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Abstract

The intersection of differential privacy (DP) and causal inference is crucial for
protecting data privacy while preserving the accuracy of causal estimates, yet
limited research explores how DP mechanisms impact causal effects estimated
from privatized data. This paper formally investigates for the first time the im-
pact of DP on causal inference, focusing on how standard DP mechanisms affect
the accuracy of treatment effect estimates across various causal inference frame-
works. Our core theoretical findings reveal that while applying DP mechanisms
to outcomes preserves the unbiasedness of average treatment effect (ATE) esti-
mates, it can increase their variance and severely distort individual treatment effect
(ITE) estimates. Privatizing treatments, on the other hand, can lead to unexpected
consequences, such as ITE underestimation in certain settings. Informed by our
theoretical analysis, we propose two solutions to these issues: First, we show that
under some conditions with privatized treatments, we can exactly recover the ATE
estimates given information about the true privacy and balance parameters. Second,
we propose robust regression as a mitigation strategy during the data analysis stage,
to reduce the ITE estimation error. In addition to providing actionable guidance for
balancing data privacy and causal inference accuracy, this work provides the first
foundational results on treatment effect estimation from differentially private data,
laying the foundation for future research into privacy-aware causal representation
learning toward enabling models to robustly handle privatized data.

1 Introduction

Differential privacy (DP) has emerged as the leading approach for safeguarding individual privacy
across areas such as healthcare, finance, social sciences, and machine learning (Dwork et al., 2006;
Dwork & Roth, 2014). By limiting the amount of information revealed about any single data point,
DP provides a mathematically sound framework for reducing privacy risks in sensitive datasets.
Meanwhile, causal inference is essential for understanding the effects of interventions, guiding policy
decisions, and advancing research in fields like medicine and social sciences, where data privacy is a
critical concern (Pearl, 2009; Imbens & Rubin, 2015). The integration of differential privacy into
causal inference presents both significant opportunities and challenges, with important implications
for causal representation learning. Ensuring that causal inference on non-private data produces private
estimates is an important and challenging problem (Kusner et al., 2016; Ohnishi & Awan, 2023;
Niu et al., 2022; Guha & Reiter, 2024; Rho et al., 2023), and conversely, causal estimates derived
from privatized data can be distorted by the noise introduced to meet DP requirements (Javanmard
et al., 2023; Agarwal & Singh, 2021). As the use of sensitive data for causal analysis grows, it is
crucial to understand how privacy-preserving mechanisms impact causal estimates as well as causal
representation learning (Schölkopf, 2022; Schölkopf et al., 2021). In this paper, we systematically
examine the effects of differential privacy on causal inference. We not only identify the problem
but also analyze the challenges posed by standard DP mechanisms in estimating causal effects,
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offering guidance for downstream analysis and proposing mitigation strategies. Our work addresses
the theoretical implications of DP and offers practical guidelines for applying it in standard causal
inference settings, laying the groundwork for future research on causal representation learning from
private data.

Despite the growing body of work on DP and causal inference, a significant gap remains in under-
standing how standard DP mechanisms affect the accuracy of causal estimates. While prior research
has focused on developing privacy mechanisms for causal inference (Kusner et al., 2016; Ohnishi &
Awan, 2023; Niu et al., 2022; Guha & Reiter, 2024; Rho et al., 2023), little attention has been paid to
how privatized data impacts downstream causal inference tasks (Javanmard et al., 2023; Agarwal
& Singh, 2021). Addressing this gap, we conduct a theoretical analysis of the error induced by DP
in treatment effect estimates across various causal inference frameworks, including Randomized
Controlled Trials (RCTs) (Fisher, 1935), Difference-in-Differences (DiD) (Angrist & Pischke, 2009;
Ashenfelter & Card, 1984), and matching (Gu & Rosenbaum, 1993; Imbens, 2004; Abadie & Imbens,
2016). To our knowledge, this paper provides the first comprehensive analysis of how DP impacts
causal inference across a range of standard conditions, setting the stage for future research on causal
representation learning in privacy-sensitive environments. We examine how treatment effect estimates
derived from differentially private data deviate from those obtained using true (non-private) data,
focusing on the impact of DP on key causal quantities such as the Average Treatment Effect (ATE)
and Individual Treatment Effect (ITE). Our results allow us to provide actionable guidance for down-
stream data analysis, which paves the path for developing robust methods for causal representation
learning from private data.

Main contributions This paper provides a comprehensive analysis of how differential privacy
impacts key causal estimates, like the ATE and ITE, in standard causal inference frameworks,
highlighting conditions for their reliability. We propose strategies to recover the exact treatment effect
estimates in some settings, and to reduce DP-induced error during data analysis in others. Along with
offering actionable guidance, our findings lay the groundwork for future research on privacy-aware
causal representation learning that can handle privatized data.

2 Preliminaries

Differential privacy Differential privacy (DP) is a framework that ensures the inclusion or exclusion
of a single data point does not significantly impact the result of any analysis, providing strong privacy
guarantees (Dwork et al., 2006). A randomized algorithm A is (ϵ, δ)-differentially private if, for all
datasets D and D′ differing in one element,

P[A(D) ∈ S] ≤ eϵP[A(D′) ∈ S] + δ. (1)

where S is a subset of the output space (Dwork & Roth, 2014). Common DP mechanisms
include the Laplace and Gaussian mechanisms for continuous, and randomized response for
binary data. To achieve ϵ-differential privacy, noise proportional to the function’s sensitivity,
∆f = maxD,D′ ∥f(D)− f(D′)∥1, is added to the output. The Laplace mechanism adds a Laplace
noise with scale parameter λ = ∆f

ϵ , while the Gaussian mechanism adds noise based on a variance
proportional to the privacy budget ϵ and sensitivity ∆f . Randomized response flips binary values
with a certain probability. These mechanisms lead to a trade off between privacy and accuracy.

Causal inference Causal inference seeks to estimate the effect of a treatment T on an outcome
Y , given covariates X , which can be quantified at both the individual and population levels as the
individual treatment effect (ITE) and the average treatment effect (ATE), respectively (Rubin, 2005).
The ITE for individual i and the ATE for the population are defined as:

τi = E [Yi|do(T = ti)− Yi|do(T = ti
′)] τ = E [Y |do(T = t)− Y |do(T = t′)] , (2)

where do(·) represents an intervention imposing treatment t (Pearl, 2009). The challenge in estimating
these effects arises from the unobservability of counterfactual outcomes. To address this, key
assumptions are required, such as those made for randomized controlled trials (RCTs) (Fisher,
1935) and difference-in-differences (DiD) (Angrist & Pischke, 2009). RCTs provide unbiased ATE
estimates through randomized treatment assignment, while DiD compares outcome changes over
time between treated and control groups in observational studies.
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3 Related work

Related work on differential privacy and causal inference is discussed throughout the paper, with a
more detailed review in Appendix A. While many studies have investigated mechanisms for private
causal inference, to our knowledge, a systematic analysis of how DP mechanisms impact causal
inference from privatized data, as presented here, has not been explored.

4 Causal inference with private outcome

We examine how applying differential privacy to the outcome variable Y affects ATE and ITE
estimates in RCT and DiD settings by analyzing the impact of Laplace and Gaussian mechanisms on
the accuracy of these estimates. Note that our analysis in RCT settings directly extends to regression
discontinuity design with uniform kernel around the discontinuity point as well, making it relevant
to some of the most popular tools in causal inference, in addition to providing the framework and
tools for additional ones. In each case, we aim to assess the effect of privacy-induced noise on causal
inference and offer strategies to mitigate these errors. Let Ỹ denote the privatized outcome. We
denote the conditional expectations of Y by µ1 = E[Y | T = 1] and µ0 = E[Y | T = 0], and their
private counterparts by µ̃1 and µ̃0. We calculate the ATE and ITE from Ỹ , denoted τ̃ and τ̃i, and
define the corresponding errors as:

Z := τ̃ − τ, Zi := τ̃i − τi, (3)

where τ and τi are the non-private ATE and ITE. For simplicity, we analyze Z > 0, noting that the
extension to Z < 0 is straightforward. We use ·̄ to denote sample equivalents of population values.

4.1 ATE with private outcome

When DP is applied to the outcome variable Y in an RCT, the ATE is estimated as the difference in
expected outcomes between the treatment and control groups, τ = µ1 − µ0. With an ϵ-differentially
private outcome using the Laplace mechanism yielding Ỹ = Y + Lap(λ), where λ = ∆f

ϵ , the ATE
estimate remains unbiased, while its variance increases as stated in the following proposition.
Proposition 4.1. Given a sample with n1 individuals in the treatment and n0 in the control groups,
we have τ = τ̃ and Var(¯̃τ) = Var(τ̄) + 2λ2

(
1
n1

+ 1
n0

)
.

The proof and further details are provided in appendices B and C. For Gaussian noise, the additional
variance term is σ2

(
1
n1

+ 1
n0

)
. Results are analogous in the DiD setting, since the estimator is

essentially equivalent to the difference between two estimators in the RCT case, adding two additional
sample size terms to the variance, while the mean remains unaffected. For details, see Appendix B.

Implications and mitigation. The statement of Propositions 4.1 indicates that average causal
effects remain unbiased upon applying common DP mechanisms to the outcomes. However, DP leads
to an increase in sample variance, which can be reduced by collecting a larger sample. The derived
formulas provide explicit indication on how larger the sample is needed to mitigate the variance
increase.

4.2 ITE with private outcome

In the absence of averaging, the noise in Ỹ does not cancel out, leading to non-zero errors in ITE
estimates. Due to the fundamental problem of causal inference, ITE cannot be directly computed
from data. However, under standard assumptions, a variety of methods could be used to estimate ITE
via inferring potential outcomes or matching (Imbens & Rubin, 2015; Shalit et al., 2017). Hence, we
consider the potential outcomes Ỹi | do(T = 1) and Ỹi | do(T = 0) for this analysis. See Appendix
B for further details. For RCTs, with Ỹ = Y + Lap(λ), the ITE is given by τ̃i = τi + ξ1 − ξ0, where
ξ1 and ξ0 are independent Laplace random variables. The resulting error distribution is stated in
Proposition 4.2.
Proposition 4.2. The probability density function of the ITE error Zi is given by fZi(z) =
1
2λe

− z
λ

(
1 + z

λ

)
, yielding an expected error of 3

2λ
2.
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Here for simplicity we assume that both treatment and control groups are privatized using the same
noise distribution parameter. In Aappendix C, we extend this analysis to the more general case of
different noise parameters for the two groups, which is particularly relevant in situations where the
sensitivity of the outcome function is dependent on the treatment assignment. With the Gaussian
mechanism, the error is the subtraction of two Gaussian noises, and hence Zi ∼ N (0, 2σ2). In
DiD settings, the ITE can be written as τ̃i = τi + (ξ1,t − ξ1,t−1) + (ξ0,t − ξ0,t−1), essentially the
difference between two ITE errors in the RCT case. This leads to the following critical proposition.

Proposition 4.3. The expected error of ITE estimated from Ỹ with a DiD approach diverges.

Similar to the RCT case, for the Gaussian mechanism, DiD involves four Gaussian noises, resulting
in Zi ∼ N (0, 4σ2). For more details and proofs, see appendices B and C.

Implications and mitigation. The error distribution in Proposition 4.2, allows us to assess the ITE
error in RCT settings in details. As we discuss in Section 6, using a robust regression tends to reduce
the average ITE error. Proposition 4.3 on the other hand, indicates that estimating individual-level
causal effects using ITE in a DiD framework is problematic since its expected error is infinite.

5 Causal inference with private treatment

In this section, we explore the impact of differential privacy on the treatment variable T , using
the randomized response mechanism for a binary treatment. This mechanism flips the treatment
assignment with probability 1 − p, where p := P[T̃ = T ] is the probability of reporting the true
treatment, which we assume is better than random, i.e., p > 1

2 . We analyze its effects on ATE
estimation in RCT settings and ITE in matching-based approaches. Let q := P[T = 1] denote the
proportional size of the treatment group. Other notation follows Section 4.

5.1 ATE with private treatment

When the treatment assignment T is privatized using the randomized response mechanism, we can
express µ̃1 and µ̃0 in terms of µ1, µ0, p, and q. In an RCT setting, this leads to the following result,
as we show in Appendix D.
Proposition 5.1. The expected private outcomes can be expressed in terms of µ0 and µ1:

µ̃1 = α1µ1 + β1µ0 µ̃0 = α0µ1 + β0µ0, (4)

where α1, β1, α0, and β0 are constant functions of p and q, as we detail in Appendix D.

This proposition gives a system of linear equations, which we can solve to exactly recover the true
values of the conditional expected outcomes µ1 and µ0, and consequently the true ATE. Solving this
system yields

µ1 =
µ̃0 − β0

β1
µ̃1

α0 − β0

β1
α1

µ0 =
µ̃1 − α1µ1

β1
, (5)

which we can use to find the true ATE in an RCT setting as well as the exact value of the error
Z = (µ̃1 − µ̃0)− (µ1 − µ0).

Implications and mitigation. An important implication of Proposition 5.1 is due to Equation 4
forming a system of linear equations for µ0 and µ1, which we can solve to exactly recover the true
ATE. Furthermore, using these solutions, we can express Z in terms of µ̃1, µ̃0, p, q, which allows us
to explore how the error changes with respect to the privacy parameter p, balance parameter q, and
the observed conditional outcomes.

5.2 ITE with private treatment

As noted in Section 4.2, several methods exist for inferring ITE from data, with one popular approach
being matching (Gu & Rosenbaum, 1993; Imbens, 2004; Abadie & Imbens, 2016). We provide
the analysis of the error in estimated ITE due to privatizing the treatments considering a matching
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approach; other methods can be analyzed following similar approaches. We denote the ITE estimated
by matching individuals i and j from the treated and control groups by τi∼j , and we extend this
notation to other variables; for instance, τ̃i∼j and Zi∼j . In this setup, with treatment values privatized
via randomized response, we find the following result (derived in Appendix D).

Proposition 5.2. The expected ITE estimated using T̃ , and the expected ITE estimation error are

E [τ̃i∼j ] = p (τi + τj)− τj∼i, (6)
E [Zi∼j ] = (τi + τj) (1− p) . (7)

Note that the results stated in Proposition 5.2 are based on the true ITE values τi and τj computed
from potential outcomes, and τj∼i from true data. Since we cannot compute any of these quantities
from privatized data, we cannot manipulate the ITE estimation error in this case. However, this result
helps us better understand the expected error, as discussed next.

Implications. The expression in Equation 7 indicates that a larger p leads to a smaller ITE estimation
error. This is anticipated, as a larger p implies a smaller error in T̃ . A less predictable observation,
implied from the expression in Equation 6, is that the expected estimated ITE becomes larger as we
increase p. These two observations together lead to an important consequence: the ITE estimates
using privatized treatment are consistently smaller than the ITE estimated from the true data.

6 Robust regression for reducing the treatment effect estimation error

In Section 5.1, we showed that when the treatments are privatized using the randomized response
mechanism, we can exactly recover the non-private ATE estimates in an RCT setting, given informa-
tion about the privacy parameter and the balance in the size of the treatment and control groups. In
this section, we propose a mitigation strategy to reduce the DP-induced error in causal effect estimates
which is applicable and effective at the data analysis stage, without any information about the raw
data. Informed by the analysis in Section 4, we show that robust regression can reduce ITE estimation
error when outcomes are privatized with the Laplace mechanism. Further details are provided in
Appendix E.

Figure 1: Tradeoff between privacy budget and
change in the outcome distribution for the Jobs
dataset, quantified by the Wasserstein distance be-
tween raw outcomes and the outcomes privatized
through the Laplace mechanism. Smaller privacy
budgets significantly alter the outcome distribution,
while larger budgets preserve it but offer less pri-
vacy protection.

When the outcome variable is privatized using
the Laplace mechanism, the fat-tailed nature
of the noise introduces outliers, affecting ITE
estimation accuracy, especially with standard
linear regression (Rousseeuw & Leroy, 2005).
To mitigate this, we propose the use of robust
regression, which is designed to mitigate the
impact of outliers on the regression model. We
use the Theil-Sen estimator (Theil, 1950; Sen,
1968; Akritas et al., 1995), which estimates the
slope of the regression line based on the median
of the slopes of lines passing through pairs of
points in the dataset. The Theil-Sen estimator
is less sensitive to outliers than ordinary least
squares (OLS) regression, while, unlike more
aggressive robust regression methods such as
random sample consensus (RANSAC) (Fischler
& Bolles, 1981), it still incorporates extreme
values into the analysis. This makes it well-
suited for privatized data, where both genuine
extremes and noise-induced outliers exist. In
RCT settings, applying Theil-Sen regression to
privatized outcome data significantly reduces ITE estimation error when outcome values are inferred
using a linear regression model (Figure 2).

Following the standard practice in causal inference, we use three standard semi-synthetic datasets:
IHDP (Hill, 2011), Jobs (LaLonde, 1986; Louizos et al., 2017), and LUCAS (Van der Laan &
Rose, 2011). To implement these experiments, we first estimate the L1 sensitivity of the outcome
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function from the data. Using the estimated sensitivity and various privacy budgets, we determine
the parameters for the Laplace noise distribution, considering the tradeoff between privacy and
accuracy by selecting privacy budgets across a range of values. This noise is then used to privatize
the outcomes. Details of the experimental setup are provided in Appendix E. Small budgets provide
stronger privacy but distort the outcome distribution, while larger budgets offer less privacy. Figure 1
illustrates this tradeoff for the Jobs dataset, showing the change in outcome distribution—measured
by the Wasserstein distance—against different budgets. We focus on moderate budget values that
maintain a balance between privacy and downstream analysis validity. For ITE estimation, we
compare OLS and Theil-Sen regressions over 100 trials per dataset. Figure 2 shows that Theil-Sen
regression consistently reduces the error caused by the Laplace mechanism for the Jobs dataset. The
observations on the other datasets yield consistent results (see Appendix E).

7 Conclusion and discussion

Figure 2: ITE estimation error across different
privacy budgets for the Jobs dataset using Theil-
Sen and OLS estimators. The solid line and the
shaded region show the average and standard error
over 100 trials. Theil-Sen regression consistently
reduces error compared to OLS.

In this paper, we systematically investigated for
the first time the impact of differential privacy
(DP) on causal inference, focusing on how DP
mechanisms affect the accuracy and reliabil-
ity of treatment effect estimates across popu-
lar causal inference frameworks, such as RCT
and DiD. Our analysis demonstrated that while
applying DP to outcomes preserves the unbi-
asedness of ATE estimates, it can increase vari-
ance, especially under strict privacy constraints
or with small sample sizes. For ITE estimates,
DP can lead to significant distortions, including
underestimation or invalidity of individual-level
causal analysis. To address these challenges, we
proposed mitigation strategies, including exact
ATE recovery with privatized treatments, and
robust regression to reduce ITE estimation er-
ror when outcomes are privatized. We provide
a comprehensive analysis of how DP affects
causal effect estimates across different settings and we propose practical strategies for mitigat-
ing DP-induced errors. These insights offer important guidance for balancing privacy and accuracy
in causal inference and lay the foundation for future work in developing methods for causal repre-
sentation learning from private data. Future research could extend this analysis to more complex
causal frameworks or explore alternative privacy-preserving mechanisms, advancing the integration
of privacy into robust causal analysis and representation learning.

Limitations. While our work provides a comprehensive analysis of differential privacy’s impact
on causal inference, our focus on standard global DP mechanisms may not capture the nuances
introduced by other privatization methods. Additionally, since this paper primarily aims to initiate a
line of research on causal inference on private data, our findings focus on standard causal inference
settings. Although we propose practical mitigation strategies, they apply to the settings here studied.
This work initiates research on causal representation learning from private data, pointing to the need
for future methods that reduce DP-induced error. Future work could address these limitations by
exploring a broader range of privacy mechanisms and causal inference scenarios, as well as proposing
similar mitigation strategies tailored to a variety of causal representation learning methods.

Ethical considerations. Our work sits at the intersection of privacy and causal inference, both
with significant ethical implications. Ensuring the privacy of individuals, particularly in sensitive
domains such as healthcare and social sciences, is paroamount. Differential privacy provides a robust
framework for this purpose, but its application must be carefully balanced against the potential impacts
on the accuracy and validity of the findings, which could have serious ethical ramifications, especially
in policy-making or clinical decisions. We encourage further exploration of these ethical dimensions,
particularly in applying our proposed strategies, to ensure that privacy-preserving techniques do not
inadvertently harm the very individuals they are designed to protect.
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Appendix / supplemental material

A Related work

In this work, we examine the impact of differential privacy (DP) mechanisms on causal inference
from privatized data across various standard causal inference settings. Although relevant work on
DP and causal inference is referenced throughout the paper, we now provide a more comprehensive
review of related literature on these topics here.

Privacy and statistical inference. Differential privacy (DP) has become a crucial tool for ensuring
that individual data points cannot be inferred from the released outcomes of statistical analyses.
Foundational work by Dwork et al. (2006) and Dwork & Roth (2014) laid the groundwork for
applying DP across various statistical tasks. Studies such as Karwa & Vadhan (2017); Sheffet (2017)
have developed DP techniques for linear regression, while others have used Gaussian Processes
for differentially private regression (Smith et al., 2018). Meanwhile, the challenge of preserving
statistical validity under DP has been a critical focus, particularly in hypothesis testing for linear
regression (Alabi & Vadhan, 2022).

Causal inference and differential privacy. The intersection of DP and causal inference has
attracted interest, primarily focusing on developing privacy-preserving causal inference mechanisms.
For example, Kusner et al. (2016) proposed methods for DP within the Additive Noise Model
framework, Guha & Reiter (2024) developed algorithms for estimating weighted average treatment
effects under DP, and Niu et al. (2022) introduced meta-algorithms for conditional average treatment
effect estimation with DP guarantees. However, these works generally assume access to true data,
leaving the effects of DP on downstream causal inference tasks underexplored. Few studies focus
on causal inference from already-privatized data; Javanmard et al. (2023) propose a mechanism that
improves DP-induced variance in causal estimates, and Agarwal & Singh (2021) introduces a pipeline
for causal inference from corrupted data with low-rank covariates.

Our contribution. Our work addresses the critical gap in understanding how DP mechanisms
influence causal estimates when applied to already-privatized data. Analyzing various standard causal
inference settings and privacy mechanisms, we provide a more comprehensive assessment of the
trade-offs between data privacy and the accuracy of causal estimates and offer practical guidelines for
balancing these trade-offs.

B Causal inference with private outcome

In this appendix, we provide a more detailed analysis of the impact of differential privacy on causal
inference when the outcome variable is privatized, following the same notation introduced in Section 4
of the main paper. For completeness, we restate the key results presented in the main paper and expand
on them with additional discussion. Here we cover both ATE and ITE estimation in randomized
controlled trials and difference-in-differences frameworks under private outcomes, elaborating on the
implications of privacy mechanisms such as the Laplace and Gaussian mechanisms.

B.1 ATE with private outcome

Randomized controlled trial. When the data is collected through an RCT, the treatment assignment
T is assumed to be independent of the covariates X , hence τ is simply estimated by the difference
between expected outcome in the treatment and control groups, given in Equation 8.

τ = E [Y |T = 1]− E [Y |T = 0] . (8)

Similarly, we can compute τ̃ as the difference between the conditional expectations of Ỹ . Given
an ϵ-differntially private outcome Ỹ = Y + Lap(λ), where λ = ∆f

ϵ for both treatment and control
groups, we show Proposition 4.1. This is due to the 0-mean noise added to Y to obtain Ỹ . The
detailed derivations for Proposition 4.1 are included in Appendix C. Using the Gaussian mechanism
for privatizing the outcome leads to similar results, where the statement of Proposition 4.1 holds
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with the only difference being Var(¯̃τ) = Var(τ̄) + σ2
(

1
n1

+ 1
n0

)
, where σ2 is the variance of the

Gaussian noise.

Difference in differences. Consider now the case of an observational study where RCT data is
not available, but the DiD approach can be applied. DiD assumes parallel trends between treated
and control groups–that is, in the absence of treatment, the average outcomes for the two groups
would have followed the same trajectory over time (Angrist & Pischke, 2009). The key assumption
here is that any differences between the groups are time-invariant and the treatment effect can be
estimated as the difference in the changes in outcomes between the two groups before and after the
treatment. In this case, the aggregate causal effect is quantified by the average treatment effect on the
treated (ATT). Specifically, let Yt and Yt−1 represent the outcomes at times t (post-treatment) and
t− 1 (pre-treatment), respectively. Then, the ATT under the DiD setup can be estimated by

τ =(E[Yt | T = 1]− E[Yt−1 | T = 1])

− (E[Yt | T = 0]− E[Yt−1 | T = 0]) , (9)

where, for simplicity of notation, we continue using τ (and τ̃ ) to denote the ATT in DiD. Given the
expectations in equations 9 and 12, we can deduce a similar fact as what we derived for ATE in the
RCT setting.
Proposition B.1. Given a sample with n1,t and n1,t−1 individuals in the treatment, and n0,t and
n0,t−1 individuals in the control groups, before and after intervention (respectively), we have τ = τ̃

and Var(¯̃τ) = Var(τ̄) + 2λ2
(

1
n1,t

+ 1
n1,t−1

+ 1
n0,t

+ 1
n0,t−1

)
.

While similar to Proposition 4.1, we include the calculations for Proposition B.1 in Appendix C for
completeness. As we observed in the RCT case, replacing the Laplace mechanism with the Gaussian
mechanism to obtain Ỹ via a Gaussian noise with variance σ2 only impacts the sample variance in
the statement of Proposition B.1, changing the factor of 2λ2 to σ2.

B.2 ITE with private outcome

In the absence of averaging, the additive noise in Ỹ does not evaluate to 0 for individual causal
estimates. Here we derive the distribution of Zi in each of RCT and DiD cases. Due to the
fundamental problem of causal inference, ITE cannot be directly computed from data. However,
given the experimental design and under the assumptions of the causal inference setup, a variety
of methods could be used to estimate ITE via inferring potential outcomes (see Imbens & Rubin
(2015); Shalit et al. (2017); Wager & Athey (2018); Künzel et al. (2019); Chauhan et al. (2023)) or
matching (see (Ho et al., 2007; Stuart, 2010; Kallus, 2020)). Here we aim to provide an analysis
that could be extended to various ITE estimation methods. To this end, we consider the potential
outcomes Yi | do(T = 1) and Yi | do(T = 0), and private potential outcomes Ỹi | do(T = 1) and
Ỹi | do(T = 0), each privatized via an independent additive noise. We further assume that both
treatment and control groups are privatized using the same noise distribution parameters. In appendix
C, we extend this analysis to the more general case of different noise parameters for the two groups,
which is particularly relevant in situations where the sensitivity of the outcome function is dependent
on the treatment assignment.

Randomized controlled trial. Considering data from RCT with private Ỹ = Y + Lap(λ), we can
write

τ̃i = τi + ξ1 − ξ0, (10)

where ξ1 ∼ Lap(λ) and ξ2 ∼ Lap(λ), and hence, the DP-induced error in ITE estimation is
distributed as the distribution of ξ1 − ξ0. Computing this distribution (Appendix C), we conclude
Proposition 4.2. Since the ITE error follows the distribution of ξ1 − ξ0, in the case of the Gaussian
mechanism, we get Zi ∼ N

(
0, 2σ2

)
, where σ2 is the variance of the additive Gaussian noise.

Difference in differences. With a DiD approach in observational settings, the ITE computed from
Ỹ = Y + Lap(λ) can be written as

τ̃i = τi + (ξ1,t − ξ1,t−1) + (ξ0,t − ξ0,t−1) , (11)
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where all terms following τi on the right hand side of Equation 11 are Lap(λ)-distributed. Therefore,
the ITE estimation error in this case is essentially distributed as the difference between two ITE
errors in the RCT case, which brings us to Proposition 4.3. We prove this proposition in Appendix
C, where we also state the distribution of the error. Note that using the Gaussian mechanism will
have a similar implication as in the RCT case, but DiD involves four Gaussian noises, resulting in
Zi ∼ N

(
0, 4σ2

)
.

C Derivation of the results for causal inference on private outcome

In this appendix we include the detailed derivation of the results on causal estimates computed
from private outcomes, discussed in Section 4 and Appendix B. These derivations use the notation
described in Section 4, and unless otherwise stated, we make the same assumptions.

Estimating the ATE with the Laplace mechanism in RCT. Recall that ϵ−DP outcomes are
defined as Ỹ = Y + Lap(λ), where λ = ∆f

ϵ . To estimate the private ATE using Ỹ , we write

τ̃ = E[Ỹ |T = 1]− E[Ỹ |T = 0].

Substituting Ỹi into the expression, we obtain

τ̃ = E[Y |T = 1] + E[Lap(λ)|T = 1]− (E[Y |T = 0] + E[Lap(λ)|T = 0])

= τ + E[Lap(λ)|T = 1]− E[Lap(λ)|T = 0].

Since the noise added by the Laplace mechanism is independent of the treatment assignment and has
zero mean, the expected value of the Laplace noise is 0, and hence µ = µ̃ as stated in Proposition
4.1. Following similar steps, we can write the sample variance of the ATE estimated from private
outcomes as

Var(¯̃τ) =
1

n1
[Var(Y |T = 1) + Var(Lap(λ))] +

1

n0
[Var(Y |T = 0) + Var(Lap(λ))] ,

where the Var(Lap(λ)) terms are due to the Laplace noise added to the outcomes for the treatment
and control groups. Using the facts that Var(τ̄) = 1

n1
Var(Y |T = 1) + 1

n0
Var(Y |T = 0) and

Var(Lap(λ)) = 2λ2, we obtain

Var(¯̃τ) = Var(τ̄) + 2λ2

(
1

n1
+

1

n0

)
,

which completes the derivation of the results stated in Proposition 4.1. As explained in Section 4.1,
using the Gaussian mechanism simply replaces the 2λ2 factor in the equation above with the variance
of the Gaussian noise.

Estimating the ATT with the Laplace mechanism in DiD. The impact of privatizing Y using
a Laplace noise on the average treatment effect on the treated (ATT) in a DiD setting, is similar to
its impact on ATE in an RCT setting. This is due to the fact that the ATT estimator in DiD can be
formulated as the difference between two RCT estimators at time steps t and t− 1. Specifically, for
DiD we can write

τ̃ =
(
E[Ỹt | T = 1]− E[Ỹt−1 | T = 1]

)
−

(
E[Ỹt | T = 0]− E[Ỹt−1 | T = 0]

)
, (12)

=
(
E[Ỹt | T = 1]− E[Ỹt | T = 0]

)
−

(
E[Ỹt−1 | T = 1]− E[Ỹt−1 | T = 0]

)
.

It follows immediately that the ATE estimate remains unbiased as in the RCT case, and with the
sample sizes n1,t and n1,t−1 of the treatment, and n0,t and n0,t−1 of the control groups, before and
after intervention, the variance becomes

Var(¯̃τ) = Var(τ̄) + 2λ2

(
1

n1,t
+

1

n1,t−1
+

1

n0,t
+

1

n0,t−1

)
,

as stated in Proposition B.1. Similar to the RCT case, replacing the Laplace mechanism with the
Gaussian mechanism results in replacing 2λ2 above with the variance of the Gaussian noise.
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Estimating the ITE with the Laplace mechanism in RCT. Following the discussion in Section
4.2, we derive the ITE results using the potential outcomes. Given ϵ−DP outcome Ỹ = Y + Lap(λ),
we can write the ITE estimated from Ỹ in an RCT setting as

τ̃i = τi + ξ1 − ξ0,

where ξ1 ∼ Lap(λ1) and ξ0 ∼ Lap(λ0). While in Section 4.2 we considered the case where
λ1 = λ0 = λ, here we allow the privacy parameters for the treatment and control to be different 1,
and we derive the results for both cases –where λ1 = λ0 = λ and where λ1 ̸= λ0. Hence, to find the
distribution of Zi = τ̃i − τi, we calculate the probability density function (PDF) of ξ1 − ξ0 as

fZi(z) =

∫ +∞

−∞
fξ1(u)fξ0(u− z)du

=
1

4λ1λ0

∫ +∞

−∞
exp

(
−|u|
λ1

)
exp

(
−|u− z|

λ0

)
du

=
1

4λ1λ0

∫ 0

−∞
exp

(
u

λ1

)
exp

(
u− z

λ0

)
du

+
1

4λ1λ0

∫ z

0

exp

(
− u

λ1

)
exp

(
u− z

λ0

)
du

+
1

4λ1λ0

∫ +∞

z

exp

(
− u

λ1

)
exp

(
−u− z

λ0

)
du,

where, in the third line we used the assumption that z ≥ 0, which, as we discuss in Section 4, we
impose for simplicity, though extension to z < 0 is straightforward. Computing the integrals and
simplifying, we obtain

fZi
(z) =

{
1

2λ2
1−λ2

2

[
λ1 exp

(
− z

λ1

)
− λ0 exp

(
− z

λ0

)]
λ1 ̸= λ0

1
4λ exp

(
− z

λ

) [
1 + z

λ

]
λ1 = λ0 = λ

,

which completes the derivation of the error distribution stated in Proposition 4.2, as well as the more
general case where λ1 ̸= λ0. Using this distribution, it is straightforward to calculate the expected
error as

E [Zi] =

∫ +∞

0

zfZi
(z)dz =

∫ +∞

0

z

4λ
exp

(
− z

λ

) [
1 +

z

λ

]
dz =

3

2
λ2.

Estimating the ITE with the Laplace mechanism in DiD. Similar to the RCT case, the error in
ITE estimation with Ỹ = Y + Lap(λ), can be written as

zi = τ̃i − τi
= (ξ1,t − ξ1,t−1)− (ξ0,t − ξ0,t−1) , (13)

where, now we have two pairs of differences between Laplace-distributed variables. To derive the
results in a more general case than Proposition B.1, here we allow the treated and control groups to
have different Laplace parameters, where ξ1,t ∼ Lap(λ1), ξ1,t−1 ∼ Lap(λ1), ξ0,t ∼ Lap(λ0), and
ξ0,t−1 ∼ Lap(λ0). Note that the results for the case where different time steps, rather than treatment
groups, have different Laplace parameters yields identical results, since we can rearrange Equation
13 to write the error as (ξ1,t − ξ0,t)− (ξ1,t−1 − ξ0,t−1), which is again the difference between two
pairs of Laplace noises with the same parameters. While deriving the error distribution in the RCT
case, we already computed the distributions of the terms in each bracket on the right hand side of
Equation 13:

(ξ1,t − ξ1,t−1) ∼
1

4λ1
exp

(
− z

λ1

)[
1 +

z

λ1

]
(ξ0,t − ξ0,t−1) ∼

1

4λ0
exp

(
− z

λ0

)[
1 +

z

λ0

]
.

1The λ1 ̸= λ0 case is particularly relevant when the outcome function has different sensitivities for the
treatment and control groups.
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Hence, following similar steps as in the RCT case, we can calculate the PDF of Zi as

fZi
(z) =

∫ +∞

0

fξ1,t−ξ1,t−1
(u)fξ0,t−ξ0,t−1

(u− z)du

=
1

16λ1λ0

∫ +∞

0

exp

(
−u

λ1
+

z − u

λ0

)[
1 +

z

λ1

] [
1− z − u

λ0

]
du,

where, for simplicity, we considered the case of non-negative pairs of differences, while extension to
the entire real-line is straightforward. Computing the integral above, we obtain the following error
distribution.

fZi
(z) =

e
z
λ0

16λ1λ0

[
1 +

z

λ1

] [
1− z

λ0
+

λ1

λ1 + λ0

]
,

which becomes fZi(z) =
λ+z
32λ2 e

z
λ

(
3
2 − z

λ

)
when λ1 = λ0 = λ. Calculating the expectation of this

distribution, in either of λ1 = λ0 = λ or λ1 ̸= λ0 cases, yields a divergent integral, which means the
mean of the error distribution in this case is infinite. This completes the proof for Proposition 4.3.

D Derivation of the results for causal inference on private treatment

In this appendix we include the detailed derivation of the results on causal estimates computed from
private treatments, discussed in Section 5. Here we use the notation described in Section 5, and unless
otherwise stated, we make the same assumptions.

Estimating the ATE with private treatments. Recall that the binary treatment T is privatized
using the randomized response mechanism, where the private treatment T̃ is kept equal to T with
probability p and flipped to 1− T with probability 1− p. Therefore, for a real-valued outcome Y ,
we can write µ̃1 ≡ E

[
Y | T̃ = 1

]
as

µ̃1 = P
(
T = 1 | T̃ = 1

)
µ1 + P

(
T = 0 | T̃ = 1

)
µ0, (14)

by the law of total expectation and using the fact that Y ⊥⊥ T̃ |T , which holds since we assumed
a structural causal model Y = f(X,T ), and T̃ is randomized based on T by the parameter p,
independent of the other variables. Similarly, we can write µ̃0 ≡ E

[
Y | T̃ = 0

]
as

µ̃0 = P
(
T = 1 | T̃ = 0

)
µ1 + P

(
T = 0 | T̃ = 0

)
µ0. (15)

Using the Baye’s rule, we can compute the probabilities in equations 14 and 15 as

P
(
T = 1 | T̃ = 1

)
=

pq

pq + (1− p)(1− q)
P
(
T = 0 | T̃ = 1

)
=

(1− p)(1− q)

pq + (1− p)(1− q)

P
(
T = 1 | T̃ = 0

)
=

(1− p)q

pq + (1− p)(1− q)
P
(
T = 0 | T̃ = 0

)
=

p(1− q)

pq + (1− p)(1− q)
,

Given these values and the equations 14 and 15, we can write the system of linear equations for µ1

and µ0 as [
pq

pq+p′q′
p′q′

pq+p′q′

p′q
pq+p′q′

pq′

pq+p′q′

] [
µ1

µ0

]
=

[
µ̃1

µ̃0

]
, (16)

where, for ease of notation, we used p′ := 1− p and q′ := 1− q. We can solve Equation 16 for µ1

and µ0, which yields

µ1 =
µ̃0 − β0

β1
µ̃1

α0 − β0

β1
α1

µ0 =
µ̃1 − α1µ1

β1
,

where α1 := pq
pq+p′q′ , β1 := p′q′

pq+p′q′ , α0 := p′q
pq+p′q′ , and β0 := pq′

pq+p′q′ , are the entries of the
coefficient matrix in Equation 16. This allows us to exactly recover the true ATE in the RCT setting
as µ1 − µ0, when p > 1

2 . This completes the proof for Proposition 5.1. Using these solutions, we can
also compute the ATE error Z = τ̃ − τ , and explore how the error changes with respect to q and p.

13



Estimating the ITE with private treatments. As we discuss in Section 5.2, there are several
approaches for inferring ITE from data and in this paper we analyze the ITE error from privatized
treatments in a matching setting. Following the notation described in Section 5.2, when matching
a treated individual i to an individual j from the control group, we can write the ITE in terms of
potential outcomes as τi∼j = Yi|do(Ti = 1) − Yj |do(Tj = 0). Therefore, given the privatized
treatments T̃i and T̃j , we have

Yi|do(Ti = t̃i)− Yj |do(Tj = t̃j) =


Yi|do(Ti = 1)− Yj |do(Ti = 0) t̃i = ti & t̃j = tj
Yi|do(Ti = 1)− Yj |do(Ti = 1) t̃i = ti & t̃j = 1− tj
Yi|do(Ti = 0)− Yj |do(Ti = 0) t̃i = 1− ti & t̃j = tj
Yi|do(Ti = 0)− Yj |do(Ti = 1) t̃i = 1− ti & t̃j = 1− tj

,

where t̃i and t̃j are the realized values of T̃i and T̃j . Using the fact that the probability of flipping
each of Ti and Tj is p and Ti and Tj are privatized independently, we can write

E [τ̃i∼j ] = [Yi(1)− Yj(0)] p
2 + [Yi(1)− Yj(1)] p(1− p)

+ [Yi(0)− Yj(0)] p(1− p) + [Yi(0)− Yj(1)] (1− p)2

=p [Yi(1)− Yj(0)] + (1− p) [Yi(0)− Yj(1)]

=p (τi + τj)− τj∼i,

where, for ease of notation, we adopted Yi(t) to denote Yi|do(Ti = t). The derivation above gives us
the expected ITE. Similarly, we can write the expected ITE error when matching i to j as

E [Zi∼j ] =0p2 + p(1− p) [Yj(0)− Yj(1)] + p(1− p) [Yi(0)− Yi(1)]

+ (1− p)2 [Yi(0)− Yi(1) + Yj(0)− Yj(1)]

= (τi + τj) (1− p),

which completes the derivation of the results in Proposition 5.2.

E Robust regression experimental setup

In this appendix, we provide additional details and observations regarding the mitigation strategy
discussed in Section 6, using robust regression to reduce DP-induced errors in causal effect estimates.

Data and experimental setup. We conduct our experiment using three standard causal inference
datasets featuring continuous outcomes: IHDP (Hill, 2011), Jobs (LaLonde, 1986; Louizos et al.,
2017), and LUCAS (Van der Laan & Rose, 2011). Following the standard practice in causal inference,
these datasets are semi-synthetic with empirically observed features paired with simulated treatments
and potential outcomes (Hill, 2011; Shalit et al., 2017; Veitch et al., 2019). To quantify the impact of
differential privacy on ITE estimation, we first estimate the L1 sensitivity of the outcome function
from the data, calculating the maximum distance between datasets that differ by only a single data
point. Using the estimated sensitivity and various privacy budgets, we determine the parameters for
the Laplace noise distribution, which is then applied to privatize the outcomes.

Figure 3: Tradeoff between privacy budget and change in outcomes distribution for IHDP (left), Jobs
(middle), and LUCAS (right) datasets. The change in distributions is quantified by the Wasserstein
distance between raw outcomes and the outcomes privatized through the Laplace mechanism. Smaller
privacy budgets significantly alter the outcome distribution, while larger budgets preserve it but offer
less privacy protection.
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Privacy budget and distribution change. The privacy budgets are selected from a range to explore
the tradeoff between privacy and accuracy. Small privacy budget values, while providing strong
privacy guarantees, substantially alter the outcome distribution, rendering downstream causal analysis
less reliable. Conversely, very large budgets, though preserving the original outcome distribution,
offer limited privacy protection. This tradeoff is illustrated in Figure 3 for all three datasets, where
we show the change in the distribution of outcomes—quantified by the Wasserstein distance—against
different privacy budget values. We select more values in a moderate range of privacy budget that
correspond to sufficiently small Wasserstein distances, ensuring both privacy and the validity of
downstream analysis.

Figure 4: ITE estimation error across different privacy budgets for IHDP (left), Jobs (middle), and
LUCAS (right) datasets using Theil-Sen and OLS estimators. The solid line and the shaded region
show the average and standard error over 100 trials. Theil-Sen consistently reduces the error compared
to OLS.

Implementation of robust regression experiments. Given the privatized outcomes, we compare
the DP-induced ITE estimation error using OLS and Theil-Sen regressions. We conduct this compari-
son over 100 trials for each dataset. The mean and standard error of these trials, presented in Figure 4
for all three datasets, indicate that the Theil-Sen estimator consistently reduces the error the Laplace
mechanism introduces to the ITE estimation across all datasets.
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