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Abstract

Single-channel electroencephalography (EEG)
plays a vital role in evaluating sleep quality
and diagnosing sleep disorders, making sleep
stage classification using EEG an essential
task in clinical practice. Traditional machine
learning methods rely heavily on prior knowl-
edge and handcrafted feature extraction, while
deep learning approaches still face limitations
in modeling frequency-domain features. Re-
cently, Vision-Language Models (VLMs) have
made significant progress in the medical do-
main. However, they still perform poorly when
applied to physiological waveform data, espe-
cially EEG signals. These challenges mainly
stem from their limited visual understanding
and insufficient reasoning capability.To address
this, we propose a hierarchical vision-language
model that integrates multi-level feature align-
ment with visually enhanced language-guided
reasoning to improve performance on sleep
stage classification using EEG. Our approach
introduces a specialized visual enhancement
module that utilizes intermediate-layer outputs
to construct high-level visual tokens, enabling
the extraction of deep semantic information
from EEG images. Subsequently, a multi-level
feature alignment mechanism is employed to
fuse these high-level tokens with low-level vi-
sual tokens extracted by CLIP, enhancing the
VLM'’s image-processing capabilities in this
context. In addition, by incorporating a Chain-
of-Thought (CoT) reasoning strategy, the com-
plex medical inference process is decomposed
into interpretable logical steps, effectively sim-
ulating expert decision-making. Experimental
results demonstrate that the proposed method
significantly improves both the accuracy and
interpretability of VLMs in sleep stage classifi-
cation using EEG.

1 Introduction

Sleep plays a vital role in maintaining brain func-
tion and overall physiological health (Czeisler,
2015). Accurate assessment of sleep quality not

only reflects an individual’s health status but also
serves as a critical basis for diagnosing and treat-
ing sleep-related disorders (Vatankhah et al., 2010;
Brignol et al., 2012; Zhu et al., 2014). Cur-
rently, the American Academy of Sleep Medicine
(AASM) standards (Berry et al., 2012) are widely
adopted for sleep stage scoring. Among various
physiological signals, EEG is widely regarded as
the most informative and commonly used modality
for sleep stage classification (Kayikcioglu et al.,
2015; Alickovic and Subasi, 2018; An et al., 2021),
as it captures rich physiological and pathologi-
cal information and clearly differentiates between
sleep stages (Li et al., 2015; Manjunath and Sathya-
narayana, 2024).

Waveform morphology and frequency composi-
tion are central to EEG-based sleep stage classifi-
cation. Sleep experts rely on identifying charac-
teristic waveforms—such as alpha, beta, and theta
rhythms—within each 30-second epoch to deter-
mine sleep stages. However, sleep stage classifica-
tion is guided by complex clinical criteria, making
it a labor-intensive, time-consuming process that is
prone to inter-rater variability.

To alleviate these limitations, various automatic
sleep stage classification approaches have been
proposed. However, traditional machine learn-
ing methods (Phan et al., 2013; Seifpour et al.,
2018; Satapathy et al., 2022; Arslan et al., 2023)
remain heavily dependent on prior knowledge and
manual feature extraction, making the process
complex and inefficient. In contrast, deep learn-
ing approaches (Nie et al., 2021; Eldele et al.,
2021; Zhang et al., 2023; Pham and Moucek,
2023) have shown promise in extracting meaning-
ful representations from EEG signals. Neverthe-
less, they often struggle to capture fine-grained
distinctions—particularly between physiologically
similar stages such as N1 and REM—Ieading to
suboptimal classification performance.

Recently, VLMs (Achiam et al., 2023; Liu



et al., 2023, 2024; Bai et al., 2023; Wang et al.,
2024) have demonstrated remarkable capabilities
in general-purpose tasks by leveraging joint visual-
textual representations. While their application
in the medical domain has garnered growing in-
terest, their performance remains notably lim-
ited when dealing with physiological waveform
data—particularly EEG—due to insufficient capac-
ity for fine-grained visual perception, effective im-
age processing, and domain-specific reasoning (Wu
et al., 2023; Abdullahi et al., 2024; Kaczmarczyk
et al., 2024). These challenges restrict the effec-
tiveness of VLMs in complex clinical applications
such as EEG-based sleep stage classification.

To address these challenges, we introduce a hi-
erarchical vision-language framework tailored to
EEG image representations. Specifically, we aug-
ment the visual encoder with a visual enhance-
ment module that extracts intermediate-level rep-
resentations and transforms them into high-level
visual tokens, enabling the model to capture both
fine-grained visual details and abstract seman-
tic information from EEG image representations.
These high-level semantic representations are then
aligned and integrated with low-level visual fea-
tures extracted by CLIP through a multi-level fea-
ture alignment mechanism, facilitating multi-scale
perception and bridging semantic gaps across hi-
erarchical representations. On the language side,
we incorporate a CoT prompting strategy to guide
the model through structured, step-wise reason-
ing, simulating the expert decision-making process.
This integrated architecture empowers the model to
make accurate and interpretable predictions, partic-
ularly for ambiguous stages such as N1 and REM.

The key contributions of our work are summa-
rized as follows.

1. We propose a novel hierarchical VLM that
combines multi-level feature alignment and
visually enhanced language-guided reasoning,
specifically designed for EEG image-based
sleep stage classification.

2. We design a visual enhancement module
that constructs high-level visual features
from intermediate-layer features, enabling the
model to capture deep semantic information
from EEG signals.

3. We introduce a multi-level feature alignment
mechanism to effectively fuse visual tokens
from different levels, thereby enhancing the

model’s image processing and feature repre-
sentation capabilities.

4. By employing Chain-of-Thought (CoT) rea-
soning, we simplify complex inference tasks,
improving the transparency and accuracy of
the model’s decision-making while effectively
simulating the step-by-step judgment of hu-
man experts.

5. Experimental results show that our method im-
proves the classification of challenging sleep
stages (e.g., N1 and REM), enhancing both ac-
curacy and interpretability. This advancement
demonstrates the potential of VLMs in EEG-
based sleep stage classification and suggests
their applicability to other complex medical
tasks.

2 Related Work

2.1 Traditional and Deep Learning for EEG
Sleep Stage Classification

Traditional approaches to automatic sleep stage
classification primarily rely on handcrafted fea-
tures extracted from time-, frequency-, or time-
frequency domains of EEG signals. These features
are typically fed into classical machine learning al-
gorithms such as Support Vector Machines (SVM),
k-Nearest Neighbors (KNN), or Random Forests
(RF) (Alickovic and Subasi, 2018; Aboalayon
et al., 2016). For example,(Agarwal and Gotman,
2001) developed a rule-based system with expert-
designed features, while(Park et al., 2000) pro-
posed a hybrid model combining symbolic reason-
ing with neural networks. Although these methods
can achieve reasonable accuracy, they often suffer
from limited generalizability and require extensive
domain expertise for feature engineering.

Recent advances in deep learning have enabled
end-to-end models that learn hierarchical features
directly from raw EEG data. Architectures based
on Convolutional Neural Networks (CNNs), Recur-
rent Neural Networks (RNNs), and Transformers
have achieved state-of-the-art performance. For
instance, DeepSleepNet (Supratak et al., 2017)
adopted a CNN-RNN hybrid to model both spa-
tial and temporal patterns from single-channel
EEG, while (Phan et al., 2018) introduced a joint
classification-prediction CNN to exploit sequential
context. More recent designs, such as SleepEEG-
Net (Mousavi et al., 2019), incorporate attention
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22 Based on the EEG waveform provided, here are some observations:

1. Amplitude and Frequency: The waveform shows moderate amplitude fluctuations and Some mid-frequency activity.

0urs 2. Sleep Spindles: There are segments with rhythmic, mid-frequency bursts that could indicate the presence of sleep spindes.
3. K-Complexes: There arc some larger amplitude waves that could resemble K-complexes, characterized by a prominent
negative wave followed by a positive wave.
Given these characteristics, the waveform is most consistent with the N2 sleep stage, which is marked by the presence of sleep
spindles and K-complexes.
The given waveform patterns are most consistent with the N2 sleep stage.

Figure 1: Model Architecture and EEG Analysis Example: (a) Proposed Model Architecture; (b) EEG Analysis

Example.

mechanisms and multi-resolution processing to bet-
ter capture temporal and spectral dynamics. Never-
theless, these models still face challenges in distin-
guishing physiologically similar stages like N1 and
REM, due to subtle and overlapping signal charac-
teristics. Furthermore, their limited interpretability
and underutilization of frequency-domain priors
constrain clinical trust and deployment, especially
in borderline or pathological cases.

2.2 Vision-Language Models in the Medical
Domain: Opportunities and Challenges

Recent advances in large-scale multimodal models,
such as GPT-4V, LLaVA, and Qwen-VL, have sig-
nificantly advanced the field of VLMs (Liu et al.,
2023; Achiam et al., 2023; Wang et al., 2024).
These models have achieved state-of-the-art per-
formance in tasks including image captioning, vi-
sual question answering (VQA), and multimodal
reasoning. Increasingly, VLMs are being adapted
for medical applications such as radiology report
generation, digital pathology, and biomedical im-
age analysis (Radford et al., 2021; Li et al., 2022;
Liang et al., 2024; Lu et al., 2024).

However, the application of VLMs to physiolog-
ical waveform data—particularly EEG—remains
underexplored. The high visual complexity of
EEG-based spectrograms limits the effectiveness
of general-purpose models such as CLIP (Ferrante
et al., 2024). Current VLMs also struggle with
capturing fine-grained details essential for clinical
interpretation and lack the domain-specific induc-

tive biases and interpretability required in high-
stakes medical contexts. This limitation is espe-
cially evident in EEG-based sleep stage classifica-
tion, where robust visual understanding and clin-
ical transparency are crucial for real-world adop-
tion (Stiglic et al., 2020).

3 Methodology

3.1 Overview

The proposed method integrates a vision encoder, a
language model, and a visual enhancement module,
as illustrated in Fig. 1(a). Considering the perfor-
mance and computational cost of VLMs, we con-
ducted experiments based on the LLaVA-1.5 13B
model to validate the effectiveness of the proposed
strategy.

In our method, the input consists of an EEG
image X, and a CoT prompt (Wei et al., 2022)
Xg4. The EEG image X, is first processed by a
pre-trained CLIP vision encoder (ViT-L/14) (Rad-
ford et al., 2021) to extract low-level visual fea-
tures Z, = g(X,). Simultaneously, the image is
passed through a specialized vision model to obtain
high-level semantic features Zy = 1(X,). These
hierarchical representations, Z,, and Zy, are trans-
formed into language embedding tokens H, and
H ¢ through a shared projection layer W, consisting
of two MLP layers, as follows:

Hy,=W -2, H;y=W-Z, (1)

where  Z, = g(Xy), Z5=1(X,). Then, Hy
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Figure 2: CoT-Guided Multi-Step EEG Sleep Stage Analysis Generation

is passed through the multi-level feature alignment
function H (-) to generate the final feature embed-
ding token H } = H(Hy), which is then passed,
along with the visual embedding token H,, and the
text embedding token H,, derived from processing
the CoT prompt, into the language model fy to
generate the final language response X:

H}:H(Hf)vXa:f(HvaH}qu) (2)

3.2 Visual Enhancement Module

According to the findings of LLaVolta (Chen et al.,
2024), VLMs still struggle with effectively repre-
senting and processing visual information. The
intricate details of EEG pose significant challenges
for VLMs when handling such tasks. To address
this issue, we designed a visual enhancement mod-
ule that captures high-level semantic representa-
tions from EEG images, thereby enhancing the
VLM’s visual understanding and processing capa-
bilities.

We use a modified ResNet-18 (He et al., 2016)
architecture as the benchmark visual enhancement
module. The modifications to the standard ResNet-
18 are as follows:

Modification to the final convolutional layer:
The output channels of the last convolutional layer
are increased from 512 to 1024 to align with the
dimensionality of the low-level visual features Z,,.

Adjustment to the batch normalization layer:
The batch normalization layer is updated to match
the new output channel size of 1024.

Addition of a 1x1 convolution in the downsam-
pling component: To ensure channel size match-
ing between residual connections, a 1x1 convo-
lution is added to the downsampling component,
increasing the input channels from 512 to 1024.

Fully connected layer for classification: Af-
ter modification, the feature map is flattened and
passed through a fully connected layer for classifi-
cation.

y = W - Flattened Features 3)

These modifications yield intermediate features
Z, aligned with the low-level visual features Z,,,
immediately before the classification layer. Zy
preserves fine-grained details and global semantics,
making it suitable for alignment with text or other
modalities. It can be fed as fixed-dimension tokens
into the VLMs for further processing.

Finally, Z is passed through a shared mapping
layer to generate the preliminary feature embed-
ding token H ¢, which is subsequently used to en-
hance the visual representation and understanding
capabilities of the VLMs.

3.3 Multi-Level Feature Alignment

Through the aforementioned method, we obtain
hierarchical feature embeddings H, and H;. How-
ever, how to effectively construct hierarchical em-
bedding tokens to enhance the visual processing
capabilities of the VLMs remains a challenge. To
address this, we propose the following approach:

H} = H, + Expand(H ) 4)

where Expand(H y) replicates H ¢ across the patch
dimension to match the size of H,. This expanded
H is then added element-wise to H,, to produce
the final feature embedding token H } This op-
eration defines the multi-level feature alignment
function H(-).

This method enables the model to process lo-
cal regions while integrating fine-grained visual
information and global semantic priors, thereby
enhancing its ability to process EEG images and
represent features.

3.4 Stage-Wise CoT for EEG Sleep Stage
Classification

Although hierarchical representation learning sig-
nificantly enhances the visual understanding capa-
bilities of VLMs, their performance on complex
clinical reasoning tasks remains limited. This lim-
itation is especially evident in EEG sleep stage
classification, where subtle physiological differ-
ences—particularly between stages such as N1



Table 1: Performance Comparison of Different Approaches on the Sleep-EDFx Dataset

Method Overall Results

F1-score for each class

Accuracy MF1 Kappa Wake NI N2 N3 REM
LLaVA-1.5 0.219 0.152 0.023 0.000 0.333 0.248 0.000 0.177
Resnet-18 0.752 0.756 0.690 0.795 0.637 0.842 0.937 0.567
ConvNeXt-Base 0.813 0.818 0.760 0.835 0.715 0.876 0.905 0.761
Ours-R18 0.792 0.797 0.740 0.839 0.654 0.859 0.944 0.688
Ours-CNxBase 0.811 0.816 0.763 0.851 0.717 0.846 0.905 0.760
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Figure 3: Overall and Per-Stage Classification Performance on the Sleep-EDFx Dataset

and REM—require expert-like, stage-specific judg-
ment.

To address this, we propose a Stage-Wise CoT
prompting strategy that breaks down the global
sleep stage classification task into a series of fo-
cused, interpretable sub-tasks, as illustrated in
Fig. 2. Rather than directly prompting a VLM (e.g.,
GPT-4) with an overall CoT instruction—which
often results in vague or inconsistent outputs, as
shown in Fig. 1(b)—we decompose the task into
sub-CoT prompts, each tailored to a specific sleep
stage (e.g., Wake, N1, N2, N3, REM). Each prompt
emphasizes the relevant waveform features and fre-
quency—amplitude patterns, enabling the model to
conduct targeted, stage-specific reasoning.

Each of these sub-prompts is processed inde-
pendently by the VLM to generate preliminary
stage-level analyses. To further enhance the con-
sistency and robustness of the output, we combine
the model’s intermediate answers with diverse sum-
mary expressions to construct a coherent and inter-
pretable final answer.

This multi-step prompting mechanism not only

improves classification accuracy—especially for
ambiguous stages—but also more closely simulates
the step-by-step analytical process of human ex-
perts, thereby enhancing both the transparency and
clinical reliability of the model’s decision-making.

4 Experiments

4.1 Data Collection and Evaluation Metrics

A band-pass Butterworth filter (1st order) was ap-
plied to retain EEG data within the 0.5-35Hz range
using the Fpz-Cz channel. The filtered data was
then visualized as 30-second EEG images, sourced
from the Sleep-EDFx dataset'. To reduce the cost
of generating a large amount of CoT data, 1300 ex-
amples from each class of the visualized data were
selected for answer generation, resulting in a total
of 5119 valid analysis results, with the following
distribution: Wake: 1175, N1: 1186, N2: 757, N3:
836, REM: 1165. For each class, 75 examples were
allocated for testing, with the remaining data used

1h1:tps: //physionet.org/content/sleep-edfx/1.0.
o/
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Table 2: Ablation Study: Exploring Embedding and Reasoning Strategies

. Overall Results F1-score for each class

Configurations
Accuracy MF1 Kappa Wake NI N2 N3 REM
W/O Feature Embedding 0.271 0.181 0.085 0.377 0.280 0.000 0.000 0.247
Raw H; Embedding 0.264 0.153 0.080 0.387 0.026 0.000 0.000 0.351
Patch-Aligned Hy to H, 0.784 0.789 0.730 0.841 0.659 0.857 0.944 0.645
W/O CoT Reasoning 0.728 0.735 0.660 0.800 0.584 0.836 0.922 0.533
GPT-4 Analysis 0.757 0.761 0.697 0.824 0.624 0.840 0.730 0.582
Label-Guided Pre-Analysis 0.621 0.598 0.527 0.749 0.533 0.348 0.937 0.426
Ours-R18 0.792 0.797 0.740 0.839 0.654 0.859 0.944 0.688

for training. a single NVIDIA A100 GPU.

The performance of the proposed method in
sleep stage prediction was evaluated using a com-
prehensive set of metrics. Individual F1-scores
were calculated for each sleep stage, while overall
performance was assessed through accuracy (ACC),
kappa (x), and macro-averaged F1-score (MF1),
providing a balanced evaluation across all stages.

4.2 Implementation Details

We used a customized version of ResNet-18 as the
visual enhancement module and the pre-trained
LLaVA-1.5 13B as the backbone of the VLM,
applying LoRA fine-tuning to the entire model.
LLaVA-1.5 was trained for 2 epochs with a learn-
ing rate of 3e-4 and a temperature of 0.1, while
other hyperparameters were kept default. ResNet-
18 was independently trained for 30 epochs with
a learning rate of Se-4 and a batch size of 8 on an
NVIDIA GeForce RTX 4090 GPU to generate Z¢,
then integrated into LLaVA and jointly trained on

4.3 Main Results

To verify the effectiveness of our method, we com-
pare it with three baselines: LLaVA-1.5 13B, the vi-
sual enhancement module used alone as a classifier,
and a variant of our model in which the visual en-
hancement module is replaced by ConvNeXt (Liu
et al., 2022) for the EEG sleep stage classification
task. The results, as reported in Table 1 and Fig. 3,
lead to the following observations: 1) Our method
significantly boosts the performance of VLM
in EEG sleep stage classification. Ours-R18 and
Ours-CNxBase outperform the baseline LLaVA-
1.5 by a large margin in all three overall met-
rics—Accuracy, MF1, and Kappa—demonstrating
the effectiveness of our model architecture in han-
dling biomedical signal interpretation tasks. 2)
Incorporating an effective visual enhancement
module contributes to consistent performance
gains. The comparison between Ours-R18 and



Table 3: Performance Evaluation on External EEG Dataset

Method

Overall Results

F1-score for each class

Accuracy MF1 Kappa Wake NI N2 N3 REM
Resnet-18 0.674 0.675 0.592 0.646 0.591 0.828 0.819 0.489
Patch-Aligned-R18 0.710 0.717 0.638 0.660 0.601 0.832 0.868 0.623
ConvNeXt-Base 0.702 0.710 0.627 0.712 0.610 0.745 0.819 0.662
Ours-R18 0.751 0.756 0.689 0.697 0.638 0.873 0.886 0.688
Ours-CNxBase 0.719 0.722 0.649 0.752 0.632 0.641 0.857 0.727
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Figure 5: Overall and Per-Stage Classification Performance on the External EEG Dataset

Ours-CNxBase demonstrates that introducing a
well-designed visual enhancement module within
the vision-language framework leads to improved
VLM’s performance. This highlights the benefit of
leveraging high-level visual tokens derived from
intermediate-layer features for enhanced represen-
tation and reasoning. 3) The most notable im-
provements occur in stages with high ambiguity,
such as Wake, N1, and REM. As shown in Fig.6,
Tablel, and Fig. 3, although these stages share
similar signal characteristics, Ours-R18 achieves
substantial performance gains across all three. This
confirms the model’s ability to simulate expert-like
stage discrimination through structured CoT rea-
soning and enhanced visual representation. 4) Our
model demonstrates strong generalization ca-
pability with limited high-quality training data.
Despite being trained on a relatively small dataset,
our approach outperforms or matches the perfor-
mance of strong CNN-based backbones such as
ResNet-18 across multiple sleep stages. In con-
trast, Ours-CNxBase achieves results compara-
ble to ConvNeXt-Base, suggesting that our strat-

egy—especially when integrated with an effective
visual backbone like ResNet—has the potential to
break through the performance ceiling typically
observed in conventional classification models.

4.4 Ablation Study

Table 2 and Fig. 4 present the impact of differ-
ent ablation configurations on model performance,
summarized as follows: 1) W/O Feature Embed-
ding and Raw H; Embedding both result in sig-
nificant performance degradation, highlighting the
importance of an effective multi-level feature align-
ment mechanism for enhancing VLM performance.
2) Applying Patch-Aligned H; to H, leads to
notable improvements, validating the necessity of
aligning H, to emphasize the fine-grained details
and global semantic information in Hy. 3) The
W/O CoT Reasoning configuration causes a no-
ticeable performance drop, demonstrating the crit-
ical role of CoT-guided reasoning in enhancing
model interpretability and decision quality. 4)
The GPT-4 Analysis setup confirms the indepen-
dent contribution of GPT-generated CoT reasoning,
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Figure 6: Typical EEG characteristics across sleep stages: Wake -

£

Alpha Waves; N1 - Low Amplitude Mixed

Frequency (LAMF: Alpha, Beta) and Vertex Sharp Waves; N2 - K-Complexes and Sleep Spindles; N3 - Slow

Waves; REM - LAMF (Beta, Theta) and Sawtooth Waves.

while Label-Guided Pre-Analysis underperforms
it, suggesting that injecting label information prior
to CoT reasoning may interfere with structured in-
ference rather than improve it. 5) The final method
(Ours-R18), which integrates hierarchical repre-
sentation learning with optimized CoT prompting,
achieves the best overall performance, validating
the effectiveness of our overall framework.

4.5 External Validation

To validate our model’s generalization in EEG-
based sleep stage classification, we tested it on
an external C4-M1 channel EEG dataset from a
local hospital, applying the same preprocessing
strategy and using 250 samples per class. The re-
sults in Table 3 and Fig. 5 show: 1) Ours-R18 and
Ours-CNxBase exhibit strong generalization, espe-
cially in REM, with high Kappa values indicating
stability across datasets. 2) Patch-Aligned-R18
lags behind Ours-R18, confirming that our multi-
level alignment mechanism—designed to support
hierarchical representation learning—plays a crit-
ical role in capturing both fine-grained and high-
level semantic features. 3) Ours-R18 outperforms
Ours-CNxBase, highlighting the importance of
an effective visual enhancement module. 4) Our
method significantly improves upon ResNet-18

and ConvNeXt-Base, further demonstrates its abil-
ity to surpass the performance ceiling of conven-
tional classification models.

5 Conclusion

In this study, we present a hierarchical vision-
language framework that enhances EEG image-
based sleep stage classification through multi-level
feature alignment and visually enhanced language-
guided reasoning. The method incorporates a vi-
sual enhancement module to extract high-level se-
mantic representations from intermediate visual
features, which are fused with low-level CLIP rep-
resentations via a multi-level alignment mecha-
nism, while CoT reasoning guides interpretable,
step-wise inference that simulates expert decision-
making, thereby enhancing the visual understand-
ing and reasoning capabilities of VLMs. Exper-
imental results demonstrate the superior perfor-
mance and strong generalization ability of the
method across various datasets. We hope this work
offers new insights into applying VLMs to clin-
ically relevant tasks involving physiological sig-
nal interpretation and inspires further research into
their broader applications in healthcare.



Limitations

While our proposed framework shows promising
performance in EEG-based sleep stage classifica-
tion and achieves substantial improvements in chal-
lenging stages such as N1 and REM, there are still
several areas for further refinement. First, the effec-
tiveness of the visual enhancement module plays
a key role in overall performance, and future work
may explore more generalized and adaptive de-
signs to improve robustness across settings. Sec-
ond, the current multi-level feature alignment strat-
egy introduces some computational overhead; de-
veloping more lightweight alignment mechanisms
could enhance scalability, especially in resource-
constrained environments. Lastly, although the
proposed method performs well on standard bench-
marks, broader validation on diverse datasets and
medical tasks would further support its generaliz-
ability and practical applicability.

References

Tassallah Abdullahi, Ritambhara Singh, Carsten Eick-
hoff, and 1 others. 2024. Learning to make rare
and complex diagnoses with generative ai assistance:

qualitative study of popular large language models.
JMIR Medical Education, 10(1):€51391.

Khald Ali I Aboalayon, Miad Faezipour, Wafaa S Al-
muhammadi, and Saeid Moslehpour. 2016. Sleep
stage classification using eeg signal analysis: a com-
prehensive survey and new investigation. Entropy,
18(9):272.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-
cal report. arXiv preprint arXiv:2303.08774.

Rajeev Agarwal and Jean Gotman. 2001. Computer-
assisted sleep staging. IEEE Transactions on Biomed-
ical Engineering, 48(12):1412-1423.

Emina Alickovic and Abdulhamit Subasi. 2018. En-
semble svm method for automatic sleep stage classi-
fication. IEEE Transactions on Instrumentation and
Measurement, 67(6):1258-1265.

Panfeng An, Zhiyong Yuan, and Jianhui Zhao. 2021.
Unsupervised multi-subepoch feature learning and
hierarchical classification for eeg-based sleep staging.
Expert Systems with Applications, 186:115759.

E Enes Arslan, Ayse Seckinsoy, and Mehmet Feyzi
Aksahin. 2023. Sleep stages classification via eeg
signals using quadratic support vector machine (svm)
algorithm. In 2023 Medical Technologies Congress
(TIPTEKNO), pages 1-4. IEEE.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang,
Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. 2023. Qwen-vl: A versatile
vision-language model for understanding, localiza-
tion, text reading, and beyond. arXiv preprint
arXiv:2308.12966.

Richard B Berry, Rita Brooks, Charlene E Gamaldo, Su-
san M Harding, Carole Marcus, Bradley V Vaughn,
and 1 others. 2012. The aasm manual for the scoring
of sleep and associated events. Rules, Terminology
and Technical Specifications, Darien, Illinois, Ameri-
can Academy of Sleep Medicine, 176(2012):7.

Arnaud Brignol, Tarik Al-Ani, and Xavier Drouot. 2012.
Eeg-based automatic sleep-wake classification in hu-
mans using short and standard epoch lengths. In
2012 IEEE 12th International Conference on Bioin-
formatics & Bioengineering (BIBE), pages 276-281.
IEEE.

Jieneng Chen, Luoxin Ye, Ju He, Zhao-Yang Wang,
Daniel Khashabi, and Alan Yuille. 2024. Efficient
large multi-modal models via visual context com-
pression. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems.

Charles A Czeisler. 2015. Duration, timing and quality
of sleep are each vital for health, performance and
safety. Sleep Health: Journal of the National Sleep
Foundation, 1(1):5-8.

Emadeldeen Eldele, Zhenghua Chen, Chengyu Liu, Min
Wu, Chee-Keong Kwoh, Xiaoli Li, and Cuntai Guan.
2021. An attention-based deep learning approach
for sleep stage classification with single-channel eeg.
IEEE Transactions on Neural Systems and Rehabili-
tation Engineering, 29:809-818.

Matteo Ferrante, Tommaso Boccato, Stefano Bargione,
and Nicola Toschi. 2024. Decoding visual brain rep-
resentations from electroencephalography through
knowledge distillation and latent diffusion models.
Computers in Biology and Medicine, 178:108701.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770—
778.

Robert Kaczmarczyk, Theresa Isabelle Wilhelm, Ron
Martin, and Jonas Roos. 2024. Evaluating mul-
timodal ai in medical diagnostics. npj Digital
Medicine, 7(1):205.

Temel Kayikcioglu, Masoud Maleki, and Kubra Eroglu.
2015. Fast and accurate pls-based classification of
eeg sleep using single channel data. Expert Systems
with Applications, 42(21):7825-7830.

Hui Li, Datian Ye, and Cheng Peng. 2015. Development
and design of portable sleep electroencephalogram
monitoring system. Sheng wu yi xue Gong Cheng
xue za zhi= Journal of Biomedical Engineering=
Shengwu Yixue Gongchengxue Zazhi, 32(3):548-52.



Junnan Li, Dongxu Li, Caiming Xiong, and Steven
Hoi. 2022. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding
and generation. In International conference on ma-

chine learning, pages 12888—12900. PMLR.

Zijing Liang, Yanjie Xu, Yifan Hong, Penghui Shang,
Qi Wang, Qiang Fu, and Ke Liu. 2024. A survey of
multimodel large language models. In Proceedings
of the 3rd International Conference on Computer,
Artificial Intelligence and Control Engineering, pages
405-409.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan
Zhang, Sheng Shen, and Yong Jae Lee. 2024. Lla-
vanext: Improved reasoning, ocr, and world knowl-
edge.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2023. Visual instruction tuning. Advances in

neural information processing systems, 36:34892—
34916.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Fe-
ichtenhofer, Trevor Darrell, and Saining Xie. 2022.
A convnet for the 2020s. In Proceedings of the
IEEE/CVF conference on computer vision and pat-
tern recognition, pages 11976-11986.

Ming Y Lu, Bowen Chen, Drew FK Williamson,
Richard J Chen, Ivy Liang, Tong Ding, Guillaume
Jaume, Igor Odintsov, Long Phi Le, Georg Ger-
ber, and 1 others. 2024. A visual-language foun-
dation model for computational pathology. Nature
Medicine, 30(3):863-874.

Shashank Manjunath and Aarti Sathyanarayana. 2024.
Detection of sleep oxygen desaturations from elec-
troencephalogram signals. In 2024 46th Annual In-
ternational Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC), pages 1-4.
IEEE.

Sajad Mousavi, Fatemeh Afghah, and U Rajendra
Acharya. 2019. Sleepeegnet: Automated sleep stage
scoring with sequence to sequence deep learning ap-
proach. PloS one, 14(5):e0216456.

Haodong Nie, Shikui Tu, and Lei Xu. 2021. Recsleep-
net: An automatic sleep staging model based on fea-
ture reconstruction. In 2021 IEEE International Con-
ference on Bioinformatics and Biomedicine (BIBM),
pages 1458-1461. IEEE.

Haejeong Park, KwangSuk Park, and Do-Un Jeong.
2000. Hybrid neural-network and rule-based ex-
pert system for automatic sleep stage scoring. In
Proceedings of the 22nd Annual International Con-
ference of the IEEE Engineering in Medicine and
Biology Society (Cat. No. 00CH37143), volume 2,
pages 1316-1319. IEEE.

Duc Thien Pham and Roman Moucek. 2023. Auto-
matic sleep stage classification by cnn-transformer-
Istm using single-channel eeg signal. In 2023
IEEE International Conference on Bioinformatics
and Biomedicine (BIBM), pages 2559-2563. IEEE.

10

Huy Phan, Fernando Andreotti, Navin Cooray, Oliver Y
Chén, and Maarten De Vos. 2018. Joint classification
and prediction cnn framework for automatic sleep
stage classification. IEEE Transactions on Biomedi-
cal Engineering, 66(5):1285-1296.

Huy Phan, Quan Do, The-Luan Do, and Duc-Lung Vu.
2013. Metric learning for automatic sleep stage clas-
sification. In 2013 35th annual international confer-
ence of the IEEE engineering in medicine and biology
society (EMBC), pages 5025-5028. IEEE.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark, and
1 others. 2021. Learning transferable visual models
from natural language supervision. In International
conference on machine learning, pages 8748-8763.
PmLR.

Santosh Kumar Satapathy, Shrey Thakkar, Ayushi Patel,
Dharvi Patel, and Divya Patel. 2022. An effective
eeg signal-based sleep staging system using machine
learning techniques. In 2022 IEEE 6th Conference on
Information and Communication Technology (CICT),
pages 1-6. IEEE.

Saman Seifpour, Hamid Niknazar, Mohammad Mikaeili,
and Ali Motie Nasrabadi. 2018. A new automatic
sleep staging system based on statistical behavior of
local extrema using single channel eeg signal. Expert
Systems with Applications, 104:277-293.

Gregor Stiglic, Primoz Kocbek, Nino Fijacko, Marinka
Zitnik, Katrien Verbert, and Leona Cilar. 2020. In-
terpretability of machine learning-based prediction
models in healthcare. Wiley Interdisciplinary Re-
views: Data Mining and Knowledge Discovery,
10(5):e1379.

Akara Supratak, Hao Dong, Chao Wu, and Yike Guo.
2017. Deepsleepnet: A model for automatic sleep
stage scoring based on raw single-channel eeg. IEEE

transactions on neural systems and rehabilitation
engineering, 25(11):1998-2008.

Maryam Vatankhah, Mohammad-R Akbarzadeh-T, and
Ali Moghimi. 2010. An intelligent system for diag-
nosing sleep stages using wavelet coefficients. In
The 2010 international joint conference on neural
networks (IJCNN), pages 1-5. IEEE.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhi-
hao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin
Wang, Wenbin Ge, and 1 others. 2024. Qwen2-
vl: Enhancing vision-language model’s perception
of the world at any resolution. arXiv preprint
arXiv:2409.12191.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
and 1 others. 2022. Chain-of-thought prompting elic-
its reasoning in large language models. Advances
in neural information processing systems, 35:24824—
24837.



C Wu, J Lei, Q Zheng, W Zhao, W Lin, X Zhang,
X Zhou, Z Zhao, Y Zhang, Y Wang, and 1 oth-
ers. 2023. Can gpt-4v (ision) serve medical ap-
plications? case studies on gpt-4v for multimodal
medical diagnosis. arxiv. 10.48550. arXiv preprint
arXiv.2310.09909.

Yongqing Zhang, Wenpeng Cao, Lixiao Feng, Manqing
Wang, Tianyu Geng, Jiliu Zhou, and Dongrui Gao.
2023. Shnn: A single-channel eeg sleep staging
model based on semi-supervised learning. Expert
Systems with Applications, 213:119288.

Guohun Zhu, Yan Li, and Peng Wen. 2014. Analysis
and classification of sleep stages based on difference
visibility graphs from a single-channel eeg signal.
IEEE journal of biomedical and health informatics,
18(6):1813-1821.

11



	Introduction
	Related Work
	Traditional and Deep Learning for EEG Sleep Stage Classification
	Vision-Language Models in the Medical Domain: Opportunities and Challenges

	Methodology
	Overview
	Visual Enhancement Module
	Multi-Level Feature Alignment
	Stage-Wise CoT for EEG Sleep Stage Classification

	Experiments
	Data Collection and Evaluation Metrics
	Implementation Details
	Main Results
	Ablation Study
	External Validation

	Conclusion

