
Published at LMRL Workshop at ICLR 2025

SAMPLING PROTEIN LANGUAGE MODELS FOR
FUNCTIONAL PROTEIN DESIGN

Jeremie Theddy Darmawan∗† Yarin Gal‡ Pascal Notin∗§

ABSTRACT

Protein language models have emerged as powerful tools for learning rich represen-
tations of proteins, enhancing performance across various downstream tasks such
as structure prediction, mutation effects prediction, and homology detection. Their
ability to learn complex distributions over protein sequences also shows significant
potential for designing novel and functional proteins, with broad applications in
therapeutics, new materials, and sustainability. Given the vastness of the protein
sequence space, efficient exploration methods are critical to the success of protein
engineering efforts. However, the methodologies for effectively sampling from
these models to achieve core protein design objectives remain underexplored and
have predominantly relied on techniques initially developed for Natural Language
Processing tasks. In this work, we first develop a comprehensive in silico protein
design evaluation framework to systematically compare different sampling meth-
ods. After a thorough review of existing sampling strategies for language models,
we introduce several approaches specifically tailored for protein design. We then
evaluate these strategies using our in silico benchmark, investigating the effects of
key hyperparameters and providing practical guidance on the relative strengths of
each method depending on design objectives.

1 INTRODUCTION

Proteins are complex macromolecules that perform a wide diversity of essential functions in biological
systems, such as catalyzing biochemical reactions, facilitating cellular signaling, and providing
structural support. They cover a vast sequence space, representing all possible variations of amino
acid chains that can fold into functional structures. Despite significant advancements in sequencing
technologies, the protein sequences currently known and characterized represent only a small fraction
of this immense sequence space (Notin et al., 2024). Protein design methodologies seek to efficiently
explore this vast space to create novel protein sequences. This exploration can be achieved either
by iteratively mutating existing functional sequences of interest (Arnold, 2018; Yang et al., 2019;
Wittmann et al., 2021) or by designing entirely new sequences from scratch, drawing on existing
templates and biochemical constraints (Huang et al., 2016; Dauparas et al., 2022). Protein language
models (pLMs) have emerged as powerful tools to learn complex distributions over protein sequences,
leading to superior performance on a broad range of downstream tasks, such as structure prediction Lin
et al. (2023); Lu et al. (2024), fitness and mutation effects prediction Meier et al. (2021); Brandes et al.
(2022); Notin et al. (2022b); Su et al. (2024), homology detection Heinzinger et al. (2021), or viral
evolution Hie et al. (2020); Thadani et al. (2023). As generative models of protein sequences, pLMs
are ideally suited to sample novel functional proteins that have not yet been observed, making them
invaluable in supporting protein engineering workflows. Given the massive size of the corresponding
sample space, together with the diversity of protein design objectives, the success of pLM-based
protein engineering efforts depends not only on ever-improving models but also on efficient methods
to sample from these models. While the field has witnessed the emergence of several pLMs for
protein design Alley et al. (2019); Ferruz et al. (2022); Hesslow et al. (2022); Nijkamp et al. (2022);
Madani et al. (2023), efficient sampling methods have been understudied to date. Prior works have

∗Correspondence to jeremie.darmawan@u.nus.edu, pascal_notin@hms.harvard.edu
†Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore
‡OATML Group, Department of Computer Science, University of Oxford
§Marks Lab, Department of Systems Biology, Harvard Medical School

1

Published at LMRL Workshop at ICLR 2025

so far primarily leveraged sampling strategies initially developed for Natural Language Processing
(NLP) tasks (§ 2), with limited insight into the impact of various strategies on the properties of the
generated sequences, and without taking advantage of the unique characteristics of protein sequences
relative to natural language sequences.

In this work, we sought to develop and explore different methods for sampling from pLMs, sys-
tematically analyzing the characteristics of the generated sequences based on the chosen sampling
strategy or core underlying hyperparameters. To that end, we first devise a robust in silico evaluation
framework to benchmark different protein design methods. While our focus is on pLMs in general,
we place a greater emphasis on autoregressive pLMs, given their ability to support a broader range of
sampling methods (§ 3.1). We also place ourselves in the zero-shot design setting, aiming to design
novel functional sequences without relying on experimental labels acquisition.

Our contributions are as follows:

• We introduce a high-level framework and taxonomy to describe the landscape of existing pLM
sampling methods (§ 3.2).

• We develop a suite of efficient sampling strategies tailored to protein design objectives: High-
Probability Filter (HPF), Quantitative-Function Filter (QFF), Attention-Matrix Sampling (AMS),
Random Stratified Filtering (RSF), and Monte Carlo Tree Search (MCTS) schemes (§ 3.3).

• We devise a holistic framework for the in silico evaluation of protein engineering methods,
spanning core objectives such as functional relevance, sequence diversity, and fitness (§ 4).

• We conduct an in-depth comparison of the various pLM sampling methods, analyze the effect of
key sampling hyperparameters on performance, and discuss the relative strengths of the different
methods depending on design objectives (§ 5).

• We open-source our codebase to provide convenient access to our in silico generation and
evaluation framework, including all sampling methods, in a unified interface: https://gith
ub.com/i3LBI19-OATML/sampling_plm.

2 BACKGROUND ON SAMPLING LANGUAGE MODELS

Language models are generative models seeking to approximate a distribution over sequential inputs.
Once trained, we can sample from these generative models to create new sequences that may not have
been part of the initial training data. In NLP, since the creation of novel sequences may be driven by
various objectives (e.g., creativity, coherence, fluency, factual information), a wide range of sampling
strategies has been developed to promote certain characteristics of generated sequences (Li et al.,
2022). Throughout the text, we refer to these sampling approaches as the standard sampling strategies.
The most simple strategy is random sampling, which samples items based on their probabilities as
provided in Equation (1) In order to avoid sampling items with extremely low probability under the
language model, Top-k sampling selects the subset V (k) of the k elements with highest probabilities,
sets the probabilities of the other items to zero, and renormalizes probabilities for the Top-k items as
expressed in Equation (2). Greedy sampling is an extreme version of Top-k sampling that only takes
the item with the highest (top-1) probability in the distribution. In practice, using a fixed-size k may
be sub-optimal when the flatness of the distribution varies significantly across generated tokens in the
sequence: in some instances, relevant items will be censored, while in others certain low-likelihood
items may be sampled. To address this problem, Top-p sampling (Holtzman et al., 2019) (or nucleus
sampling) first computes the corresponding cumulative distribution and censors it as soon as the CDF
exceeds p, giving rise to the set V (p) of all non-censored items. Beam search views a sequential
sampling process as a search problem exploring the most promising mutations at each step in a
tree-like structure, maintaining a fixed number of possible solutions called “beam width”. Other
sampling techniques maximizing human expectations and preferences were also developed for NLP,
such as typical sampling (Meister et al., 2022). Basu et al. (2021) developed a fine-tuning-free
method, called mirostat sampling, which self-adapts the perplexity of generated sequence at a
predefined level based on human preference. Language modeling can also be viewed as a sequence
of decisions where the current generated tokens (state) will influence the next tokens (moves) being
generated to achieve certain objectives. Monte Carlo Tree Search (MCTS) (Coulom, 2007; Silver
et al., 2017) has been used in machine translation and, as a result, for protein design (Parker & Chen,
2020; Wang et al., 2023). Recently, Wang et al. (2023) leveraged a MCTS-based approach to carry out

2

https://github.com/i3LBI19-OATML/sampling_plm
https://github.com/i3LBI19-OATML/sampling_plm

Published at LMRL Workshop at ICLR 2025

a 35 residue-restricted iterative protein design. See Appendix C for more details on these sampling
methods.

3 METHOD

3.1 TAXONOMY FOR PLM SAMPLING METHODS

Sampling strategies for ML-based protein design can be broadly grouped into either Iterative Redesign
Sampling (IRS) or AutoRegressive Sampling (ARS), as depicted in Figure 1. We can leverage Protein
Language Models (pLMs) to generate novel protein sequences using either of these approaches
(Strokach & Kim, 2022). Additionally, any of the sampling methods outlined in § 2 can be applied in
conjunction with both IRS and ARS approaches.

Figure 1: Taxonomy of Protein Language Models sampling methods. We discriminate between
two strategies for sampling pLMs: Autoregressive Sampling and Iterative Redesign Sampling.

AutoRegressive Sampling: Given an initial residue prompt, ARS sampling methods iteratively
extend the amino acid (AA) sequence by one or multiple residues at each step. ARS strategies can
be conditioned with a prompt containing a few residues, or be fully unconditional (empty prompt).
A prompted generation typically allows for more targeted and family-specific generation (Nijkamp
et al., 2022). The process stops when the desired sequence length has been reached or an ‘end of
sequence’ token is generated. Pseudocode for the approach is provided in Algorithm S8.

Iterative Redesign Sampling: IRS-based sampling starts by taking a template protein sequence (e.g.,
a natural protein sequence) and generating all possible single (or a subset of multiples) mutations,
either at every position or at specific Position(s) of Interest (PoI). At each iteration, one (or multiple)
substitution mutations are introduced and the process stops once a predefined number of evolution
cycles is achieved. IRS encompasses Markov Chain Monte Carlo (MCMC) approaches such as
Gibbs sampling (Sgarbossa et al., 2023; Johnson et al., 2023; Geman & Geman, 1984). Each optimal
mutation is determined by a fitness score derived from the underlying pLM and a predefined sampling
strategy. This strategy can be applied not only to traditional MLM pLMs, but also to newer masked
diffusion language modeling pLMs. An illustration of the code for single-mutant IRS is provided in
Figure S1 and the detailed algorithm is available in Algorithm S7.

3.2 SINGLE-MUTANT PROTEIN GENERATION

Methods in this section focus on sampling a single mutant at each iteration. Single mutant IRS
(IRS-singles) strategies require a template sequence as the initial starting point. They subsequently
generate all possible single amino acid substitutions at each position, which are then scored with a
fitness predictor to select which of these possible mutations to apply. A predefined number of iterative
cycles specifies when to stop the entire process. Conversely, single mutant ARS (ARS-singles)
strategies iteratively build up a full sequence by adding a single residue at each cycle. This residue is

3

Published at LMRL Workshop at ICLR 2025

sampled autoregressively out of all 20 possible amino acids with the underlying generative model. In
both ARS and IRS single strategies, we sample with one of the standard approaches introduced in
§ 2, including random, greedy, Top-k, Top-p, typical, and mirostat sampling. Single-mutant-based
methods are straightforward to instantiate and have a linear computational complexity in the sequence
length.

3.3 MULTIPLE-MUTANT PROTEIN GENERATION

While simpler to implement and computationally tractable, methods that sample a single mutant
at each iteration may result in suboptimal design performance as they ignore potentially critical
epistatic effects between positions (Johnson et al., 2023; Starr & Thornton, 2016). Uncovering these
relationships requires to consider the interactions between multiple mutated positions simultaneously
(Upadhyay et al., 2022). However, given the combinatorial number of such interactions, an exhaustive
enumeration and scoring of all possible mutants is impractical. Efficient multiple-mutant strategies
thus rely on simplifying assumptions to make that search tractable. In this work, we introduce several
such strategies that focus on efficient sampling of pairs of mutants. By adjusting the key variable
N in the following strategies, we control the number of proteins explored at each step. In all our
experiments, we set N = 96, as previously identified to be the minimal for exploration (Biswas
et al., 2021). We refer to these methods as ARS-doubles and IRS-doubles. We provide a high-level
illustration for the IRS-doubles strategies in Figure S1 and detail the corresponding pseudocode in
Algorithm S9.

Quantitative-Function Filter (QFF). We first generate all possible mutant pairs. We then quantify
the protein fitness for all possible pairs with a Potts model, EVmutation (Hopf et al., 2017). This
significantly reduces the computational complexity compared with doing the same with a large pLM,
while keeping the ability to quantify epistatic effects between residue pairs. We then select the top-N
predicted mutations, score these with the pLM. Lastly, we sample the double mutant to apply out of
these N options with one of the sampling strategies discussed in § Section 2.

High-Probability Filter (HPF). We first generate and score all possible single amino acid substi-
tutions. The Top-k (eg., k = 100) single mutants with the highest fitness scores are then selected
and combined together to generate a set of high-quality double mutants. This drastically reduces
the number of double mutations to consider, reducing the overall computational complexity of the
algorithm to being linear in sequence length. From this set, we randomly sample N mutant pairs
which we score with the pLM. While it is possible to focus on the mutant pairs with the highest
average scores, we instead randomly sample a number N of them to promote exploration in sequence
space. The double mutant to apply in the current cycle is then sampled out of these N options with
one of the standard sampling strategies discussed in § 2.

Attention-Matrix Sampling (AMS). We first score all possible single mutants and select the top-K
with the highest predicted fitness. Using the same pLM, we identify PoIs as residues with the highest
average attention values in the self-attention layers. From this PoI set, we generate all possible
mutant pairs and score them using a lightweight fitness model (EVmutation), selecting the top-N
for further evaluation with the pLM. A double mutant is then sampled from these N options using a
standard strategy. Alternative selection methods, such as identifying spatially proximal residues from
experimental or predicted protein structures, may also be used instead of attention scores.

Random-Stratified Filter (RSF). All possible double mutations are generated from the top-K single
mutants. Each sequence is scored with a lightweight fitness prediction model (EVmutation) and
stratified into four bins based on their scores: {Svery low, Slow, Shigh, Svery high}. We then take a total
of N double-mutants by taking the top-N/4 samples from each stratum to increase the diversity of
mutations, intuitively mutants in different EVmutation score bins will be non-redundant and diverse
in sequence space. This introduces mutation diversity at an intermediate level before further protein
scoring. Lastly, we sample the double mutant to apply out of these N options with one of the standard
sampling strategies.

Monte Carlo Tree Search (MCTS). We start from a full sequence (natural or mutated) and consider
each of its residues as a potential parent node (Parker & Chen, 2020; Wang et al., 2023). In each
search round, the Upper Confidence bounds applied to Trees (UCT) algorithm (Kocsis & Szepesvári,
2006) balances exploration and exploitation of each parent node to identify desirable mutation
nodes. To limit the computational complexity of the search and enable exploration of more nodes,

4

Published at LMRL Workshop at ICLR 2025

we leverage our proposed efficient multi-mutant strategies described above (eg., QFF, HPF) after
generating possible mutations. The pLM then scores the filtered mutations to quantify the reward for
each node. Finally, the mutation node with the highest reward max(Rm) is selected.

4 HOLISTIC in silico EVALUATION FRAMEWORK FOR PROTEIN DESIGN

Figure 2: Our holistic in silico evaluation framework for functional protein design revolves
around three core performance criteria: relevance, quality, and diversity. For each criterion, two
complementary metrics enable a thorough comparison of the relative benefits of the various protein
language model sampling methods.

When designing functional proteins, three high-level criteria are critical to performance. First,
we want the generated protein sequences to be relevant to the design objective, i.e., carry out the
function of interest. Since function is primarily encoded via the tertiary structure of the protein,
the metrics we devised to assess functional relevance are structure-based. Second, the quality of
the generated protein sequences can be assessed by their quality to properly execute the specified
function, i.e., have high fitness (Johnson et al., 2023). Fitness prediction models have been shown
to exhibit relatively high correlation with hundreds of experimental assays (Notin et al., 2023b)
and may therefore be used as an in-silico oracle for true fitness. While these in-silico predictions
are imperfect oracles, it should be noted that experiments themselves are imperfect and noisy
measurements of the true fitness of proteins (Frazer et al., 2021). To that end, we leveraged two
distinct highly performing zero-shot fitness predictors, such as ESM-1v (Meier et al., 2021) (masked
language model) and Progen2 (Nijkamp et al., 2022) (autoregressive model). These independent
protein language models were chosen given their complementary inductive biases and strong fitness
prediction performance (Notin et al., 2023a). Lastly, the generated sequences should be diverse, i.e.,
differ from the template wild-type sequence or known natural sequences. We refer to these three
design objectives as Relevance, Quality, and Diversity respectively, and crafted two separate metrics
for each category (Figure 2). We define these different evaluation metrics as follows:

• TM-score: Assesses topological similarity between the predicted structure of the generated
sequences and the structure of the template wild type sequence (Zhang & Skolnick, 2004). The
final score is the average of the pairwise TM-scores. Structures were predicted with ESMFold (Lin
et al., 2023). Ideally, the structure of generated sequences is as close to that of the template
sequence as possible to ensure functional relevance.

• pLDDT: Quantifies the confidence of a structure prediction model (here ESMFold (Lin et al.,
2023)), averaged over the entire sequence. Higher pLDDT has been empirically observed to
correlate with higher functional designs (Peñas-Utrilla & Marcos, 2022; Watson et al., 2023;
Wang et al., 2022). Note that this may be limiting in certain cases (e.g. disordered proteins).

• Overall Fitness: Reports the proportion of designs with fitness greater than the 75th percentile of
fitness scores for natural sequence in the corresponding MSAs to the total number of designs.

• Maximum Fitness: Evaluates the ability of the sampling procedure to generate sequences that
significantly enhance the fitness of the starting wild-type sequence for the corresponding protein
family. For the two aforementioned fitness oracles (ESM-1v and ProGen2) and for each sampled
sequence, we compute the ratio of the predicted fitness over that of the wild type sequence. The
maximum ratio across designs is then extracted for each predictor and averaged across them.

5

Published at LMRL Workshop at ICLR 2025

• Fréchet ESM Distance (FED): Assesses the extent to which the generated sequences are distant
in embedding space to known natural sequences (e.g., sequences in an MSA for that protein
family). It can be seen as a protein-related analog of the Fréchet Inception Distance (FID),
initially introduced to evaluate generative adversarial network (GAN)-generated images (Raghava
& Barton, 2006; Heusel et al., 2018; Seitzer, 2020). It leverages the embeddings from the
penultimate layer of ESM-1v (Meier et al., 2021), recapitulating on broader protein features
instead of scores, and computes the Fréchet distance between the embeddings of the generated
sequences and the sequences in an MSA for that protein family. It also has a linear correlation to
Sequence Dissimilarity (SD), as seen in Table S2-Table S8.

• Uniqueness: Reports the proportion of distinct sequences generated. Calculated by taking the
ratio of unique sequences to the total number of sequences.

• Overall Score: Comprehensively summarises the evaluation by considering metrics from each
objective. Computed by taking unique sequences with both a TM-score above 0.5 and fitness
above 75th percentile relative to wild-type MSA, averaged across the two fitness oracles involved.
We then divide this number by the total number of generated sequences to obtain a score between
0 (bad sampling) and 100 (good sampling).

5 EXPERIMENTS

In the experimental evaluation of the methods introduced in § 3, we seek to address the following
questions: (1) What are the relative strengths of the various sampling strategies introduced above,
and their impact on the properties of the generated sequences? (2) What are the benefits of multiple-
mutant strategies over single-mutant strategies? (3) What are the effects of different sampling
hyperparameters on the generated proteins?

Experimental Protocol: As we need an autoregressive model that can support both ARS and IRS
strategies, we chose Tranception (Notin et al., 2022a) to carry out our experiments as it achieves state-
of-the-art fitness prediction performance compared with other autoregressive architectures (Notin
et al., 2023a). For each sampling method, hyperparameter value, and protein family, we ultimately
generate 100 novel designs after several rounds of in silico optimization. Evolution cycles for IRS
are set at 4 while the desired length for ARS is equal to the length of the protein wild-type (this
ensures all approaches have roughly the same compute budget). Details on datasets and sampling
hyperparameters are available in Appendix B.

Selected protein families: To test the generalizability of our results we conducted our experiments
for three diverse protein families: Aequorea victoria Green Fluorescence Protein (avGFP) (§ C.1),
Escherichia coli Beta-lactamase TEM-1 (BLAT) (§ C.2), and the Mpro (also known as 3CLpro)
region of replicase protein 1ab (R1AB) from the SARS-CoV-2 virus (§ C.3). We performed all IRS
experiments starting from the corresponding full-length wild-type sequences and used conditioning
prompts of at least 5% and up to 85% of the full sequence length for the ARS experiments (Fig-
ure S3). Wild-type sequences and MSAs for the 3 protein families were obtained from ProteinGym
benchmarks (Notin et al., 2023a).

5.1 EXPERIMENTAL RESULTS

5.1.1 EFFECTS OF BROAD SAMPLING APPROACHES

We evaluated the properties of protein generation using both ARS and IRS across all categories
in our evaluation framework. The best outcomes based on overall score across hyperparameters
tested for each sampling method and averaged across protein families, are reported in Figure S2. We
adjust parameters across experiments to ensure a comparable compute budget is used across sampling
strategies. We observe that the IRS-doubles approach outperforms in aggregate all other sampling
strategies. However, while IRS strategies tend to produce generally more relevant and functional
samples in aggregate compared with ARS methods, the latter enable the design of a few highly
performing designs (i.e., significantly higher maximum fitness value). As proteins generated through
IRS method only mutate residues at certain positions, the generated proteins tend to be more similar
to the starting wild type sequences (eg., higher TM-score). Conversely, by providing a fraction of the
whole template sequence as prompt, ARS approaches have more flexibility to generate more diverse
proteins, at the cost of relevance or quality.

6

Published at LMRL Workshop at ICLR 2025

Additionally, we collected sequences generated through MCMC-based sampling in Biswas et al.
(2021) as additional baselines, focusing our analyses on the 2 protein families covered in that work
(Table S2). We observe that MCMC-based sampling in Biswas et al. (2021) underperforms the
various ARS and IRS sampling strategies introduced above.

5.1.2 BENEFITS OF MULTIPLE-MUTANT STRATEGIES

A comparative summary of the best sampling method and hyperparameter combinations for IRS-
singles (single mutation per iteration) and IRS-doubles (double mutations per iteration) based on their
overall scores, incorporating the strategies HPF, QFF, AMS, RSF, beam search, and MCTS, is shown
in Table 1. In general, IRS-doubles consistently outperform IRS-singles on all metrics. Detailed
results are available in Table S2. We also performed similar experiments for ARS protein generation
to compare between single-mutant (ARS-singles) and double-mutant (ARS-doubles) generation. The
sampling methods used for comparison are NLP-sampling strategies discussed in § 2 and beam search.
The beam search implemented in ARS can generate either single or multiple AA extensions, hence
its inclusion in both singles and doubles. Results for the best sampling method and hyperparameter
combinations for the ARS-singles and ARS-doubles experiments are selected based on the overall
score and presented in Table 2. Detailed results are provided in Table S3. Unlike IRS strategies, we
do not observe any significant benefit of ARS-doubles approaches over ARS-singles.

Table 1: Comparison for IRS strategies. Best combination of sampling method and hyperparameter
are reflected, averaged across protein families. Detailed results are in Table S4, Table S5, and Table S6.
Bold indicates the best scores.

Depth Sampling Relevance Quality Diversity Overall Score ↑
TM-score ↑ pLDDT ↑ Overall Fitness ↑ Max. Fitness ↑ Uniqueness ↑ FED ↑

Singles Top-k 0.99 95.57 92.1 2.07 0.84 5.45 77.0

Doubles

QFF 0.96 95.89 100.0 2.36 1.00 6.21 100.0
HPF 0.99 95.76 97.0 2.20 1.00 5.27 97.0
AMS 0.99 95.74 100.0 2.36 0.99 5.97 99.0
RSF 0.98 95.82 96.0 2.24 1.00 5.02 96.0

MCTS 0.98 95.69 90.5 2.24 1.00 5.34 90.5
Beam Search 0.99 95.84 99.5 2.18 1.00 5.42 99.5

Within the IRS approach, there are several key observations to be highlighted. The combination
of Beam Search with HPF produced proteins with the highest relevance scores, indicating that this
method is ideal for generating proteins with the desired function. Detailed performance breakdown
across sampling strategies is provided in Appendix E. In contrast, QFF with random sampling and
AMS produced novel proteins with the highest general score, with relevant generated sequences of
high fitness and diversity, scoring highly on the two fitness-related metrics. For discovering new and
unexplored protein sequences, almost all IRS-doubles methods were highly effective in generating
novel proteins. Based on the overall scores, QFF offers a well-rounded balance across all metrics and
can thus be considered the most optimal protein generation method. Based on their specific design
objectives, practitioners may choose the most appropriate method. Furthermore, we find that there are
significant performance differences across protein families (see detailed results in Tables S4 to S7).
The BLAT protein was the most easily evolvable, leading to the highest maximum fitness level across
proteins. However, when double-mutations (IRS-doubles) are introduced, other proteins climbed
to higher fitness levels and approached the gains achieved in the BLAT experiments (Table S5 and
Table S6). This confirmed that multi-mutant approaches can be useful by detecting epistatic effects
and making less myopic decisions about which mutations to apply at each step.

Table 2: Comparison for ARS strategies. Values reflect the best sampling method and hyperparam-
eter combination. Detailed results are in Table S8. Bold indicates the highest scores.

Depth Sampling Relevance Quality Diversity Overall Score ↑
TM-score ↑ pLDDT ↑ Overall Fitness ↑ Max. Fitness ↑ Uniqueness ↑ FED ↑

Singles Top-k 0.65 83.74 96.5 2.19 1.00 1.32 96.5
Beam Search 0.54 60.13 98.5 5.32 1.00 99.11 91.5

Doubles Top-k 0.55 56.14 98.5 3.91 1.00 109.44 89.5
Beam Search 0.55 53.68 96.5 3.83 1.00 118.55 83.5

7

Published at LMRL Workshop at ICLR 2025

The ARS results show that almost all the proteins generated have fitness over 75th percentile of natural
sequences. Adjusting sampling temperature to lower values (e.g. 0.01) for beam search and nucleus
sampling results in better evaluation scores, consistent with previous findings (Ruffolo et al., 2024).
Interestingly, when comparing the ARS-singles and ARS-doubles approaches, transitioning to double
mutations lead to worse protein generation in terms of relevance (lower TM score and pLDDT), but
with positive results in terms of maximum fitness and diversity in aggregate (Xu & Zhang, 2010).
When searching for a balance between all the metrics, the ARS-singles approach with Top-k achieves
the highest overall score, pLDDT, and Uniqueness. Detailed results across different protein families
are provided in Table S8. We observe differences in evolvability across the 3 protein families, with
BLAT proving to be the most difficult in achieving significant leaps in maximum fitness.

5.1.3 EFFECTS OF DIFFERENT SAMPLING HYPERPARAMETERS

We first sought to investigate the impact of the conditioning prompt length used in ARS on design
performance. To that end, we performed sampling experiments across the 3 protein families using
prompt lengths based on 5 percentage values (5%, 20%, 40%, 65%, and 85%). Results are reported
in Figure S3 and Figure S4. In general, metrics including TM-score, Uniqueness, FED, and Overall
Score generally increase as prompt length increases. On the other hand, both pLDDT and maximum
fitness exhibit the opposite trend, with 65% length showing the best balance for all the metrics. The
impact of prompt length varies across protein families: avGFP and BLAT show moderate changes,
while R1AB exhibits drastic increases (FED) or declines (uniqueness and maximum fitness). Longer
prompts typically allow ARS methods to generate more family-relevant samples, at the cost of no
diversity in the prompting region. Interestingly, diversity also appears to increase with prompt length
(up to a limit) as short prompts often lead to degenerate sequences, which fail in relatively similar
patterns (eg., excessive repeat of the same amino acid). We also note that for shorter prompt lengths,
the model may generate novel sequences with high predicted fitness but corresponding to a different
function than the target, as evidenced by the lower relevance score obtained for these designs. All our
subsequent ARS experiments were done with a 65% prompt length for a balanced generation process.
We then aimed to analyze how different hyperparameter values for various sampling methods affect
design performance. The hyperparameters we focused on were the values of k for Top-k sampling, p
(or nucleus) for Top-p (nucleus) sampling, τ (tau) for typical sampling, and modifying the sampling
temperature. For beam search, we tested the impact of the maximum length of subsequent mutations
(number of steps) and the number of search rounds for MCTS. To analyze the impact of different
hyperparameters on design outcomes, we used Top-k sampling from IRS-singles generation, across
the three protein families. The corresponding results are reported in Figure S5. Maximum fitness
remained high across all sampling values. However, by prioritizing high-fitness mutations with
IRS (i.e. smaller k values), proteins generated were more likely to stay within the same family
as limited mutations were introduced. Although it provided higher overall fitness, lowering the k
hyperparameter value led to repetitive mutations in successive generations (i.e. fewer unique proteins
generated). Conversely, by increasing the value of k, the distance (i.e. FED) between the generated
proteins and the starting sequence increased as more diverse mutations were introduced.

6 CONCLUSION

In this work, we systematically evaluated the effects of different sampling strategies on the quality,
diversity, and relevance of designed protein sequences in silico. We observed a general trade-off
between the overall fitness and diversity of the proteins produce across methods: sampling methods
that produce greater novelty and diversity in sequences yield proteins that are less functional on
average. Selecting the appropriate sampling strategy and fine-tuning hyperparameters is thus crucial
for striking the right balance between these competing objectives. Our research also highlights the
benefits resulting from developing custom sampling methodologies tailored specifically for protein
design, leading to higher aggregate performance across design objectives. Lastly, the observation that
the optimal sampling strategy varies across protein family suggests that leveraging several sampling
strategies simultaneously could be beneficial. This combined approach would help generate more
diverse samples and improve the likelihood of discovering designs with maximum fitness. As the field
progressively moves towards developing multi-modal protein language models combining sequence,
structure and functional annotations, we anticipate that novel sampling approaches will be needed to
fully take advantage of the dependencies across modalities.

8

Published at LMRL Workshop at ICLR 2025

MEANINGFULNESS STATEMENT

A meaningful representation of life captures the complexity and functional potential of biological sys-
tems. In protein design, this means learning representations that drive impactful applications—from
therapeutics to sustainable materials and biocomputing. Advances in protein generation and represen-
tation learning mirror life’s ability to optimize and evolve, offering solutions in medicine, agriculture,
and beyond. However, ethical considerations, such as mitigating dual-use risks Urbina et al. (2022),
are crucial to ensuring these technologies enhance rather than threaten life. Our paper focuses
on optimal strategies for sampling from protein language models to fully leverage the powerful
representations of biological sequences they have learned, bringing us closer to computational tools
that can meaningfully harness and extend life’s design principles

REFERENCES

Ethan C. Alley, Grigory Khimulya, Surojit Biswas, Mohammed AlQuraishi, and George M. Church.
Unified rational protein engineering with sequence-based deep representation learning. Nature
Methods 2019 16:12, 16:1315–1322, 10 2019. ISSN 1548-7105. doi: 10.1038/s41592-019-0598-1.

Frances H. Arnold. Directed evolution: Bringing new chemistry to life. Angewandte Chemie
International Edition, 57:4143–4148, 4 2018. ISSN 1521-3773. doi: 10.1002/ANIE.201708408.

Sourya Basu, Govardana Sachitanandam Ramachandran, Nitish Shirish Keskar, and Lav R. Varshney.
Mirostat: A neural text decoding algorithm that directly controls perplexity. In International
Conference on Learning Representations, 2021.

Surojit Biswas, Grigory Khimulya, Ethan C. Alley, Kevin M. Esvelt, and George M. Church. Low-n
protein engineering with data-efficient deep learning. Nature Methods 2021 18:4, 18:389–396, 4
2021. ISSN 1548-7105. doi: 10.1038/s41592-021-01100-y.

Nadav Brandes, Dan Ofer, Yam Peleg, Nadav Rappoport, and Michal Linial. Proteinbert: a universal
deep-learning model of protein sequence and function. Bioinformatics, 38:2102–2110, 4 2022.
ISSN 1367-4803. doi: 10.1093/BIOINFORMATICS/BTAC020.

Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In Computers
and Games, pp. 72–83. Springer Berlin Heidelberg, 2007. doi: 10.1007/978-3-540-75538-8_7.

J. Dauparas, I. Anishchenko, N. Bennett, H. Bai, R. J. Ragotte, L. F. Milles, B. I. M. Wicky,
A. Courbet, R. J. de Haas, N. Bethel, P. J. Y. Leung, T. F. Huddy, S. Pellock, D. Tischer, F. Chan,
B. Koepnick, H. Nguyen, A. Kang, B. Sankaran, A. K. Bera, N. P. King, and D. Baker. Robust
deep learning–based protein sequence design using proteinmpnn. Science, 378(6615):49–56, 2022.
doi: 10.1126/science.add2187.

D.C Dowson and B.V Landau. The fréchet distance between multivariate normal distributions. Journal
of Multivariate Analysis, 12(3):450–455, September 1982. doi: 10.1016/0047-259x(82)90077-x.

Ahmed Elnaggar, Michael Heinzinger, Christian Dallago, Ghalia Rehawi, Yu Wang, Llion Jones, Tom
Gibbs, Tamas Feher, Christoph Angerer, Martin Steinegger, Debsindhu Bhowmik, and Burkhard
Rost. Prottrans: Toward understanding the language of life through self-supervised learning.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 44:7112–7127, 10 2022. ISSN
19393539. doi: 10.1109/TPAMI.2021.3095381.

Noelia Ferruz, Steffen Schmidt, and Birte Höcker. ProtGPT2 is a deep unsupervised language model
for protein design. Nature Communications, 13(1), July 2022. doi: 10.1038/s41467-022-32007-7.

Julia M Flynn, Neha Samant, Gily Schneider-Nachum, David T Barkan, Nese Kurt Yilmaz, Celia A
Schiffer, Stephanie A Moquin, Dustin Dovala, and Daniel NA Bolon. Comprehensive fitness
landscape of sars-cov-2 mpro reveals insights into viral resistance mechanisms. eLife, 11:e77433,
jun 2022. ISSN 2050-084X. doi: 10.7554/eLife.77433.

Jonathan Frazer, Pascal Notin, Mafalda Dias, Aidan Gomez, Joseph K Min, Kelly P. Brock, Yarin
Gal, and Debora S. Marks. Disease variant prediction with deep generative models of evolutionary
data. Nature, 2021.

9

Published at LMRL Workshop at ICLR 2025

Maurice Fréchet. Sur la distance de deux lois de probabilité. Annales de l’ISUP, VI(3):183–198,
1957.

Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distributions, and the bayesian
restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-6
(6):721–741, November 1984. ISSN 0162-8828. doi: 10.1109/tpami.1984.4767596.

Michael Heinzinger, Maria Littmann, Ian P. W. Sillitoe, Nicola Bordin, Christine A. Orengo, and
Burkhard Rost. Contrastive learning on protein embeddings enlightens midnight zone. NAR
Genomics and Bioinformatics, 4, 2021.

Daniel Hesslow, Niccoló Zanichelli, Pascal Notin, Iacopo Poli, and Debora Marks. Rita: a study on
scaling up generative protein sequence models. arXiv preprint arXiv:2205.05789, 2022.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium, 2018.

Brian L. Hie, Ellen D. Zhong, Bonnie Berger, and Bryan D. Bryson. Learning the language of viral
evolution and escape. Science, 371:284 – 288, 2020.

Ari Holtzman, Jan Buys, Leo Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. CEUR Workshop Proceedings, 2540, 4 2019. ISSN 16130073.

Thomas A Hopf, John B Ingraham, Frank J Poelwijk, Charlotta P I Schärfe, Michael Springer, Chris
Sander, and Debora S Marks. Mutation effects predicted from sequence co-variation. Nature
Biotechnology, 35(2):128–135, January 2017. doi: 10.1038/nbt.3769.

Po-Ssu Huang, Scott E. Boyken, and David Baker. The coming of age of de novo protein design.
Nature, 537:320–327, 2016.

Hervé Jacquier, André Birgy, Hervé Le Nagard, Yves Mechulam, Emmanuelle Schmitt, Jérémy
Glodt, Beatrice Bercot, Emmanuelle Petit, Julie Poulain, Guilène Barnaud, Pierre-Alexis Gros, and
Olivier Tenaillon. Capturing the mutational landscape of the beta-lactamase tem-1. Proceedings
of the National Academy of Sciences, 110(32):13067–13072, July 2013. ISSN 1091-6490. doi:
10.1073/pnas.1215206110.

Sean R. Johnson, Xiaozhi Fu, Sandra Viknander, Clara Goldin, Sarah Monaco, Aleksej Zelezniak,
and Kevin K. Yang. Computational scoring and experimental evaluation of enzymes generated by
neural networks. bioRxiv, pp. 2023.03.04.531015, 4 2023. doi: 10.1101/2023.03.04.531015.

Timothy Fei Truong Jr and Tristan Bepler. PoET: A generative model of protein families as sequences-
of-sequences. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In Johannes Fürnkranz,
Tobias Scheffer, and Myra Spiliopoulou (eds.), Machine Learning: ECML 2006, pp. 282–293,
Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. ISBN 978-3-540-46056-5.

Junyi Li, Tianyi Tang, Wayne Xin Zhao, Jian-Yun Nie, and Ji-Rong Wen. Pretrained language models
for text generation: A survey, 2022.

Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,
Robert Verkuil, Ori Kabeli, Yaniv Shmueli, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom
Sercu, Salvatore Candido, and Alexander Rives. Evolutionary-scale prediction of atomic-level
protein structure with a language model. Science, 379(6637):1123–1130, March 2023. doi:
10.1126/science.ade2574.

Amy X. Lu, Wilson Yan, Sarah A. Robinson, Kevin K. Yang, Vladimir Gligorijević, Kyunghyun Cho,
Richard Bonneau, Pieter Abbeel, and Nathan C. Frey. Generating all-atom protein structure from
sequence-only training data. bioRxiv, 2024.

Ali Madani, Ben Krause, Eric R. Greene, Subu Subramanian, Benjamin P. Mohr, James M. Holton,
Jose Luis Olmos, Caiming Xiong, Zachary Z. Sun, Richard Socher, James S. Fraser, and Nikhil
Naik. Large language models generate functional protein sequences across diverse families. Nature
Biotechnology 2023, pp. 1–8, 1 2023. ISSN 1546-1696. doi: 10.1038/s41587-022-01618-2.

10

Published at LMRL Workshop at ICLR 2025

Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu, and Alex Rives. Language models
enable zero-shot prediction of the effects of mutations on protein function. Advances in Neural
Information Processing Systems, 34:29287–29303, 12 2021.

Clara Meister, Tiago Pimentel, Gian Wiher, and Ryan Cotterell. Locally typical sampling. Transac-
tions of the Association for Computational Linguistics, 11:102–121, 2 2022. ISSN 2307387X. doi:
10.1162/tacl_a_00536.

Geraldene Munsamy, Sebastian Lindner, Philipp Lorenz, and Noelia Ferruz. Zymctrl: a conditional
language model for the controllable generation of artificial enzymes. Machine Learning for
Structural Biology Workshop. NeurIPS 2022., 2022.

Erik Nijkamp, Jeffrey Ruffolo, Eli N. Weinstein, Nikhil Naik, and Ali Madani. Progen2: Exploring
the boundaries of protein language models, 2022.

Pascal Notin, Mafalda Dias, Jonathan Frazer, Javier Marchena Hurtado, Aidan N Gomez, Debora
Marks, and Yarin Gal. Tranception: Protein fitness prediction with autoregressive transformers
and inference-time retrieval. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari,
Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learning Research, pp. 16990–17017. PMLR,
17–23 Jul 2022a.

Pascal Notin, Lood Van Niekerk, Aaron W Kollasch, Daniel Ritter, Yarin Gal, and Debora S. Marks.
Trancepteve: Combining family-specific and family-agnostic models of protein sequences for
improved fitness prediction. bioRxiv, 2022b.

Pascal Notin, Aaron Kollasch, Daniel Ritter, Lood van Niekerk, Steffanie Paul, Han Spinner, Nathan
Rollins, Ada Shaw, Rose Orenbuch, Ruben Weitzman, Jonathan Frazer, Mafalda Dias, Dinko
Franceschi, Yarin Gal, and Debora Marks. Proteingym: Large-scale benchmarks for protein fitness
prediction and design. In A. Oh, T. Neumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine
(eds.), Advances in Neural Information Processing Systems, volume 36, pp. 64331–64379. Curran
Associates, Inc., 2023a.

Pascal Notin, Aaron W. Kollasch, Daniel Ritter, Lood van Niekerk, Steffanie Paul, Hansen Spinner,
Nathan Rollins, Ada Shaw, Ruben Weitzman, Jonathan Frazer, Mafalda Dias, Dinko Franceschi,
Rose Orenbuch, Yarin Gal, and Debora S. Marks. Proteingym: Large-scale benchmarks for protein
design and fitness prediction. bioRxiv, 2023b. doi: 10.1101/2023.12.07.570727.

Pascal Notin, Nathan J. Rollins, Yarin Gal, Chris Sander, and Debora Marks. Machine learning for
functional protein design. Nature Biotechnology, 42:216–228, 2024.

Alexey A. Pakhomov and Vladimir I. Martynov. Gfp family: Structural insights into spectral tuning.
Chemistry & Biology, 15(8):755–764, August 2008. ISSN 1074-5521. doi: 10.1016/j.chembiol.2
008.07.009.

Jerrod Parker and Jerry Zikun Chen. Neural machine translation with monte-carlo tree search, 2020.

Daniel Peñas-Utrilla and Enrique Marcos. Identifying well-folded de novo proteins in the new era of
accurate structure prediction. Frontiers in Molecular Biosciences, 9, 2022.

GPS Raghava and Geoffrey J Barton. Quantification of the variation in percentage identity for protein
sequence alignments. BMC Bioinformatics, 7(1), September 2006. doi: 10.1186/1471-2105-7-415.

Roshan Rao, Nicholas Bhattacharya, Neil Thomas, Yan Duan, Peter Chen, John Canny, Pieter Abbeel,
and Yun Song. Evaluating protein transfer learning with tape. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc., 2019.

Roshan M Rao, Jason Liu, Robert Verkuil, Joshua Meier, John Canny, Pieter Abbeel, Tom Sercu,
and Alexander Rives. Msa transformer. In Marina Meila and Tong Zhang (eds.), Proceedings of
the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pp. 8844–8856. PMLR, 18–24 Jul 2021.

11

Published at LMRL Workshop at ICLR 2025

Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo,
Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. Biological structure and function
emerge from scaling unsupervised learning to 250 million protein sequences. Proceedings of the
National Academy of Sciences of the United States of America, 118:e2016239118, 4 2021. ISSN
10916490. doi: 10.1073/PNAS.2016239118/SUPPL_FILE/PNAS.2016239118.SAPP.PDF.

Jeffrey A. Ruffolo, Stephen Nayfach, Joseph Gallagher, Aadyot Bhatnagar, Joel Beazer, Riffat
Hussain, Jordan Russ, Jennifer Yip, Emily Hill, Martin Pacesa, Alexander J. Meeske, Peter
Cameron, and Ali Madani. Design of highly functional genome editors by modeling the universe
of crispr-cas sequences. bioRxiv, 2024. doi: 10.1101/2024.04.22.590591.

Merijn L.M. Salverda, J. Arjan G.M. De Visser, and Miriam Barlow. Natural evolution of tem-1
β-lactamase: experimental reconstruction and clinical relevance. FEMS Microbiology Reviews, 34
(6):1015–1036, November 2010. ISSN 1574-6976. doi: 10.1111/j.1574-6976.2010.00222.x.

Karen S. Sarkisyan, Dmitry A. Bolotin, Margarita V. Meer, Dinara R. Usmanova, Alexander S.
Mishin, George V. Sharonov, Dmitry N. Ivankov, Nina G. Bozhanova, Mikhail S. Baranov, Onuralp
Soylemez, Natalya S. Bogatyreva, Peter K. Vlasov, Evgeny S. Egorov, Maria D. Logacheva,
Alexey S. Kondrashov, Dmitry M. Chudakov, Ekaterina V. Putintseva, Ilgar Z. Mamedov, Dan S.
Tawfik, Konstantin A. Lukyanov, and Fyodor A. Kondrashov. Local fitness landscape of the
green fluorescent protein. Nature 2015 533:7603, 533:397–401, 5 2016. ISSN 1476-4687. doi:
10.1038/nature17995.

Maximilian Seitzer. pytorch-fid: FID Score for PyTorch. https://github.com/mseitzer/
pytorch-fid, August 2020. Version 0.3.0.

Damiano Sgarbossa, Umberto Lupo, and Anne-Florence Bitbol. Generative power of a protein
language model trained on multiple sequence alignments. eLife, 12:e79854, feb 2023. ISSN
2050-084X. doi: 10.7554/eLife.79854.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan
Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. Mastering
the game of go without human knowledge. Nature, 550(7676):354–359, October 2017. doi:
10.1038/nature24270.

Tyler N. Starr and Joseph W. Thornton. Epistasis in protein evolution. Protein Science, 25(7):
1204–1218, February 2016. doi: 10.1002/pro.2897.

Michael A. Stiffler, Doeke R. Hekstra, and Rama Ranganathan. Evolvability as a function of purifying
selection in tem-1 β-lactamase. Cell, 160(5):882–892, February 2015. ISSN 0092-8674. doi:
10.1016/j.cell.2015.01.035.

Alexey Strokach and Philip M. Kim. Deep generative modeling for protein design. Current Opinion
in Structural Biology, 72:226–236, 2 2022. ISSN 0959-440X. doi: 10.1016/J.SBI.2021.11.008.

Jin Su, Chenchen Han, Yuyang Zhou, Junjie Shan, Xibin Zhou, and Fajie Yuan. Saprot: Protein
language modeling with structure-aware vocabulary. bioRxiv, 2024.

Nicole N. Thadani, Sarah Gurev, Pascal Notin, Noor Youssef, Nathan J. Rollins, Chris Sander,
Yarin Gal, and Debora S. Marks. Learning from prepandemic data to forecast viral escape.
Nature, 622:818 – 825, 2023. URL https://api.semanticscholar.org/CorpusID:
263906690.

Roger Y. Tsien. The green fluorescent protein. Annual Review of Biochemistry, 67(1):509–544, 1998.
doi: 10.1146/annurev.biochem.67.1.509. PMID: 9759496.

Vaibhav Upadhyay, Casey Patrick, Alexandra Lucas, and Krishna M.G. Mallela. Convergent evolution
of multiple mutations improves the viral fitness of sars-cov-2 variants by balancing positive and
negative selection. Biochemistry, 61:963–980, 6 2022. ISSN 15204995. doi: 10.1021/ACS.BIOC
HEM.2C00132/ASSET/IMAGES/MEDIUM/BI2C00132_0012.GIF.

12

https://github.com/mseitzer/pytorch-fid
https://github.com/mseitzer/pytorch-fid
https://api.semanticscholar.org/CorpusID:263906690
https://api.semanticscholar.org/CorpusID:263906690

Published at LMRL Workshop at ICLR 2025

Fabio Urbina, Filippa Lentzos, Cédric Invernizzi, and Sean Ekins. Dual use of artificial-intelligence-
powered drug discovery. Nature Machine Intelligence, 4(3):189–191, March 2022. ISSN 2522-
5839. doi: 10.1038/s42256-022-00465-9.

Ashish Vaswani, Google Brain, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural
Information Processing Systems, 30, 2017.

Jue Wang, Sidney Lisanza, David Juergens, Doug Tischer, Joseph L. Watson, Karla M. Castro,
Robert Ragotte, Amijai Saragovi, Lukas F. Milles, Minkyung Baek, Ivan Anishchenko, Wei
Yang, Derrick R. Hicks, Marc Expòsit, Thomas Schlichthaerle, Jung-Ho Chun, Justas Dauparas,
Nathaniel Bennett, Basile I. M. Wicky, Andrew Muenks, Frank DiMaio, Bruno Correia, Sergey
Ovchinnikov, and David Baker. Scaffolding protein functional sites using deep learning. Science,
377(6604):387–394, 2022. doi: 10.1126/science.abn2100.

Yi Wang, Hui Tang, Lichao Huang, Lulu Pan, Lixiang Yang, Huanming Yang, Feng Mu, and Meng
Yang. Self-play reinforcement learning guides protein engineering. Nature Machine Intelligence,
July 2023. doi: 10.1038/s42256-023-00691-9.

L. N. Wasserstein. Markov processes over denumerable products of spaces, describing large systems
of automata. Probl. Peredachi Inf., 5:47–52, 1969.

Joseph L Watson, David Juergens, Nathaniel R Bennett, Brian L Trippe, Jason Yim, Helen E Eisenach,
Woody Ahern, Andrew J Borst, Robert J Ragotte, Lukas F Milles, Basile I M Wicky, Nikita
Hanikel, Samuel J Pellock, Alexis Courbet, William Sheffler, Jue Wang, Preetham Venkatesh, Isaac
Sappington, Susana Vázquez Torres, Anna Lauko, Valentin De Bortoli, Emile Mathieu, Sergey
Ovchinnikov, Regina Barzilay, Tommi S Jaakkola, Frank DiMaio, Minkyung Baek, and David
Baker. De novo design of protein structure and function with RFdiffusion. Nature, 620(7976):
1089–1100, August 2023.

Bruce J Wittmann, Kadina E Johnston, Zachary Wu, and Frances H Arnold. Advances in machine
learning for directed evolution. Current Opinion in Structural Biology, 69:11–18, August 2021.
doi: 10.1016/j.sbi.2021.01.008.

Jinrui Xu and Yang Zhang. How significant is a protein structure similarity with tm-score = 0.5?
Bioinformatics, 26(7):889–895, February 2010. ISSN 1367-4803. doi: 10.1093/bioinformatics/btq
066.

Kevin K. Yang, Zachary Wu, and Frances H. Arnold. Machine-learning-guided directed evolution for
protein engineering. Nature Methods, 16(8):687–694, July 2019. doi: 10.1038/s41592-019-0496-6.

Yang Zhang and Jeffrey Skolnick. Scoring function for automated assessment of protein structure
template quality. Proteins: Structure, Function, and Bioinformatics, 57(4):702–710, 2004. doi:
https://doi.org/10.1002/prot.20264.

13

Published at LMRL Workshop at ICLR 2025

APPENDIX

A BACKGROUND AND RELATED WORK

A.1 SAMPLING LANGUAGE MODELS

Language models are generative models seeking to approximate a distribution over sequential inputs.
Once trained, we can sample from these generative models to create new sequences that may not
have been part of the initial training data. In NLP, since the creation of novel sequences may be
driven by various objectives (e.g., creativity, coherence, fluency, factual information), a wide range of
sampling strategies has been developed to promote certain characteristics of generated sequences (Li
et al., 2022). Throughout the text, we refer to these sampling approaches as the standard sampling
strategies. We describe below some of these strategies, where x represents the sequence token. The
most simple strategy is random sampling, which samples items based on their probabilities as
provided in Equation (1), where x̂

(i)
t is the unnormalized logits at step t for item i in the vocabulary

V , divided by the smoothing temperature parameter T which controls the flatness of the distribution.

P (x̂
(i)
t | x<t) =

exp(x̂
(i)
t /T)∑

j∈V exp(x̂
(j)
t /T)

(1)

In order to avoid sampling items with extremely low probability under the language model, Top-k
sampling selects the subset V (k) of the k elements with highest probabilities, sets the probabilities of
the other items to zero, and renormalizes probabilities for the Top-k items as expressed in Equation (2).

P k(x̂
(i)
t | x<t) =

{
P (x̂

(i)
t | x<t)/p

′, if x̂(i)
t ∈ V (k).

0, otherwise.
(2)

where x<t corresponds to sequence items previously generated, and p′ =
∑

x̂
(i)
t ∈V (k) P (x̂

(i)
t | x<t)

is the probability re-normalization factor. Greedy sampling is an extreme version of Top-k sampling
that only takes the item with the highest (top-1) probability in the distribution.

In practice, using a fixed-size k may be suboptimal when the flatness of the distribution varies
significantly across generated tokens in the sequence: in some instances, relevant items will be
censored, while in others certain low-likelihood items may be sampled. To address this problem,
Top-p sampling Holtzman et al. (2019) (or nucleus sampling) first computes the corresponding
cumulative distribution and censors it as soon as the CDF exceeds p, giving rise to the set V (p) of
all non-censored items. Mathematically, this leads to a censored probability analogous to the one
in Equation (2), except for the renormalization factor p′ =

∑
x̂
(i)
t ∈V (p) P (x̂

(i)
t | x<t).

Beam search views a sequential sampling process as a search problem exploring the most promising
mutations at each step in a tree-like structure, maintaining a fixed number of possible solutions called
“beam width”. Equation (3) outlines this approach, where elements xt of the beam width at step t
are the ones that maximizes the scoring function s(.) (typically the likelihood) of the concatenation
(denoted by the operator [:]) of sequences x<t in the beam width X<t at the prior step, together with
any other element x̂(i)

t from the vocabulary V at step t.

xt = argmax
[x<t:x̂t]

|X<t|=B

{
s([x<t : x̂

(i)
t]) | i ∈ V, x<t ∈ X<t

}
(3)

Other sampling techniques maximizing human expectations and preferences were also developed for
NLP. Typical sampling attempts to balance out the information content of the generated sequence
and the expected information content (entropy) as shown in Equation (4) (Meister et al., 2022).
The truncation set C(x<t) represents the solution to the minimization problem, P is the power
set operator, V is the vocabulary, H is the entropy, and τ is the amount of probability mass to be
considered.

1

Published at LMRL Workshop at ICLR 2025

min
C(x<t)∈P(V)

∑
x∈C(x<t)

{H(x̂
(i)
t | x<t) + log p(x̂

(i)
t | x<t)}

s.t.
∑

x∈C(x<t)

p(x̂
(i)
t | x<t) ≥ τ (4)

Basu et al. (2021) developed a fine-tuning-free method, called mirostat sampling, which self-adapts
the perplexity of generated sequence at a predefined level based on human preference. This is done
by truncating the token candidate list using top-k, while self-adaptation can be achieved by adjusting
the error based on the observed and target perplexity difference. Algorithm S1 details this approach,
where S(x) is the observed perplexity, τ is the target perplexity, m is the number of most probable
tokens, µ is the maximum perplexity, η is the learning rate, ϵ is the error term, and ŝ refers to Zipf’s
exponent (Basu et al., 2021).

Language modeling can also be viewed as a sequence of decisions where the current generated tokens
(state) will influence the next tokens (moves) being generated to achieve certain objectives. Monte
Carlo Tree Search (MCTS) (Coulom, 2007; Silver et al., 2017) has been used in machine translation
and, as a result, for protein design (Parker & Chen, 2020; Wang et al., 2023). Recently, Wang et al.
(2023) leveraged a MCTS-based approach to carry out a 35 residue-restricted iterative protein design.
The search mechanism is based on iterative rounds of simulations from the current state where the
algorithm will play out subsequent moves. It leverages a UCT (Upper Confidence bounds applied
to Trees) algorithm to decide between exploring or exploiting the current state. Exploration refers
to playing moves on unexplored nodes whereas exploitation re-investigates nodes that have been
previously played for higher rewards. The information on each node visits (potential mutations)
and rewards (improvement in fitness) is backpropagated through the tree to improve subsequent
simulation attempts. Equation (5) expresses the UCT algorithm for a particular node, where Wi is
the total number of successful (positive) simulations, Si is the total number of simulations, Sp is the
total number of simulations of the parent node, and c is the exploration parameter.

UCT (x̂
(i)
t) =

Wi

Si
+ c

√
lnSp

Si
(5)

A.2 PROTEIN LANGUAGE MODELS

The majority of protein language models can be classified into two broad categories: autoregressive
(AR) and masked-language models (MLM), although other learning paradigms such as seq2seq (El-
naggar et al., 2022) or FIM (Heinzinger et al., 2021) have also been explored. Unirep (Alley
et al., 2019) was the first pLM trained autoregressively across unaligned protein sequences across
protein families. With the improvements seen in Transformers (Vaswani et al., 2017) for NLP,
masked-language models such as ProteinBERT, ESM-1b, TAPE-BERT, MSA Transformer, and
SaProt (Brandes et al., 2022; Rives et al., 2021; Rao et al., 2019; 2021; Su et al., 2024), as well as
autoregressive models, such as ProtGPT2, Progen, Tranception, RITA, ZymCTRL, PoET (Ferruz
et al., 2022; Madani et al., 2023; Notin et al., 2022a; Hesslow et al., 2022; Munsamy et al., 2022;
Jr & Bepler, 2023), have been proposed to further increase the quality of learned representations.
These pLMs have been shown to achieve remarkable performance across diverse tasks, such as
fitness prediction (Meier et al., 2021; Notin et al., 2022a) or structure prediction (Lin et al., 2023).
For protein design, prior pLM works have mainly relied on autoregressive generation with simple
sampling methods discussed in § 2, such as Top-k, Top-p, random, or greedy sampling (Biswas et al.,
2021; Sgarbossa et al., 2023; Nijkamp et al., 2022; Madani et al., 2023; Ferruz et al., 2022). Sgarbossa
et al. (2023) developed a method that iteratively applies random masking of residues in the protein
sequence and fills them greedily based on MSA Transformer (Rao et al., 2021) predictions. While
these various approaches were successful in generating novel protein sequences, none of these prior
works have systematically studied the effects and relative trade-offs of various sampling methods on
the properties of generated sequences.

2

Published at LMRL Workshop at ICLR 2025

B EXPERIMENTAL DETAILS

B.1 EVALUATION PROTOCOL

We applied the relevance, quality, and diversity evaluations contained in our in silico evaluation
framework discussed in § 4 to provide us with the properties of the proteins generated. Both target
and reference sequences in FASTA format are required. Target and reference sequences correspond
to the generated sequences and naturally occurring sequences, respectively.

B.2 DATA

Generation using IRS and ARS methods requires an initial protein sequence with a certain length.
EVmutation library initiation requires wild-type DMS data from the protein of interest. Proteins that
have extensive DMS reports are valid options, including the ones in the ProteinGym benchmarks
(Notin et al., 2023a). Specifically for IRS generation, AA residue PoI is also required for masking
and mutation targets.

B.3 SAMPLING AND HYPERPARAMETERS

Sampling methods that are part of this experiment include random, greedy, Top-k, Top-p, mirostat,
and typical sampling as well as beam search and MCTS. Hyperparameters for each are as follows:
Mirostat sampling at the best-reported threshold of 3.0 (Basu et al., 2021), Top-p sampling from 0.1
to 1.0, Typical sampling from 0.1 to 0.95, and Top-k sampling with k values of 2, 3, 5, 10, 15, 20, 30,
40, and 50. Hyperparameter values for beam search and MCTS are 2 and 3.

B.4 PROMPT LENGTHS

To address the limitation of shorter prompt lengths, we note that one could alternatively condition on
residues starting from the N-terminus and autoregressively generate towards the C-terminus, and then
condition on the C-terminus residues and autoregressively generate residues towards the N-terminus.
This is possible with models such as Tranception which have been trained to reconstruct sequences
autoregressively from both directions.

C GLOSSARY

C.1 AVGFP PROTEIN

The jellyfish Aequorea victoria has a particular protein that exhibits a green fluorescent when exposed
to light (Tsien, 1998). Our experiments were conducted using the Aequorea victoria green fluorescent
protein (avGFP) data by Sarkisyan et al. (2016). It is also one of the widely used biophysical property
benchmarks and used in other protein generation attempts by Biswas et al. (2021). Several PoI
(66, 65, 148, 203, 205, 145) were identified to be highly determinant for its function (Pakhomov &
Martynov, 2008).

C.2 BLAT PROTEIN

A fourth of the proteins in Escherichia coli are enzymes and beta-lactamase TEM-1 is an enzyme
that confers resistance to the bacteria (Jacquier et al., 2013). Resistance is conferred by hydrolyzing
β-lactam rings of penicillins and other common antibiotics found in healthcare facilities (Salverda
et al., 2010). It also has a well-studied 3D structure and thermodynamic range that allow it to be
suitable for medical investigations into drug resistance. The PoI at 36, 164, 179, 182, and 250 are
critical for executing its function (Jacquier et al., 2013; Stiffler et al., 2015).

C.3 R1AB PROTEIN

Belonging to the SARS-CoV-2 virus, the Mpro region of the R1AB protein (also known as the
main protease Mpro) and its substrates play an essential functional role throughout every step of

3

Published at LMRL Workshop at ICLR 2025

the viral life cycle. The protein is a peptidase that initiates autoproteolysis of the pp1a and pp1an
polyprotein translated from the ORF1 gene which is essential for viral replication (Flynn et al., 2022).
Residues at locations 145, 41, 299, 142, and 189 are PoI that were identified by Flynn et al. (2022)
that significantly contribute to its proteolytic activity.

C.4 TOP-K SAMPLING

The sorting of probabilities (or scores) in descending order and zero-masking the values that are
beyond the k rank. It truncates unreliable, lower probability tokens and considers only the highest k
probable tokens.

C.5 GREEDY SAMPLING

A variant of Top-k sampling that only considers the highest (top-1) probable token.

C.6 BEAM SEARCH

Beam search is a greedy, heuristic search algorithm that looks ahead into the next N tokens. It
considers the best combination of all proceeding tokens ahead of the current token. Although
computationally costly, this approach would generally generate better results over Top-k sampling as
it takes into account the next N combinations that might be missed when selecting individual tokens
for each position.

C.7 TOP-P SAMPLING

As a solution to the Top-k sampling and beam search that is prone to the boredom trap, Top-p
sampling (or nucleus sampling) was developed by Holtzman et al. (2019). It samples from a pool of
the smallest possible set of tokens in which the cumulative probability exceeds the probability p, also
called the nucleus. Compared to Top-k sampling, this approach has a dynamically adjusting sampling
pool according to the predicted probability distribution of the language model.

C.8 MIROSTAT SAMPLING

Based on reports that text quality is most desirable at certain likelihood ranges, mirostat sampling
was developed to keep the generated text within a predetermined perplexity value (Basu et al., 2021).
Therefore, high-quality text could be obtained without any fine-tuning. This approach is also able
to prevent the generated text from the boredom trap (repetitions) as well as the confusion trap
(incoherence).

C.9 TYPICAL SAMPLING

Inspired by the psycholinguistic theory of human communication, Meister et al. (2022) formally
defines a criterion for text generation that minimizes the next generated token information content
as close as possible to the model’s conditional entropy (or expected information content). Using
this information theory foundation, typical sampling efficiently enforces this criterion upon text
generation.

C.10 FRÉCHET DISTANCE

The objective of generative models is to imitate the original data as best as possible. Hence, the
distance between the generated data pw(.) and p(.), or also called the Fréchet distance, can be a
measure of generation quality (Fréchet, 1957; Heusel et al., 2018). This measure is also known as
the Wasserstein-2 distance (Wasserstein., 1969). The Fréchet distance d(., .) is calculated between
the p(.) Gaussian with mean (m,C) and the pw(.) Gaussian with mean (mw, Cw). Since we only
modified the Inception model used in Heusel et al. (2018) into ESM-1v that is suitable for protein
sequences, the “Fréchet Inception Distance” (FID) equation (Dowson & Landau, 1982) still applies:

d2((m,C), (mw, Cw)) = (||m−mw||)22 + Tr(C + Cw − 2(CCw)
1
2) (6)

4

Published at LMRL Workshop at ICLR 2025

D EVMUTATION INITIALIZATION

Initializing the EVmutation (Hopf et al., 2017) model requires two steps: (1) collecting deep multiple
sequence alignments (MSA) and (2) generating the model parameters. MSAs were collected from
the ProteinGym database for each protein family (Notin et al., 2023a). We used the recommended
plmc (Hopf et al., 2017) commands to accomplish this with L2-regularization on the couplings set,
applying their formula.

E FIGURES AND TABLES

Figure S1: High-level single and multi-mutant IRS algorithms for generating novel protein
sequences. Detailed algorithms are provided in supplementary (Algorithm S7 and Algorithm S9).

Figure S2: Overview of IRS and ARS meth-
ods across evaluation framework metrics. Best
combination of sampling method and hyperparam-
eter are reflected, averaged across protein families.
Detailed results are in Table S1

Figure S3: Impact of prompt lengths on sam-
pling quality. Results for a particular prompt
length are obtained using the best method and hy-
perparameter, averaged across families.

5

Published at LMRL Workshop at ICLR 2025

Figure S4: Negative impact of prompt lengths
based on percentage of wild-type prompted on
our evaluation framework. The values for a par-
ticular prompt length were obtained using the best
combination across the experimented proteins and
models. Standardization was performed to plot
each of the effects.

Figure S5: Comparing the effects of Top-k hy-
perparameters on Max. Fitness, Uniqueness,
and FED metrics.

Table S1: Comparing across ARS and IRS (singles and doubles) methods on the different
aspects of the evaluation framework. Bold denotes best scores.

Method Relevance Quality Diversity Overall Score ↑
TM-score ↑ pLDDT ↑ Overall Fitness ↑ Max. Fitness ↑ Uniqueness ↑ FED ↑

ARS-singles 0.60 71.94 97.50 3.76 1.00 50.22 94.00
ARS-doubles 0.55 54.91 97.50 3.87 1.00 114.00 86.50

IRS-singles 0.99 95.57 92.10 2.07 0.84 5.45 77.00
IRS-doubles 0.98 95.79 97.17 2.26 1.00 5.54 97.00

Table S2: Detailed comparison between the IRS protein generation classes for protein family:
avGFP and BLAT. Detailed best results for each method are available in Table S4 (IRS) and Table S5
and Table S6 (IRS-doubles). Bold denotes best scores. Results here are identical as with the inclusion
of 3 protein families in Table 1

Depth Sampling Sampling Value Relevance Quality Diversity Overall Score ↑
TM-score ↑ pLDDT ↑ Overall Fitness ↑ Max. Fitness ↑ SD ↑ Uniqueness ↑ FED ↑

Singles Top-k 20 0.99 95.57 92.10 2.07 22.45 0.84 5.45 77.00

Doubles

QFF-Random - 0.96 95.89 100.00 2.36 34.34 1.00 6.21 100.00
HPF-Greedy - 0.99 95.76 97.00 2.20 7.00 1.00 5.27 97.00
AMS-TopK 20 0.99 95.74 100.00 2.36 13.63 0.99 5.97 99.00
RSF-Greedy - 0.98 95.82 96.00 2.24 21.02 1.00 5.02 96.00
MCTS-HPF 3 0.98 95.69 90.50 2.24 0.88 1.00 5.34 90.50

Beam Search-HPF 3 0.99 95.84 99.50 2.18 1.20 1.00 5.42 99.50

MCMC Biswas et al. (2021) 0.60 44.03 13.30 0.59 0.99 0.77 0 10.64

Table S3: Detailed comparison between the ARS protein generation class. Detailed best results
for each method are available in Table S8. Bold denotes best scores.

Depth Sampling Sampling Value Relevance Quality Diversity Overall Score ↑
TM-score ↑ pLDDT ↑ Overall Fitness ↑ Max. Fitness ↑ SD ↑ Uniqueness ↑ FED ↑

Singles Top-k 3 0.65 83.74 96.50 2.19 41.87 1.00 1.32 96.50
Beam Search 2 0.54 60.13 98.50 5.32 33.87 1.00 99.11 91.50

Doubles Top-k 20 0.55 56.14 98.50 3.91 33.93 1.00 109.44 89.50
Beam Search 2 0.55 53.68 96.50 3.83 33.48 1.00 118.55 83.50

6

Published at LMRL Workshop at ICLR 2025

Table S4: Performance of the best sampling methods and hyperparameter values on IRS-singles
protein generation across 3 proteins experimented.

IRS-singles

Sampling Sampling Value Relevance Quality Diversity Overall Score ↑
TM-score ↑ pLDDT ↑ Overall Fitness ↑ Max. Fitness ↑ SD ↑ Uniqueness ↑ FED ↑

avGFP
greedy - 0.62 45.31 100.00 0.48 2.52 0.01 0.26 1.00

mirostat 3.50 0.62 43.84 82.50 0.73 2.42 1.00 0.09 75.50
random - 0.60 42.76 51.00 0.68 2.37 1.00 0.12 47.00

topk 2.00 0.60 45.18 90.00 0.60 2.52 1.00 0.06 81.50
topp 0.70 0.61 44.11 80.00 0.70 2.46 1.00 0.06 75.50

typical 0.70 0.58 42.92 84.00 0.70 2.43 1.00 0.08 76.00

BLAT
greedy - 1.00 95.92 100.00 2.16 30.77 0.01 6.02 1.00

mirostat 4.50 0.99 95.55 90.00 2.21 4.34 1.00 5.40 90.00
random - 0.99 95.41 92.00 2.03 4.14 0.99 5.38 91.00

topk 30.00 0.99 95.85 99.50 2.27 3.38 1.00 5.60 99.50
topp 0.60 0.98 95.38 99.50 2.11 35.96 1.00 5.54 99.50

typical 0.80 0.98 95.36 98.50 2.15 3.78 1.00 5.58 98.50

R1AB
greedy - 0.69 58.01 50.00 -0.30 1.63 0.01 2.49 0.50

mirostat 4.50 0.71 60.24 49.00 0.56 1.49 1.00 0.69 49.00
random - 0.70 59.52 49.50 0.38 1.56 1.00 1.12 49.50

topk 2.00 0.69 59.58 50.00 0.05 1.63 1.00 1.81 50.00
topp 0.60 0.68 59.07 50.00 -0.02 1.60 1.00 1.13 49.50

typical 0.80 0.69 59.28 50.00 0.36 1.60 1.00 1.03 49.50

7

Published at LMRL Workshop at ICLR 2025

Ta
bl

e
S5

:P
er

fo
rm

an
ce

of
th

e
be

st
sa

m
pl

in
g

m
et

ho
ds

an
d

hy
pe

rp
ar

am
et

er
va

lu
es

on
IR

S-
do

ub
le

s
Q

FF
(l

ef
t)

an
d

A
M

S
(r

ig
ht

)p
ro

te
in

ge
ne

ra
tio

n
ac

ro
ss

3
pr

ot
ei

ns
ex

pe
ri

m
en

te
d.

Q
FF

96
(I

R
S-

do
ub

le
s)

Sa
m

pl
in

g
Sa

m
pl

in
g

Va
lu

e
R

el
ev

an
ce

Q
ua

lit
y

D
iv

er
si

ty
O

ve
ra

ll
Sc

or
e

↑

A
M

S9
6

(I
R

S-
do

ub
le

s)

Sa
m

pl
in

g
Sa

m
pl

in
g

Va
lu

e
R

el
ev

an
ce

Q
ua

lit
y

D
iv

er
si

ty
O

ve
ra

ll
Sc

or
e

↑
T

M
-s

co
re

↑
pL

D
D

T
↑

O
ve

ra
ll

Fi
tn

es
s↑

M
ax

.F
itn

es
s↑

SD
↑

U
ni

qu
en

es
s↑

FE
D

↑
T

M
-s

co
re

↑
pL

D
D

T
↑

O
ve

ra
ll

Fi
tn

es
s↑

M
ax

.F
itn

es
s↑

SD
↑

U
ni

qu
en

es
s↑

FE
D

↑

av
G

FP
av

G
FP

gr
ee

dy
-

0.
60

45
.7

5
50

.0
0

0.
32

1.
26

0.
01

0.
18

0.
50

gr
ee

dy
-

0.
60

44
.7

2
0.

00
0.

19
2.

10
0.

01
0.

21
0

m
ir

os
ta

t
3.

00
0.

63
46

.2
2

71
.0

0
0.

71
1.

57
0.

69
0.

09
50

.0
0

m
ir

os
ta

t
3.

00
0.

59
46

.7
2

15
.0

0
0.

47
2.

36
0.

50
0.

04
7.

00
ra

nd
om

-
0.

62
46

.7
5

72
.0

0
0.

75
2.

05
1.

00
0.

05
69

.5
0

ra
nd

om
-

0.
62

45
.0

8
13

.0
0

0.
47

2.
74

1.
00

0.
06

13
.0

0
to

pk
3

0.
62

46
.2

4
73

.5
0

0.
74

1.
84

0.
98

0.
09

72
.0

0
to

pk
10

0.
62

45
.2

9
33

.0
0

0.
44

2.
26

1.
00

0.
07

32
.0

0
to

pp
0.

40
0.

62
46

.6
0

77
.0

0
0.

75
1.

93
1.

00
0.

07
75

.0
0

to
pp

0.
40

0.
59

44
.0

8
22

.5
0

0.
52

2.
68

1.
00

0.
06

20
.5

0
ty

pi
ca

l
0.

95
0.

63
46

.6
8

71
.5

0
0.

67
1.

89
1.

00
0.

09
71

.0
0

ty
pi

ca
l

0.
90

0.
61

44
.6

4
17

.5
0

0.
53

2.
68

1.
00

0.
05

17
.0

0

B
L

AT
B

L
AT

gr
ee

dy
-

0.
99

95
.6

2
10

0.
00

2.
24

10
.1

4
0.

01
6.

65
1.

00
gr

ee
dy

-
1.

00
96

.0
6

10
0.

00
2.

11
31

.4
7

0.
01

5.
88

1.
00

m
ir

os
ta

t
3.

00
0.

93
95

.8
8

10
0.

00
2.

23
4.

89
0.

07
6.

76
7.

00
m

ir
os

ta
t

3.
00

0.
95

95
.3

9
10

0.
00

2.
16

43
.7

1
0.

02
6.

50
2.

00
ra

nd
om

-
0.

96
95

.8
9

10
0.

00
2.

36
33

.2
0

1.
00

6.
21

10
0.

00
ra

nd
om

-
0.

98
95

.4
7

86
.5

0
2.

30
17

.9
3

1.
00

5.
66

86
.5

0
to

pk
30

0.
97

95
.8

4
10

0.
00

2.
38

26
.9

9
1.

00
6.

15
10

0.
00

to
pk

15
0.

99
95

.7
5

10
0.

00
2.

31
34

.7
4

1.
00

5.
78

10
0.

00
to

pp
0.

90
0.

96
95

.8
6

10
0.

00
2.

38
4.

65
1.

00
6.

22
10

0.
00

to
pp

0.
60

0.
98

95
.5

4
89

.0
0

2.
29

5.
52

1.
00

5.
72

89
.0

0
ty

pi
ca

l
0.

90
0.

96
95

.8
7

10
0.

00
2.

35
4.

66
1.

00
6.

22
10

0.
00

ty
pi

ca
l

0.
10

0.
98

95
.6

0
95

.5
0

2.
27

35
.3

6
1.

00
5.

94
95

.5
0

R
1A

B
R

1A
B

gr
ee

dy
-

0.
98

62
.4

3
50

.0
0

0.
23

2.
61

0.
01

0.
33

0.
50

gr
ee

dy
-

0.
84

62
.5

4
50

.0
0

-0
.0

5
2.

61
0.

01
0.

26
0.

50
m

ir
os

ta
t

3.
00

0.
68

63
.5

1
11

.0
0

-0
.2

4
2.

61
0.

03
0.

07
0.

50
m

ir
os

ta
t

3.
00

0.
78

62
.7

3
36

.5
0

0.
71

2.
58

1.
00

0.
07

36
.5

0
ra

nd
om

-
0.

73
63

.3
4

41
.0

0
1.

88
2.

61
1.

00
0.

08
40

.5
0

ra
nd

om
-

0.
78

62
.7

6
36

.5
0

0.
65

2.
60

1.
00

0.
09

36
.0

0
to

pk
20

0.
80

62
.6

2
50

.0
0

0.
76

2.
60

1.
00

0.
12

50
.0

0
to

pk
2

0.
89

62
.3

3
41

.0
0

0.
37

2.
61

1.
00

0.
12

41
.0

0
to

pp
0.

10
0.

73
63

.1
6

42
.5

0
1.

74
2.

60
1.

00
0.

08
41

.5
0

to
pp

0.
50

0.
80

62
.6

9
40

.5
0

1.
13

2.
60

1.
00

0.
08

40
.5

0
ty

pi
ca

l
0.

10
0.

75
63

.6
5

44
.5

0
0.

80
2.

61
0.

99
0.

04
44

.0
0

ty
pi

ca
l

0.
95

0.
80

62
.6

9
40

.0
0

0.
74

2.
60

1.
00

0.
09

40
.0

0

Ta
bl

e
S6

:P
er

fo
rm

an
ce

of
th

e
be

st
sa

m
pl

in
g

m
et

ho
ds

an
d

hy
pe

rp
ar

am
et

er
va

lu
es

on
IR

S-
do

ub
le

s
R

SF
(l

ef
t)

an
d

H
PF

(r
ig

ht
)p

ro
te

in
ge

ne
ra

tio
n

ac
ro

ss
3

pr
ot

ei
ns

ex
pe

ri
m

en
te

d.

R
SF

96
(I

R
S-

do
ub

le
s)

Sa
m

pl
in

g
Sa

m
pl

in
g

Va
lu

e
R

el
ev

an
ce

Q
ua

lit
y

D
iv

er
si

ty
O

ve
ra

ll
Sc

or
e

↑

H
PF

96
(I

R
S-

do
ub

le
s)

Sa
m

pl
in

g
Sa

m
pl

in
g

Va
lu

e
R

el
ev

an
ce

Q
ua

lit
y

D
iv

er
si

ty
O

ve
ra

ll
Sc

or
e

↑
T

M
-s

co
re

↑
pL

D
D

T
↑

O
ve

ra
ll

Fi
tn

es
s↑

M
ax

.F
itn

es
s↑

SD
↑

U
ni

qu
en

es
s↑

FE
D

↑
T

M
-s

co
re

↑
pL

D
D

T
↑

O
ve

ra
ll

Fi
tn

es
s↑

M
ax

.F
itn

es
s↑

SD
↑

U
ni

qu
en

es
s↑

FE
D

↑

av
G

FP
av

G
FP

gr
ee

dy
-

0.
58

43
.0

3
17

.5
0

0.
56

2.
98

1.
00

0.
07

16
.0

0
gr

ee
dy

-
0.

62
43

.0
9

13
.0

0
0.

60
1.

58
1.

00
0.

08
12

.0
0

m
ir

os
ta

t
3.

00
0.

48
37

.0
8

2.
00

0.
53

3.
37

1.
00

0.
06

0.
50

m
ir

os
ta

t
3.

00
0.

55
40

.0
0

7.
50

0.
46

2.
81

1.
00

0.
05

6.
00

ra
nd

om
-

0.
55

40
.0

2
10

.5
0

0.
57

3.
31

1.
00

0.
02

10
.0

0
ra

nd
om

-
0.

55
40

.4
6

10
.0

0
0.

60
2.

82
1.

00
0.

06
5.

50
to

pk
2

0.
60

43
.0

2
19

.5
0

0.
70

3.
05

1.
00

0.
07

18
.0

0
to

pk
20

0.
61

42
.2

6
14

.5
0

0.
58

2.
58

1.
00

0.
05

14
.0

0
to

pp
0.

80
0.

53
39

.7
0

12
.0

0
0.

55
3.

32
1.

00
0.

06
10

.0
0

to
pp

0.
10

0.
54

39
.8

7
10

.5
0

0.
61

2.
90

1.
00

0.
06

9.
00

ty
pi

ca
l

0.
80

0.
54

40
.4

9
13

.5
0

0.
65

3.
35

1.
00

0.
05

10
.5

0
ty

pi
ca

l
0.

10
0.

56
40

.1
7

15
.0

0
0.

86
2.

92
1.

00
0.

06
14

.0
0

B
L

AT
B

L
AT

gr
ee

dy
-

0.
98

95
.8

2
96

.0
0

2.
24

5.
03

1.
00

5.
02

96
.0

0
gr

ee
dy

-
0.

99
95

.7
6

97
.0

0
2.

20
6.

64
1.

00
5.

27
97

.0
0

m
ir

os
ta

t
3.

00
0.

96
94

.8
7

50
.0

0
1.

78
4.

63
1.

00
4.

08
50

.0
0

m
ir

os
ta

t
3.

00
0.

97
95

.4
4

60
.0

0
2.

02
36

.7
5

1.
00

4.
45

60
.0

0
ra

nd
om

-
0.

96
95

.3
6

56
.5

0
2.

07
54

.3
1

1.
00

4.
32

56
.5

0
ra

nd
om

-
0.

97
95

.4
3

59
.5

0
2.

08
8.

47
1.

00
4.

79
59

.5
0

to
pk

2
0.

98
95

.7
6

95
.5

0
2.

23
4.

72
1.

00
4.

82
95

.5
0

to
pk

5
0.

98
95

.7
6

92
.5

0
2.

15
55

.3
1

1.
00

5.
11

92
.5

0
to

pp
0.

80
0.

96
95

.2
8

59
.0

0
2.

08
10

.1
3

1.
00

4.
61

59
.0

0
to

pp
0.

20
0.

97
95

.3
4

61
.5

0
2.

02
3.

93
1.

00
4.

64
61

.5
0

ty
pi

ca
l

0.
90

0.
97

95
.3

2
57

.5
0

2.
06

6.
12

1.
00

4.
55

57
.5

0
ty

pi
ca

l
0.

95
0.

97
95

.5
1

59
.0

0
2.

03
24

.0
2

1.
00

4.
79

59
.0

0

R
1A

B
R

1A
B

gr
ee

dy
-

0.
75

62
.0

2
17

.5
0

0.
43

2.
59

1.
00

0.
08

17
.5

0
gr

ee
dy

-
0.

78
62

.2
4

19
.5

0
0.

48
1.

76
1.

00
0.

06
19

.5
0

m
ir

os
ta

t
3.

00
0.

73
60

.9
3

15
.0

0
1.

19
2.

61
1.

00
0.

15
15

.0
0

m
ir

os
ta

t
3.

00
0.

73
61

.4
2

20
.5

0
0.

99
2.

24
1.

00
0.

08
20

.0
0

ra
nd

om
-

0.
72

61
.4

2
19

.5
0

0.
74

2.
60

1.
00

0.
11

19
.5

0
ra

nd
om

-
0.

74
61

.3
8

18
.0

0
1.

12
2.

28
1.

00
0.

09
18

.0
0

to
pk

40
0.

73
61

.6
4

21
.5

0
0.

88
2.

59
1.

00
0.

10
21

.5
0

to
pk

40
0.

75
61

.8
8

25
.0

0
0.

75
2.

19
1.

00
0.

06
25

.0
0

to
pp

0.
30

0.
72

61
.1

8
21

.0
0

1.
07

2.
61

1.
00

0.
13

21
.0

0
to

pp
1.

00
0.

73
61

.5
9

20
.5

0
0.

67
2.

24
1.

00
0.

14
20

.5
0

ty
pi

ca
l

0.
60

0.
74

61
.4

7
19

.5
0

0.
34

2.
60

1.
00

0.
13

19
.5

0
ty

pi
ca

l
0.

60
0.

75
61

.5
9

21
.0

0
0.

80
2.

31
1.

00
0.

09
21

.0
0

8

Published at LMRL Workshop at ICLR 2025

Ta
bl

e
S7

:
Pe

rf
or

m
an

ce
of

th
e

be
st

sa
m

pl
in

g
m

et
ho

ds
an

d
hy

pe
rp

ar
am

et
er

va
lu

es
on

IR
S-

do
ub

le
s

B
ea

m
Se

ar
ch

an
d

M
C

T
S

pr
ot

ei
n

ge
ne

ra
tio

n
ac

ro
ss

3
pr

ot
ei

ns
ex

pe
ri

m
en

te
d.

B
ea

m
Se

ar
ch

(I
R

S-
do

ub
le

s)

Sa
m

pl
in

g
Sa

m
pl

in
g

Va
lu

e
R

el
ev

an
ce

Q
ua

lit
y

D
iv

er
si

ty
O

ve
ra

ll
Sc

or
e

↑

M
C

T
S

(I
R

S-
do

ub
le

s)

Sa
m

pl
in

g
Sa

m
pl

in
g

Va
lu

e
R

el
ev

an
ce

Q
ua

lit
y

D
iv

er
si

ty
O

ve
ra

ll
Sc

or
e

↑
T

M
-s

co
re

↑
pL

D
D

T
↑

O
ve

ra
ll

Fi
tn

es
s↑

M
ax

.F
itn

es
s↑

SD
↑

U
ni

qu
en

es
s↑

FE
D

↑
T

M
-s

co
re

↑
pL

D
D

T
↑

O
ve

ra
ll

Fi
tn

es
s↑

M
ax

.F
itn

es
s↑

SD
↑

U
ni

qu
en

es
s↑

FE
D

↑

av
G

FP
av

G
FP

A
M

S
2

0.
62

44
.1

3
50

.0
0

0.
30

0.
42

0.
01

0.
15

0.
50

A
M

S
2

0.
62

44
.3

2
0.

00
0.

22
0.

42
0.

01
0.

16
0

H
PF

2
0.

66
43

.4
0

15
.0

0
0.

55
0.

87
1.

00
0.

09
14

.0
0

H
PF

2
0.

59
42

.3
0

13
.0

0
0.

46
1.

17
1.

00
0.

07
12

.0
0

Q
FF

3
0.

71
45

.8
9

50
.0

0
0.

26
1.

26
0.

01
0.

18
0.

50
Q

FF
2

0.
59

47
.5

0
50

.0
0

0.
09

0.
42

0.
01

0.
17

0.
50

B
L

AT
B

L
AT

A
M

S
3

1.
00

95
.9

1
10

0.
00

2.
13

5.
24

0.
01

6.
21

1.
00

A
M

S
2

1.
00

95
.9

7
10

0.
00

2.
15

8.
04

0.
01

5.
83

1.
00

H
PF

3
0.

99
95

.8
4

99
.5

0
2.

18
33

.6
6

1.
00

5.
42

99
.5

0
H

PF
3

0.
98

95
.6

9
90

.5
0

2.
24

16
.9

9
1.

00
5.

34
90

.5
0

Q
FF

3
1.

00
95

.7
7

10
0.

00
2.

10
33

.9
2

0.
01

6.
05

1.
00

Q
FF

2
0.

94
95

.3
9

50
.0

0
1.

78
4.

54
0.

01
5.

88
0.

50

R
1A

B
R

1A
B

A
M

S
3

0.
94

61
.1

2
50

.0
0

-0
.0

3
1.

96
0.

01
0.

07
0.

50
A

M
S

2
0.

96
62

.0
4

50
.0

0
0.

08
1.

95
0.

01
0.

03
0.

50
H

PF
3

0.
80

62
.2

1
19

.5
0

0.
40

1.
38

1.
00

0.
05

19
.5

0
H

PF
3

0.
79

61
.9

9
21

.0
0

0.
75

0.
90

1.
00

0.
05

21
.0

0
Q

FF
3

0.
96

61
.8

5
50

.0
0

0.
25

1.
96

0.
01

0.
52

0.
50

Q
FF

3
0.

69
62

.2
7

50
.0

0
0.

21
1.

31
0.

01
0.

04
0.

50

Ta
bl

e
S8

:P
er

fo
rm

an
ce

of
th

e
be

st
sa

m
pl

in
g

m
et

ho
ds

an
d

hy
pe

rp
ar

am
et

er
va

lu
es

on
A

R
S-

si
ng

le
s

an
d

A
R

S-
do

ub
le

s
pr

ot
ei

n
ge

ne
ra

tio
n

ac
ro

ss
3

pr
ot

ei
ns

ex
pe

rim
en

te
d.

A
R

S-
si

ng
le

s

Sa
m

pl
in

g
Sa

m
pl

in
g

Va
lu

e
R

el
ev

an
ce

Q
ua

lit
y

D
iv

er
si

ty
O

ve
ra

ll
Sc

or
e

↑

A
R

S-
do

ub
le

s

Sa
m

pl
in

g
Sa

m
pl

in
g

Va
lu

e
R

el
ev

an
ce

Q
ua

lit
y

D
iv

er
si

ty
O

ve
ra

ll
Sc

or
e

↑
T

M
-s

co
re

↑
pL

D
D

T
↑

O
ve

ra
ll

Fi
tn

es
s↑

M
ax

.F
itn

es
s↑

SD
↑

U
ni

qu
en

es
s↑

FE
D

↑
T

M
-s

co
re

↑
pL

D
D

T
↑

O
ve

ra
ll

Fi
tn

es
s↑

M
ax

.F
itn

es
s↑

SD
↑

U
ni

qu
en

es
s↑

FE
D

↑

av
G

FP
av

G
FP

gr
ee

dy
-

0.
34

48
.4

8
10

0.
00

2.
67

34
.0

0
0.

01
10

2.
26

0
gr

ee
dy

-
0.

65
49

.8
6

10
0.

00
0.

53
22

.1
8

0.
01

14
1.

04
1.

00
m

ir
os

ta
t

1.
00

0.
58

44
.2

8
0.

50
0.

36
34

.1
4

1.
00

16
2.

17
0.

50
m

ir
os

ta
t

1.
50

0.
59

44
.3

9
1.

50
0.

36
34

.1
7

1.
00

16
1.

31
1.

50
ra

nd
om

-
0.

59
43

.9
2

2.
00

0.
42

34
.4

0
1.

00
16

0.
68

1.
50

ra
nd

om
-

0.
59

44
.3

4
1.

00
0.

31
34

.2
1

1.
00

16
0.

82
1.

00
to

pk
3

0.
54

59
.7

4
10

0.
00

5.
60

34
.2

0
1.

00
81

.8
0

91
.0

0
to

pk
20

0.
55

56
.1

4
98

.5
0

3.
91

33
.9

3
1.

00
10

9.
44

89
.5

0
to

pp
0.

10
0.

58
44

.5
8

9.
50

0.
80

32
.7

6
1.

00
15

2.
73

9.
50

to
pp

0.
50

0.
57

44
.0

6
7.

00
0.

54
32

.3
4

1.
00

15
6.

02
6.

00
to

pp
_t

0.
01

0.
10

0.
58

44
.5

8
9.

50
0.

80
32

.7
6

1.
00

15
2.

73
9.

50
to

pp
_t

0.
01

0.
50

0.
57

44
.0

6
7.

00
0.

54
32

.3
4

1.
00

15
6.

02
6.

00
ty

pi
ca

l
0

0.
58

43
.4

3
3.

00
0.

53
34

.4
7

1.
00

15
6.

83
3.

00
ty

pi
ca

l
0

0.
58

43
.8

3
1.

50
0.

49
34

.2
9

1.
00

15
8.

86
1.

50
be

am
_s

ea
rc

h
2

0.
55

58
.4

1
96

.5
0

5.
22

33
.9

3
1.

00
10

1.
93

84
.5

0
be

am
_s

ea
rc

h
2

0.
53

53
.4

7
94

.5
0

3.
40

33
.1

0
1.

00
11

9.
06

80
.5

0
be

am
_s

ea
rc

h_
t0

.0
1

2
0.

54
60

.1
3

98
.5

0
5.

32
33

.8
7

1.
00

99
.1

1
91

.5
0

be
am

_s
ea

rc
h_

t0
.0

1
2

0.
55

53
.6

8
96

.5
0

3.
83

33
.4

8
1.

00
11

8.
55

83
.5

0

B
L

AT
B

L
AT

gr
ee

dy
-

0.
70

84
.2

4
10

0.
00

1.
41

32
.6

5
0.

01
4.

54
1.

00
gr

ee
dy

-
0.

74
74

.9
2

50
.0

0
0.

61
50

.5
0

0.
01

14
.3

4
0.

50
m

ir
os

ta
t

2.
50

0.
67

89
.8

3
93

.5
0

2.
42

34
.7

5
1.

00
0.

86
79

.5
0

m
ir

os
ta

t
0.

50
0.

70
69

.3
9

50
.0

0
0.

38
34

.6
1

1.
00

25
.7

8
50

.0
0

ra
nd

om
-

0.
69

69
.5

5
50

.0
0

0.
42

53
.3

6
1.

00
25

.6
7

50
.0

0
ra

nd
om

-
0.

69
69

.8
3

50
.0

0
0.

42
35

.0
8

1.
00

25
.9

3
50

.0
0

to
pk

3
0.

65
83

.7
4

96
.5

0
2.

19
41

.8
7

1.
00

1.
32

96
.5

0
to

pk
20

0.
67

77
.7

3
82

.0
0

1.
73

51
.5

9
1.

00
2.

98
82

.0
0

to
pp

0.
20

0.
71

92
.8

3
90

.5
0

2.
37

42
.8

3
1.

00
2.

78
90

.5
0

to
pp

0.
60

0.
70

69
.6

3
50

.0
0

0.
34

31
.8

7
1.

00
25

.5
3

50
.0

0
to

pp
_t

0.
01

0.
40

0.
71

71
.1

2
50

.0
0

0.
71

30
.6

7
1.

00
21

.4
0

50
.0

0
to

pp
_t

0.
01

0.
40

0.
70

70
.0

6
50

.0
0

0.
53

31
.5

5
1.

00
23

.1
6

50
.0

0
ty

pi
ca

l
1

0.
67

90
.1

4
60

.5
0

1.
65

35
.8

2
1.

00
1.

72
58

.0
0

ty
pi

ca
l

0
0.

70
69

.3
3

50
.0

0
0.

36
32

.0
3

1.
00

24
.7

0
50

.0
0

be
am

_s
ea

rc
h

2
0.

68
81

.6
1

77
.0

0
2.

02
32

.6
8

1.
00

3.
07

77
.0

0
be

am
_s

ea
rc

h
2

0.
68

74
.6

9
75

.0
0

1.
58

30
.1

4
1.

00
4.

63
75

.0
0

be
am

_s
ea

rc
h_

t0
.0

1
2

0.
68

81
.1

0
79

.5
0

2.
05

51
.5

4
1.

00
2.

49
79

.5
0

be
am

_s
ea

rc
h_

t0
.0

1
2

0.
68

74
.6

3
74

.0
0

1.
58

30
.2

7
1.

00
4.

76
74

.0
0

R
1A

B
R

1A
B

gr
ee

dy
-

0.
69

69
.2

4
50

.0
0

2.
14

29
.2

1
0.

01
13

9.
80

0.
50

gr
ee

dy
-

0.
66

57
.1

3
0.

00
-1

.9
7

29
.6

5
0.

01
18

9.
76

0
m

ir
os

ta
t

4.
00

0.
40

39
.3

5
47

.0
0

0.
66

49
.8

6
1.

00
2.

08
3.

50
m

ir
os

ta
t

1.
50

0.
68

59
.2

6
1.

50
-1

.5
7

31
.9

4
1.

00
20

5.
09

1.
50

ra
nd

om
-

0.
31

45
.8

7
48

.5
0

10
.3

2
50

.7
1

1.
00

4.
12

1.
50

ra
nd

om
-

0.
68

59
.2

8
1.

00
-1

.3
3

31
.6

6
1.

00
20

4.
11

1.
00

to
pk

2
0.

65
67

.5
4

45
.0

0
8.

04
31

.7
5

1.
00

15
6.

10
44

.5
0

to
pk

10
0.

67
62

.4
8

37
.0

0
4.

77
30

.9
7

1.
00

17
8.

65
37

.0
0

to
pp

0.
10

0.
68

59
.8

6
3.

50
-0

.9
0

30
.8

2
1.

00
20

0.
39

3.
50

to
pp

0.
40

0.
68

59
.6

1
2.

00
-0

.8
6

30
.7

5
1.

00
20

1.
38

2.
00

to
pp

_t
0.

01
0.

90
0.

68
59

.5
9

4.
50

-1
.0

5
30

.9
0

1.
00

19
9.

31
4.

50
to

pp
_t

0.
01

0.
60

0.
68

59
.8

3
5.

00
-0

.6
6

31
.0

9
1.

00
19

8.
72

5.
00

ty
pi

ca
l

0
0.

68
59

.0
4

4.
50

-0
.1

6
31

.7
6

1.
00

19
8.

46
4.

50
ty

pi
ca

l
0

0.
68

58
.7

7
2.

50
-1

.5
0

31
.7

1
1.

00
20

0.
90

2.
50

be
am

_s
ea

rc
h

3
0.

67
62

.6
4

38
.0

0
3.

49
30

.9
7

1.
00

17
8.

66
38

.0
0

be
am

_s
ea

rc
h

3
0.

67
61

.6
4

33
.0

0
1.

56
31

.1
8

1.
00

18
4.

64
33

.0
0

be
am

_s
ea

rc
h_

t0
.0

1
2

0.
67

62
.8

5
39

.0
0

5.
90

31
.0

8
1.

00
17

7.
12

38
.5

0
be

am
_s

ea
rc

h_
t0

.0
1

2
0.

68
61

.2
6

33
.0

0
3.

14
31

.0
9

1.
00

18
4.

39
33

.0
0

9

Published at LMRL Workshop at ICLR 2025

F ALGORITHMS

Algorithm S1 Mirostat sampling (Basu et al.,
2021)

Target perplexity τ , maximum perplexity µ =
2τ , learning rate η, m = 100
while tokens to be generated do

Compute ŝ =
∑m−1

i=1 tibi/
∑m−1

i=1 t2i
Compute k = (ϵ̂2µ/(1−N−ϵ̂))(1/ŝ)

Sample next token X with top-k sampling
Compute error: e = S(x)− τ
Update µ: µ = µ− ηe

end while

Algorithm S2 Quantitative-Function Filter (QFF)
pseudocode

1: Score all possible single amino acid substitu-
tions S for focus sequence x

2: Generate all possible double mutations D
from set S

3: Score double mutations SD using a
lightweight fitness model (EVmutation)

4: Select the N mutants from SD with the high-
est predicted scores

5: Sample the mutant pair to apply out of N
with one of the standard sampling strategies

Algorithm S3 High-Probability Filter (HPF) pseu-
docode

1: Score all possible single amino acid substitu-
tions S for focus sequence x

2: Select top-K single mutations SK with high-
est predicted fitness by the pLM

3: Generate all possible double mutations D
from set SK

4: Sample N mutants at random from D
5: Sample the mutant pair to apply out of N

with one of the standard sampling strategies

Algorithm S4 Attention-Matrix Sampling (AMS)
pseudocode

1: Score all possible single amino acid substitu-
tions S for focus sequence x

2: Select top-K single mutations SK with high-
est predicted fitness by the pLM

3: Get important protein PoI from SK with the
highest average attention values in the under-
lying transformer

4: Generate all possible double mutants D from
set of PoI

5: Score double mutations SD using EVmuta-
tion

6: Sample N mutants from SD with max pre-
dicted scores

7: Sample the mutant pair to apply out of N
with one of the standard sampling strategies

Algorithm S5 Random-Stratified Filter (RSF)
pseudocode

1: Score all possible single amino acid substitu-
tions S for focus sequence x

2: Select top-K single mutations SK with high-
est predicted fitness

3: Generate all possible double mutations D
from set SK

4: Score double mutations SK using EVmuta-
tion

5: Stratify double mutations SK into 4 bins:
{Svery low, Slow, Shigh, Svery high}

6: Sample N/4 mutant pairs from each bin and
combine to obtain N double mutants

7: Sample the mutant pair to apply out of N
with one of the standard sampling strategies

Algorithm S6 MCTS Pseudocode

1: Consider each residue x in the sequence as
(parent) nodes nx

2: for each round in a pre-defined number R of
search rounds do

3: Decide exploration or exploitation of each
node using UCT

4: Generate subsequent mutation nodes m for
focus node nx

5: Select N mutations mN from the set m
by applying one of the efficient multi-mutant
strategies above (eg., QFF, HPF)

6: Score mutations mN using pLM to get re-
wards Rm

7: end for
8: Select node max(Rm) with highest rewards

10

Published at LMRL Workshop at ICLR 2025

Algorithm S7 IRS-singles Protein Generation Pseudocode

Require: initial_sequence, num, cycles, output_path {Main Inputs}
Require: sampler, sampling_threshold {Final Sampler Params}
Require: pLM {Protein Language Model (e.g., Tranception, RITA, Progen)}
Ensure: num > 0 and cycles > 0

SN ← num_sequences {Number of sequence(s) to generate}
EC ← cycles {Number of evolution cycle(s) per sequence}
final_sampler ← sampler {Random, Greedy, Top-k, Top-p, Typical, or Mirostat}
final_threshold← sampling_threshold {Threshold for final sampling}
while len(generated_sequences) < SN do
iteration← 0
seq ← initial_sequence
while iteration < EC do
mutants← generate_all_single_mutants(seq)
scores← pLM(mutants)
mutation← final_sampler(scores, final_threshold)
seq ← get_mutated_sequence(seq,mutation)
iteration += 1

end while
generated_sequences.append(seq)

end while
df ← pd.DataFrame(generated_sequences)
save_as_fasta(df, output_path) {Output FASTA file}

Algorithm S8 Autoregressive (ARS-singles and -doubles) Protein Generation Pseudocode

Require: initial_sequence, num, length, output_path {Main Inputs}
Require: sampler, sampling_threshold {Sampling Params}
Require: pLM {Protein Language Model (e.g., Tranception, RITA, Progen)}
Ensure: num > 0 and length > 0

SN ← num_sequences {Number of sequence(s) to generate}
SL← length {Desired length of each sequence}
EF ← extension_factor {No. of AA(s) to extend at each cycle}
final_sampler ← sampler {Random, Greedy, Top-k, Top-p, Typical, or Mirostat}
final_threshold← sampling_threshold {Threshold for final sampling}
while len(generated_sequences) < SN do
iteration← 0
if initial_sequence then

seq ← initial_sequence
else

seq ← random(AA_residue)
end if
while seq_length < SL do

mutants← extend_seq_by_N(seq, EF) {Extend seq with EF residues}
scores← pLM(mutants)
mutation← final_sampler(scores, final_threshold)
seq ← mutation
seq_length← len(seq)

end while
generated_sequences.append(seq)

end while
df ← pd.DataFrame(generated_sequences)
save_as_fasta(df, output_path) {Output FASTA file}

11

Published at LMRL Workshop at ICLR 2025

Algorithm S9 IRS-doubles Protein Generation Pseudocode

Require: initial_sequence, num, cycles, output_path {Main Inputs}
Require: sampler, sampling_threshold {Final Sampler Params}
Require: multi_mutant, inter_threshold {Additional for multi-mutant}
Require: use_fitness_oracle,model_path {Only if using QFF}
Require: pLM {Protein Language Model (e.g., Tranception, RITA, Progen)}
Require: fitness_oracle {Separate fitness prediction oracle (e.g., EVmutation)}
Ensure: num > 0 and cycles > 0 and multi_mutant ≥ 2
SN ← num_sequences {Number of sequence(s) to generate}
EC ← cycles {Number of evolution cycle(s) per sequence}
MM ← multi_mutant {Number of multiple mutations to apply at each round}
IST ← inter_threshold {Threshold for intermediate sampling}
final_sampler ← sampler {Random, Greedy, Top-k, Top-p, Typical, or Mirostat}
final_threshold← sampling_threshold {Threshold for final sampling}
if use_fitness_oracle then
intsampling ← load_model(model_path) {Using QFF intermediate sampling}

else
intsampling ← topk_sampler() {Using HPF intermediate sampling}

end if
while len(generated_sequences) < SN do
iteration← 0
seq ← initial_sequence
while iteration < EC do
mutation_count← 0
while mutation_count < MM do

mutation_count += 1
{First Mutation}

if mutation_count = 1 then
allmutants← generate_all_single_mutants(seq)
scoredmutants← pLM(allmutants)
lastmutants = scoredmutants

end if
{Subsequent Mutation}

if mutation_count > 1 and mutation_count < MM then
allmutants← generate_extra_mutants(lastmutants)
extramutants← intsampling(allmutants, IST)
scoredmutants← pLM(extramutants)
lastmutants = scoredmutants

end if
{Final Mutation}

if mutation_count = MM then
allmutants← generate_extra_mutants(lastmutants)
extramutants← intsampling(allmutants, IST)
scoredmutants← pLM(extramutants)
mutation← final_sampler(scoredmutants, final_threshold)

end if
end while
seq ← get_mutated_sequence(seq,mutation)
iteration += 1

end while
generated_sequences.append(seq)

end while
df ← pd.DataFrame(generated_sequences)
save_as_fasta(df, output_path) {Output FASTA file}

12

	Introduction
	Background on Sampling Language Models
	Method
	Taxonomy for pLM sampling methods
	Single-Mutant Protein Generation
	Multiple-Mutant Protein Generation

	Holistic in silico evaluation framework for protein design
	Experiments
	Experimental Results
	Effects of broad sampling approaches
	Benefits of multiple-mutant strategies
	Effects of different sampling hyperparameters

	Conclusion
	Background and related work
	Sampling Language Models
	Protein Language Models

	Experimental Details
	Evaluation Protocol
	Data
	Sampling and Hyperparameters
	Prompt Lengths

	Glossary
	avGFP Protein
	BLAT Protein
	R1AB Protein
	Top-k Sampling
	Greedy Sampling
	Beam Search
	Top-p Sampling
	Mirostat Sampling
	Typical Sampling
	Fréchet distance

	EVmutation Initialization
	Figures and Tables
	Algorithms

