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Abstract

Robustness of machine learning models on
ever-changing real-world data is critical, espe-
cially for applications affecting human well-
being such as content moderation. New kinds
of abusive language continually emerge in on-
line discussions in response to current events
(e.g., COVID-19), and the deployed abuse de-
tection systems should be updated regularly
to remain accurate. General abusive language
classifiers tend to be fairly reliable in de-
tecting out-of-domain explicitly abusive utter-
ances but often fail to detect new types of
more subtle, implicit abuse. We propose an in-
terpretability technique, based on the Testing
Concept Activation Vector (TCAV) method
from computer vision, to quantify the sensi-
tivity of a trained model to the human-defined
concepts of explicit and implicit abusive lan-
guage, and use that to explain the generaliz-
ability of the model on new data, in this case,
COVID-related anti-Asian hate speech. Ex-
tending this technique, we introduce a novel
metric, Degree of Explicitness, for a single in-
stance and show that the new metric is benefi-
cial in suggesting out-of-domain unlabeled ex-
amples to effectively enrich the training data
with informative, implicitly abusive texts.

1 Introduction

When machine learning models are deployed in the
real world, they must be constantly monitored for
their robustness to new and changing input data.
One area where this is particularly important is
in abusive language detection (Schmidt and Wie-
gand, 2017; Fortuna and Nunes, 2018; Nakov et al.,
2021; Vidgen and Derczynski, 2020). The con-
tent of online conversation is constantly changing
in response to political and social events. New
categories of abusive language emerge, encompass-
ing topics and vocabularies unknown to previously
trained classifiers. Here, we tackle three main ques-
tions: How can a human user formalize new, rele-
vant topics or concepts in text? How do we quantify

the sensitivity of a trained classifier to these new
concepts as they emerge? And how do we best
select training examples to update the deployed
classifier?

As a case study, we consider the rise of COVID-
related anti-Asian racism on social media. The
COVID-19 pandemic represented an entirely new
and unexpected situation, generating new vocab-
ulary (COVID-19, coronavirus, social distancing,
masking), new topics of conversation (dealing with
isolation, working from home), and — unfortunately
—new and renewed instances of hate speech directed
towards Asian communities. We imagine the case
of an abusive language detection algorithm which
had been deployed prior to the pandemic: to what
extent can it generalize to this new data? Although
social events can spark off a specific type of hate
speech, they are rarely the root cause of the issue.
Often such hateful beliefs existed before the event,
and are only magnified because of it (Chou and
Feagin, 2015). Therefore, we expect that the clas-
sifier should detect this new variety of hate speech
to some extent.

An important factor in this study is whether the
text expresses explicit or implicit abuse (Waseem
et al., 2017; Wiegand et al., 2021). Explicit
abuse refers to utterances that include direct in-
sults or strong rudeness, often involving profanities,
whereas implicit abuse involves more indirect and
nuanced language. Since understanding the offen-
sive aspects of implicit abuse in our case study may
require some knowledge of the context (i.e., the
pandemic), we expect that the pretrained classifier
will find these data especially difficult to handle.

To examine a classifier’s ability to handle new
type of abusive text (without access to extensive
labeled data), we propose a technique based on the
Testing Concept Activation Vector (TCAV) method
from the interpretability literature in computer vi-
sion (Kim et al., 2018). TCAV is used to explain
whether a classifier associates a specific concept



Dataset Data Positive Class Negative Class Number of Instances % POS
Type Train Dev Test

Wikipedia Wikipedia Toxic Normal 43,737 32,128 31,866 0.17
Toxicity (Wiki) comments (0.09
(Wulczyn et al., 2017) on test)
Founta et al. (2018) Twitter Abusive; Hateful Normal 62,103 10,970 12,893 0.37
dataset (Founta) posts
East-Asian Twitter ~ Hostility against an Criticism of an East Asian 16,000 1,200 2,800 0.19
Prejudice (EA) posts East Asian entity entity; Counter speech;
(Vidgen et al., 2020) Discussion of East Asian

prejudice; Non-related
COVID-HATE (CH)  Twitter Anti-Asian COVID-19 Pro-Asian COVID-19 - - 2,319 0.43
(Ziems et al., 2020) posts hate; Hate directed Counterhate;

to non-Asians

Hate-Neutral

Table 1: Statistics for the general abusive datasets (Wiki and Founta) and COVID-related Anti-Asian datasets (EA
and CH). CH is used only as a test set due to its small size. ‘% POS’ stands for the percentage of positive instances.

to a class label (e.g., the concept of stripes is as-
sociated with class zebra in image classification).
Similarly, we define implicit and explicit COVID-
related anti-Asian racism with a small set of human-
chosen textual examples, and ask whether the pre-
trained classifier associates these concepts with the
positive (abusive) class.

Further, we ask whether sensitivity to human-
defined concepts can direct data augmentation' to
improve generalizations. Intuitively, when updat-
ing a classifier, data enrichment should focus on
adding examples of concepts to which the classi-
fier is not yet sensitive. Conventional active learn-
ing frameworks suggest examples with the low-
est classification confidence as the most informa-
tive augmentation samples. However, deep neural
networks’ inability to provide reliable uncertainty
estimates is one of the main barriers to adopting
confidence-based sampling techniques (Schroder
and Niekler, 2020). We suggest that, in the case
of abuse detection, implicitly abusive examples are
most informative for updating a general classifier.
However, to the best of our knowledge, there is
no quantitative metric that can measure the degree
of explicitness of a candidate example, given a
trained classifier. We extend the TCAV technique
to provide a “degree of explicitness” measure at the
utterance level and use that for efficient data aug-
mentation. We make the following contributions
(code and data are provided in the Supplementary
Material):

* We implement a variation of the TCAV frame-
work for a RoBERTa-based classifier and show

'In this paper, we use the term augmentation to refer to
the process of enriching the training data by adding examples
from sources other than the original dataset.

that it can be used to quantify the sensitivity of a
trained classifier to a human-understandable con-
cept, defined through examples, without access
to the training dataset of the classifier or a large
annotated dataset for the new category.

* We analyse the performance of two abusive lan-
guage classifiers and observe that they general-
ize well to explicit COVID-related anti-Asian
racism, but are unable to generalize to implicit
racism of this type. We show that sensitivities to
the concepts of implicit and explicit abuse can
explain the observed discrepancies.

* We adjust the TCAV method to compute the de-
gree of explicitness, for an unlabeled instance,
as a metric to guide data augmentation when up-
dating a general abusive language classifier to
include a new kind of abuse. We test this method
against a confidence-based augmentation algo-
rithm and show that it is able to learn the new
type of abuse more efficiently, while maintaining
the accuracy on the original data.

2 Datasets

We consider the following four English datasets,
summarized in Table 1: Founta® and Wiki® are
large, commonly-used datasets for general abusive
language detection, while EA and CH specifically
target COVID-related anti-Asian racism. We bi-
narize all datasets to two classes: positive (i.e.,

2For Founta, we discard the tweets labeled as Spam and
use the train-dev-test split as provided by (Zhou et al., 2021).

3We use the pruned version of the Wiki training set where
some Wikipedia-specific non-toxic instances (54% of the
dataset) are removed (Nejadgholi and Kiritchenko, 2020). In
our preliminary experiments, this reduction did not affect the
classification performance but significantly decreased the exe-
cution time. The dev and test sets are from the original dataset.



F-score Recall per class
Training set | FA CH EA- CH-positive- CH-positive- EA- CH-
positive antiAsian other negative negative
Wiki 0.26 0.68 0.21 0.77 0.80
Founta 0.29 0.63 0.23 0.72 0.75
EA 0.74 0.66 0.74 0.70 0.32 0.94 0.87

Table 2: Evaluation of multiple classifiers on the anti-Asian hate speech data in cross-dataset settings.

abusive or hateful) and negative. For Founta, this
means combining Abusive, Hateful texts into a sin-
gle positive class; for EA, “Hostility against an
East-Asian entity” is considered positive, and all
other classes are grouped under negative; and for
CH, all hate speech is classed as positive, while
counter-hate and hate-neutral texts are classed as
negative. Note that in Section 3, we analyze pos-
itive subclasses of the CH test set separately and
refer to them as CH-positive-antiAsian (for Anti-
Asian COVID-19 hate) and CH-positive-other (for
Hate directed to non-Asians).

Previous work has commented on the difficulty
of aligning annotations of abusive, offensive, hate-
ful, and toxic speech across different datasets
(Swamy et al., 2019; Kolhatkar et al., 2019; For-
tuna et al., 2021). Here, we also observe that
the definitions of positive (abusive) and negative
classes differ significantly between the generalized
and COVID-related data. In the Wiki and Founta
datasets, the positive class encompasses a wide
range of offensive language, while in the EA and
CH datasets, the positive class is restricted to hate
speech and other more intense cases of expressed
negativity. Further, the negative class in Wiki and
Founta datasets comprise non-abusive, neutral, or
friendly instances while in the FA and CH datasets
the negative class may also include rude and of-
fensive texts as long as they do not constitute hate
speech against Asian people or entities.

3 Cross-Dataset Generalization

We start by assessing the robustness of a general-
purpose abusive language classifier on the COVID-
related anti-Asian racism data. We train two bi-
nary RoBERTa-based classifiers with the Wiki and
Founta datasets (referred to hereafter as the Wiki
and Founta classifiers), and test them on the EA
and CH datasets. (The training details are provided
in Appendix A.) Here, while the classifier makes
a binary positive/negative decision, we are really
assessing its ability to generalize to the new task
of identifying anti-Asian hate. For comparison,
we also train a binary classifier with the EA train

set and evaluate it on both EA test set and the CH
dataset. For a detailed analysis, we report recall
scores for all classes along with the classification
F-score. Table 2 shows the results.* Our main
findings are as follows:

Finding 1: The general classifiers (Wiki and
Founta) reach much higher F-scores on CH than
on EA (shown in blue in Table 2). We also observe
that the general classifiers obtain higher recall for
both sub-classes of CH-positive compared to the
EA-positive class.

Finding 2: The general classifiers reach higher
recall on CH-positive-antiAsian than the EA classi-
fier, even though the latter is trained for detecting
COVID-related racism. The general classifiers also
perform much better on the CH-positive-other class
than the EA classifier (shown in red in Table 2).
Finding 3: Despite better overall performance on
CH (Finding 1), the general classifiers reach lower
recall on the CH-negative class than on the EA-
negative class (shown in orange in Table 2).

Discussion on class imbalances: Since significant
differences in class distributions among datasets
can result in performance disparities, we first in-
vestigate whether class imbalances can explain our
findings. Note that abusive language datasets are of-
ten collected through boosted sampling and are not
subject to extreme class imbalances. The percent-
age of positive instances in the datasets used in our
study ranges from 9% to 43% (last column of Ta-
ble 1). To ensure that our analysis is not impacted
by differences in the class ratios of the test sets,
we compare the recall scores for the positive and
negative classes. Recall scores of the positive and
negative classes provide a full picture of the perfor-
mance of a binary classifier (all other metrics can
be calculated from the recall scores and class sizes)
and are independent of the class ratios. In terms
of the training set class imbalances, we observe
similar performances for the Wiki and Founta clas-
sifiers despite different class ratios in their training

*Our in-dataset results on EA are higher than reported in
(Vidgen et al., 2020), since we convert the task to binary.



sets, and different performances for Wiki and EA
classifiers despite their similar training class ratios.
Therefore, we conclude that class imbalance in the
training sets cannot explain our findings. As previ-
ous research suggests, cross-dataset generalization
in abusive language detection is often governed by
the compatibility of the definitions and sampling
strategies of training and test labels rather than
class sizes (Yin and Zubiaga, 2021). Below, we
discuss our findings with regards to discrepancies
in the positive and negative class content.

Discrepancies in the positive class: The first two
findings are quite counter-intuitive since both the
EA and CH datasets were collected to address the
task of COVID-related anti-Asian hate speech de-
tection, and are expected to be more similar to each
other than to the general-purpose abusive datasets.
To further investigate these findings, we manually
annotate instances for explicitness of abuse from
the positive class in the EA dev set and the CH
dataset. Instances that include profanity, insult or
rudeness directed at Asian people or entities, and
that could be correctly identified as abusive without
general knowledge about the COVID-19 pandemic
are labeled as explicitly abusive; the remaining in-
stances (e.g., ‘it is not covid 19 but wuhanvirus’)
are labeled as implicitly abusive.

We find that 79% of the CH-positive-antiAsian
class is categorized as explicit, whereas only 8% of
the EA-positive class in the EA dev set is labeled
as explicit. Therefore, the Wiki and Founta classi-
fiers, which have been exposed to large amounts
of generally explicit abuse, perform well on the
mostly explicit CH-positive sub-classes, but expe-
rience difficulty with the COVID-specific implicit
abuse in the EA-positive class. For example, the
tweet ‘the chinavirus is a biological attack initiated
by china’ is misclassified as non-abusive. On the
other hand, the EA dataset contains fewer explicitly
abusive examples than the general datasets, there-
fore the EA classifier underperforms in detecting
the explicit examples in the CH-positive-antiAsian
class, despite being trained for the same task. We
also notice that many instances in the CH-positive-
antiAsian class labeled as ‘implicitly abusive’ are
correctly classified by the EA classifier, but are
not recognized as abusive by the Wiki and Founta
classifiers. Further, as expected the EA classifier
performs poorly on the CH-positive-other class as
it was not exposed to such data.

Discrepancies in the negative class: As men-

tioned above, the negative class is defined very dif-
ferently in the general and COVID-related datasets;
therefore, it is perhaps not surprising that the Wiki
and Founta classifiers do not perform well on the
CH-negative class. These classifiers tend to assign
the positive label to instances of the CH-negative
class due to the presence of obscene words and
expressions (e.g.,, ‘any racist in america talks sh*t
about asians’). Unlike CH-negative, there is not
much obscenity in EA-negative.

4 Sensitivity to Implicit and Explicit
Abuse to Explain Generalizability

In Section 3, we showed that the generalizability of
an abusive language classifier to a new, fine-grained
category is highly dependent on the relative balance
between implicit and explicit abuse in the train and
test sets. This observation is in line with findings
by Fortuna et al. (2021), and suggests that general-
ization should be evaluated on implicit and explicit
abuse separately. However, due to complexities
of annotation of abusive content, curating separate
implicit and explicit test sets is too costly (Wiegand
et al., 2021). Instead, we adapt the Testing Concept
Activation Vector (TCAV) algorithm originally de-
veloped for image classification (Kim et al., 2018),
to calculate the classifiers’ sensitivity to explicit
and implicit COVID-related racism, with only a
small set of examples, and use these sensitivities to
explain the generalizations observed in Table 2.

4.1 TCAY background and implementation

TCAV is a post-training interpretability method to
measure how important a user-chosen concept is
for a prediction, even if the concept was not used
as a feature during the training. The concept is
defined with a set of concept examples. Using these
examples, a Concept Activation Vector (CAV) is
learned to represent the concept in the activation
space of the classifier. Then, directional derivatives
are used to calculate the sensitivity of predictions
to changes in inputs towards the direction of the
concept, at the neural activation layer.

We adapt the TCAV procedure for a binary
RoBERTa-based classifier to measure the impor-
tance of a concept to the positive class. For any
input text, x € RF*" with k words in the n-
dimensional input space, we consider the RoOBERTa
encoder of the classifier as fe,,p : RExn _y R™,
which maps the input text to its RoBERTa rep-
resentation (the representation for [CLS] token),



r € R™. For each concept, C, we collect N¢ con-
cept examples, and map them to RoOBERTa repre-
sentations ré, j=1,..., No. Torepresent C in the
activation space, we calculate P number of CAVs,
vg, by averaging® the RoBERTa representations of
N, randomly chosen concept examples:

Ny

1 )
vg:FZré p=1,..,P (1)

where N,, < N¢. The conceptual sensitivity of the
positive class to the vg, at input x can be computed
as the directional derivative S¢ ,(z):

h(femp (x)+5vg)_h(femb($))

= vh(femb(x))'vg ()

where h : R™ — R is the function that maps the
RoBERTa representation to the logit value of the
positive class. In Equation 2, Sc,(x) measures
the changes in class logit, if a small vector in the
direction of C'is added to the input example, in
the RoBERTa-embedding space. For a set of input
examples X, we calculate the TCAV score as the
fraction of inputs for which small changes in the
direction of C' increase the logit:

Sop(w) = 15%

|z € X : Scp(z) > 0]

TCAVg,), = X|

3)

A TCAV score close to one indicates that for the
majority of input examples the logit value increases.
Equation 3 defines a distribution of scores for the
concept C; we compute the mean and standard de-
viation of this distribution to determine the overall
importance of C' to the prediction.

4.2 Classifier’s Sensitivity to a Concept

We define each concept C' with N¢o = 100 exam-
ples, and experiment with six concepts described
in Table 3. To set a baseline, we start with a set
of random examples to form a non-coherent con-
cept. Next, we define a non-hateful COVID-related
concept using random tweets with COVID-related
keywords covid, corona, covid-19, pandemic. For
the explicit anti-Asian abuse concept, we include

3In the original TCAV algorithm, a linear classifier is
trained to separate representations of concept examples and
random examples. Then, the vector orthogonal to the decision
boundary of this classifier is used as the CAV. We experi-
mented with training a linear classifier and found that the
choice of random utterances has a huge impact on the results
to the point that the results are not reproducible. More stable
results are obtained when CAVs are produced by averaging
the RoBERTa representations.

Non-coherent concept: random tweets collected with stop
words as queries

COVID-19: tweets collected with words covid, corona,
covid-19, pandemic as query words

Explicit anti-Asian abuse: tweets labeled as explicit from
EA dev and CH

Implicit-EA abuse: tweets labeled as implicit from EA dev
Implicit-CH abuse: tweets labeled as implicit from CH
Generic hate: tweets from the Hateful class of Founta dev

Table 3: Human-defined concepts and the sources of
the tweets used as concept examples.

all 14 explicitly abusive examples from the EA
dev set and 86 explicitly abusive examples from
CH-positive-antiAsian. We define two implicit anti-
Asian concepts taken from the EA-positive and CH-
positive-antiAsian, to assess whether selecting the
examples from two different datasets affects the
sensitivities. We also define the generic hate con-
cept with examples of pre-COVID general hateful
utterances, not directed at Asian people or entities,
from the Founta dev set.

We calculate P = 1000 CAVs for each concept,
where each CAV is the average of N, = 5 ran-
domly chosen concept examples. We use 2000
random tweets collected with stopwords as input
examples X (see Equation 3).° Table 4 presents the
means and standard deviations of the TCAV score
distributions for the three classifiers trained on Wiki,
Founta, and EA datasets, respectively. First, we
observe that all TCAV scores calculated for a ran-
dom, non-coherent set of examples are zero; i.e., as
expected, the TCAV scores do not indicate any as-
sociation between a non-coherent concept and the
positive class. Also, as expected, none of the classi-
fiers associate the non-hateful COVID-related con-
cept to the positive class.” These observations set
a solid baseline for interpreting the TCAV scores,
calculated for other concepts. Here we ask whether
the generated TCAV scores can explain the gener-
alization performances observed in Table 2.

SUnlike the original TCAV algorithm, we do not restrict
the input examples from the target class. In our experiments,
we observed that, for this binary classification set-up, the
choice of input examples has little impact on the TCAV scores.
Intuitively, we assess whether adding the concept vector to
a random input would increase the likelihood of it being as-
signed to the positive class.

"Note that a zero TCAV score can be due to the absence
of that concept in train data (e.g., the COVID concept for the
Wiki and Founta classifiers), insignificance of the topic for
predicting the positive label (e.g., the COVID concept for the
EA classifier), or the lack of coherence among the concept
examples (such as the concept defined by random examples).
A TCAV score close to 1, on the other hand, indicates the
importance of a concept for positive prediction.



Concept
Classifier | non-coherent | COVID-19 | explicit anti-Asian | implicit-EA | implicit-CH | generic hate
Wiki 0.00 (0.03) | 0.00 (0.05) 0.96 (0.16) 0.00(0.03) | 0.28(0.43) | 0.75(0.41)
Founta 0.00 (0.02) | 0.00 (0.01) 0.92 (0.22) 0.00 (0.06) | 0.19(0.32) | 0.60 (0.44)
FA 0.00 (0.00) | 0.00 (0.00) 0.90 (0.26) 0.87 (0.30) | 0.70 (0.42) | 0.00 (0.00)

Table 4: Means and standard deviations of TCAV score distributions for the positive class of the three classifiers
with respect to six human-defined concepts. Scores statistically significant difference from random are in bold.

Observation 1: The Wiki and Founta classifiers
are significantly more sensitive to the explicit con-
cept than the implicit concepts. Given that the
majority of examples in CH-positive-antiAsian are
explicitly abusive and the majority of examples in
EA-positive are implicitly abusive, the differences
in sensitivities predict that the Wiki and Founta clas-
sifiers are more accurate in detecting CH-positive-
antiAsian than in detecting EA-positive. This is
consistent with Finding 1 in Section 3.

Observation 2: The sensitivity of the Wiki and
Founta classifiers to the explicit and the generic
hate concepts are higher than the sensitivity of the
EA classifier to these concepts. The difference
is significant in the case of the generic hate con-
cept. Also, the EA classifier is more sensitive to the
implicit-EA concept than the implicit-CH concept,
suggesting that the two datasets do have different
underlying distributions in content. These observa-
tions are in line with Finding 2.

Observation 3: In Table 4 we see that the EA
classifier shows sensitivity to both explicit anti-
Asian abuse and the two implicit anti-Asian con-
cepts. Unlike the EA classifier, the Wiki and Founta
classifiers are only sensitive to explicit anti-Asian
abuse and are not able to differentiate texts about
Asian entities at a nuanced level. The Wiki and
Founta classifiers would label any example that in-
cludes profane words as positive due to their high
sensitivity to explicit abuse. Given that the CH-
negative class includes many texts with profane
words, we would expect the general classifiers mis-
classify a large portion of this class. This is con-
sistent with Finding 3, where on the CH-negative
class we observed low recall for the general classi-
fiers and high recall for the EA classifier.

5 Degree of Explicitness

Here, we suggest that implicit examples are more
informative (less redundant) for updating a gen-
eral classifier and provide a quantitative metric to
guide the data augmentation process. We extend
the TCAV methodology to estimate the Degree of

Explicitness or DoE of an utterance. We showed
that the average TCAV score of the positive class
for the explicit concept is close to 1. DoE is based
on the idea that if we define a new concept by
adding one utterance to the explicit concept exam-
ples, the sensitivity of the classifier to the new con-
cept will stay close to 1, only if the new utterance
is explicitly abusive. Here, we modify Equation 1
and calculate each CAV by averaging the RoBERTa
representations of V,, — 1 explicit concept exam-
ples, and the new utterance for which we want the
degree of explicitness, Ty, With representation
Tnew- ThUs,

1 Ny,—1 )
Ugew = F( Z TJC +Tnew)u p=1,.,P
v

We then calculate the average TCAV score for each
Tnew as 1ts DOE score. If the new utterance, e,
is explicitly abusive, VP will represent an ex-
plicit concept, and the average TCAV score, i.e.,
mean(TC AV ) will remain close to 1. However,
the less explicit the new example is, the more v} ey,
will diverge from representations of explicit abuse,
and the average score will drop. We use NV, = 3 in
the following experiments.

DoE analysis on COVID-related abusive data:
We then validate the utility of DoE in terms of sep-
arating implicit and explicit abusive examples. For
the Wiki and Founta classifiers, we calculate the
DoE score of the implicit and explicit examples
from CH and EA dev sets (described in Section 3),
excluding the examples used to define the Explicit
anti-Asian abuse concept. Given that low classi-
fication confidence could indicate that the model
struggles to predict an example correctly, one might
expect that implicit examples are classified with
less classification confidence than explicit exam-
ples. We calculate the classification confidence
(maximum output probability) for these examples
as the baseline. Figure 1 shows the comparison of
DoE with classification confidence. We observe
that for both classifiers, the distribution of DoE
scores of implicit examples is different from the
distribution of DoE scores of explicit examples, but
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Figure 1: Comparison of classification confidence and

DoE score for distinguishing between implicit and ex-

plicit abusive utterances.

the distributions of their classification confidences
are indistinguishable. Therefore, we conclude that
DoE is more effective at separating implicit abuse
from explicit abuse than classification confidence.
We further analyze DoE scores for the positive and
negative classes separately in Appendix B.

6 Data Augmentation with DoE score

We now use the DoE score to direct data augmen-
tation. We consider a scenario where a general
classifier should be re-trained with an augmented
dataset to include emerging types of abusive lan-
guage. As we showed, general classifiers are al-
ready sensitive to explicit abuse. Therefore, we
hypothesize that implicit examples are more benefi-
cial for updating the classifier. Here, we describe a
novel DoE-based augmentation approach and con-
trast it with the conventional process of choosing
augmentation examples based on the classification
confidence (Zhu et al., 2008; Chen et al., 2019).

We consider the general-purpose abusive lan-
guage classifier trained on Wiki. Our goal is to
find a small but sufficient portion of the EA train
set to augment the original Wiki train set, so that
the classifier is able to handle COVID-related anti-
Asian hate speech. We calculate the DoE and con-
fidence scores for all the examples in the EA train
set and add the IV examples with the lowest scores
to the original Wiki train set. We vary N from
1K to 6K, with a 1K step. After the augmentation
data size reaches 6K, the classifier performance
on the original Wiki test set drops substantially for
both techniques. Also, note that as the size of the
augmentation dataset increases, the two methods
converge to the same performance.

EA Wiki
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Figure 2: Classification F-score of the augmented Wiki
classifier on the EA and Wiki test sets.

6.1 Results

Figure 2 shows the F-score of the classifiers up-
dated using the DoE and confidence-based aug-
mentation methods on the original test set (Wiki)
and the new test set (EA) for different augmentation
sizes. (Precision and recall figures are provided in
Appendix C.) Since only EA is used for augmenta-
tion, we evaluate the classifiers on this dataset to
find the optimum size for the augmented training
set and only evaluate the best performing classifiers
on CH. We expect that an efficient augmentation
should maintain the performance on Wiki and reach
acceptable results on EA test set.

DoE is better at learning the new type of abuse:
On the FA dataset, DoE achieves better results than
the confidence-based augmentation method for all
augmentation sizes, except for N= 5K, where the
performances of two methods are comparable.
DoE is better at maintaining performance on
the original dataset: DoE outperforms the
confidence-based method on the Wiki dataset. For
all augmentation sizes, the performance of the DoE-
augmented classifier on this class stays within 2%
of the baseline (the F-score of the classifier trained
just on Wiki data), whereas for the confidence-
based augmentation, we observe up to 6% drop
depending on the size of the added data.

DokE is better overall: Table 5 presents the best re-
sults achieved by the two augmentation methods on
the EA test set: F1-score of 0.61 for the DoE-based
augmentation obtained with 3K added examples,
and F1-score of 0.54 for the confidence-based aug-
mentation obtained with 4K added examples. For
comparison, we also show the baseline results for
the original Wiki classifier and the classifier trained
with the combined Wiki and full EA train sets. Al-
though we did not optimize the augmentation for
the CH dataset, our evaluation shows that DoE
performs favourably on this dataset, as well. We
conclude that the new DoE-based augmentation
method maintains the classification performance



Method Training Dataset | EA | CH | Wiki
DoE Wiki+3K EA 0.61 | 0.73 | 0.82
confidence Wiki+ 4K EA 0.54 | 0.71 | 0.79
merging data | Wiki+EA 0.58 | 0.72 | 0.78
baseline Wiki 0.27 | 0.69 | 0.82

Table 5: Fl-scores for the best performing classifiers
updated with various augmentation methods, as well as
the original Wiki classifier.

on the original dataset, while outperforming the
other method on the new data.

We also qualitatively assess the classifier’s out-
put before and after data augmentation with DoE.
While explicitly abusive utterances (e.g., “f*ck you
china and your chinese virus”) are often correctly
classified both before and after re-training, many
implicitly abusive examples (e.g., “it is not covid
19 but wuhanvirus”) are handled correctly by the
classifier only after re-training.

7 Related Work

Generalizability has been an active research area in
NLP (Ettinger et al., 2017; Hendrycks et al., 2020).
Several studies evaluated generalizability in abuse
detection through cross-dataset evaluation (Swamy
et al., 2019; Wiegand et al., 2019), direct dataset
analysis (Fortuna et al., 2020) or topic modeling
on the training data (Nejadgholi and Kiritchenko,
2020). Fortuna et al. (2021) showed that the lack
of generalizability is rooted in the imbalances be-
tween implicit and explicit examples in training
data. In a recent review, Yin and Zubiaga (2021)
discussed the challenges for building generalizable
hate speech detection systems and recommended
possible future directions.

The distinction between explicit and implicit
abuse has been recognized as an important factor
in abuse detection (Waseem et al., 2017). Wiegand
et al. (2019) showed that lexicon-based sampling
strategies fail to collect implicit abuse and most
of the annotated datasets are overwhelmed with
explicit examples. Breitfeller et al. (2019) showed
that inter-annotation agreement is low when label-
ing the implicit abuse utterances, as sometimes
specific knowledge is required in order to under-
stand the implicit statements. For better detection
of implicitly stated abuse, large annotated datasets
with hierarchical annotations are needed (Sap et al.,
2020), so that automatic detection systems can
learn from a wide variety of such training exam-
ples. Field and Tsvetkov (2020) proposed propen-
sity matching and adversarial learning to force the

model to focus on signs of implicit bias. Wiegand
et al. (2021) created a novel dataset for studying
implicit abuse and presented a range of linguistic
features for contrastive analysis of abusive content.

Data augmentation has been used to improve
the robustness of abuse detection classifiers. To
mitigate biases towards specific terms (e.g., iden-
tity terms), one strategy is to add benign examples
containing the biased terms to the training data
(Dixon et al., 2018; Park, 2018; Badjatiya et al.,
2019). Other works combined multiple datasets to
achieve better generalizations, using a set of prob-
ing instances (Han and Tsvetkov, 2020), multi-task
training (Waseem et al., 2018), and domain adapta-
tion (Karan and gnajder, 2018). In contrast to these
works, we take an interpretability-based approach
and guide the data collection process by mapping
the new data on the implicit vs. explicit spectrum.

8 Conclusion

As real-world data evolves, we would like to be
able to query a trained model to determine whether
it generalizes to the new data, without the need for
a large, annotated test set. We adopted the TCAV al-
gorithm to quantify the sensitivity of text classifiers
to human-chosen concepts, defined with a small set
of examples. We used this technique to compare
the generalizations of abusive language classifiers,
trained with pre-pandemic data, to explicit and im-
plicit COVID-related anti-Asian racism.

We then proposed a sensitivity-based data aug-
mentation approach, to improve generalizability to
emerging categories. We showed that in the case
of abuse detection, the most informative examples
are implicitly abusive utterances from the new cate-
gory. Our approach collects implicit augmentation
examples and achieves higher generalization to the
new category compared to confidence-based sam-
pling. Strategies for choosing the optimal set of
concept examples should be explored in the future.

While we examined abusive language detection
as a case study, similar techniques can be applied
to different NLP applications. For example, the
TCAV method could be used to measure the sen-
sitivity of a sentiment analysis system to a new
product, or a stance detection algorithm’s sensi-
tivity to an important new societal issue. As lan-
guage evolves, methods of monitoring and explain-
ing classifier behaviour over time will be essential.



Ethical Considerations

Content moderation is a critical application with
potential of significant benefits, but also harms to
human well-being. Therefore, ethics-related issues
in content moderation have been actively studied
in NLP and other disciplines (Vidgen et al., 2019;
Wiegand et al., 2019; Kiritchenko et al., 2021; Vid-
gen and Derczynski, 2020). These include sam-
pling and annotation biases in data collection, al-
gorithmic bias amplification, user privacy, system
safety and security, and human control of technol-
ogy, among others. Our work aims to address the
aspects of system safety and fairness by adapting
the model to newly emerged or not previously cov-
ered types of online abuse, often directed against
marginalized communities. We employ existing
datasets (with all their limitations) and use them
only for illustration purposes and preliminary eval-
uation of the proposed methodology. When de-
ploying the technology care should be taken to
adequately address other ethics-related issues.
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Figure B.1: Recall per class for varying DoE scores on
the EA train set

A Model Specifications

All of our models are binary RoBERTa-based
classifiers trained with the default settings of the
Trainer module from the Huggingface library® with
3 training epochs, on a Tesla V100-SXM2 GPU
machine, batch size of 16, warm-up steps of 500
and weight decay of 0.01. We use Roberta-base
model, which includes 12-layer, 768 hidden nodes,
12 head nodes, 125M parameters, and add a lin-
ear layer with two nodes for binary classification.
Training these classifiers takes several hours de-
pending on the size of the training dataset.

B DoE Analysis on the EA Train Set

With the DoE score, we want to distinguish be-
tween implicit and explicit examples of abuse.
However, when used for data selection, the true la-
bels of the selected examples are not available. We
investigate what low DoE scores mean in terms of
‘being challenging to classify’. With both Founta
and Wiki classifiers, we calculate the DoE score for
all instances of the EA train set, sort the negative
and positive examples separately based on DoE
and look at the classification accuracies in bins of
size 100 of sorted DoEs. Figure B.1 shows that low
DoE examples are correctly classified if negative
and misclassified if positive (implicit abuse). In
contrast, high DoE examples are misclassified if
negative and correctly classified if positive (explicit
abuse).

$https://huggingface.co/transformers/
main_classes/trainer.html

11

08

0.6

0.4

Precision

02

0.0

1000 2000 3000 4000 5000 6000

Conf.
s DoE

0.8

06

0.4

Recall

02

00
1000 2000 3000 40000 5000 6000

Augmentation Size

Figure C.1: Precision and recall of the augmented Wiki
classifier on the FA test set.

C Comparing DoE and
Confidence-Based Augmentation
Using Precision and Recall

In Section 6, we compare the classifiers updated
with DoE and confidence-based methods using clas-
sification F-score. Here, we provide a more fine-
grained analysis based on recall and precision.

Figure C.1 shows the recall and precision of
the updated classifiers on the FA dataset. This
figure indicates that the classifiers updated with
DoE are much more successful in recognizing abu-
sive utterances than the classifiers updated with
confidence, but misclassify more non-abusive sen-
tences, which results in substantially higher recall
scores, but slightly lower precision scores. Note
that in computer-assisted content moderation, re-
call is more important than precision, since au-
tomatically flagged posts are assessed by human
moderators to make the final decision.

We argue that the higher recall and lower pre-
cision of classifiers updated with DoE is due to
the discrepancies in the definitions of the negative
classes for the Wiki and EA datasets. In Appendix
B, we observe that low DoE examples are correctly
classified if negative and misclassified if positive
(implicit abuse). In contrast, high DoE examples
are misclassified if negative and correctly classified
if positive (explicit abuse). We use this observation
to explain higher recall of the confidence-based
method in comparison with the DoE-based method
for the EA-negative class. As mentioned before,
while EA-positive fits under the definition of ‘toxi-


https://huggingface.co/transformers/main_classes/trainer.html
https://huggingface.co/transformers/main_classes/trainer.html

city’ in Wiki-positive, the definition of EA-negative
is inconsistent with the definition of Wiki-negative.
In other words, DoE tends to choose negative exam-
ples that the Wiki classifier already recognizes as
negative, whereas the confidence-based data aug-
mentation selects negative examples that are un-
known to the classifier. Therefore, the classifier
augmented with low confidence scores adapts bet-
ter to the new definition of negative examples than
the classifier updated with low DoE scores. In a
real-life scenario, we do not expect the definition of
the negative class to change over time, so precision
for DoE-base augmentation should not suffer.
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