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Abstract
Robustness of machine learning models on001
ever-changing real-world data is critical, espe-002
cially for applications affecting human well-003
being such as content moderation. New kinds004
of abusive language continually emerge in on-005
line discussions in response to current events006
(e.g., COVID-19), and the deployed abuse de-007
tection systems should be updated regularly008
to remain accurate. General abusive language009
classifiers tend to be fairly reliable in de-010
tecting out-of-domain explicitly abusive utter-011
ances but often fail to detect new types of012
more subtle, implicit abuse. We propose an in-013
terpretability technique, based on the Testing014
Concept Activation Vector (TCAV) method015
from computer vision, to quantify the sensi-016
tivity of a trained model to the human-defined017
concepts of explicit and implicit abusive lan-018
guage, and use that to explain the generaliz-019
ability of the model on new data, in this case,020
COVID-related anti-Asian hate speech. Ex-021
tending this technique, we introduce a novel022
metric, Degree of Explicitness, for a single in-023
stance and show that the new metric is benefi-024
cial in suggesting out-of-domain unlabeled ex-025
amples to effectively enrich the training data026
with informative, implicitly abusive texts.027

1 Introduction028

When machine learning models are deployed in the029

real world, they must be constantly monitored for030

their robustness to new and changing input data.031

One area where this is particularly important is032

in abusive language detection (Schmidt and Wie-033

gand, 2017; Fortuna and Nunes, 2018; Nakov et al.,034

2021; Vidgen and Derczynski, 2020). The con-035

tent of online conversation is constantly changing036

in response to political and social events. New037

categories of abusive language emerge, encompass-038

ing topics and vocabularies unknown to previously039

trained classifiers. Here, we tackle three main ques-040

tions: How can a human user formalize new, rele-041

vant topics or concepts in text? How do we quantify042

the sensitivity of a trained classifier to these new 043

concepts as they emerge? And how do we best 044

select training examples to update the deployed 045

classifier? 046

As a case study, we consider the rise of COVID- 047

related anti-Asian racism on social media. The 048

COVID-19 pandemic represented an entirely new 049

and unexpected situation, generating new vocab- 050

ulary (COVID-19, coronavirus, social distancing, 051

masking), new topics of conversation (dealing with 052

isolation, working from home), and – unfortunately 053

– new and renewed instances of hate speech directed 054

towards Asian communities. We imagine the case 055

of an abusive language detection algorithm which 056

had been deployed prior to the pandemic: to what 057

extent can it generalize to this new data? Although 058

social events can spark off a specific type of hate 059

speech, they are rarely the root cause of the issue. 060

Often such hateful beliefs existed before the event, 061

and are only magnified because of it (Chou and 062

Feagin, 2015). Therefore, we expect that the clas- 063

sifier should detect this new variety of hate speech 064

to some extent. 065

An important factor in this study is whether the 066

text expresses explicit or implicit abuse (Waseem 067

et al., 2017; Wiegand et al., 2021). Explicit 068

abuse refers to utterances that include direct in- 069

sults or strong rudeness, often involving profanities, 070

whereas implicit abuse involves more indirect and 071

nuanced language. Since understanding the offen- 072

sive aspects of implicit abuse in our case study may 073

require some knowledge of the context (i.e., the 074

pandemic), we expect that the pretrained classifier 075

will find these data especially difficult to handle. 076

To examine a classifier’s ability to handle new 077

type of abusive text (without access to extensive 078

labeled data), we propose a technique based on the 079

Testing Concept Activation Vector (TCAV) method 080

from the interpretability literature in computer vi- 081

sion (Kim et al., 2018). TCAV is used to explain 082

whether a classifier associates a specific concept 083
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Dataset Data Positive Class Negative Class Number of Instances % POS
Type Train Dev Test

Wikipedia
Toxicity (Wiki)
(Wulczyn et al., 2017)

Wikipedia
comments

Toxic Normal 43,737 32,128 31,866 0.17
(0.09

on test)

Founta et al. (2018)
dataset (Founta)

Twitter
posts

Abusive; Hateful Normal 62,103 10,970 12,893 0.37

East-Asian
Prejudice (EA)
(Vidgen et al., 2020)

Twitter
posts

Hostility against an
East Asian entity

Criticism of an East Asian
entity; Counter speech;
Discussion of East Asian
prejudice; Non-related

16,000 1,200 2,800 0.19

COVID-HATE (CH)
(Ziems et al., 2020)

Twitter
posts

Anti-Asian COVID-19
hate; Hate directed
to non-Asians

Pro-Asian COVID-19
Counterhate;
Hate-Neutral

– – 2,319 0.43

Table 1: Statistics for the general abusive datasets (Wiki and Founta) and COVID-related Anti-Asian datasets (EA
and CH). CH is used only as a test set due to its small size. ‘% POS’ stands for the percentage of positive instances.

to a class label (e.g., the concept of stripes is as-084

sociated with class zebra in image classification).085

Similarly, we define implicit and explicit COVID-086

related anti-Asian racism with a small set of human-087

chosen textual examples, and ask whether the pre-088

trained classifier associates these concepts with the089

positive (abusive) class.090

Further, we ask whether sensitivity to human-091

defined concepts can direct data augmentation1 to092

improve generalizations. Intuitively, when updat-093

ing a classifier, data enrichment should focus on094

adding examples of concepts to which the classi-095

fier is not yet sensitive. Conventional active learn-096

ing frameworks suggest examples with the low-097

est classification confidence as the most informa-098

tive augmentation samples. However, deep neural099

networks’ inability to provide reliable uncertainty100

estimates is one of the main barriers to adopting101

confidence-based sampling techniques (Schröder102

and Niekler, 2020). We suggest that, in the case103

of abuse detection, implicitly abusive examples are104

most informative for updating a general classifier.105

However, to the best of our knowledge, there is106

no quantitative metric that can measure the degree107

of explicitness of a candidate example, given a108

trained classifier. We extend the TCAV technique109

to provide a “degree of explicitness” measure at the110

utterance level and use that for efficient data aug-111

mentation. We make the following contributions112

(code and data are provided in the Supplementary113

Material):114

• We implement a variation of the TCAV frame-115

work for a RoBERTa-based classifier and show116

1In this paper, we use the term augmentation to refer to
the process of enriching the training data by adding examples
from sources other than the original dataset.

that it can be used to quantify the sensitivity of a 117

trained classifier to a human-understandable con- 118

cept, defined through examples, without access 119

to the training dataset of the classifier or a large 120

annotated dataset for the new category. 121

• We analyse the performance of two abusive lan- 122

guage classifiers and observe that they general- 123

ize well to explicit COVID-related anti-Asian 124

racism, but are unable to generalize to implicit 125

racism of this type. We show that sensitivities to 126

the concepts of implicit and explicit abuse can 127

explain the observed discrepancies. 128

• We adjust the TCAV method to compute the de- 129

gree of explicitness, for an unlabeled instance, 130

as a metric to guide data augmentation when up- 131

dating a general abusive language classifier to 132

include a new kind of abuse. We test this method 133

against a confidence-based augmentation algo- 134

rithm and show that it is able to learn the new 135

type of abuse more efficiently, while maintaining 136

the accuracy on the original data. 137

2 Datasets 138

We consider the following four English datasets, 139

summarized in Table 1: Founta2 and Wiki3 are 140

large, commonly-used datasets for general abusive 141

language detection, while EA and CH specifically 142

target COVID-related anti-Asian racism. We bi- 143

narize all datasets to two classes: positive (i.e., 144

2For Founta, we discard the tweets labeled as Spam and
use the train-dev-test split as provided by (Zhou et al., 2021).

3We use the pruned version of the Wiki training set where
some Wikipedia-specific non-toxic instances (54% of the
dataset) are removed (Nejadgholi and Kiritchenko, 2020). In
our preliminary experiments, this reduction did not affect the
classification performance but significantly decreased the exe-
cution time. The dev and test sets are from the original dataset.
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F-score Recall per class
Training set EA CH EA-

positive
CH-positive-
antiAsian

CH-positive-
other

EA-
negative

CH-
negative

Wiki 0.26 0.68 0.21 0.77 0.80 0.91 0.62
Founta 0.29 0.63 0.23 0.72 0.75 0.92 0.58
EA 0.74 0.66 0.74 0.70 0.32 0.94 0.87

Table 2: Evaluation of multiple classifiers on the anti-Asian hate speech data in cross-dataset settings.

abusive or hateful) and negative. For Founta, this145

means combining Abusive, Hateful texts into a sin-146

gle positive class; for EA, “Hostility against an147

East-Asian entity” is considered positive, and all148

other classes are grouped under negative; and for149

CH, all hate speech is classed as positive, while150

counter-hate and hate-neutral texts are classed as151

negative. Note that in Section 3, we analyze pos-152

itive subclasses of the CH test set separately and153

refer to them as CH-positive-antiAsian (for Anti-154

Asian COVID-19 hate) and CH-positive-other (for155

Hate directed to non-Asians).156

Previous work has commented on the difficulty157

of aligning annotations of abusive, offensive, hate-158

ful, and toxic speech across different datasets159

(Swamy et al., 2019; Kolhatkar et al., 2019; For-160

tuna et al., 2021). Here, we also observe that161

the definitions of positive (abusive) and negative162

classes differ significantly between the generalized163

and COVID-related data. In the Wiki and Founta164

datasets, the positive class encompasses a wide165

range of offensive language, while in the EA and166

CH datasets, the positive class is restricted to hate167

speech and other more intense cases of expressed168

negativity. Further, the negative class in Wiki and169

Founta datasets comprise non-abusive, neutral, or170

friendly instances while in the EA and CH datasets171

the negative class may also include rude and of-172

fensive texts as long as they do not constitute hate173

speech against Asian people or entities.174

3 Cross-Dataset Generalization175

We start by assessing the robustness of a general-176

purpose abusive language classifier on the COVID-177

related anti-Asian racism data. We train two bi-178

nary RoBERTa-based classifiers with the Wiki and179

Founta datasets (referred to hereafter as the Wiki180

and Founta classifiers), and test them on the EA181

and CH datasets. (The training details are provided182

in Appendix A.) Here, while the classifier makes183

a binary positive/negative decision, we are really184

assessing its ability to generalize to the new task185

of identifying anti-Asian hate. For comparison,186

we also train a binary classifier with the EA train187

set and evaluate it on both EA test set and the CH 188

dataset. For a detailed analysis, we report recall 189

scores for all classes along with the classification 190

F-score. Table 2 shows the results.4 Our main 191

findings are as follows: 192

Finding 1: The general classifiers (Wiki and 193

Founta) reach much higher F-scores on CH than 194

on EA (shown in blue in Table 2). We also observe 195

that the general classifiers obtain higher recall for 196

both sub-classes of CH-positive compared to the 197

EA-positive class. 198

Finding 2: The general classifiers reach higher 199

recall on CH-positive-antiAsian than the EA classi- 200

fier, even though the latter is trained for detecting 201

COVID-related racism. The general classifiers also 202

perform much better on the CH-positive-other class 203

than the EA classifier (shown in red in Table 2). 204

Finding 3: Despite better overall performance on 205

CH (Finding 1), the general classifiers reach lower 206

recall on the CH-negative class than on the EA- 207

negative class (shown in orange in Table 2). 208

Discussion on class imbalances: Since significant 209

differences in class distributions among datasets 210

can result in performance disparities, we first in- 211

vestigate whether class imbalances can explain our 212

findings. Note that abusive language datasets are of- 213

ten collected through boosted sampling and are not 214

subject to extreme class imbalances. The percent- 215

age of positive instances in the datasets used in our 216

study ranges from 9% to 43% (last column of Ta- 217

ble 1). To ensure that our analysis is not impacted 218

by differences in the class ratios of the test sets, 219

we compare the recall scores for the positive and 220

negative classes. Recall scores of the positive and 221

negative classes provide a full picture of the perfor- 222

mance of a binary classifier (all other metrics can 223

be calculated from the recall scores and class sizes) 224

and are independent of the class ratios. In terms 225

of the training set class imbalances, we observe 226

similar performances for the Wiki and Founta clas- 227

sifiers despite different class ratios in their training 228

4Our in-dataset results on EA are higher than reported in
(Vidgen et al., 2020), since we convert the task to binary.
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sets, and different performances for Wiki and EA229

classifiers despite their similar training class ratios.230

Therefore, we conclude that class imbalance in the231

training sets cannot explain our findings. As previ-232

ous research suggests, cross-dataset generalization233

in abusive language detection is often governed by234

the compatibility of the definitions and sampling235

strategies of training and test labels rather than236

class sizes (Yin and Zubiaga, 2021). Below, we237

discuss our findings with regards to discrepancies238

in the positive and negative class content.239

Discrepancies in the positive class: The first two240

findings are quite counter-intuitive since both the241

EA and CH datasets were collected to address the242

task of COVID-related anti-Asian hate speech de-243

tection, and are expected to be more similar to each244

other than to the general-purpose abusive datasets.245

To further investigate these findings, we manually246

annotate instances for explicitness of abuse from247

the positive class in the EA dev set and the CH248

dataset. Instances that include profanity, insult or249

rudeness directed at Asian people or entities, and250

that could be correctly identified as abusive without251

general knowledge about the COVID-19 pandemic252

are labeled as explicitly abusive; the remaining in-253

stances (e.g., ‘it is not covid 19 but wuhanvirus’)254

are labeled as implicitly abusive.255

We find that 79% of the CH-positive-antiAsian256

class is categorized as explicit, whereas only 8% of257

the EA-positive class in the EA dev set is labeled258

as explicit. Therefore, the Wiki and Founta classi-259

fiers, which have been exposed to large amounts260

of generally explicit abuse, perform well on the261

mostly explicit CH-positive sub-classes, but expe-262

rience difficulty with the COVID-specific implicit263

abuse in the EA-positive class. For example, the264

tweet ‘the chinavirus is a biological attack initiated265

by china’ is misclassified as non-abusive. On the266

other hand, the EA dataset contains fewer explicitly267

abusive examples than the general datasets, there-268

fore the EA classifier underperforms in detecting269

the explicit examples in the CH-positive-antiAsian270

class, despite being trained for the same task. We271

also notice that many instances in the CH-positive-272

antiAsian class labeled as ‘implicitly abusive’ are273

correctly classified by the EA classifier, but are274

not recognized as abusive by the Wiki and Founta275

classifiers. Further, as expected the EA classifier276

performs poorly on the CH-positive-other class as277

it was not exposed to such data.278

Discrepancies in the negative class: As men-279

tioned above, the negative class is defined very dif- 280

ferently in the general and COVID-related datasets; 281

therefore, it is perhaps not surprising that the Wiki 282

and Founta classifiers do not perform well on the 283

CH-negative class. These classifiers tend to assign 284

the positive label to instances of the CH-negative 285

class due to the presence of obscene words and 286

expressions (e.g.„ ‘any racist in america talks sh*t 287

about asians’). Unlike CH-negative, there is not 288

much obscenity in EA-negative. 289

4 Sensitivity to Implicit and Explicit 290

Abuse to Explain Generalizability 291

In Section 3, we showed that the generalizability of 292

an abusive language classifier to a new, fine-grained 293

category is highly dependent on the relative balance 294

between implicit and explicit abuse in the train and 295

test sets. This observation is in line with findings 296

by Fortuna et al. (2021), and suggests that general- 297

ization should be evaluated on implicit and explicit 298

abuse separately. However, due to complexities 299

of annotation of abusive content, curating separate 300

implicit and explicit test sets is too costly (Wiegand 301

et al., 2021). Instead, we adapt the Testing Concept 302

Activation Vector (TCAV) algorithm originally de- 303

veloped for image classification (Kim et al., 2018), 304

to calculate the classifiers’ sensitivity to explicit 305

and implicit COVID-related racism, with only a 306

small set of examples, and use these sensitivities to 307

explain the generalizations observed in Table 2. 308

4.1 TCAV background and implementation 309

TCAV is a post-training interpretability method to 310

measure how important a user-chosen concept is 311

for a prediction, even if the concept was not used 312

as a feature during the training. The concept is 313

defined with a set of concept examples. Using these 314

examples, a Concept Activation Vector (CAV) is 315

learned to represent the concept in the activation 316

space of the classifier. Then, directional derivatives 317

are used to calculate the sensitivity of predictions 318

to changes in inputs towards the direction of the 319

concept, at the neural activation layer. 320

We adapt the TCAV procedure for a binary 321

RoBERTa-based classifier to measure the impor- 322

tance of a concept to the positive class. For any 323

input text, x ∈ Rk×n, with k words in the n- 324

dimensional input space, we consider the RoBERTa 325

encoder of the classifier as femb : Rk×n → Rm, 326

which maps the input text to its RoBERTa rep- 327

resentation (the representation for [CLS] token), 328
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r ∈ Rm. For each concept, C, we collect NC con-329

cept examples, and map them to RoBERTa repre-330

sentations rjC , j = 1, ..., NC . To represent C in the331

activation space, we calculate P number of CAVs,332

υpC , by averaging5 the RoBERTa representations of333

Nυ randomly chosen concept examples:334

υpC =
1

Nυ

Nυ∑
j=1

rjC p = 1, .., P (1)335

where Nυ < NC . The conceptual sensitivity of the336

positive class to the υpC , at input x can be computed337

as the directional derivative SC,p(x):338

SC,p(x) = lim
ε→0

h(femb(x)+ευ
p
C)−h(femb(x))
ε339

= 5h(femb(x)).υpC (2)340

where h : Rm → R is the function that maps the341

RoBERTa representation to the logit value of the342

positive class. In Equation 2, SC,p(x) measures343

the changes in class logit, if a small vector in the344

direction of C is added to the input example, in345

the RoBERTa-embedding space. For a set of input346

examples X , we calculate the TCAV score as the347

fraction of inputs for which small changes in the348

direction of C increase the logit:349

TCAVC,p =
|x ∈ X : SC,p(x) > 0|

|X|
(3)350

A TCAV score close to one indicates that for the351

majority of input examples the logit value increases.352

Equation 3 defines a distribution of scores for the353

concept C; we compute the mean and standard de-354

viation of this distribution to determine the overall355

importance of C to the prediction.356

4.2 Classifier’s Sensitivity to a Concept357

We define each concept C with NC = 100 exam-358

ples, and experiment with six concepts described359

in Table 3. To set a baseline, we start with a set360

of random examples to form a non-coherent con-361

cept. Next, we define a non-hateful COVID-related362

concept using random tweets with COVID-related363

keywords covid, corona, covid-19, pandemic. For364

the explicit anti-Asian abuse concept, we include365

5In the original TCAV algorithm, a linear classifier is
trained to separate representations of concept examples and
random examples. Then, the vector orthogonal to the decision
boundary of this classifier is used as the CAV. We experi-
mented with training a linear classifier and found that the
choice of random utterances has a huge impact on the results
to the point that the results are not reproducible. More stable
results are obtained when CAVs are produced by averaging
the RoBERTa representations.

Non-coherent concept: random tweets collected with stop
words as queries
COVID-19: tweets collected with words covid, corona,
covid-19, pandemic as query words
Explicit anti-Asian abuse: tweets labeled as explicit from
EA dev and CH
Implicit-EA abuse: tweets labeled as implicit from EA dev
Implicit-CH abuse: tweets labeled as implicit from CH
Generic hate: tweets from the Hateful class of Founta dev

Table 3: Human-defined concepts and the sources of
the tweets used as concept examples.

all 14 explicitly abusive examples from the EA 366

dev set and 86 explicitly abusive examples from 367

CH-positive-antiAsian. We define two implicit anti- 368

Asian concepts taken from the EA-positive and CH- 369

positive-antiAsian, to assess whether selecting the 370

examples from two different datasets affects the 371

sensitivities. We also define the generic hate con- 372

cept with examples of pre-COVID general hateful 373

utterances, not directed at Asian people or entities, 374

from the Founta dev set. 375

We calculate P = 1000 CAVs for each concept, 376

where each CAV is the average of Nυ = 5 ran- 377

domly chosen concept examples. We use 2000 378

random tweets collected with stopwords as input 379

examplesX (see Equation 3).6 Table 4 presents the 380

means and standard deviations of the TCAV score 381

distributions for the three classifiers trained on Wiki, 382

Founta, and EA datasets, respectively. First, we 383

observe that all TCAV scores calculated for a ran- 384

dom, non-coherent set of examples are zero; i.e., as 385

expected, the TCAV scores do not indicate any as- 386

sociation between a non-coherent concept and the 387

positive class. Also, as expected, none of the classi- 388

fiers associate the non-hateful COVID-related con- 389

cept to the positive class.7 These observations set 390

a solid baseline for interpreting the TCAV scores, 391

calculated for other concepts. Here we ask whether 392

the generated TCAV scores can explain the gener- 393

alization performances observed in Table 2. 394

6Unlike the original TCAV algorithm, we do not restrict
the input examples from the target class. In our experiments,
we observed that, for this binary classification set-up, the
choice of input examples has little impact on the TCAV scores.
Intuitively, we assess whether adding the concept vector to
a random input would increase the likelihood of it being as-
signed to the positive class.

7Note that a zero TCAV score can be due to the absence
of that concept in train data (e.g., the COVID concept for the
Wiki and Founta classifiers), insignificance of the topic for
predicting the positive label (e.g., the COVID concept for the
EA classifier), or the lack of coherence among the concept
examples (such as the concept defined by random examples).
A TCAV score close to 1, on the other hand, indicates the
importance of a concept for positive prediction.
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Concept
Classifier non-coherent COVID-19 explicit anti-Asian implicit-EA implicit-CH generic hate

Wiki 0.00 (0.03) 0.00 (0.05) 0.96 (0.16) 0.00 (0.03) 0.28 (0.43) 0.75 (0.41)
Founta 0.00 (0.02) 0.00 (0.01) 0.92 (0.22) 0.00 (0.06) 0.19 (0.32) 0.60 (0.44)

EA 0.00 (0.00) 0.00 (0.00) 0.90 (0.26) 0.87 (0.30) 0.70 (0.42) 0.00 (0.00)

Table 4: Means and standard deviations of TCAV score distributions for the positive class of the three classifiers
with respect to six human-defined concepts. Scores statistically significant difference from random are in bold.

Observation 1: The Wiki and Founta classifiers395

are significantly more sensitive to the explicit con-396

cept than the implicit concepts. Given that the397

majority of examples in CH-positive-antiAsian are398

explicitly abusive and the majority of examples in399

EA-positive are implicitly abusive, the differences400

in sensitivities predict that the Wiki and Founta clas-401

sifiers are more accurate in detecting CH-positive-402

antiAsian than in detecting EA-positive. This is403

consistent with Finding 1 in Section 3.404

Observation 2: The sensitivity of the Wiki and405

Founta classifiers to the explicit and the generic406

hate concepts are higher than the sensitivity of the407

EA classifier to these concepts. The difference408

is significant in the case of the generic hate con-409

cept. Also, the EA classifier is more sensitive to the410

implicit-EA concept than the implicit-CH concept,411

suggesting that the two datasets do have different412

underlying distributions in content. These observa-413

tions are in line with Finding 2.414

Observation 3: In Table 4 we see that the EA415

classifier shows sensitivity to both explicit anti-416

Asian abuse and the two implicit anti-Asian con-417

cepts. Unlike the EA classifier, the Wiki and Founta418

classifiers are only sensitive to explicit anti-Asian419

abuse and are not able to differentiate texts about420

Asian entities at a nuanced level. The Wiki and421

Founta classifiers would label any example that in-422

cludes profane words as positive due to their high423

sensitivity to explicit abuse. Given that the CH-424

negative class includes many texts with profane425

words, we would expect the general classifiers mis-426

classify a large portion of this class. This is con-427

sistent with Finding 3, where on the CH-negative428

class we observed low recall for the general classi-429

fiers and high recall for the EA classifier.430

5 Degree of Explicitness431

Here, we suggest that implicit examples are more432

informative (less redundant) for updating a gen-433

eral classifier and provide a quantitative metric to434

guide the data augmentation process. We extend435

the TCAV methodology to estimate the Degree of436

Explicitness or DoE of an utterance. We showed 437

that the average TCAV score of the positive class 438

for the explicit concept is close to 1. DoE is based 439

on the idea that if we define a new concept by 440

adding one utterance to the explicit concept exam- 441

ples, the sensitivity of the classifier to the new con- 442

cept will stay close to 1, only if the new utterance 443

is explicitly abusive. Here, we modify Equation 1 444

and calculate each CAV by averaging the RoBERTa 445

representations of Nυ − 1 explicit concept exam- 446

ples, and the new utterance for which we want the 447

degree of explicitness, xnew, with representation 448

rnew. Thus, 449

υpnew =
1

Nυ
(

Nυ−1∑
j=1

rjC + rnew), p = 1, .., P 450

451We then calculate the average TCAV score for each 452

xnew as its DoE score. If the new utterance, xnew, 453

is explicitly abusive, υpnew will represent an ex- 454

plicit concept, and the average TCAV score, i.e., 455

mean(TCAVC,p) will remain close to 1. However, 456

the less explicit the new example is, the more υpnew 457

will diverge from representations of explicit abuse, 458

and the average score will drop. We use Nυ = 3 in 459

the following experiments. 460

DoE analysis on COVID-related abusive data: 461

We then validate the utility of DoE in terms of sep- 462

arating implicit and explicit abusive examples. For 463

the Wiki and Founta classifiers, we calculate the 464

DoE score of the implicit and explicit examples 465

from CH and EA dev sets (described in Section 3), 466

excluding the examples used to define the Explicit 467

anti-Asian abuse concept. Given that low classi- 468

fication confidence could indicate that the model 469

struggles to predict an example correctly, one might 470

expect that implicit examples are classified with 471

less classification confidence than explicit exam- 472

ples. We calculate the classification confidence 473

(maximum output probability) for these examples 474

as the baseline. Figure 1 shows the comparison of 475

DoE with classification confidence. We observe 476

that for both classifiers, the distribution of DoE 477

scores of implicit examples is different from the 478

distribution of DoE scores of explicit examples, but 479
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Figure 1: Comparison of classification confidence and
DoE score for distinguishing between implicit and ex-
plicit abusive utterances.

the distributions of their classification confidences480

are indistinguishable. Therefore, we conclude that481

DoE is more effective at separating implicit abuse482

from explicit abuse than classification confidence.483

We further analyze DoE scores for the positive and484

negative classes separately in Appendix B.485

6 Data Augmentation with DoE score486

We now use the DoE score to direct data augmen-487

tation. We consider a scenario where a general488

classifier should be re-trained with an augmented489

dataset to include emerging types of abusive lan-490

guage. As we showed, general classifiers are al-491

ready sensitive to explicit abuse. Therefore, we492

hypothesize that implicit examples are more benefi-493

cial for updating the classifier. Here, we describe a494

novel DoE-based augmentation approach and con-495

trast it with the conventional process of choosing496

augmentation examples based on the classification497

confidence (Zhu et al., 2008; Chen et al., 2019).498

We consider the general-purpose abusive lan-499

guage classifier trained on Wiki. Our goal is to500

find a small but sufficient portion of the EA train501

set to augment the original Wiki train set, so that502

the classifier is able to handle COVID-related anti-503

Asian hate speech. We calculate the DoE and con-504

fidence scores for all the examples in the EA train505

set and add the N examples with the lowest scores506

to the original Wiki train set. We vary N from507

1K to 6K, with a 1K step. After the augmentation508

data size reaches 6K, the classifier performance509

on the original Wiki test set drops substantially for510

both techniques. Also, note that as the size of the511

augmentation dataset increases, the two methods512

converge to the same performance.513

Figure 2: Classification F-score of the augmented Wiki
classifier on the EA and Wiki test sets.

6.1 Results 514

Figure 2 shows the F-score of the classifiers up- 515

dated using the DoE and confidence-based aug- 516

mentation methods on the original test set (Wiki) 517

and the new test set (EA) for different augmentation 518

sizes. (Precision and recall figures are provided in 519

Appendix C.) Since only EA is used for augmenta- 520

tion, we evaluate the classifiers on this dataset to 521

find the optimum size for the augmented training 522

set and only evaluate the best performing classifiers 523

on CH. We expect that an efficient augmentation 524

should maintain the performance on Wiki and reach 525

acceptable results on EA test set. 526

DoE is better at learning the new type of abuse: 527

On the EA dataset, DoE achieves better results than 528

the confidence-based augmentation method for all 529

augmentation sizes, except for N= 5K, where the 530

performances of two methods are comparable. 531

DoE is better at maintaining performance on 532

the original dataset: DoE outperforms the 533

confidence-based method on the Wiki dataset. For 534

all augmentation sizes, the performance of the DoE- 535

augmented classifier on this class stays within 2% 536

of the baseline (the F-score of the classifier trained 537

just on Wiki data), whereas for the confidence- 538

based augmentation, we observe up to 6% drop 539

depending on the size of the added data. 540

DoE is better overall: Table 5 presents the best re- 541

sults achieved by the two augmentation methods on 542

the EA test set: F1-score of 0.61 for the DoE-based 543

augmentation obtained with 3K added examples, 544

and F1-score of 0.54 for the confidence-based aug- 545

mentation obtained with 4K added examples. For 546

comparison, we also show the baseline results for 547

the original Wiki classifier and the classifier trained 548

with the combined Wiki and full EA train sets. Al- 549

though we did not optimize the augmentation for 550

the CH dataset, our evaluation shows that DoE 551

performs favourably on this dataset, as well. We 552

conclude that the new DoE-based augmentation 553

method maintains the classification performance 554
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Method Training Dataset EA CH Wiki
DoE Wiki+3K EA 0.61 0.73 0.82
confidence Wiki+ 4K EA 0.54 0.71 0.79
merging data Wiki+EA 0.58 0.72 0.78
baseline Wiki 0.27 0.69 0.82

Table 5: F1-scores for the best performing classifiers
updated with various augmentation methods, as well as
the original Wiki classifier.

on the original dataset, while outperforming the555

other method on the new data.556

We also qualitatively assess the classifier’s out-557

put before and after data augmentation with DoE.558

While explicitly abusive utterances (e.g., “f*ck you559

china and your chinese virus”) are often correctly560

classified both before and after re-training, many561

implicitly abusive examples (e.g., “it is not covid562

19 but wuhanvirus”) are handled correctly by the563

classifier only after re-training.564

7 Related Work565

Generalizability has been an active research area in566

NLP (Ettinger et al., 2017; Hendrycks et al., 2020).567

Several studies evaluated generalizability in abuse568

detection through cross-dataset evaluation (Swamy569

et al., 2019; Wiegand et al., 2019), direct dataset570

analysis (Fortuna et al., 2020) or topic modeling571

on the training data (Nejadgholi and Kiritchenko,572

2020). Fortuna et al. (2021) showed that the lack573

of generalizability is rooted in the imbalances be-574

tween implicit and explicit examples in training575

data. In a recent review, Yin and Zubiaga (2021)576

discussed the challenges for building generalizable577

hate speech detection systems and recommended578

possible future directions.579

The distinction between explicit and implicit580

abuse has been recognized as an important factor581

in abuse detection (Waseem et al., 2017). Wiegand582

et al. (2019) showed that lexicon-based sampling583

strategies fail to collect implicit abuse and most584

of the annotated datasets are overwhelmed with585

explicit examples. Breitfeller et al. (2019) showed586

that inter-annotation agreement is low when label-587

ing the implicit abuse utterances, as sometimes588

specific knowledge is required in order to under-589

stand the implicit statements. For better detection590

of implicitly stated abuse, large annotated datasets591

with hierarchical annotations are needed (Sap et al.,592

2020), so that automatic detection systems can593

learn from a wide variety of such training exam-594

ples. Field and Tsvetkov (2020) proposed propen-595

sity matching and adversarial learning to force the596

model to focus on signs of implicit bias. Wiegand 597

et al. (2021) created a novel dataset for studying 598

implicit abuse and presented a range of linguistic 599

features for contrastive analysis of abusive content. 600

Data augmentation has been used to improve 601

the robustness of abuse detection classifiers. To 602

mitigate biases towards specific terms (e.g., iden- 603

tity terms), one strategy is to add benign examples 604

containing the biased terms to the training data 605

(Dixon et al., 2018; Park, 2018; Badjatiya et al., 606

2019). Other works combined multiple datasets to 607

achieve better generalizations, using a set of prob- 608

ing instances (Han and Tsvetkov, 2020), multi-task 609

training (Waseem et al., 2018), and domain adapta- 610

tion (Karan and Šnajder, 2018). In contrast to these 611

works, we take an interpretability-based approach 612

and guide the data collection process by mapping 613

the new data on the implicit vs. explicit spectrum. 614

8 Conclusion 615

As real-world data evolves, we would like to be 616

able to query a trained model to determine whether 617

it generalizes to the new data, without the need for 618

a large, annotated test set. We adopted the TCAV al- 619

gorithm to quantify the sensitivity of text classifiers 620

to human-chosen concepts, defined with a small set 621

of examples. We used this technique to compare 622

the generalizations of abusive language classifiers, 623

trained with pre-pandemic data, to explicit and im- 624

plicit COVID-related anti-Asian racism. 625

We then proposed a sensitivity-based data aug- 626

mentation approach, to improve generalizability to 627

emerging categories. We showed that in the case 628

of abuse detection, the most informative examples 629

are implicitly abusive utterances from the new cate- 630

gory. Our approach collects implicit augmentation 631

examples and achieves higher generalization to the 632

new category compared to confidence-based sam- 633

pling. Strategies for choosing the optimal set of 634

concept examples should be explored in the future. 635

While we examined abusive language detection 636

as a case study, similar techniques can be applied 637

to different NLP applications. For example, the 638

TCAV method could be used to measure the sen- 639

sitivity of a sentiment analysis system to a new 640

product, or a stance detection algorithm’s sensi- 641

tivity to an important new societal issue. As lan- 642

guage evolves, methods of monitoring and explain- 643

ing classifier behaviour over time will be essential. 644
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Ethical Considerations645

Content moderation is a critical application with646

potential of significant benefits, but also harms to647

human well-being. Therefore, ethics-related issues648

in content moderation have been actively studied649

in NLP and other disciplines (Vidgen et al., 2019;650

Wiegand et al., 2019; Kiritchenko et al., 2021; Vid-651

gen and Derczynski, 2020). These include sam-652

pling and annotation biases in data collection, al-653

gorithmic bias amplification, user privacy, system654

safety and security, and human control of technol-655

ogy, among others. Our work aims to address the656

aspects of system safety and fairness by adapting657

the model to newly emerged or not previously cov-658

ered types of online abuse, often directed against659

marginalized communities. We employ existing660

datasets (with all their limitations) and use them661

only for illustration purposes and preliminary eval-662

uation of the proposed methodology. When de-663

ploying the technology care should be taken to664

adequately address other ethics-related issues.665
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Figure B.1: Recall per class for varying DoE scores on
the EA train set

A Model Specifications858

All of our models are binary RoBERTa-based859

classifiers trained with the default settings of the860

Trainer module from the Huggingface library8 with861

3 training epochs, on a Tesla V100-SXM2 GPU862

machine, batch size of 16, warm-up steps of 500863

and weight decay of 0.01. We use Roberta-base864

model, which includes 12-layer, 768 hidden nodes,865

12 head nodes, 125M parameters, and add a lin-866

ear layer with two nodes for binary classification.867

Training these classifiers takes several hours de-868

pending on the size of the training dataset.869

B DoE Analysis on the EA Train Set870

With the DoE score, we want to distinguish be-871

tween implicit and explicit examples of abuse.872

However, when used for data selection, the true la-873

bels of the selected examples are not available. We874

investigate what low DoE scores mean in terms of875

‘being challenging to classify’. With both Founta876

and Wiki classifiers, we calculate the DoE score for877

all instances of the EA train set, sort the negative878

and positive examples separately based on DoE879

and look at the classification accuracies in bins of880

size 100 of sorted DoEs. Figure B.1 shows that low881

DoE examples are correctly classified if negative882

and misclassified if positive (implicit abuse). In883

contrast, high DoE examples are misclassified if884

negative and correctly classified if positive (explicit885

abuse).886

8https://huggingface.co/transformers/
main_classes/trainer.html

Figure C.1: Precision and recall of the augmented Wiki
classifier on the EA test set.

C Comparing DoE and 887

Confidence-Based Augmentation 888

Using Precision and Recall 889

In Section 6, we compare the classifiers updated 890

with DoE and confidence-based methods using clas- 891

sification F-score. Here, we provide a more fine- 892

grained analysis based on recall and precision. 893

Figure C.1 shows the recall and precision of 894

the updated classifiers on the EA dataset. This 895

figure indicates that the classifiers updated with 896

DoE are much more successful in recognizing abu- 897

sive utterances than the classifiers updated with 898

confidence, but misclassify more non-abusive sen- 899

tences, which results in substantially higher recall 900

scores, but slightly lower precision scores. Note 901

that in computer-assisted content moderation, re- 902

call is more important than precision, since au- 903

tomatically flagged posts are assessed by human 904

moderators to make the final decision. 905

We argue that the higher recall and lower pre- 906

cision of classifiers updated with DoE is due to 907

the discrepancies in the definitions of the negative 908

classes for the Wiki and EA datasets. In Appendix 909

B, we observe that low DoE examples are correctly 910

classified if negative and misclassified if positive 911

(implicit abuse). In contrast, high DoE examples 912

are misclassified if negative and correctly classified 913

if positive (explicit abuse). We use this observation 914

to explain higher recall of the confidence-based 915

method in comparison with the DoE-based method 916

for the EA-negative class. As mentioned before, 917

while EA-positive fits under the definition of ‘toxi- 918
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city’ in Wiki-positive, the definition of EA-negative919

is inconsistent with the definition of Wiki-negative.920

In other words, DoE tends to choose negative exam-921

ples that the Wiki classifier already recognizes as922

negative, whereas the confidence-based data aug-923

mentation selects negative examples that are un-924

known to the classifier. Therefore, the classifier925

augmented with low confidence scores adapts bet-926

ter to the new definition of negative examples than927

the classifier updated with low DoE scores. In a928

real-life scenario, we do not expect the definition of929

the negative class to change over time, so precision930

for DoE-base augmentation should not suffer.931
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