content ranging from 5% to 95%, thus simulating natural variation in background
composition. ARGMINN’s performance suffered the least, with a higher and tighter distribution of
performance in general (Supplementary Figure [S8h).

Furthermore, because traditional CNNs learn filters which do not accurately represent motifs, they
are prone to adversarial attacks (Supplementary Methods [C.4). On our SPII dataset, we trained
a CNN to achieve 88% accuracy. We then easily constructed many sequences containing short
substrings which highly activate its filters, but without any instances of the SPI1 motif. On this set
of sequences, the standard CNN’s accuracy dropped to 55%. Reflexively, we also easily designed
sequences containing the SPI1 motif, but we inserted substrings into the background which strongly
deactivate the filters, leading the CNN’s accuracy to drop to 48%. In contrast, because ARGMINN
encodes meaningful biological motifs in each filter, it remains robust against such an attack (i.e., one
cannot easily identify highly-activating or anti-activating sequences which trick the model into giving
the wrong prediction).

Finally, we used Ledidi (Schreiber et al.,[2020) to generate sequences which would bind to SPI1.
Ledidi is a gradient-based sequence-design method, which optimizes input sequences to maximize
the probability of a positive prediction from a given model. Applying Ledidi on the ARGMINN
architecture generated sequences with the strongest instances of the true SPI1 motif (Supplementary
Figure [S8b). The true binding strength of ARGMINN’s Ledidi-generated instances was signif-
icantly higher than those generated from the standard CNN (p = 8.95 x 10~'8) and ExplaiNN
(p = 5.53 x 10~ 6). This is likely due to the fact that ARGMINN is explicitly trained to focus on
the relevant motifs, whereas the other models often focus on spurious, non-motif sequence patterns,
resulting in ARGMINN’s being a more robust oracle for optimization.

Under review as a conference paper at ICLR 2025

4.5 INTERPRETABLE DESIGN OF NOVEL FUNCTIONAL SEQUENCES

a) r . Functional motifs b) Borzoi accessibility
Experimental data and syntax - ~
4
2| erCCAACGGTAG FOXA TEAD .
= GAGGCAGGGCGC -
S| “haccansoana —> ARGMINN—> ol — .l 4,
= CTTAGAACGTGA . 8
GACCAGACGGGA . =1
o
L Spacing (bp) B
FOXA TEAD)
1) Select/sample
5| omar el «—> T
8| configuration ola.sf c = Al ¢
o 2
(] z,
< . €
3 2) Insert into 2,
non-functional —
background 0
-1

Result: novel functional sequence with known justification

[2
Generated

Figure 5: Interpretable sequence design. a) After training on experimental data (e.g., HepG2 accessibility),
ARGMINN reveals the functional motifs and their binding syntax which induce function. To generate a novel
functional sequence, we insert motifs into a non-functional background, following the syntactical rules learned
by ARGMINN. In this novel sequence, the mechanistic justification is fully controlled and known. b) We
interpretably constructed novel HepG2-accessible sequences using ARGMINN and validated their accessibility
using Borzoi. We compared the accessibility between generated sequences and natural sequences from the
experiment (top), as well as between generated sequences and shuffled backgrounds (bottom).

Upon training, ARGMINN reveals the functional motifs and the syntatical rules for combining
them which produce a prediction of binding or accessibility. As such, ARGMINN can be used for
interpretable generation of novel functional sequences. In contrast with sequence generation using
traditional methods (e.g., gradient-based tools like Ledidi, or directed evolution) or non-interpretable
generative models (e.g., diffusion models or autoencoders), we may start with ARGMINN interpre-
tations and sample motif configurations to insert into non-functional backgrounds. This yields a
generated sequence for which we have a complete understanding on the reason why it is biologically
active (e.g., it is active because it has the FOXA motif and TEAD motif 50 bp apart) (Figure [Sh).

To demonstrate this ability, we trained ARGMINN to predict DNA accessibility in the HepG2
cell type from experimental data. On the test set, we then extracted the functional motifs and the
syntactical rules and grammars between them. We sampled motifs and their configurations entirely
from ARGMINN’s discovered biology, and inserted them into non-functional sequence backgrounds
(Supplementary Methods [C.4). Using the same model as a predictor of accessibility, we found
that the newly generated sequences were predicted to be significantly more accessible than the
shuffled non-functional backgrounds (p = 1.78 x 10~32). Furthermore, these generated sequences
were predicted to be just as accessible as natural sequences identified to be highly accessible by the
original biological experiment (p = 0.75) (Supplementary Figure[S9¢). We then repeated our in silico
validation with a completely independently trained model, Borzoi (Linder et al.,|2023)). Using the
output head of Borzoi which predicts DNA accessibility in HepG2, we passed the same sequences
through Borzoi to predict accessibility and confirmed the same trends: the generated sequences were
far more accessible than the non-functional backgrounds, and were similar in accessibility to natural
sequences identified by the experiment (Figure [5p). We found that this trend was also upheld by two
additional independent oracles (Supplementary Figure [S9-b).

5 THEORETICAL RESULTS

For a MI architecture, ARGMINN is highly interpretable, yet uniquely retains high expressivity. Here,
we show that ARGMINN is capable of learning any possible configuration of motifs—including
positional and syntactic constraints—as long as the constraints are definable in first-order logic.

Theorem 1. Every configuration of motifs/subsequences which is definable by a sentence in first-order
logic (with positional variables) is recognizable by an ARGMINN classifier.

Under review as a conference paper at ICLR 2025

Furthermore, ARGMINN is more expressive than previous interpretable architectures for regulatory
genomics, such as ExplaiNN (Novakovsky et al.,2022b)), which learns an output label from a linear
combination of motif strengths:

Corollary 1.1. There exists a configuration of first-order-logic-expressable motifs/subsequences
which is not recognizable by any ExplaiNN classifier.

We formally prove Theorem|[I]and Corollary in Appendix [A] Here, we briefly sketch the proof
of Theorem|[I] Intuitively, ARGMINN’s motif-scanner module outputs motif binding strengths by
encoding each motif’s position-weight matrix (Benos et al.,2002) in a different filter. With expressive
positional encodings, the syntax-builder module learns syntax/interactions between motif instances.
Each attention head learns one syntactical “rule” (i.e., possible motif combinations), which is built up
in complexity over layers (i.e., combinations of k£ motifs are learned by the kth layer).

5.1 EXPERIMENTAL FOLLOW-UP TO THEORETICAL RESULTS

To empirically reinforce our theoretical results, we consider the REST binding motif, which consists
of two halves which must bind together (with variable spacings) (Figure[3p). Notably, both halves
need to bind in the same orientation and order (half sites cannot be mixed/matched). On a simulated
REST dataset which explicitly tests these complex requirements, ARGMINN achieved 90.9% test-set
accuracy, whereas ExplaiNN only achieved 73.4%. This demonstrates that ARGMINN is sufficiently
expressive to capture complex grammars and syntax between motifs, which previous architectures
could not.

6 DISCUSSION

We illustrated ARGMINN’s unique ability to reveal genome-regulatory motifs and their syntax
directly from its weights and activations—an advantage which is entirely absent from traditional
(non-MI) DNNs. We then compared the predictive performance of ARGMINN to standard CNNs
and ExplaiNN (Supplementary Table[S5). It is generally well known that more interpretable models
may suffer slightly in predictive performance (Dosilovic et al., 2018 |Arrieta et al., 2020). This
is expected, as these models tend to base decisions on human-interpretable concepts (e.g., crucial
motifs), instead of spurious signals which can be informative, but are not useful for understanding
regulatory genomics (e.g., GC content, exceptionally rare motifs, etc.). Our empirical results fall in
line with these expectations. On simulated datasets where we ensured that the only informative signals
are motifs, ARGMINN achieved superior performance compared to the baselines. On experimental
datasets with many more spurious signals, ARGMINN achieved competitive performance, but did
not outperform its non-MI counterparts.

Additionally, to further show the benefit of our filter regularizer, we applied our regularization to
a standard CNN. As a result, the CNN’s filters also encoded relevant and non-redundant motifs
(Supplementary Figure[ST0). This shows that our filter-overlap regularizer can be readily applied
to standard genomic DNNs to achieve more interpretable first-layer filters in general. Importantly,
however, without the other architectural novelties of ARGMINN (Equation EI), such a DNN would
still not reap benefits such as motif-instance and syntax discovery.

Finally, we explored the robustness of ARGMINN to the loss weights (which are hyperparameters) for
our regularizers. We found that over many orders of magnitude, ARGMINN’s predictive performance
and interpretability both remained robust to the loss weights (Supplementary Figure [STI). This
is partially due to the design of these regularizers, which are aimed to synergize with predictive
performance and the learning of biological motifs, rather than compete with other losses.

Mechanistic interpretability is still a nascent field, and our research pioneers an architecture that
enables direct interpretation with minimal post hoc analysis. To our knowledge, ARGMINN is the
most MI (yet still fully expressive) architecture for genome regulation—a field where understanding a
model’s learned decision rules is equally as critical as its accuracy (Eraslan et al.,2019; Rudin}|2019)—
and is one of the few intrinsically MI architectures of its complexity in general. We showed that
ARGMINN is expressive enough to accurately predict genome regulation, yet is uniquely constrained
so the weights and activations directly encode the decision process in a human-interpretable way.
Further work in this area can yield major benefits for scientific Al and explainable Al.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Babak Alipanahi, Andrew Delong, Matthew T. Weirauch, and Brendan J. Frey. Predicting the
sequence specificities of dna- and rna-binding proteins by deep learning. Nature Biotechnology,
33:831-838, 8 2015. ISSN 15461696. doi: 10.1038/nbt.3300.

David Alvarez-Melis and Tommi S. Jaakkola. On the robustness of interpretability methods. 6 2018.
URLhttps://arxiv.org/abs/1806.08049v1.

Alejandro Barredo Arrieta, Natalia Diaz-Rodriguez, Javier Del Ser, Adrien Bennetot, Siham Tabik,
Alberto Barbado, Salvador Garcia, Sergio Gil-Lopez, Daniel Molina, Richard Benjamins, Raja
Chatila, and Francisco Herrera. Explainable artificial intelligence (xai): Concepts, taxonomies,
opportunities and challenges toward responsible ai. Information Fusion, 58:82—115, 6 2020. ISSN
1566-2535. doi: 10.1016/J.INFFUS.2019.12.012.

Timothy L Bailey, James Johnson, Charles E Grant, and William S Noble. The meme suite. Nucleic
Acids Research, 43:W39-49, 7 2015. doi: 10.1093/nar/gkv416.

Pietro Barbiero, Gabriele Ciravegna, Francesco Giannini, Mateo Espinosa Zarlenga, Lucie Charlotte
Magister, Alberto Tonda, Pietro Lio, Frederic Precioso, Mateja Jamnik, and Giuseppe Marra.
Interpretable neural-symbolic concept reasoning, 6 2023.

Panayiotis V. Benos, Martha L. Bulyk, and Gary D. Stormo. Additivity in protein—dna interactions:
how good an approximation is it? Nucleic Acids Research, 30:4442-4451, 10 2002. ISSN 0305-
1048. doi: 10.1093/NAR/GKF578. URL https://dx.doi.org/10.1093/nar/gkf578.

Leonard Bereska and Efstratios Gavves. Mechanistic interpretability for ai safety — a review. 4 2024.
URLhttps://arxiv.org/abs/2404.14082v2.

David Chiang, Peter Cholak, and Anand Pillay. Tighter bounds on the expressivity of transformer
encoders. Proceedings of Machine Learning Research, 202:5544-5562, 1 2023. ISSN 26403498.
URL https://arxiv.org/abs/2301.10743v3l

ENCODE Project Consortium. An integrated encyclopedia of dna elements in the human genome.
Nature, 489:57-74, 9 2012. doi: 10.1038/nature11247.

Filip Karlo Dosilovic, Mario Brcic, and Nikica Hlupic. Explainable artificial intelligence: A survey.
2018 41st International Convention on Information and Communication Technology, Electronics
and Microelectronics, MIPRO 2018 - Proceedings, pp. 210-215, 6 2018. doi: 10.23919/MIPRO.
2018.8400040.

Gaokeen Eraslan, Ziga Avsec, Julien Gagneur, and Fabian J. Theis. Deep learning: new computational
modelling techniques for genomics. Nature Reviews Genetics 2019 20:7, 20:389-403, 4 2019.
ISSN 1471-0064. doi: 10.1038/s41576-019-0122-6. URL https://www.nature.com/
articles/s41576-019-0122-6l

Oriol Fornes, Jaime A Castro-Mondragon, Aziz Khan, Robin van der Lee, Xi Zhang, Phillip A
Richmond, Bhavi P Modi, Solenne Correard, Marius Gheorghe, Damir Baranasi¢, Walter Santana-
Garcia, Ge Tan, Jeanne Cheneby, Benoit Ballester, Frangois Parcy, Albin Sandelin, Boris Lenhard,
Wyeth W Wasserman, and Anthony Mathelier. Jaspar 2020: update of the open-access database
of transcription factor binding profiles. Nucleic Acids Research, 48:D87-D92, 1 2020. doi:
10.1093/nar/gkz1001.

Dan Friedman, Alexander Wettig, and Danqi Chen. Learning transformer programs. 6 2023. URL
https://arxiv.org/abs/2306.01128v2.

Ryan J. Geusz, Allen Wang, Dieter K. Lam, Nicholas K. Vinckier, Konstantinos Dionysios
Alysandratos, David A. Roberts, Jinzhao Wang, Samy Kefalopoulou, Araceli Ramirez, Yun-
jiang Qiu, Joshua Chiou, Kyle J. Gaulton, Bing Ren, Darrell N. Kotton, and Maike Sander.
Sequence logic at enhancers governs a dual mechanism of endodermal organ fate induction
by foxa pioneer factors. Nature Communications 2021 12:1, 12:1-19, 11 2021. ISSN 2041-
1723. doi: 10.1038/s41467-021-26950-0. URL https://www.nature.com/articles/
s41467-021-26950-0.

11

https://arxiv.org/abs/1806.08049v1
https://dx.doi.org/10.1093/nar/gkf578
https://arxiv.org/abs/2404.14082v2
https://arxiv.org/abs/2301.10743v3
https://www.nature.com/articles/s41576-019-0122-6
https://www.nature.com/articles/s41576-019-0122-6
https://arxiv.org/abs/2306.01128v2
https://www.nature.com/articles/s41467-021-26950-0
https://www.nature.com/articles/s41467-021-26950-0

Under review as a conference paper at ICLR 2025

Amirata Ghorbani, Abubakar Abid, and James Zou. Interpretation of neural networks is fragile. 33rd
AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial
Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2019, pp. 3681-3688, 10 2017. ISSN 2159-5399. doi: 10.1609/aaai.
v33i01.33013681. URL https://arxiv.org/abs/1710.10547v2,

Amirata Ghorbani, James Wexler Google Brain, James Zou, and Been Kim Google Brain. Towards
automatic concept-based explanations. Advances in Neural Information Processing Systems, 32,
2019. URL https://github.com/amiratag/ACE.

SJ Gosai, RI Castro, N Fuentes, JC Butts, S Kales, RR Noche, K Mouri, PC Sabeti, SK Reilly,
and R Tewhey. Machine-guided design of synthetic cell type-specific cis-regulatory ele-
ments. bioRxiv, pp. 2023.08.08.552077, 8 2023. doi: 10.1101/2023.08.08.552077. URL
https://www.biorxiv.org/content/10.1101/2023.08.08.552077v1lhttps:
//www.biorxiv.org/content/10.1101/2023.08.08.552077v1.abstractl

Theodoros Kasioumis, Joe Townsend, and Hiroya Inakoshi. Elite backprop: Training sparse inter-
pretable neurons. International Workshop on Neural-Symbolic Learning and Reasoning, 2021.

David R. Kelley, Jasper Snoek, and John L. Rinn. Basset: Learning the regulatory code of the
accessible genome with deep convolutional neural networks. Genome Research, 26:990-999, 7
2016. ISSN 15495469. doi: 10.1101/gr.200535.115.

Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas, and Rory
Sayres. Interpretability beyond feature attribution: Quantitative testing with concept activation
vectors (tcav). 35th International Conference on Machine Learning, ICML 2018, 6:4186-4195, 11
2017. URL https://arxiv.org/abs/1711.11279v5,

Pieter Jan Kindermans, Sara Hooker, Julius Adebayo, Maximilian Alber, Kristof T. Schiitt, Sven
Déhne, Dumitru Erhan, and Been Kim. The (un)reliability of saliency methods. Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 11700 LNCS:267-280, 11 2017. ISSN 16113349. doi: 10.1007/
978-3-030-28954-6_14. URL https://arxiv.org/abs/1711.00867v1.

Pang Wei Koh, Thao Nguye, Yew Siang Tang, Stephen Mussmann, Emma Pierso, Been Kim, and
Percy Liang. Concept bottleneck models. 37th International Conference on Machine Learning,
ICML 2020, PartF168147-7:5294-5304, 7 2020. URL https://arxiv.org/abs/2007!
04612v3L.

Samuel A Lambert, Arttu Jolma, Laura F Campitelli, Pratyush K Das, Yimeng Yin, Mihai Albu, Xi-
aoting Chen, Jussi Taipale, Timothy R Hughes, and Matthew T Weirauch. The human transcription
factors. Cell, 172:650-665, 2 2018. doi: 10.1016/j.cell.2018.01.029.

Dongwon Lee, David U. Gorkin, Maggie Baker, Benjamin J. Strober, Alessandro L. Asoni, Andrew S.
McCallion, and Michael A. Beer. A method to predict the impact of regulatory variants from dna
sequence. Nature Genetics 2015 47:8, 47:955-961, 6 2015. ISSN 1546-1718. doi: 10.1038/ng.
3331. URL https://www.nature.com/articles/ng.3331.

Bryan Lemon and Robert Tjian. Orchestrated response: a symphony of transcription factors
for gene control. Genes & Development, 14:2551-2569, 10 2000. ISSN 0890-9369. doi:
10.1101/GAD.831000. URL http://genesdev.cshlp.org/content/14/20/2551.
fullhttp://genesdev.cshlp.org/content/14/20/2551.

Johannes Linder, Divyanshi Srivastava, Han Yuan, Vikram Agarwal, and David R. Kelley.
Predicting rna-seq coverage from dna sequence as a unifying model of gene regula-
tion. bioRxiv, pp. 2023.08.30.555582, 9 2023. doi: 10.1101/2023.08.30.555582. URL
https://www.biorxiv.org/content/10.1101/2023.08.30.555582v1https:
//www.biorxiv.org/content/10.1101/2023.08.30.555582v1.abstract.

Xiao Liu, Jun Xu, Sara Rosenthal, Ling juan Zhang, Ryan McCubbin, Nairika Meshgin, Linshan
Shang, Yukinori Koyama, Hsiao Yen Ma, Sonia Sharma, Sven Heinz, Chris K. Glass, Chris Benner,
David A. Brenner, and Tatiana Kisseleva. Identification of lineage-specific transcription factors
that prevent activation of hepatic stellate cells and promote fibrosis resolution. Gastroenterology,
158:1728-1744.e14, 5 2020. ISSN 0016-5085. doi: 10.1053/J.GASTRO.2020.01.027.

12

https://arxiv.org/abs/1710.10547v2
https://github.com/amiratag/ACE
https://www.biorxiv.org/content/10.1101/2023.08.08.552077v1 https://www.biorxiv.org/content/10.1101/2023.08.08.552077v1.abstract
https://www.biorxiv.org/content/10.1101/2023.08.08.552077v1 https://www.biorxiv.org/content/10.1101/2023.08.08.552077v1.abstract
https://arxiv.org/abs/1711.11279v5
https://arxiv.org/abs/1711.00867v1
https://arxiv.org/abs/2007.04612v3
https://arxiv.org/abs/2007.04612v3
https://www.nature.com/articles/ng.3331
http://genesdev.cshlp.org/content/14/20/2551.full http://genesdev.cshlp.org/content/14/20/2551
http://genesdev.cshlp.org/content/14/20/2551.full http://genesdev.cshlp.org/content/14/20/2551
https://www.biorxiv.org/content/10.1101/2023.08.30.555582v1 https://www.biorxiv.org/content/10.1101/2023.08.30.555582v1.abstract
https://www.biorxiv.org/content/10.1101/2023.08.30.555582v1 https://www.biorxiv.org/content/10.1101/2023.08.30.555582v1.abstract

Under review as a conference paper at ICLR 2025

Ziming Liu, Eric Gan, and Max Tegmark. Seeing is believing: Brain-inspired modular training for
mechanistic interpretability. 5 2023. URL https://arxiv.org/abs/2305.08746v2,

Gherman Novakovsky, Nick Dexter, Maxwell W. Libbrecht, Wyeth W. Wasserman, and Sara
Mostafavi. Obtaining genetics insights from deep learning via explainable artificial in-
telligence. Nature Reviews Genetics 2022 24:2, 24:125-137, 10 2022a. ISSN 1471-
0064. doi: 10.1038/s41576-022-00532-2. URL https://www.nature.com/articles/
s41576-022-00532-2,

Gherman Novakovsky, Oriol Fornes, Manu Saraswat, Sara Mostafavi, and Wyeth W.
Wasserman. Explainn: interpretable and transparent neural networks for genomics.
bioRxiv, pp. 2022.05.20.492818, 11 2022b. doi: 10.1101/2022.05.20.492818. @ URL
https://www.biorxiv.org/content/10.1101/2022.05.20.492818v3https:
//www.biorxiv.org/content/10.1101/2022.05.20.492818v3.abstract!

Youlian Pan and Sieu Phan. Guide to threshold selection for motif prediction using positional weight
matrix. Proceedings of the International MultiConference of Engineers and Computer Scientists,
1, 2008.

Ryan Riegel, Alexander Gray, Francois Luus, Naweed Khan, Ndivhuwo Makondo, Ismail Yunus
Akhalwaya, Haifeng Qian, Ronald Fagin, Francisco Barahona, Udit Sharma, Shajith Ikbal, Hima
Karanam, Sumit Neelam, Ankita Likhyani, and Santosh Srivastava. Logical neural networks. 6
2020. URL https://arxiv.org/abs/2006.13155v1.

Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and
use interpretable models instead. Nature Machine Intelligence 2019 1:5, 1:206-215, 5 2019.
ISSN 2522-5839. doi: 10.1038/s42256-019-0048-x. URL https://www.nature.com/
articles/s42256-019-0048-x.

Jacob Schreiber, Yang Young Lu, and William Stafford Noble. Ledidi: Designing ge-
nomic edits that induce functional activity. bioRxiv, pp. 2020.05.21.109686, 5 2020. doi:
10.1101/2020.05.21.109686. URL https://www.biorxiv.org/content/10.1101/
2020.05.21.109686vlhttps://www.biorxiv.org/content/10.1101/2020.
05.21.109686v1.abstract.

Darcie D. Seachrist, Lindsey J. Anstine, and Ruth A. Keri. Foxal: A pioneer of nuclear receptor
action in breast cancer. Cancers, 13, 102021. ISSN 20726694. doi: 10.3390/CANCERS13205205.
URL /pmc/articles/PMC8533709//pmc/articles/PMC8533709/?report=
abstracthttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8533709/.

Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through
propagating activation differences. Proceedings of Machine Learning Research, pp. 3145—
3153, 7 2017. ISSN 1938-7228. URL http://proceedings.mlr.press/v70/
shrikumarl7a.htmll

Avanti Shrikumar, Katherine Tian, Anna Shcherbina, Ziga Avsec, Abhimanyu Banerjee, Mahfuza
Sharmin, Surag Nair, and Anshul Kundaje. Tf-modisco v0.4.2.2-alpha: Technical note. arXiv, 10
2018. URL http://arxiv.org/abs/1811.00416.

Trevor Siggers and Raluca Gordan. Protein—dna binding: complexities and multi-protein codes.
Nucleic Acids Research, 42:2099-2111, 2 2014. ISSN 0305-1048. doi: 10.1093/NAR/GKT1112.

Gary D. Stormo and Dana S. Fields. Specificity, free energy and information content in protein—dna
interactions. Trends in Biochemical Sciences, 23:109-113, 3 1998. ISSN 0968-0004. doi:
10.1016/S0968-0004(98)01187-6.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. arXiv, 3
2017. URL http://arxiv.org/abs/1703.01365!.

Yuanxiao Tang, Zhilian Jia, Honglin Xu, Lin Tai Da, and Qiang Wu. Mechanism of rest/nrsf
regulation of clustered protocadherin alpha genes. Nucleic Acids Research, 49:4506-4521, 5 2021.
ISSN 0305-1048. doi: 10.1093/NAR/GKAB248. URL https://dx.doi.org/10.1093/
nar/gkab248.

13

https://arxiv.org/abs/2305.08746v2
https://www.nature.com/articles/s41576-022-00532-2
https://www.nature.com/articles/s41576-022-00532-2
https://www.biorxiv.org/content/10.1101/2022.05.20.492818v3 https://www.biorxiv.org/content/10.1101/2022.05.20.492818v3.abstract
https://www.biorxiv.org/content/10.1101/2022.05.20.492818v3 https://www.biorxiv.org/content/10.1101/2022.05.20.492818v3.abstract
https://arxiv.org/abs/2006.13155v1
https://www.nature.com/articles/s42256-019-0048-x
https://www.nature.com/articles/s42256-019-0048-x
https://www.biorxiv.org/content/10.1101/2020.05.21.109686v1 https://www.biorxiv.org/content/10.1101/2020.05.21.109686v1.abstract
https://www.biorxiv.org/content/10.1101/2020.05.21.109686v1 https://www.biorxiv.org/content/10.1101/2020.05.21.109686v1.abstract
https://www.biorxiv.org/content/10.1101/2020.05.21.109686v1 https://www.biorxiv.org/content/10.1101/2020.05.21.109686v1.abstract
/pmc/articles/PMC8533709/ /pmc/articles/PMC8533709/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8533709/
/pmc/articles/PMC8533709/ /pmc/articles/PMC8533709/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8533709/
http://proceedings.mlr.press/v70/shrikumar17a.html
http://proceedings.mlr.press/v70/shrikumar17a.html
http://arxiv.org/abs/1811.00416
http://arxiv.org/abs/1703.01365
https://dx.doi.org/10.1093/nar/gkab248
https://dx.doi.org/10.1093/nar/gkab248

Under review as a conference paper at ICLR 2025

Alex M. Tseng, Avanti Shrikumar, and Anshul Kundaje. Fourier-transform-based attri-
bution priors improve the interpretability and stability of deep learning models for ge-
nomics. bioRxiv, pp. 2020.06.11.147272, 6 2020. doi: 10.1101/2020.06.11.147272. URL
https://www.biorxiv.org/content/10.1101/2020.06.11.147272v1https:
//www.biorxiv.org/content/10.1101/2020.06.11.147272v1.abstract.

Alex Michael Tseng. Improving and leveraging the interpretability of deep neural networks for
genomics, 2022. URL https://purl.stanford.edu/jv141vb2060.

Jeff Vierstra, John Lazar, Richard Sandstrom, Jessica Halow, Kristen Lee, Daniel Bates, Morgan
Diegel, Douglas Dunn, Fidencio Neri, Eric Haugen, Eric Rynes, Alex Reynolds, Jemma Nelson,
Audra Johnson, Mark Frerker, Michael Buckley, Rajinder Kaul, Wouter Meuleman, and John A.
Stamatoyannopoulos. Global reference mapping of human transcription factor footprints. Nature
2020 583:7818, 583:729-736, 7 2020. ISSN 1476-4687. doi: 10.1038/s41586-020-2528-x. URL
https://www.nature.com/articles/s41586-020-2528-x.

Ziga Avsec, Vikram Agarwal, Daniel Visentin, Joseph R. Ledsam, Agnieszka Grabska-Barwinska,
Kyle R. Taylor, Yannis Assael, John Jumper, Pushmeet Kohli, and David R. Kelley. Effective gene
expression prediction from sequence by integrating long-range interactions. Nature Methods 2021
18:10, 18:1196-1203, 10 2021a. ISSN 1548-7105. doi: 10.1038/s41592-021-01252-x. URL
https://www.nature.com/articles/s41592-021-01252-x.

Ziga Avsec, Melanie Weilert, Avanti Shrikumar, Sabrina Krueger, Amr Alexandari, Khyati Dalal,
Robin Fropf, Charles McAnany, Julien Gagneur, Anshul Kundaje, and Julia Zeitlinger. Base-
resolution models of transcription-factor binding reveal soft motif syntax. Nature Genetics, 53:
354-366, 3 2021b. doi: 10.1038/s41588-021-00782-6.

14

https://www.biorxiv.org/content/10.1101/2020.06.11.147272v1 https://www.biorxiv.org/content/10.1101/2020.06.11.147272v1.abstract
https://www.biorxiv.org/content/10.1101/2020.06.11.147272v1 https://www.biorxiv.org/content/10.1101/2020.06.11.147272v1.abstract
https://purl.stanford.edu/jv141vb2060
https://www.nature.com/articles/s41586-020-2528-x
https://www.nature.com/articles/s41592-021-01252-x

Under review as a conference paper at ICLR 2025

A SUPPLEMENTARY PROOFS

A.1 PROOF OF THEOREMIII

In this section, we prove that every configuration of motifs (which is definable by a first-order-logical
sentence with position-indexed variables) is recognizable by an ARGMINN classifier. We will first
show that ARGMINN’s motif-scanner module is sufficiently expressive to characterize motif-based
protein binding, and then subsequently that the syntax-builder module can recognize arbitrary logical
syntax between these binding sites.

Biophysical assumptions

We begin with our biophysical assumptions which justify our modeling of motif biology by first-order
logic (with position-indexed variables).

1. For binary biological readouts of interest (e.g., protein-binding measured by ChIP-seq, DNA
accessibility measured by DNase-seq, etc.), the readout is fully characterized by the binding
of proteins, which recognize motifs in the sequence (Stormo & Fields| |1998; Lemon &
Tjian} 2000).

2. The free concentration of any particular protein is constant across training and testing
conditions.

3. For a given potential binding site (e.g., a motif instance in a DNA sequence), the strength
and likelihood of binding of a specific protein (these quantities are related through statistical
mechanics) can be sufficiently summarized by a single scalar value (related to the K4, or
dissociation constant). Through statistical mechanics, the fraction/probability of binding is

K(I[TTF[]TF] (Stormo & Fields| 1998).

4. The K value (or a monotonic function of it) can be computed as an independently additive
function of individual positions of the binding site. An example of this is the PWM (position
weight matrix), which has been shown to be a good approximation of binding mechanics
(Benos et al.,[2002; |[Pan & Phan, 2008)).

5. Input sequences are a finite length /.

6. Given real-valued variables b,, , representing the binding strength of motif m at position p
in a sequence, the binary biological readout (e.g., binding of a particular protein of interest
or accessibility) of the sequence as a whole can be expressed as the following disjunction of

statements:
n

o=\ ¢,
i=1

where ¢; is a statement denoting a single possible configuration of motifs that induces a
positive biological readout.

Each ¢; has the following form:

¢i = (bmz‘,hpi,l 2 ti,l) TARERRA (bmi‘d7pi‘d 2 ti,d)'

That is, ¢; defines whether or not a specific configuration of d > 1 binding motifs
m;1,-..,M; q exist with sufficient strength at positions p; 1, ..., p; 4. Note that with finite
sequences, all possible statements about combinations of motifs (expressable in first-order
logic) can be written in this form, by the Disjunctive Normal Form Theorem.

Below, we proceed with our proof by constructing an instantiation of the ARGMINN architecture
where the particular instantiation implements/recognizes a sentence o.
Motif-scanner module

Given the above biophysical assumptions, the motif-scanner module’s convolutional filters are
sufficiently expressive to capture the binding strengths/likelihoods of each position for each potential
binding motif.

We simply design this module to have n filters equal to the number of unique motifs m in o, with
width w equal to the maximum width of any motif. We set the multiplicative weights of each filter
with the PWM of each motif, so that this module precisely implements the PWM-scanning procedure

15

Under review as a conference paper at ICLR 2025

that is common in the field of regulatory genomics (Benos et al.| 2002). For this proof, we set the
bias to be 0. Note that if the convolutional filters W are all PWMs, then the multiplicative weights
are all non-negative, and so the pre-ReLU activation will also be non-negative.

Thus, the motif-scanner module outputs a set of binding strengths for each position of the sequence,
for each possible motif. In other words, this module outputs b,, ; for each relevant motif m, at each
position p. This constitutes the motif activations A of the model.

Syntax-builder module

Now we design an instantiation of the syntax-builder module which captures the logic in ¢. In
particular, our model will produce a pre-sigmoid output which is positive if and only if o is true.

The input to the syntax-builder module is the concatenation of motif activations A (which is the
matrix of binding strengths b,, ,,) and the positional encodings P: A|P. For ease of proof, let the
positional encodings P be a one-hot-encoded vector of size ¢, denoting position. We will use the
notation [A|| P], to denote the column vector at position p, which is an (n; + ¢)-dimensional vector
where the first n ¢ entries contain the binding strengths/activations of each motif at position p, and the
latter ¢ entries contain a one-hot encoding of position p.

Recall that within o, n is the number of statements in disjunction. Let d,;,,, be the maximum
length of any of the ¢;s. For simplicity of our proof and construction, we pad every ¢; to have
exactly d,,q; clauses by adding “dummy motif clauses”. For example, let us pad with the clause
(bo,0 > 0). This simply checks that some arbitrary motif (index 0) at some arbitrary position (position
0) has non-negative activation, which will always be true since the convolutional weights in the
motif-scanner module are PWMs.

We let the memory vector m; be of dimension n(ny + £). Additionally, we define the dimension of
the query/key/value vectors be ny + .

Our proof (like many other similar proofs) relies on the universal approximation theorem of feed-
forward networks (FFNs). We also leverage Lemma 19 from (Chiang et al.,|2023)), which shows that
in an FFN, residual connections can effectively be ignored (which simplifies the construction of our
network).

We proceed with induction on d,,,,, Where our syntax-builder module has d,,, attention layers,
with n heads for each layer (one head for every ¢;).

Base case: dyqr = 1

Consider d,,q; = 1. In this case, each ¢; can be written as ¢; := by, p, > t;. That s, ¢; is true if
and only if motif m; at position p; is strong enough.

Now we instantiate a single-attention-layer syntax-builder module with n attention heads. We repeat
the following for each head independently:

For each head 7, we learn to recognize ¢;. Recall that the memory vector my is initialized to be all 1s.

We define the weight matrices W 1, Wi 1, Wy separately for each attention head in this proof,
knowing that the final weight matrices for the attention layer as a whole are obtained by a simple
concatenatation operation over the heads. Let Wg 1 map myg to a single vector where the first ny
entries is a one-hot encoding where the 1 is in the position of motif m;, and the latter ¢ entries is filled
with a very negative constant —C' (C' >> 0), except for the position p; (indexed from within these
latter £ entries), which has a 1. Let Wy, = Wy = I, s+¢> the identity matrix of appropriate size:

@ =Wgimp=[0 --- 010 -~ 0] -C --- =C 1 -C --- —C}T
where the 1 is at index m; in the left block, and the 1 is at index p; within the right block.
Ky =Wk a[A|P] = [A||P] Vi =Wya[A|P] = [A]lP]

Next, we take the dot product of every key vector with the query vector. For the key vector [A|| P],,,
(originating from position p;), the dot product will be by, ,,, + 1 (the first n¢ entries contribute the

16

Under review as a conference paper at ICLR 2025

binding strength b,,,, ,,, and the latter £ entries contribute the 1). For any other position p # p;, the
dot product will be b,,, , — C.

We select C' to be a large-enough magnitude such that after the softmax, the attention score at position
p; will be approximately 1, and all other positions will effectively be 0. Thus, the final vector being
passed to the feed-forward network (FFN) is equivalent to the value vector corresponding to position
p; (which is equivalent to the motif activations/positional encoding at position p;):

a1Vi = [A[|P],

With all attention heads together, we obtain a concatenated vector of size n(n r+ ¢), where every
contiguous ith block of s + £ entries corresponds to ¢;, and contains the vector [A||P],,.

We then design our FFN to map from this vector to our final memory stream m;. In particular, this
FFN will produce an output vector of the same size, where every contiguous ith block of nny + ¢
entries contains all —ﬁ if b, p;, < ts, and all ﬁ otherwise. We invoke Lemma 19 from (Chiang
et al.|(2023) and the Universal Approximation Theorem to perform this step.

Our final linear projection layer (which takes m and maps to an output prediction ¢) has weights of
all 1 and bias of 0.

Together, this ensures that the output § > 0 if and only if there exists an ¢ such that b, ,, > t; (i.e.,
¢; is true).

Base case: d,q0 = 2

We proceed with a similar structure as with the above base case. In the first layer, we define
Wa.,1, Wk 1, Wy,1 identically as above. However, after the first attention layer, we design the FFN
differently so that m; contains information about the next motif within ¢; to search for.

In particular, each ¢; is of the form ¢; := (b, , p.; > ti,1) A (b, 5,0 = ti2). In the first attention
layer, we define the weight matrices W 1, Wk 1, Wy,1 as above, so that the vector passed to the
FEN is a concatenation of [A| P],, , for all 4.

Here, we design the FFN so that it will produce m;, where every contiguous th block of ny + ¢
entries contains all 1s if by, , p, , > 5,1, and all Os otherwise.

Next, the second attention layer will identify the second motif in each ¢;. Again, we consider each
attention head ¢ separately.

In this second layer, W » produces a query vector for each head which is similar to that in the
previous base case: a vector of ny + £ entries where the first n; is all 0 except for the position of
m; 2, and the latter £ entries are all —C' except for the position p; » (however, note that if the first
motif m; 1 was not found at position p; 1, then the ith block of m will be all Os, and so the query
vector will be also all 0s). Again, we let Wi 2 = Wy o = Iy, 4y

G=Wgoomy =[0 -~ 010 - 0| —C -~ —C 1 —C - —CT

where the 1 is at index m; o in the left block, and the 1 is at index p; o within the right block. If the
first motif m, ; was not found, then this vector will be all Os.

Ky = Wi o Al|P] = [A[|P] Vo = Wy o[Al|P] = [A]|P]

We then follow the same construction as with the previous base case, where the second FFN produces
the final memory stream mg based on comparing each by, , p, , to £; 2: every contiguous sth block

of ny + £ entries contains all —ﬁ if b, 5, < ti,2, and all nf"+ ; otherwise. If, however, the

first motif m; ; was not found, then the FFN will always output — ﬁ for that block (in this case,

the query vector is all Os, and the latter ¢ entries of the ith block in the input to the FFN will be a
smeared fraction rather than a one-hot encoding). The final projection layer will be the same as with
the first base case, leading to the desired outcome.

17

Under review as a conference paper at ICLR 2025

Inductive case

We complete our inductive proof for a general d,, .., as the construction of the architecture with
dmaqy layers is a straightforward extension from the base cases.

We assume that in the first d,,, ., — 1 layers, the memory stream m4,,, 1 is structured as contiguous
blocks of n 4-£ entries, where the 7th block is such that it contains all 1s if and only if bmw pig 2 ti
for all j < dnq, and all Os otherwise. We then structure our final d,,,,th layer of the attention
mechanism similarly to the second layer in the base case of d,,,q., = 2.

A.2 PROOF OF COROLLARY [1]

Here, we prove that there exists a configuration of motifs specified by first-order logic, which is not
recognizable by ExplaiNN.

Consider a dataset of sequences defined by the presence of distinct motifs A, B, C, D. Every sequence
has exactly two instances of such motifs. A positive sequence is defined by having both A and B,
or both C' and D. A negative sequence is defined by any other combination: AC, BD, AD, or BC.
This constructed example is a realistic one, as it is the binding rule seen in transcription factors with
two half sites (e.g., REST (Tang et al.l 2021)), or co-factor binding where the motifs and transcription
factors are unidirectional (e.g., JUND and TEAD).

Within ExplaiNN, each CNN “unit” learns the presence of one such motif, and returns a scalar score.
Let there be four CNN units, one for each motif. For each input sequence, we obtain four such scores:
5A7 SB) 807 SD'

Each CNN unit consists of a single convolutional filter whose activation is maximized by the motif
it learns. For simplicity, we assume that given a convolutional filter that learns substring X, the
distribution of activations of that filter on background sequences is identical to the distribution of
activations on non-X motifs. This could be realized, for example, by motifs whose composition is
base/letter-wise distributed identically to the background (e.g., uniform). Thus, for a convolutional
filter which recognizes X, the distribution of its activations is identical across all non-X substrings.
Given sufficiently long sequences, the CNN unit for some motif X will output a scalar score as follows:
if X is in the sequence, sx = px, a score for “positives”; if X is not present, sx = nx # px, a
score for “negatives”.

Given these CNN units, suppose it is possible to distinguish positive and negative sequences with a
linear combination, as in ExplaiNN. The output of the model is was4 +wpsp +wesc +wpsp +
for scalar weights wy, ..., wp and bias (3.

For the classifier to be sufficiently expressive, we require that positive examples have a final output
that is at least some threshold 7, and negative examples to have an output that is strictly less than 7.

Thus, we have the following inequalities (one for each possible pair of motifs):

wApa +wBpB +wecnc +wpnp + 5> T
wana +wpnp +wepc +wppp + B> T
wapa +wpnp +wepe +wpnp + B < T
wapa +wpnp + wene +wppp + B < T
wanA +wppp +wepc +wpnp + B < T
wana +wppp +wene +wppp + B < T

Adding inequalities of the same type:

wa(pa +na)+---+wp(pp +np) > 2(1 — P)
2wa(pa +na)+ -+ 2wp(pp +np) < 4(t — B)

This is a contradiction, as this requires wa(pa + na) + -+ + wp(pp + np) to be both at least
2(7 — B) and strictly less than 2(7 — f3).

Thus, ExplaiNN is not sufficiently expressive to capture every configuration of motifs expressable in
first-order logic (e.g., exclusive disjunctions).

18

Under review as a conference paper at ICLR 2025

B SUPPLEMENTARY FIGURES AND TABLES

e [. “m,
= : ‘;p 1 m | | ﬂ# I | (fn‘t(frtwwwc - e mr e M[
R 1 o f BEL] tmwwwvw mmw p
(W,MM L ‘i H *’dl G = b n\.r@-‘hﬂ,w éﬂmh le n“q xﬂ il
T S O P T

Figure S1: From a single standard CNN model trained on TAL/GATA

binding, we show the attribution

scores for the same five input sequences, computed using three different methods: integrated gradients (left),
DeepLIFTShap (middle), and in silico mutagenesis (right). The locations of the true motifs are highlighted by
the red box in each example. Although this model achieves near-perfect test accuracy, the importance scores
remain unreliable and noisy. Regardless of the method, it is difficult to even identify where the motif is solely
based on these score tracks, let alone what the motif is. Additionally, the methods disagree heavily with each

other, even showing different signs (positive vs. negative) in importance for

19

the true motifs.

Under review as a conference paper at ICLR 2025

True motifs W‘DeeleFTShap/MoDISco .

LAETAA G T L

ALY

caTAl

ARGMINN (ours) A AIQA

WOl TG)

C) :;géLI’}II
wsllieTlor é

Standard CNN

ex_Aax TG | ;,~FT2~,, - =

A . af | AgQAK%IIII
A 7‘£g-; N _Ga_a cATAL GATAY

lo Lty e e
=T Mhee. | _cheall s

camar
Ao < II; = P-ON|
aarar

9 - TTAIcTA
r2aCIT o & T _

ExplaiNN - AngIXLZI A;CAT‘ET;II

™ AL TALT

S?éz@l§z¢\ Ifext_&glk_\l QCA E = ﬂé-—inw =8cCXexX

IEAQEAM P AIﬁEATeI o c - |

IIAI%L 9$AIAC

J&A;@Ig, & ZRa Sac

Figure S2: On a simulated TAL/GATA dataset, we show all motifs discovered by: 1) ARGMINN, 2) interpreting
the first-layer filters of a standard CNN, 3) ExplaiNN, and 4) running MoDISco on DeepLIFTShap importance
scores. Each motif is labeled with the most similar motif from the simulation, using TOMTOM. Motifs which are
not sufficiently similar to any of the motifs in the simulation (as determined by TOMTOM’s default thresholds),
remain unlabeled. We also show the true motifs used in the simulation.

20

Under review as a conference paper at ICLR 2025

FOXA (HepG2)
rox True motifs o e DeepLIFTShap/MoDISco e
TOmhe. Tl ¢ e

T

ATl

ARGMINN (ours) I

T TT E M ﬂ ,,,:,Iﬁ%?xésécﬁ QK,;;zg.CEFI;KI:LS
a=X = x X - <
e:“,aéCI IAhg L8 AB A A Ts:cg

x-Ro08 Aé\ onXa

l'l E— A — -

S S -

et NF3sen

VS
Standard CNN

. E= <Bs ¢Ie

— .,;CI L. o . IT;é; o cier o~
TJ I T e 5o | = . zxrrhasCA

PN ¥, SRR I\ 1% = x

_xeolA EA gs_iﬁéebq

B0 VST > SN R S ,AEA .

I gfllggfz S

Eolow. X :IA,I

ExplaiNN

HNFa

= xCIII <]

nSas ScSe Sor.

.
Me....

AJCI.AF 5 AAAA

IAITTASA, -

Gl

GAAE s sA

crer

[>

“crer

e X e o - |
Fox

= BaA A

AUSCfen o

crer

= Fmexm.x R
Tor

T So ne Ris

Figure S3: On an experimental dataset of FOXA?2 binding in HepG2, we show all motifs discovered by: 1)
ARGMINN, 2) interpreting the first-layer filters of a standard CNN, 3) ExplaiNN, and 4) running MoDISco
on DeepLIFTShap importance scores. Each motif is labeled with the most similar known human motif, using
TOMTOM. Motifs which are not sufficiently similar to any known human motif (as determined by TOMTOM’s
default thresholds), remain unlabeled. We also show ground-truth motifs from JASPAR which are supported by
external literature.

21

Under review as a conference paper at ICLR 2025

A (Acg 1 o]
L;A,AIAAAsAg, ,IT TTTA; -

kTt el

ARGMINN (ours)

L Cssc L CAcf c% o C;cf% T
G CoMe k. O o
. $AAC NAc LI 770 | I . -
T QTTA;;). | 1.

y 1]
]

5,°VA>KA5¢:47§ x o B

e e e
=
4,
3

H
2
=,

]

h
‘P—|
n:l;gg.;
o>
’Pi
e
¥
4
4 K
L it
[l
i - i
-, f
£ b - b !
: i " |
o] I
& 4 - L
&
¥ 3 I3
>] 3 1
" 13 b [v
0] 1] L
) E 1]
L H b
ol 8
H |)
o=

>
<
T
S
=

T T S D R
DSURD (€% AP 1= 3 - L-,gCIIL = &.LKQL&X mmmmm

PR S

b ok e PP
"
g
]

- s-Eongte
LA, T,]] L,EQMEA ; ‘ R - E - Ic%-,m T . -
Lg- S — Ay, LEASQ%;A;,J L AIQT L woa . IeTmze Aens
olala | b sl S R

Figure S4: On an experimental dataset of DNase accessibility in HepG2, we show all motifs discovered by: 1)
ARGMINN, 2) interpreting the first-layer filters of a standard CNN, 3) ExplaiNN, and 4) running MoDISco
on DeepLIFTShap importance scores. Each motif is labeled with the most similar known human motif, using
TOMTOM. Motifs which are not sufficiently similar to any known human motif (as determined by TOMTOM’s
default thresholds), remain unlabeled. We also show ground-truth motifs from JASPAR which are supported by
external literature.

22

Under review as a conference paper at ICLR 2025

True motifs . DeepLIFTS[LgP/MoDISoo

A Al Mok e o o
Lsﬁ[g Tz, QAQCCQCAM _.aahCal A L AQITCCT,IH. = CC _— I

ARGMINN (ours) e -

el deidice Ted o nfh 0 T T,

MWl ahate AAI an Aﬂ g[u R I },lg;g:,jk ST 5 cmmne oo

Standard CNN - ExplaiNN - R T
\‘ CC; FTehawrts (o kw:; %: - Cf{c CA q C. <. QWCTTC < T
L salCC e ,a,.&.,AI;JL;,,, . _,AmzﬁroAAx. | IT-,QBk

_aXx TIIIIA o emdetx s >I:Lc;$:.; _ QA:,;ZAE‘,“I;;,,
linees P o] o Al ;SCéci Jd]
oA oA A . 'ch}“% ,, _— CCAI PR = - o Y N

Ry ,,,ezn,;;SSAa J ITCA A S
loce. fnee & 7.‘£TG;?E§,I£§‘ x{sqcﬂ-r-LM Sncééc%, G L ees _ . L1

ST e GESE .Agué;;;qmg L. ;,X;Z;A]I e ,,‘,‘AcngAg,e.,; MM;L:M o

AJ&AAJJQ;& ,JT&QEAA,.;,,, e Geloe, LJU . R I P

Figure S5: On an experimental dataset of DNase accessibility in HL-60, we show all motifs discovered by: 1)
ARGMINN, 2) interpreting the first-layer filters of a standard CNN, 3) ExplaiNN, and 4) running MoDISco
on DeepLIFTShap importance scores. Each motif is labeled with the most similar known human motif, using
TOMTOM. Motifs which are not sufficiently similar to any known human motif (as determined by TOMTOM’s
default thresholds), remain unlabeled. We also show ground-truth motifs from JASPAR which are supported by
external literature.

23

Under review as a conference paper at ICLR 2025

Table S1: Identification and redundancy of discovered motifs

Dataset Relevant motif = ARGMINN Traditional CNN ExplaiNN DeepLIFTShap/MoDISco

SPI1 SPI1 17
TAL 10
TAL/GATA GATAI1 3
E2F6 10
MAX 5
JUND-TRE 22
JUND-CRE
REST-left
REST-right
SPI1
SPI1/CTCF CTCF
CTCF (HepG2) CTCF
FOX
FOXAT1 (HepG2) HNF4
CEBP
HNF
TEAD
CTCF
FOX
CEBP
FOS::JUN
RUNX
CTCF
DNase (HL-60) FOX
CEBP
SPI1
FOSL2::JUN
DNase (K562) CTCF
GATA

E2F6

JUND/TEAD

REST

SR NNV

—
\S}

DNase (HepG2)

) e e DD O DD b e ek ek Q) e DO bk ek ek DD e e ek e ek ek ek ek e ek
et O N bk ek DD AN O OO W N OO OO W Bt PO et ok ok Q) ek DD ek ek
N Q= OO bt O ok O ek N O D bt ok ek U DD W0 e DD WD W W

—mxoocoojocoNNoocoo

Number of times each relevant motif was discovered by each method. A value of O means the motif was not
discovered at all. Values greater than 1 indicate redundancy.

24

Under review as a conference paper at ICLR 2025

Table S2: Similarity of discovered motifs to ground truth

Dataset Relevant motif =~ ARGMINN Traditional CNN ExplaiNN DeepLIFTShap/MoDISco
SPI1 SPI1 10.890 1583 4876 8.452
TAL 8.263 7.017 2.769 8.395
TAL/GATA GATA1 7.914 1.813 4.140 5.737
- E2F6 8.031 6.547 5.335 6.699
MAX 4.289 0.713 1.969 3.706
JUND-TRE 7.164 2,616 4584 7.298
JUND/TEAD JUND-CRE 6.150 1544 2.667 7.074
REST REST-left 13.727 0.428 1783 8.027
REST-right 12.895 0.742 3.991 10.739
SPII 10.339 6.894 6.938 8.578
SPI/CTCF CTCF 13.129 2.140 7.360 4210
CTCF (HepG2) ~ CTCE 21.974 6.800 15.945 13.338
FOX 5.651 2712 4917 5.017
FOXAI (HepG2) HNF4 7.188 0 4587 0
CEBP 5.688 0 1.083 0
HNF 6.178 0 5.852 0
TEAD 8.545 0 0 0
CTCF 25.482 24543 19.120 4262
DNase (HepG2) oy 6.831 1.270 3.815 2.028
CEBP 4797 0 0 0
FOS::JUN 9.686 0 1.982 0
RUNX 4.660 0 3032 0
CTCF 24.428 6.377 16.945 5.423
DNase (HL-60) FOX 0 1.149 4.178 0
CEBP 4.947 4736 4.168 0
SPII 11.434 7.568 0 0
FOSL2::JUN 7.646 7338 5.198 0
DNase (K562) CTCF 23.810 6.121 13.568 1776
GATA 9.159 0.533 7.078 0.345

Similarity of closest motif discovered by each method to each relevant motif. If a method did not discover a
motif, it is given a similarity of 0.

Table S3: Extraneous discovered motifs

Dataset ARGMINN Traditional CNN ExplaiNN DeepLIFTShap/MoDISco
SPI1 0 1 4 10
TAL/GATA 0 5 2 7
E2F6 0 3 2 4
JUND/TEAD 0 4 3 2
REST 0 6 1 7
SPI1/CTCF 0 3 1 13
CTCF (HepG2) 0 1 3 17
FOXA1 (HepG2) 2 3 3 18
DNase (HepG2) 3 2 4 12
DNase (HL-60) 2 3 2 11
DNase (K562) 2 3 0 41

Number of extraneous motifs (i.e., those which do not match any known relevant motif) found by each method
for each dataset.

25

Under review as a conference paper at ICLR 2025

SPI1 E2F6 JUND/TEAD
0.8
0.8
E 08 @ g 0.7
e gos g
3 3 8
o 0 0.6 g o6
H 0.6 2 2
0.5
2 Sos5 S
i) £ i)
Zoa go4 e
]] Sos
E 203 20
= P =
o o 02 (=] 0.2
§ 0.2 —— ARGMINN (ours) _5 - _5
= = =]
S —— FIMO/ARGMINN (ours) S 01 §oa
[FIMO/MoDISco [[
0.0 0.0 0.0
[2000 4000 6000 8000 10000 [} 2000 4000 6000 8000 0 2000 4000 6000 8000 10000
Top k called instances Top k called instances Top k called instances
REST SPI1/CTCF FOXA1 (HepG2)
go7 gos B 0.020
2 2 2
206 o 5
o o (53
o 26 o
805 I - 2 0.015
o o o
c c c
E 04 £ 0.010
o3 g E}
= - =
o s g
o2 ° 5]
s 5§02 § 0.005
=] B =]
Soa g]
w w w
0.0 0.0 0.000
0 2000 4000 6000 8000 10000 0 1000 2000 3000 4000 5000 6000 [2000 4000 6000 8000 10000
Top k called instances Top k called instances Top k called instances
DNase (K562)
0.016
o
L 0.014
Q
3
g 0012
3
2 0.010
[=
©
‘@ 0.008
£
[
S 0.006
5
G
C 0.004
o
=
§ 0.002
w
0.000
[} 2000 4000 6000 8000 10000

Top k called instances

Figure S6: We show additional examples of motif-instance quality, comparing ARGMINN with the traditional
method of sequence-scanning using FIMO. As before, We rank motif instances by confidence (attention score
from ARGMINN, or FIMO hit g-value), and compute the fraction of true motif instances that are covered in a
top-k fashion. We also compare our method to using FIMO to scan with ARGMINN-discovered motifs.

Table S4: Motif-instance precision and recall

Dataset Precision Recall

A (ours) F/AM (ours) F/MM A (ours) F/AM (ours) F/MM
SPI1 0.953 0.881 0.852 0.824 0.804 0.858
TAL/GATA 0.939 0.896 0.857 0.703 0.410 0.532
E2F6 0.954 0.804 0.777 0.816 0.355 0.584
JUND/TEAD 1.000 0.920 0.980 0.588 0.644 0.785
REST 0.972 0.853 0.891 0.749 0.671 0.731
SPI1/CTCF 0.909 0.739 0.807 0.838 0.756 0.854
CTCF (HepG2) 0.291 0.355 0.399 0.038 0.033 0.028
FOXAT1 (HepG2) 0.190 0.201 0.153 0.016 0.022 0.021
DNase (HepG2) 0.229 0.386 0.196 0.014 0.012 0.001
DNase (K562) 0.328 0.468 0.315 0.014 0.016 0.005

Precision and recall values for motif instances discovered by ARGMINN (A) and by FIMO. We initialize FIMO
either with motifs discovered by ARGMINN (F/AM), or with motifs discovered by MoDISco (F/MM).

26

Under review as a conference paper at ICLR 2025

CTCF (HepG2)

Experimental peaks

Attention scores

-200 -100 0

Sequence position

-200

-100 0 200

Sequence position

100

FOXAT (HepG2)

Experimental peaks

Attention scores

-200 -100 0

Sequence position

100 200

-200

0 200

Sequence position

-100 100

Figure S7: We show the attention scores and the strength of the experimentally determined peaks at the test-set
sequences for CTCF in HepG2 (above) and FOXA1 in HepG2 (below). In order to avoid center bias, the test

peaks were independently and randomly jittered by up to 200 bp

in either direction with uniform probability. The

peaks/sequences are ordered left to right by the jittered peak summit. The attention scores closely track the peak
locations across sequences, which demonstrates biological support for the interpretability of the attention scores.

27

Under review as a conference paper at ICLR 2025

a) o SPI1 E2F6 REST b) Motif strength in Ledidi-generated sequences
1. o
? ? T é 85
0.95 S
° . . I
0.90 5
% 8.0 .
2 oss £
a
] =
75
© 0.80 lﬁ."
o
075 E 70
€
0.70 S
E
0.65 - Y > " . > S y g 6.5 N
% %, % 27 %, % Cl
04% S, %, o,)% Q’% o,,%’ %4% %4 o,,%,v %41;’
1o, “q 4’/ %/‘p c True positives True negatives ARGMINN Standard CNN ExplaiNN
T T

Figure S8: a) After training on 50% background GC content, we tested ARGMINN, a standard CNN, and
ExplaiNN on varying levels of GC content, and show the resulting distribution of predictive performance. b)
We used Ledidi to perform back-propagation-based sequence design on models trained to predict SPI1 binding,
generating novel sequences which are meant to maximize the likelihood of SPI1 binding. We evaluated the
quality of the generated sequences from each model by quantifying the distribution of match scores to the true
SPI1 motif.

28

Under review as a conference paper at ICLR 2025

a) Open-chromatin-model accessibility predictions

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

6 5
o o8 .u:“u." > 4
4 ® @ @9 §6_ g0 9
= od FoRITAC, ¢ 2
= " >
2, 5
(]
0 2 4 6
Generated Generated
C) ARGMINN-predicted accessibility

Natural

02 04 06 08
Generated Generated

.2 0.4 0.6 0.8

Figure S9: We performed additional in silico validation of our interpretably designed HepG2-accessible
sequences. We tested our generated sequences using multiple independently trained models (trained on different
datasets) as oracles: a) an open-chromatin model trained on an independently collected dataset of HepG2
accessibility; and b) an MPRA model trained on independently collected massively-parallel-reporter-assay
data. We also show the predictions made by ARGMINN using the model as a predictive oracle rather than an
interpretable-design agent (¢)). In all cases, the generated sequences were far more accessible than background
sequences, and were about as accessible as natural sequences identified by the experiment.

29

Under review as a conference paper at ICLR 2025

Table S5: Model performance

Dataset Accuracy auROC auPRC
A (ours) SC E A (ours) SC E A (ours) SC E

SPI1 0.898 0.887 0.895 0.955 0.949 0.951 0.958 0.957 0.954
TAL/GATA 0.884 0.838 0.856 0.954 0910 0.939 0.959 0918 0.941
E2F6 0.908 0.895 0.871 0.971 0.948 0.944 0.975 0.952 0.944
JUND/TEAD 0.988 0981 0.984 0.999 0.997 0.999 0.999 0.997 0.999
REST 0.883 0.771 0.856 0.947 0.835 0.929 0.940 0.824 0.927
SPI1/CTCF 0.909 0.860 0.900 0.968 0.931 0.955 0.965 0.928 0.953

CTCF (HepG2) 0.769 0.775 0.782 0.848 0.850 0.859 0.854 0.852 0.860
FOXA1 (HepG2) 0.728 0.734 0.730 0.805 0.809 0.810 0.798 0.806 0.804
DNase (HepG2) 0.730 0.730 0.741 0.816 0.812 0.824 0.815 0.809 0.818
DNase (HL-60) 0.753 0.760 0.769 0.833 0.842 0.853 0.826 0.839 0.847
DNase (K562) 0.762 0.768 0.774 0.848 0.852 0.860 0.845 0.846 0.853

Model performance comparing ARGMINN (A), a standard CNN (SC), and ExplaiNN (E). All models were
given the same number and size of convolutional filters, and the overall complexity/capacity of the models were
kept as similar as possible for comparison.

SPI1 FOXAT1 in HepG2

schiilere acTTOCTer

SPI1/CTCF

c c Ic Clac A A __ DNaseinHL60

il AAI stceSCLQLL j"—cfhugs el IMizex

i Ac I adaga

YN

GATA1 _ GATA1

Ak LA Tl L

ATAT TALT

e alhslr 0 T

Figure S10: We applied our filter regularizer (Equation EquationEI) to the standard CNN architecture, and
show the resulting motifs extracted from the first-layer filters. With the filter regularization, the standard CNN
attained the ability to show clean, non-redundant, relevant motifs in its filters. Thus, our filter regularizer is
able to turn even traditional neural networks into more mechanistically interpretable architectures. Importantly,
however, although a standard CNN with our filter regularizer can now reveal discovered motifs, without our
unique attention mechanism (Equation [3), it still is unable to easily reveal motif instances and syntax. As
such, these partially interpretable architectures would still need to rely on traditional motif-instance-scanning
algorithms.

30

Under review as a conference paper at ICLR 2025

a) b)

09 0.9

S [3)

8 8

3 =1

Sos S o8

© @

7 -

3 2

Fos F o7

e e

3 g

» 8 o 8

g 8

X .

g £

= =

3?2 3 ?

= =

w 4 L “ e’ goff Foo

g g

$ o 2

g6 °

= g =

: e oA o é

© _g > @ k) L XL
o P50
2 T -1

1 2 3 4 5 6 7 3 -5 -4 3 -2 I 9
log overlap loss weight log L1 loss weight

Figure S11: We show the effect of the filter-overlap (left) and filter-L1 loss (right) weights on the performance
and interpretability of ARGMINN. We also show the effect of the loss weights on the value of the filter-overlap
and filter-L1 loss itself. Interpretability is measured by the maximum similarity of the discovered motifs to the
true motif. In general, ARGMINN’s predictive performance and interpretability remained largely invariant to the
loss weights over a wide range of orders of magnitude.

Table S6: Space/time requirements of different architectures

Model Training time (min) Number of parameters
ARGMINN 15 13000
Standard CNN 6 2100
ExplaiNN 8 58000

We show the training time and number of parameters in each of our models for a typical example (in this case,
our SPI1 dataset). Note that the increased training time for ARGMINN stems chiefly from the computation of
the filter-overlap regularizer. The increased parameter count for ExplaiNN is due to the separation of the
architecture into individual CNN towers.

31

Under review as a conference paper at ICLR 2025

C SUPPLEMENTARY METHODS

All of the code used to generate the results and figures in this paper is available here:

https://github.com/Genentech/ARGMINN

C.1 TRAINING DATA

For our simulated datasets, we downloaded motif PFMs (position frequency matrices) from JASPAR
(Fornes et al.| [2020), and trimmed off low-information-content flanks. When training and testing,
we randomly generated 500 bp sequences on the fly. Motif instances were sampled from the PFMs,
and inserted into a randomly sampled background (from a uniform distribution of A, C, G, and T).
Motifs (or combinations of them) were randomly inserted in the central 100 bp of the background.
Our simulations contained motif configurations as follows:

» SPI1: all positive sequences have a single instance of the SPI1 motif

* TAL/GATA: 37.5% of positive sequences have a single instance of TAL1, 37.5% have a
single instance of GATA1, and 25% of sequences have both (either 7, 8, or 9 bp apart)

» E2F6: 10% of positive sequences have a single instance of E2F6, and 90% have both E2F6
and MAX, between 30 and 60 bp apart; 50% of negative sequences have only the MAX
motif, and the other 50% are random background

* JUND: 25% of positive sequences have the JUND TRE motif, 25% have the JUND CRE
motif, and 50% have the JUND TRE motif followed by the TEAD4 motif with a spacing of
6 bp in between

» REST: all positive sequences have both the left- and right-half motifs, with a spacing of 2, 6,

7, 8,9, 10, or 11 bp apart; 25% of negative sequences have only the left-half motif, 25%
have only the right-half motif, and 50% are random background

SPI1/CTCEF: all positive sequences have a single instance of the SPI1 motif; 50% of negative
sequences have SPI1 followed by the CTCF motif (either 30, 40, or 50 bp apart), and 50%
are random background

When generating simulated sequences, we scanned the random backgrounds for spurious matches
and filtered out such instances. Note that this is a crucial step for simulated datasets, as for short
motifs such as GATA (6 bp), we would expect over 12% of random backgrounds to contain a perfect
match by chance. This is an issue which is much rarer in real datasets, but for our simulations, we
scanned the PFMs (and their reverse complements) across our generated backgrounds (for positive
and negative sequences), and ensured that no PFM which was used in the simulation attained a match
score of over 0.9.

For our experimental datasets, we downloaded the IDR peaks from ENCODE (Consortium 2012)) for
the following experiments:

Table S7: Experimental ENCODE datasets

Dataset ENCODE experiment ID IDR peaks file ID
CTCF (HepG2) ENCSR607XFI ENCFF664UGR
FOXA2 (HepG2) ENCSR865RXA ENCFF081USG
REST (K562) ENCSRO054IMQ ENCFF118ECK
DNase (HepG2) ENCSR149XIL ENCFF897NME
DNase (HL-60) ENCSR889WKL ENCFF773SFA
DNase (K562) ENCSRO00EKS ENCFF274YGF
DNase (GM12878) ENCSROOOEMT ENCFF0730RT

Our positive dataset consisted of random 500 bp sequences drawn from the genome, where at least
half of the 500 bp overlaps a peak (if the peak is less than 500 bp), or at least half of the peak overlaps
the 500 bp (if the peak is over 500 bp). Our negative dataset consisted of randomly sampled intervals
from the genome. If a randomly selected negative sample overlapped a peak by more than half (or
vice versa, it was relabeled as positive for the batch).

32

Under review as a conference paper at ICLR 2025

Note that when training, we automatically used reverse-complement augmentation so that every batch
contained sequences along with their reverse complements.

C.2 MODEL ARCHITECTURES

Our ARGMINN architecture consists of two modules: motif scanners and a syntax builder. The motif
scanners consist of a single convolutional layer of n filters, each of w bp in width (typical values are
ny = 8, w = 10), which scan across a one-hot-encoded DNA sequence. The result is passed to a
ReLU, and the output constitutes the “motif activations”.

The motif activations are concatenated with a positional encoding of dimension d = 16. Our
positional encoding is defined as follows:

P = 10007

——5), Pi2j11 = cos
100002#> " (

where i is the position along the sequence, and j € {0, ..., ‘21 -1}

Let Al P be the motif activations and positional encodings concatenated together. This is passed to
two consecutive memory-stream-based attention layers. The [th attention layer starts with a memory
stream m;_, of dimension 128 (my is a vector of all 1s), and A||P. In each layer, m;_ is passed
through a linear layer to obtain a single query gq; of dimension equal to the dimension of each input
token in A|| P. Two separate linear layers also convert each token in A|| P into a set of key vectors and
value vectors (of the same dimension as the input token). The query, keys, and values are reshaped
to obtain 4 attention heads. We then compute the attention scores by multiplying the query against
all keys, and normalizing by \/d,,, where d, is the dimension of the query/key/value vectors. We
then perform dropout on the attention scores with dropout rate 0.1, and softmax the scores for each
attention head. These attention scores are used to weight the value vectors in a weighted sum, which
is then reshaped to reincorporate the heads. This is passed through another linear layer which retains
the same dimension, followed by dropout and layer normalization. This is then fed to a 2-layer MLP
with ReLU and dropout in between the two linear layers, mapping the result to the same dimension
as m;_1. After a final dropout and layer norm, this is added to m;_; to obtain m;.

After all attention layers, the final m; is passed to a single linear layer which maps it to a scalar
prediction which is passed to a sigmoid activation function (for binary prediction).

Our standard CNN follows an architecture which is common in the literature for single-task predic-
tions. We apply 3 successive convolutional layers to the input sequence, each with ny filters. The
filters of the first layer have width w. The next two convolutional layers have filters of width 5. After
each layer we apply ReLU and batch normalization. We then perform max pooling with a filter size
of 40 and a stride of 40. This is passed to two linear layers of 10 and 5 hidden dimensions each. After
each linear layer, we apply ReLU and batch normalization. Finally, a final linear layer maps the result
to a sigmoid-activated output.

Our ExplaiNN implementation follows the description in Novakovsky et al.| (2022b). As with the
other architectures, we use the same number and width of first-layer convolutional filters.

Depending on the complexity of the dataset’s syntax, we selected the ARGMINN architectural
hyperparameters accordingly. Note that these values were not tuned at all, and were chosen at the
outset based on domain knowledge and never modified. We also ensured that for each dataset, we
always used the same number and length of first-layer convolutional filters (n s and w, respectively)
in other architectures for a fair comparison.

33

Under review as a conference paper at ICLR 2025

Table S8: ARGMINN architectural hyperparameters

Dataset Number of attention layers ny, ~ Number of filters ny Length of filters w
SPI1 1 8 10
TAL/GATA 1 8 10
E2F6 2 8 10
JUND 1 8 10
REST 2 8 10
SPI1/CTCF 2 8 15
CTCF (HepG2) 1 8 15
FOXA2 (HepG2) 2 8 15
REST (K562) 2 8 8
DNase (HepG2) 3 20 15
DNase (HL-60) 3 20 15
DNase (K562) 3 20 15
DNase (GM12878) 3 20 15

C.3 TRAINING SCHEDULES

We trained all of our models and performed all analyses on a single Nvidia A100.

When training, we used a batch size of 128 with an equal number of positives and negatives (this
includes the reverse-complement augmentation). For our simulated datasets, each training epoch
consisted of 100 batches, and each validation and test epoch consisted of 10 batches. For our
experimental datasets, we reserved chr8 and chr10 for validation, and chr1 for test (all other autosomes
along with chrX were used for training).

We trained all of our models for 40 epochs (regardless of architecture), and noted that the loss had
converged in all cases. We used a learning rate of 0.001.

For ARGMINN, we weighted the secondary losses as follows:

* \,: O for the first 10 epochs, increasing from 10°-5 to 10* evenly in logarithmic space over
the next 20 epochs, and stable at 10? for the last 10 epochs

s \;: O for the first 10 epochs, increasing from 10~* to 10~3 evenly in logarithmic space over
the next 20 epochs, and stable at 10~ for the last 10 epochs

For all of our models (ARGMINN, standard CNN, ExplaiNN), we trained 3 random initializations
and selected the one with the best test accuracy for downstream analyses.

C.4 ANALYSES

Extracting motifs from convolutional filters

To extract motif PFMs from convolutional filters, we adopted a procedure based on that described in
Kelley et al.|(2016)). Specifically, we passed the test set through the model and computed the average
of all sub-sequences (pooling together all possible sub-sequences in the test set) which activated that
filter to at least 50% of the maximum activation achieved over all such windows.

Computing importance scores

We computed importance scores using DeepLIFTShap, integrated gradients, or in silico mutagenesis
(Shrikumar et al.,[2017; |Sundararajan et al., 2017).

For DeepLIFTShap and integrated gradients, we used PyTorch Captum. For DeepLIFTShap, we
used a reference of 10 baselines consisting of dinucleotide-shuffled sequences, as recommended in
Shrikumar et al.|(2017)). We also recovered the hypothetical importance scores at each position, as
recommended for MoDISco (Shrikumar et al., 2018])). For integrated gradients, we used a baseline of
all Os.

To obtain in silico mutagenesis scores, we computed the importance of a base by first computing the
difference between the output prediction of the original sequence versus every possible mutation that

34

Under review as a conference paper at ICLR 2025

made at that position. We mean normalized over the base dimension to obtain a set of hypothetical
importance scores. The actual importance score for a position was simply the hypothetical importance
score (after mean normalization) for the base actually present in the sequence at the position.

Discovering motifs with MoDISco
In general, we discovered motifs using MoDISco from the standard CNN.

We computed importance scores over the entire positive-labeled dataset using the DeepLIFTShap
algorithm as described above. We then ran MoDISco-lite v2.2.0 (Shrikumar et al., 2018)) using a
maximum of 10000 seqlets and default parameters, as recommended by the authors.

Evaluating discovered motifs

To compute matches to known motifs, we used TOMTOM (Bailey et al., 2015) to compute the
g-value similarity between a PFM to known motifs (across all possible alignments). We reported the
—log;,(q) value as similarity. For simulated datasets, we reported the closest match (i.e., highest
similarity) to any motif in the dataset. For experimental datasets, we reported the closest match to
any relevant motif in the JASPAR human-motif database (Fornes et al., 2020)).

Note that to ensure a fair comparison, the lengths of the motifs were kept the same in each dataset.
For ARGMINN, the standard CNN, and ExplaiNN, all models are trained with the same first-layer
filter sizes. MoDISco by default outputs longer patterns, so we trimmed MoDISco-discovered motifs
to the same size as the filters used by other methods (maximizing the total information content in the
post-trimmed window; we used a uniform background for computing information content).

For our analyses on motif accuracy/similarity, redundancy, and number of extraneous motifs, we
needed to match each motif discovered by each method to the closest relevant motif (or none at all).
To do this, we first needed to identify the set of possible relevant motifs for each dataset (i.e., the set
of motifs which would be considered biologically “accurate” for the task). For simulated datasets,
the set of relevant motifs was simply the PFMs used to create the simulation. For experimental
datasets, the set of relevant motifs was defined by first running TOMTOM against all known human
motifs and pooling together the top matches (by motif family) over all methods and architectures
(e.g., ARGMINN, MoDISco, etc.). We used a g-value cut off of 0.5. After pooling together all the
top TOMTOM matches over all methods, we extracted a set of relevant motifs or motif families by
checking for supporting literature. Any motif/family with supporting literature was kept as a relevant
motif.

Finally, once the set of relevant motifs for each dataset was determined, we matched each motif
(discovered by each method) to the closest relevant motif using TOMTOM. Discovered motifs which
did not match any relevant motif (using the default TOMTOM threshold) were considered extraneous.

To compute redundancy, we counted the number of times each relevant motif was matched to by
a method’s discovered motifs. We kept track of forward and reverse-complement orientations. As
long as one orientation was discovered, we considered that motif to had been found; we computed
redundancy as the maximum number of times a relevant motif was matched to (maximum over
orientations). For reverse-complement symmetric motifs/families, we did not consider orientations
separately, and computed redundancy accordingly.

To compute motif accuracy, we computed the similarity (measured by the TOMTOM q-value) of the
closest motif discovered by each method to each relevant motif.

Tracing back motif instances and syntax

To trace back motif instances for a particular input sequence in ARGMINN, we performed a forward
pass and retained the motif activations and attention scores. Over all layers and all attention heads,
we examined the positions in the sequence which had an attention score of at least 0.9. We then
called a motif hit if the activation for a filter at that position was at least the average activation (for
that filter) over the test set.

In our analyses, we called motif instances over the test set.

To identify syntax, we separated the input sequences by which motif instances were called, and
computed the distribution of the spacings between the motif instances.

35

Under review as a conference paper at ICLR 2025

In order to rank motif instances from ARGMINN, we ranked by maxmimum attention score over all
heads/layers at that position. To break any ties, we used the highest motif-filter activation score at
that position.

Scanning for motif instances with FIMO

Before running FIMO on MoDISco or ARGMINN motifs, we trimmed and filtered the motifs for
high-information-content regions. Specifically, we cut off flanks with information content lower than
0.2. We then required that after trimming, the motif was at least 5 bp and had an average information
content of 1.0. We used a uniform background for computing information content.

To scan for motif instances using FIMO, we started with PFMs and ran FIMO v5.0.5 (Bailey et al.,
20135)) on test-set sequences and their reverse complements. We used the default FIMO parameters.

To rank FIMO hits, we used the g-value from FIMO. We also collapsed overlapping FIMO hits before
analyzing, keeping the most significant q-value between overlapping hits for ranking purposes.

Evaluating motif instances

To evaluate our motif instances, we compared called motif instances to ground-truth instances. We
computed the precision as the fraction of called instances which overlap ground-truth instances, and
the recall as the fraction of ground-truth instances which overlap called instances. We also computed
recall curves in a top-k fashion, where we ranked the called instances (described above) and for each
top k called instances, we computed the recall relative to ground-truth instances.

For simulated datasets, the ground-truth motif instances are completely known, as they are defined at
the time of sequence generation.

For experimental datasets, we obtained “ground-truth” motif instances from |Vierstra et al.|(2020), an
independently collected set of DNA-binding footprints in various cell types. For each cell type of
interest (e.g., HepG2), we simply pooled together the footprints of all experiments from that cell type
and used those as a set of ground-truth motif instances.

Due to computational efficiency, we also limited the set of called motif instances for experimental
datasets to the top 10000 hits.

Evaluating QTL prioritization

We downloaded causal and non-causal QTLs in the GM 12878 cell type from Lee et al.| (2015). We
limited the set of dsQTLs to only those in the test set of our models (i.e., on chrl). We then took our
models trained on GM 12878 DNase accessibility, and for each putative QTL (causal or non-causal),
we computed the absolute difference in the output prediction, and treated that as a score to compute
precision and auROC.

Computing GC-content robustness

To test the robustness of our models against changes in GC content, we examined our models trained
on simulated datasets (which allow us to modify the background GC content freely while keeping the
motifs the same). Without retraining or fine-tuning, we evaluated the models’ predictive performance
on background GC content of 5%, 10%, 15%, ..., 90%, 95%.

Generating sequences using Ledidi

To generate novel sequences using Ledidi, we took our models (ARGMINN, standard CNN, Ex-
plaiNN) trained on our simulated SPI1 dataset. For each model, we fitted Ledidi 32 times, and for
each fitted instance, we generated 32 sequences. This yielded 1024 Ledidi-generated SPI1 sequences
for each model. We used 7 = 5, A = 5000 for Ledidi.

To evaluate the quality of the generated sequences, we scanned the true PFM across each sequence
(note that these models were all trained on sequences which contain motifs sampled from this exact
PFM), and computed the top match score (as a cross-correlation score) for each sequence.

We computed significance of the difference in distributions (between different models used with
Ledidi) of top SPI1 match scores using a one-sided Mann-Whitney U test.

Generating adversarial examples

36

Under review as a conference paper at ICLR 2025

We generated adversarial examples in a standard CNN in two ways.

First, we generated sequences which had no motifs present, but were still predicted to have a positive
label by the CNN. To do this, we built up random sequences by taking highly-activating sequences
from random filters and adding them to the sequence. We took the most highly-activating sequence
for each filter and randomly strung together a random ordering of such sequences to obtain a 500 bp
example. We verified that no part of these sequences matched any motif (or reverse complement) in
the dataset, using the same criteria as the data loader as described above.

Next, we generated sequences which had motifs, but were still predicted to be negative by the
CNN. To do this, we first sampled a motif configuration from the normal simulation. Under normal
circumstances, such a configuration would endow a positive label in the dataset. We then surrounded
either side of this configuration with sequences that are least activating for a random ordering of filters.
We randomly strung together a random ordering of such sequences to pad out a 500 bp example.

Interpretable sequence design

To design novel sequences intrepretably using ARGMINN, we started with our ARGMINN model
trained on HepG2 DNase accessibility. We extracted motifs from the filters as described above. Prior
to designing, we trimmed and filtered the motifs. Specifically, we first cut off flanks with information
content lower than 0.2. We then required that after trimming, the motif was at least 5 bp and had
an average information content of 0.8. We used a uniform background for computing information
content.

We then extracted the motif syntax as described above, again only using the test set. This procedure
takes each input sequence and assigns it a motif pattern (e.g., “CTCF - TEAD” or “FOXA” or
“CTCF - FOXA - FOXA”). The motif pattern denotes which motifs were identified by ARGMINN in
that sequence (in order) (e.g., CTCF followed by TEAD). Over the entire test set, we labeled each
sequence with its motif pattern. For each pattern which has more than one motif, ARGMINN then
gives a set of spacings that were identified over all sequences with that pattern.

We took the top 20 patterns (by number of sequences which have that pattern, requiring at least 5
sequences with that pattern). For each of the top 20 patterns, we generated 100 novel sequences
with that pattern. To construct a novel sequence for a pattern, we started with an original 500 bp
test sequence which falls under that pattern (sampled randomly). We then dinucleotide-shuffled the
central 300 bp to destroy any functional motifs. We then inserted the motifs of that pattern (sampling
from the ARGMINN-learned PFM(s)), at spacings sampled from the empirical distribution for that
pattern (for single-motif patterns, the motif was simply placed in the center).

To validate our generated sequences in silico, we used several independently trained models as
oracles:

1. Interpretations from ARGMINN itself were used to generate these sequences, but we also
used ARGMINN as a predictive oracle, as it predicts accessibility from DNA sequence.

2. We used Borzoi (Linder et al.,|2023) as a predictive oracle. Specifically, we used output
task 1510 (trained on ENCFF577SOF), which also measured HepG2 DNase accessibility.
Whereas we designed 500 bp sequences, Borzoi predicts entire signal-profile tracks from
an extremely large context (524000 bp inputs). To evaluate our 500 bp sequences, we took
the original coordinate from which the sequence arose, and padded it with the appropriate
genomic context on either side to from the full 524 kb input. To produce a scalar prediction,
we summed the center of the (binned) profile prediction corresponding to the central 500 bp
Input.

3. We fine-tuned Enformer (Ziga Avsec et al., 2021a) on HepG2 DNA accessibility measured
by massively parallel reporter assays (MPRAs). We downloaded the MPRA data from Gosai
et al.|(2023), and verified that the predictive performance was on-par with the performance
recorded in|Gosai et al.|(2023)). The fine-tuning was performed using the gReL.U software
package.

4. We fine-tuned Enformer using gReL.U, using binary labels of HepG2 DNase accessibility
from a different ENCODE expriment (ENCSR291GJU) from the one ARGMINN was
trained on.

37

Under review as a conference paper at ICLR 2025

We computed significance of the difference in predicted accessibility (e.g. generated vs. background,
or generated vs. natural) using a one-sided Wilcoxon test.

Expressivity requirement for REST binding

In order to demonstrate the expressivity and interpretability of ARGMINN compared to ExplaiNN,
we constructed a simulated REST dataset which explicitly tests the requirements of the unique binding
syntax of REST. In this dataset, positive sequences always had the left and right motifs (in that order)
with 10 bp in between. Negative sequences were structured as follows: 10% have only the left motif;
10% have only the right motif; 50% have both the left and right motifs but in improper order or
orientation (e.g., the reverse-complement of left and right in that order, or the left with the reverse
of the right, etc.), with each configuration having a 10 bp spacer and being selected uniformly at
random; 30% have two left or two right motifs, of all sorts of configurations (e.g., forward or reverse),
each having a 10 bp spacer and being selected uniformly at random; 10% are uniform background.

Filter regularization on standard CNN

We applied our filter regularization to a standard CNN architecture, using the same loss weights
and annealing schedule as described above. We assigned identities to these motifs also using the
procedure with TOMTOM as described above.

ARGMINN loss-weight robustness

To evaluate the robustness of ARGMINN to the weights of the filter-overlap loss and the filter-L1
loss, we trained ARGMINN on the simulated SPI1 dataset 100 times, each time with a randomly
selected loss weight. The filter-overlap loss weight was randomly selected between A, € [10}, 10%]
and the filter-L 1 loss weight was randomly selected between \; € [1075, 10°], where sampling was
done uniformly on a logarithmic scale. We trained each model to completion as described above.

To evaluate the motif interpretability of each model, we extracted motifs from each ARGMINN model
as described above. For each model, we then we computed the average similarity of all the discovered
motifs to the true SPI1 PFM (similarity was computed as the — log(g) score from TOMTOM). If
a discovered motif was not similar enough to the true PFM to pass TOMTOM’s thresholds, it was
given a — log(q) value of 0 by default.

38

	Introduction
	Related Work
	ARGMINN Architecture
	Module 1: Motif Scanners
	Module 2: Syntax Builder

	Experimental Results
	Improved motif discovery
	Improved motif instance calling and syntax discovery
	QTL prioritization
	Robustness of ARGMINN
	Interpretable design of novel functional sequences

	Theoretical results
	Experimental follow-up to theoretical results

	Discussion
	Supplementary Proofs
	Proof of Theorem 1
	Proof of Corollary 1.1

	Supplementary Figures and Tables
	Supplementary Methods
	Training data
	Model architectures
	Training schedules
	Analyses

