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Abstract

We present a systematic benchmark of Al-
phaFold2, ESMFold, and OmegaFold on 1,336
protein chains deposited in the PDB between July
2022 and July 2024, ensuring no overlap with
the training data of any tool. As expected, Al-
phaFold2 achieves the highest median TM-score
(0.96) and lowest median RMSD (1.30Å), out-
performing ESMFold (TM-score 0.95, RMSD
1.74Å) and OmegaFold (TM-score 0.93, RMSD
1.98Å). Crucially, however, many cases exist in
which the performance gap among these methods
is negligible, suggesting that the faster, alignment-
free predictors (10-30 times faster) can be suf-
ficient. We identify the sequence length, struc-
tural family, and experimental context features
that drive substantial discrepancies in accuracy,
and—leveraging ProtBert embeddings and per-
residue confidence scores—train LightGBM clas-
sifiers that accurately predict when AlphaFold2’s
added investment is warranted. Our framework
thus provides actionable guidance for practition-
ers deciding between speed and precision in large-
scale structural pipelines.

1. Introduction
All living organisms—from simple bacteria and algae to
plants, fungi, animals, and humans—contain a multitude
of proteins that participate in virtually every cellular pro-
cess (Alberts, 2017; Cooper, 2000). These molecular ma-
chines must fold into specific three-dimensional structures,
organized hierarchically at four distinct levels (Figure 1):
from the linear sequence of amino acids (primary structure),
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Figure 1. Hierarchical organization of protein structure. (a) Pri-
mary structure: the linear sequence of amino acids. (b) Secondary
structure: local conformations including α-helices and β-sheets
stabilized by hydrogen bonds. (c) Tertiary structure: the complete
three-dimensional fold. (d) Quaternary structure: assembly of
multiple chains into functional complexes.

through local folding patterns of α-helices and β-sheets
(secondary structure), to the complete three-dimensional ar-
rangement of these elements (tertiary structure), and finally
to the assembly of multiple chains into functional complexes
(quaternary structure). While the amino acid sequence alone
determines the final structure, protein misfolding often leads
to disease (Selkoe, 2003). Experimental structure determi-
nation through X-ray crystallography, cryo-EM, or NMR
spectroscopy remains the gold standard (Smyth & Mar-
tin, 2000; Milne et al., 2013; Hu et al., 2021), but these
methods are time-consuming, expensive, and not always
feasible. This creates an urgent need for reliable computa-
tional prediction methods, particularly as the gap between
known protein sequences and solved structures continues to
widen—with over 254 million sequences known (UniPro-
tKB) but only about 230,444 experimentally determined
structures available in the Protein Data Bank (as in January,
2025).

The field of protein structure prediction has been trans-
formed by artificial intelligence approaches. The introduc-
tion of AlphaFold2 in 2020 marked a watershed moment,
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achieving near-experimental accuracy (Jumper et al., 2021).
This success has spurred the development of alternative
approaches, particularly language model-based predictors
like ESMFold and OmegaFold that can generate predictions
without requiring multiple sequence alignments (Lin et al.,
2023; Wu et al., 2022). These newer methods promise faster
predictions and potentially better performance on challeng-
ing targets like designed or rapidly evolving proteins.

Despite these advances, the field lacks a comprehensive
comparison of these tools’ performance on truly novel pro-
teins—structures solved after the tools’ training cutoff dates
(Kovalevskiy et al., 2024). Such evaluation is crucial for
understanding each method’s strengths and limitations, par-
ticularly as these tools become increasingly integrated into
structural biology workflows. While the Critical Assess-
ment of Structure Prediction (CASP) (Moult et al., 1995)
and Continuous Automated Model EvaluatiOn (CAMEO)
(Robin et al., 2021) provide valuable benchmarks, they are
limited to participating methods and may not reflect real-
world usage patterns.

Here, we present a systematic comparison of AlphaFold2,
ESMFold, and OmegaFold using a dataset of over 1,300
protein structures deposited in the PDB between 2022 and
2024. Using multiple evaluation metrics including RMSD
(Kufareva & Abagyan, 2012), TM-score (Zhang & Skol-
nick, 2004), and pLDDT (Tunyasuvunakool et al., 2021),
we assess both overall performance and specific challenging
cases. Our analysis reveals that while AlphaFold2 achieves
the highest average accuracy, ESMFold and OmegaFold
excel in particular niches, especially for proteins with lim-
ited homology information. Given 10-30 fold speed dif-
ference between alignment-free methods and AlphaFold2,
our findings help researchers assess when the faster tools
may provide sufficient accuracy for large-scale structural
analyses.

2. Methods
2.1. Dataset

We compiled a benchmark dataset of 1,336 protein struc-
tures deposited in the Protein Data Bank (PDB) between
July 2022 and July 2024. This temporal restriction ensures
no overlap with training data used by AlphaFold2 (cutoff
April 2020), ESMFold (June 2020), or OmegaFold (2021).
The dataset contains three distinct groups: (1) single-chain
monomers (980 structures), (2) small multi-chain complexes
(245 structures with 2-6 chains), and (3) de novo designed
proteins whose sequence does not naturally occur in any
living organism (102 structures). De novo proteins were
identified through PDB annotations marking them as ”de-
signed” or ”synthetic construct” in the source organism
field.

Structures were selected using the RCSB PDB Search API
(Rose et al., 2021; Bittrich et al., 2023) with the following
criteria: (i) deposition date between July 2022 and July
2024, (ii) protein-only structures without nucleic acids or
oligosaccharides, (iii) chain lengths between 20 and 400
amino acids to ensure compatibility with all prediction tools,
and (iv) availability of structural information in PDB format.
To ensure diversity, structures within monomer and de novo
protein groups were filtered to have at most 70% pairwise
sequence identity.

We developed a custom PDB file parsing pipeline to extract
complete amino acid sequences and experimental Cα coor-
dinates. The pipeline addresses common challenges in PDB
files, including non-standard residue numbering, insertion
codes, and post-translational modifications. For modified
residues, we reconstructed the original amino acid sequence
using BioPython’s extended residue dictionary and MOD-
RES records. Structures containing non-standard residues
without clear mapping to canonical amino acids (26 cases)
were excluded from the analysis.

Each structure was annotated with protein family classifica-
tions using UniProt and PDBe APIs to map PDB identifiers
to Pfam and InterPro database entries. These annotations
enable analysis of prediction tools’ performance across dif-
ferent protein families and structural motifs. The numbers
of protein structures the dataset contained in various stages
of the experiment are stated in Table 1. The final curated
dataset, including all protein sequences, is available at Hug-
ging Face Hub repository.

Table 1. Size of the dataset in various stages of the experiment.

GROUP PDB SELECTED EVALUATED
HITS STRUCTURES CHAINS

MONOMERS 3830 1000 979
SMALL COMPLEXES 3988 250 255
DE NOVO PROTEINS 139 103 102

IN TOTAL 7957 1353 1336

2.2. Structure Prediction Tools

Three tools were selected for protein structure prediction:
AlphaFold2, ESMFold, and OmegaFold. While alignment-
based AlphaFold2 is an obvious choice, considering how
widely used it is (Kovalevskiy et al., 2024), language model-
based ESMFold and OmegaFold were chosen because they
provide promising results with much lower requirements
on time and computational power, making them more suit-
able for large-scale applications (Lin et al., 2023; Wu et al.,
2022).

AlphaFold2. We used AlphaFold v2.1.1 running on the in-
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stitute’s infrastructure with its monomer model and reduced
database settings to optimize computational resources. The
model architecture consists of two main components: (i)
an Evoformer module, which processes multiple sequence
alignments (MSAs) and pairwise representations through
48 transformer blocks, and (ii) a structure module that con-
verts the refined representations into 3D coordinates through
8 equivariant transformer blocks with Invariant Point At-
tention. MSAs were generated using Uniref90, BFD, and
MGnify databases. For each sequence, five model predic-
tions were generated and ranked by predicted confidence,
with the highest-confidence model (ranked 0.pdb) selected
for evaluation.

ESMFold. Predictions were obtained via REST API calls
to the ESM Metagenomic Atlas. ESMFold combines two
components: (i) the ESM-2 protein language model with
15B parameters, pre-trained on masked sequence prediction,
and (ii) a folding head consisting of 48 folding blocks that
process sequence and pairwise representations. Unlike Al-
phaFold2, ESMFold predicts structures directly from single
sequences without requiring MSA generation.

OmegaFold. Predictions were performed using OmegaFold
v1.0 running on university computational cluster with
NVIDIA A40 GPU. OmegaFold employs: (i) OmegaPLM, a
670M parameter language model trained on masked protein
sequences, and (ii) a Geoformer architecture that refines the
language model representations to be geometrically consis-
tent before structure prediction. Like ESMFold, OmegaFold
operates on single sequences without MSA requirements.

All predictions were made for individual protein chains, as
both ESMFold and OmegaFold do not support prediction
of protein complexes. While AlphaFold2 offers a multimer
model, we used its monomer model to ensure fair compari-
son. The original dataset together with prediction outputs is
available at HuggingFace Hub repository.

2.3. Evaluation Metrics

We employed three complementary metrics to assess predic-
tion quality: RMSD measuring atomic distance deviation,
TM-score evaluating topological similarity, and pLDDT
reflecting model confidence.

Root Mean Square Deviation (RMSD). RMSD quantifies
the average distance between corresponding Cα atoms in
superimposed structures:

RMSD =

√√√√ 1

n

n∑
i=1

δ2i (1)

where n is the number of aligned Cα atom pairs and δi is
the distance between atoms in the i-th pair. To compute
RMSD, we first extract Cα coordinates from both experi-

mental and predicted structures, then determine the optimal
superposition using the Bio.SVDSuperimposer module from
BioPython (Cock et al., 2009a), which finds the rotation and
translation matrices minimizing the RMSD value. While
RMSD is widely used, it is sensitive to protein size and can
be disproportionately affected by local structural deviations.

Template Modeling Score (TM-score). TM-score evalu-
ates the topological similarity of protein structures while
accounting for protein length:

TM-score = max

[
1

LN

LT∑
i=1

1

1 + ( di

d0
)2

]
(2)

where LN is the length of the reference structure, LT is
the number of aligned residues, di is the distance between
the i-th pair of aligned residues after superposition, and
d0 = 1.24 3

√
LN − 15 − 1.8 is a length-dependent scaling

factor. TM-score ranges from 0 to 1, with values above
0.5 indicating proteins share the same fold and 1 represent-
ing perfect structural alignment. Unlike RMSD, TM-score
is length-normalized and less sensitive to local structural
variations.

Predicted LDDT (pLDDT). The predicted local distance
difference test (pLDDT) is a confidence metric provided
by each prediction tool. For each residue, it estimates the
expected agreement between predicted and experimental
structures on 0 to 100 scale. Scores above 90 indicate high
prediction confidence. Scores above 70 suggest at least
reliable backbone prediction.

For our analysis, we used the mean pLDDT across all
residues in each protein chain. While pLDDT correlates
with prediction accuracy, high confidence scores do not guar-
antee correct structure prediction, particularly for challeng-
ing targets like intrinsically disordered regions or proteins
with limited homology information.

2.4. Statistical Analysis and Annotation

We compared these metrics across our dataset using Kruskal-
Wallis tests followed by Dunn’s method with Bonferroni cor-
rection for multiple comparisons. The correlation between
metrics was assessed using Spearman’s rank correlation
coefficient.

Protein chains were mapped to functional annotations us-
ing UniProt and PDBe APIs. For family-specific analysis,
we focused on Pfam and InterPro families with at least 10
member proteins in our dataset. The experimental method
of structure determination (X-ray crystallography, cryo-EM,
or NMR) was recorded for each chain to assess potential
biases in prediction accuracy.

Predictions were classified as ”poor” if they met any of
the following criteria: average pLDDT < 70, TM-score
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< 0.5, or RMSD > 9 Å. The 9 Å RMSD threshold was
chosen to match the resolution cutoff used in training Al-
phaFold2. Statistical significance of family-specific enrich-
ment in poor predictions was assessed using Fisher’s exact
test with Benjamini-Hochberg correction for multiple com-
parisons.

2.5. Implementation and Availability

All preprocessing was implemented in Python using BioPy-
thon (Cock et al., 2009b) for structure manipulation and
tmtools for TM-score calculation (Xu & Zhang, 2010).
Statistical analysis and visualization were performed in
R (R Core Team et al., 2020). The complete dataset, in-
cluding protein sequences, experimental structures, pre-
dictions, and evaluation results is available at Hugging-
Face Hub, https://huggingface.co/datasets/
hyskova-anna/proteins. Source code and docu-
mentation are provided at GitHub, https://github.
com/ML-Bioinfo-CEITEC/CAoPSPT.

3. Results
Structure predictions were attempted for 1,337 protein
chains using AlphaFold2, ESMFold, and OmegaFold. Our
AlphaFold2 pipeline failed to generate a prediction for one
chain (8B2M:A), which was subsequently excluded from
all analyses. The remaining 1,336 chains (shown in Table 1)
were successfully predicted by all three tools and form the
basis of our evaluation. Selected examples of predictions
aligned with their experimental structures are visualized in
Figure 2.

Figure 2. Examples of structure predictions from AlphaFold2 (red),
ESMFold (blue) and OmegaFold (yellow) aligned with correspond-
ing experimentally determined structures (green). (a) An example
of a poorly predicted structure (8P4Y:A) by AlphaFold2. (b) Struc-
ture of protein 8PTF:A showing varying prediction quality across
tools.

3.1. Comparative Performance Analysis

All three tools demonstrated generally satisfactory per-
formance, with AlphaFold2 achieving the highest accu-
racy across all metrics (Figure 3). AlphaFold2 predictions
showed the highest median TM-score (0.96) and lowest me-
dian RMSD (1.30 Å), followed by ESMFold (TM-score:
0.95, RMSD: 1.74 Å) and OmegaFold (TM-score: 0.93,
RMSD: 1.98 Å). Consistently, AlphaFold2 displayed the
highest confidence in its predictions with median pLDDT
of 92.65, compared to 87.40 for ESMFold and 89.00 for
OmegaFold.

Figure 3. Performance comparison across prediction tools. Dis-
tribution of (a) RMSD values, (b) TM-scores, and (c) pLDDT
scores. Box plots show median, quartiles, and outliers. All pair
comparisons have been statistically significant (p < 0.01).
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3.2. Metric Correlations and Their Dependencies on
Sequence Length and Other Factors

We observed significant correlations between prediction con-
fidence (pLDDT) and accuracy metrics (Figure 4). Most
notably, there was a negative correlation between average
pLDDT and RMSD (Spearman’s ρ = −0.87, −0.87, and
−0.88 for AlphaFold2, ESMFold, and OmegaFold, respec-
tively) and a positive correlation between average pLDDT
and TM-score (ρ = 0.60, 0.66, and 0.71). The correlation
was strongest for ESMFold and OmegaFold, suggesting that
their confidence scores more accurately reflect prediction
quality than those of AlphaFold2.

Figure 4. Correlation analysis between prediction metrics.
Heatmaps show Spearman’s correlation coefficients between
average pLDDT, RMSD, and TM-score for each prediction tool.
All correlations are statistically significant (p < 0.001).

While low-confidence predictions rarely achieved good ac-
curacy metrics, we found numerous cases of incorrect struc-
tures with high pLDDT scores across all tools (Figure 5)

Figure 5. Dependency of RMSD and TM-score on average pLDDT
of structures generated by different tools. The LOESS curve (red)
was obtained by locally estimated scatterplot smoothing. Sam-
ple points with RMSD greater than 40 Å are omitted from the
visualization for better clarity.

Analysis of sequence length dependency also revealed in-
teresting patterns. While RMSD showed weak correlation
with sequence length, TM-scores displayed stronger pos-
itive associations, particularly for AlphaFold2 (ρ = 0.41,
p < 0.001). This suggests that predictions for shorter pro-
teins (< 100 amino acids) tend to achieve lower TM-scores
across all tools, though this trend is less pronounced in
RMSD values due to the metric’s inherent length depen-

dency. ESMFold and OmegaFold showed weaker but still
significant correlations with sequence length (ρ = 0.29 and
ρ = 0.28, respectively, for TM-score).

Figure 6. Dependency of RMSD and TM-score on the experimen-
tal method of acquisition of the protein chain structure. The differ-
ences between groups were tested by Kruskal-Wallis test, post-hoc
comparisons were done using Dunn’s method with a Bonferroni
correction for multiple tests. Statistical significance visualized by
difference in letter codes. Sample points with RMSD greater than
40 Å are omitted from the visualization for better clarity.

The experimental method used for structure determination
significantly influenced prediction accuracy (Figure 6). All
tools performed best on X-ray crystallography structures
(median RMSD: 1.24 Å, 1.65 Å, and 1.89 Å for AlphaFold2,
ESMFold, and OmegaFold, respectively) but struggled with
NMR-determined structures (median RMSD: 2.31 Å, 2.89
Å, and 3.12 Å). This pattern likely reflects both the inherent
flexibility of proteins amenable to NMR analysis and the
predominance of X-ray structures in training data.

When comparing performance across different protein types
(monomers, complexes, and de novo proteins), we observed
an interesting pattern. While all tools generally performed
similarly across these categories, there are two notable ex-
ceptions. First, ESMFold and OmegaFold achieved signifi-
cantly lower RMSD values for de novo proteins compared
to natural proteins. Second, AlphaFold2 showed a unique
weakness with de novo proteins, achieving significantly
lower TM-scores for these proteins compared to monomers
and complexes. This suggests that language model-based
tools may have an advantage in predicting structures of
artificial proteins where evolutionary information is limited.

3.3. Analysis of Prediction Failures

We classified predictions as incorrect if they met any of
the following criteria: average pLDDT < 70, TM-score
< 0.5, or RMSD > 9 Å. AlphaFold2 produced the fewest
incorrect predictions (8.9% of total), followed by ESMFold
(13.0%) and OmegaFold (16.8%). The overlap of prediction
failures between tools was limited, suggesting complemen-
tary strengths (Figure 7).
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Figure 7. Venn diagrams comparing the overlap of poorly predicted protein chains based on three evaluation criteria: (a) average pLDDT
< 70, TM-score < 0.5, and RMSD > 9 Å for AlphaFold2, ESMFold, and OmegaFold, and (b) the overlap of predictions that fail across
the three metrics for each tool individually.

Analysis of protein families revealed that proteins lack-
ing Pfam annotations were particularly challenging for Al-
phaFold2 but not for ESMFold or OmegaFold, highlighting
the importance of evolutionary information in AlphaFold2’s
predictions. Conversely, viral proteins, especially from coro-
navirus, were better predicted by AlphaFold2 than by the
language model-based tools. All tools showed reduced ac-
curacy for proteins containing leucine-rich repeats or von
Willebrand factor A-like domains, suggesting these struc-
tural motifs pose particular challenges for current prediction
methods.

The analysis of protein family associations revealed distinc-
tive patterns in prediction accuracy. Notably, AlphaFold2
showed significantly reduced performance for proteins lack-
ing Pfam family annotations (odds ratio = 0.67, p < 0.01),
while ESMFold and OmegaFold maintained consistent per-
formance regardless of family assignments. This pattern
was also observed with InterPro annotations, highlighting
AlphaFold2’s dependence on evolutionary information.

Certain protein families were consistently well-predicted
across all tools. These included protein kinase domains
(PF00069, IPR000719), the SH2 domain (IPR000980),
and the NAD(P)-binding domain superfamily (IPR036291).
Conversely, all tools struggled with leucine-rich repeats
(IPR001611, IPR003591) and von Willebrand factor A-like
domains (IPR036465), suggesting these structural motifs
remain challenging for current prediction methods.

Interestingly, several protein families showed tool-specific
prediction patterns. AlphaFold2 excelled at predicting vi-
ral protein families, particularly the viral RNA-dependent
RNA polymerase (PF00680, IPR001205) and coronavirus-
specific proteins (PF05409, IPR043503), achieving sig-
nificantly better accuracy than ESMFold or OmegaFold
(p < 0.001). Conversely, the S-adenosyl-L-methionine-
dependent methyltransferase superfamily (IPR029063)
showed markedly different prediction quality between Al-
phaFold2 (odds ratio = 1.83, p < 0.05) and the language
model-based tools (odds ratio = 0.64 and 0.51 for ESMFold
and OmegaFold respectively, p < 0.001).

3.4. Prediction of Structure Determination Success
Using Machine Learning

To help identify potential failures in structure prediction, we
trained gradient boosting LightGBM (Ke et al., 2017) mod-
els for AlphaFold2, ESMFold, and OmegaFold, respectively,
using ProtBert BFD embeddings (Brandes et al., 2022) cal-
culated from protein sequences and pLDDT scores. The
models were trained to predict whether a structure predic-
tion would likely be unsuccessful, allowing early identifica-
tion of challenging cases. The trained models and source
code are available on GitHub repository, enabling to assess
potential challenges early in structure prediction pipelines.

As you can see in Figure 8, it is typically pLDDT, the length
of the sequence, and a few selected embedding elements
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that have the greatest influence on prediction.

Figure 8. SHAP values of LightGBM model for AlphaFold2.

4. Discussion
Since the beginning of this decade, structural biology and
protein structure prediction fields have undergone a signifi-
cant transition. Currently, there are two large projects deal-
ing with this issue: CASP (Moult et al., 1995) and CAMEO
(Robin et al., 2021). While AlphaFold2 has participated
in both CASP14 and CAMEO, ESMFold has entered only
CASP15, and OmegaFold has not been included in either.
However, both ESMFold and OmegaFold have been sub-
sequently evaluated on CAMEO and CASP15 datasets by
independent research groups (Moussad et al., 2023; Huang
et al., 2023). There are also a few publications dealing
with the comparison of protein structure prediction tools,
but they usually focus mainly on AlphaFold2 and simi-
lar tools (e.g. ColabFold) (Kalogeropoulos et al., 2024)
or perform the evaluation on a particular set of proteins,
namely human proteins (Manfredi et al., 2024; 2025), snake
venom toxins (Kalogeropoulos et al., 2024), and nanobodies
(Valdés-Tresanco et al., 2023). This paper tries to increase
our understanding by creating an inclusive dataset of protein
structures recently added to PDB.

The key finding of this work is that AlphaFold2 outperforms
ESMFold and OmegaFold on a majority of proteins in the

dataset, measured by both RMSD and TM-score. When
comparing the two protein language-based models, ESM-
Fold seems to be a slightly better choice, as it produced
fewer incorrect structures than OmegaFold and achieved sig-
nificantly better median RMSD and TM-score. Still, the dif-
ference in performance between ESMFold and OmegaFold
is much smaller compared to the gap between both of these
tools and AlphaFold2.

While all three tools rarely produce a good prediction
with low confidence, wrong structures with a high aver-
age pLDDT are outputted quite frequently. Our analysis
revealed that prediction accuracy is influenced by various
factors. All three tools performed best when predicting
proteins whose experimental structure was determined by
X-ray crystallography, while structures determined by NMR
proved to be the most challenging. Because NMR is typi-
cally used to determine the structures of small proteins, a
corresponding decrease in prediction accuracy is observed
for shorter sequences.

Interestingly, proteins without family annotations proved
particularly difficult for AlphaFold2 but did not change the
performance of ESMFold and OmegaFold. A possible expla-
nation is that proteins belonging to no family lack homologs
with a known structure, which AlphaFold2 could use as a
template during the prediction. In contrast, ESMFold and
OmegaFold do not rely on MSAs and modelling templates,
so their performance remained largely unaffected.

Our analysis shows several key insights, yet certain con-
straints of our study must be noted. First, the dataset does
not contain only proteins whose experimental structure was
previously unknown but also proteins that were just recently
analyzed again, usually in different conditions. This might
be an advantage for AlphaFold2, which uses a reduced
PDB database for template searching during the prediction
process. Moreover, the whole analysis focuses only on sin-
gle protein chains without the context of their interacting
partners, which might be crucial for structure formation,
especially in protein complexes. Additionally, speed com-
parisons should be interpreted with caution, as pipelines
for OmegaFold and AlphaFold2 predictions with different
hardware configurations, potentially affecting relative per-
formance metrics. Last but not least, all the protein chains
in the dataset have a maximum length of 400 amino acids
due to using ESMAtlas API.

The performance patterns we observed reflect fundamental
architectural differences between these approaches. Al-
phaFold2’s superior accuracy stems from leveraging evo-
lutionary information through MSAs, but this becomes a
limitation for de novo proteins where we observed reduced
TM-scores. In contrast, language models learn protein gram-
mar from sequence patterns alone, potentially capturing
more general folding principles. The limited overlap in
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prediction failures between tools suggests complementary
error modes that could be exploited through ensemble ap-
proaches, though computational costs may be prohibitive
for large-scale applications.

The recent proliferation of AlphaFold3 (Abramson et al.,
2024; Callaway, 2024) and its alternatives, including Chai-1
(Chai Discovery, 2024), Boltz-1 (Wohlwend et al., 2024),
and HelixFold3 (Liu et al., 2024), demonstrates the com-
munity’s commitment to structure prediction. Independent
benchmarks have begun evaluating these tools: FoldBench
(Xu et al., 2025), evaluating 1,522 biological assemblies
across nine tasks, found AlphaFold3 consistently outper-
forming alternatives across most categories, though all meth-
ods showed concerning failure rates exceeding 50% for
antibody-antigen predictions. For protein-peptide interac-
tions, newer models achieve dramatic improvements, with
success rates of 70-80% under stringent criteria compared
to 53% for AlphaFold2-multimer, and Protenix reaching
80.8% accuracy (Zhou et al., 2025). However, as shown in
(Škrinjar et al., 2025), protein-ligand predictions reveal a
critical limitation: current methods largely memorize poses
from training data rather than genuinely predicting novel
interactions, particularly struggling with ligands not seen
in their training sets. Practical deployment is being facil-
itated by tools like ABCFold (Elliott et al., 2025), which
standardizes inputs and outputs across different methods.
This proliferation of capable yet specialized tools, each with
distinct strengths and limitations, reinforces our findings:
optimal structure prediction requires matching tools to spe-
cific tasks based on target type, available computational
resources, and accuracy requirements rather than relying on
any single universal solution.
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