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ABSTRACT

Transferring visual style between images while preserving semantic correspon-
dence between similar objects remains a central challenge in computer vision.
While existing methods have made great strides, most of them operate at global
level but overlook region-wise and even pixel-wise semantic correspondence. To
address this, we propose CoCoDiff, a novel training-free and low-cost style trans-
fer framework that leverages pretrained latent diffusion models to achieve fine-
grained, semantically consistent stylization. We identify that correspondence cues
within generative diffusion models are under-explored and that content consis-
tency across semantically matched regions is often neglected. CoCoDiff intro-
duces a pixel-wise semantic correspondence module that mines intermediate dif-
fusion features to construct a dense alignment map between content and style
images. Furthermore, a cycle-consistency module then enforces structural and
perceptual alignment across iterations, yielding object and region level stylization
that preserves geometry and detail. Despite requiring no additional training or su-
pervision, CoCoDiff delivers state-of-the-art visual quality and strong quantitative
results, outperforming methods that rely on extra training or annotations.

1 INTRODUCTION

Diffusion models have achieved remarkable success in the field of generative artificial intelligence.
By performing the diffusion process within a compressed latent space, Latent Diffusion Models
(LDMs) Rombach et al. (2022) achieve substantial advantages in both generation efficiency and
image quality. This efficient and flexible architecture has established them as a powerful backbone,
including text-to-image generation Nichol et al. (2021); Ramesh et al. (2022); Saharia et al. (2022),
image editing Meng et al. (2021); Tumanyan et al. (2022); Brooks et al. (2023), image restoration Lin
et al. (2024); Wang et al. (2024b); Wu et al. (2024), and style transfer Wang et al. (2023; 2024a);
Chung et al. (2024). Although diffusion models exhibit significant potential, style transfer remains
challenging when semantic alignment and fine-grained correspondence are required. Beyond global
appearance changes, high-fidelity stylization must respect region- and object-level structure. This
calls for a principled way to mine the correspondence signals already encoded in pretrained diffusion
models, enabling structure-aware, semantically consistent style transfer.

Neural style transfer Johnson et al. (2016); Zhang & Tang (2025); An et al. (2021) aims to render
the content of one image in the visual appearance of another. A central challenge is to ensure that the
stylistic features are applied in a semantically consistent manner, particularly across corresponding
regions or objects Jiang & Chen (2025). With the rise of large-scale generative models, pre-trained
latent diffusion models have become a powerful foundation for this task. However, as shown in
Fig. 1(b), a representative method for training-free diffusion models suffers structural degradation
and correspondence errors. In contrast, in Fig. 1(c), a representative of another neural-based method
fails to capture the style information of the target image effectively. Similarly, Fig. 1(d) and (e),
both prompt-guided methods, provided with a clear style prompt “oil painting, Claude Monet’s
Impression, Sunrise”, also fail to capture the stylistic features. Almost all of these approaches
treat the pre-trained model as a simple black-box generator. They either apply style globally(e.g.,
StyleID) Chung et al. (2024); Deng et al. (2022), which leads to structural inconsistencies and con-
tent detail loss, or they build complex external modules that attempt to learn correspondences from
scratch (e.g., SMS Jiang et al. (2025)). Such methods are inefficient and overlook the powerful
alignment information already present within the diffusion backbone itself. This results in a critical
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Figure 1: Comparison of different style transfer methods. We compare our proposed CoCoDiff
with three other representative methods with zoomed-in details.

gap: a failure to directly mine and utilize the model’s own semantic understanding for high-fidelity
style transfer. Therefore, we argue that the full potential of these models for style transfer remains
largely under-explored.

These issues point to a more fundamental, two-fold challenge at the core of style transfer. The
first challenge is finding dense, semantically meaningful correspondences between content and style
images. This is inherently difficult because content and style images often have vast differences in
color, texture, and geometry. An effective method must identify features that are robust enough to
match high-level concepts (e.g., the structure of the ship, the texture of the waves in Fig. 1) across
domains, yet precise enough to align fine-grained details (e.g., the color of the sky, and the subtle,
almost elusive representation of the ship in Fig. 1). The second, equally significant challenge is
utilizing these correspondences to guide the stylization. Even with a perfect alignment map, how to
perform feature injection is also a difficult problem. Therefore, a method is required to transfer local
style characteristics onto the content’s structure without creating disharmony in the overall global
style. Solving this dual problem of correspondence-aware analysis and feature injection remains the
primary barrier to achieving high-fidelity, structure-preserving style transfer.

To this end, we take a step forward by leveraging the implicit alignment capabilities of pre-trained
diffusion models and introducing a cyclic optimization mechanism to enhance semantic consistency
across domains. We propose Correspondence-Consistent Diffusion (CoCoDiff), a novel framework
that achieves fine-grained feature correspondence and structure-preserving style transfer through
adaptive, correspondence-aware guidance. Our approach is built upon the generative priors and
semantic representation capabilities of pre-trained diffusion models, enabling structure-aware and
semantically aligned stylization without the need for additional supervision or fine-tuning. Unlike
existing methods that rely on coarse global matching or expensive supervised learning, CoCoDiff
explicitly models pixel-level correspondences between content and style images by mining inter-
mediate features at optimal denoising steps and network layers. Specifically, we perform a two-
dimensional grid search over temporal and spatial resolutions of the diffusion backbone to identify
the feature representations that best capture semantic structures. Using these features, we construct
a dense correspondence map via cosine similarity, aligning each spatial location in the content im-
age with its most semantically similar counterpart in the style image. Based on this alignment,
we design a novel feature injection mechanism that selectively modulates the self-attention maps
during the diffusion inversion process, transferring style information in a spatially aware manner.
Furthermore, we introduce a cycle-consistency module that iteratively refines the stylized output by
enforcing structural preservation and appearance fidelity across generations. The optimization pro-
cess is guided by perceptual and style losses, as well as statistical alignment via Adaptive Instance
Normalization (AdaIN), ensuring that the final stylized image remains faithful to the original content
while accurately reflecting the reference style. Our contributions can be summarized as follows:

• We propose CoCoDiff, a training-free, diffusion-based framework for fine-grained,
structure-preserving style transfer that operates directly on pretrained backbones without
additional supervision or fine-tuning.

• We introduce a pixel-wise semantic correspondence module that mines intermediate fea-
tures from pre-trained diffusion models to build dense alignment maps between content
and style images, enabling region- and object-level stylization.
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• We design a cyclic optimization method that integrates attention-guided feature injection
with consistency constraints, enabling more stable and coherent stylization.

The remainder of the paper is organized as follows. Section 2 reviews prior work on diffusion models
and style transfer. Section 3 presents the proposed CoCoDiff framework, including the fine-gained
feature matching module and fitting cycle and iterative control strategy. In Section 4, we describe
the experimental setup, datasets, evaluation metrics, and provide a comprehensive analysis of the
results. Finally, Section 5 summarizes the contributions and discusses potential future directions.

2 RELATED WORK

2.1 DIFFUSION MODELS

Diffusion models have transformed generative modeling through iterative denoising, producing
high-quality images, excelling in style transfer and similar applications. Starting with Denoising
Diffusion Probabilistic Models (DDPM) Ho et al. (2020), achieving superior sample quality com-
pared to GANs Goodfellow et al. (2014); Chen et al. (2016); Karras et al. (2019), with high com-
putational cost. Denoising Diffusion Implicit Models (DDIM) Song et al. (2022) addressed this by
using a non-Markovian sampling process, reducing inference steps. LDM Rombach et al. (2022),
like Stable Diffusion, further improved efficiency by operating in a compressed latent space. The
DALL·E2 Ramesh et al. (2022) and Imagen Saharia et al. (2022) integrate text-conditioned diffusion
with CLIP Radford et al. (2021), enabling photorealistic text-to-image generation.

In downstream tasks, diffusion models have shown remarkable versatility. They are used for image
editing through techniques like Null-Text Inversion Mokady et al. (2023) and ControlNet Zhang
et al. (2023a), and DiffusionCLIP Kim et al. (2022). DIFT Tang et al. (2023) enables feature cor-
respondence by aligning object-specific features across domains. For super-resolution, SRDiff Li
et al. (2021) reconstructs high-quality images from low-resolution inputs, while RePaint Lugmayr
et al. (2022) advances inpainting by seamlessly reconstructing missing regions. Additionally, style
transfer is enhanced through approaches like DiffStyle Jiang & Chen (2025); Li (2024) which in-
tegrates text-guided diffusion with feature alignment for precise stylization. These advancements
highlight diffusion models’ fidelity and robustness across diverse generative tasks.

2.2 STYLE TRANSFER

The field of neural style transfer has evolved significantly since the seminal work of Gatys et al.
Gatys et al. (2016), who showed that hierarchical layers in CNNs can separate content structures
from style textures, more efficient approaches like including AdaIN Huang & Belongie (2017) and
WCT Li et al. (2017) soon followed. To better preserve structural details, researchers introduced
transformer architectures, StyTR2 Deng et al. (2022) pioneered the first step and StyleFormer Wu
et al. (2021) incorporated transformer modules into CNN pipelines. Moreover, patch-based meth-
odsLiao et al. (2017); Shang et al. (2025); Wang et al. (2022); Chen & Schmidt (2016); Li & Wand
(2016); Sheng et al. (2018) provide fine-grained local constraints for style transfer and offer impor-
tant insights into maintaining style stability for objects appearing at different positions or scales. Dif-
fusion models have revolutionized this field through two main approaches: training-based methods
like StyleDiffusion Wang et al. (2023); Li (2024), use neural flows, while training-free approaches
like DiffArtist Jiang & Chen (2025); Chung et al. (2024); Xu et al. (2024), manipulate attention
in pre-trained models. Recent innovations include InstantStyle-Plus Wang et al. (2024a), which
balances content and style using inverted noise, and FreeStyle He et al. (2024) uses a dual-stream
encoder for text-guided transfer. However, these methods have largely overlooked the challenge of
maintaining style consistency for identical objects in style transfer.
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Figure 2: Framework Overview of our proposed Correspondence-Consistent Diffusion (CoCoDiff).

3 METHODOLOGY

3.1 PRELIMINARY

Starting from pure noise xT ∼ N (0, I), the diffusion model predicts noise ϵθ(xt, t) at each timestep
t and updates xt to xt−1 via:

q(xt | xt−1) = N
(
xt;

√
1− βt xt−1, βtI

)
(1)

where xt and xt−1 are the latent variables at timestep t and t−1 with t ∈ {1, . . . , T}. The parameter
βt ∈ (0, 1) defines the noise variance at each timestep, as determined by a predefined schedule βt.

Stable Diffusion (SD) has a compressed latent space. It uses an encoder to transform input images
into a compact latent representation, and a decoder to reconstruct them. The U-Net architecture of
Stable Diffusion generates images from latent representations through iterative denoising. A key
point of this process is self-attention (SA) blocks. For a feature ϕ, the SA block computes as:

ϕout = Attn(Q,K, V ) = softmax
(
QKT

√
d

)
· V. (2)

In our work, we perform style transfer by leveraging the self-attention (SA) mechanism of Stable
Diffusion (SD) to inject features from a style image Is into a content image Ic. We adopt the DDIM
inversion procedure Rombach et al. (2022) to traverse the denoising trajectory from t=0 (clean
image) to t=T (Gaussian noise). At each timestep t, we extract queries Qt

c from Ic and keys and
values Kt

s, V
t
s from Is. Stylization is effected by replacing the content keys/values Kt

c, V
t
c with

Kt
s, V

t
s inside the SA blocks, and computing:

ϕout
c = Attn(Qt

c,K
t
s, V

t
s ). (3)

This process forms the foundation for injecting style features.

3.2 FRAMEWORK OVERVIEW

As illustrated in Fig. 2 and Algorithm 1, our method consists of two key stages: Fine-grained Feature
Matching that mines correspondences of content and style; Fitting Cycle and Iteration Control that
ensures consistency in the generative process. We will detail them at the following part.
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3.3 FINE-GRAINED FEATURE MATCHING

Diffusion features for correspondence. Pretrained diffusion U-Nets have the ability to encode
semantic cues across timesteps t and network layers l Tang et al. (2023). We treat intermediate acti-
vations as per-pixel descriptors for dense correspondence. For notational simplicity, throughout this
subsection we use Ic(pc) and Is(ps) to denote the pixels of content and style images, respectively.

Dense correspondence by diffusion features. Just as a painter maintains stylistic consistency
when depicting the same object, our method prioritizes stylistic coherence across semantically cor-
responding regions to ensure entire visual consistency. Exploiting the semantic encoding of diffusion
features, we extract feature maps and, for each spatial location pc in the content image, identify the
most semantically similar location ps in the style image through cosine similarity measurements of
normalized diffusion features:

cos(pc, ps) =
Ic(pc) · Is(ps)∥∥Ic(pc)∥∥∥∥Is(ps)∥∥ . (4)

This process yields a dense semantic correspondence map that guides style transfer with improved
accuracy and structure preservation.

Selecting optimal combination. We employ a two-dimensional grid search to determine the opti-
mal combination of timestep t and network layer l, aiming to balance semantic representation and
low-level detail. The optimal pair (t∗, l∗) is selected by maximizing a correspondence quality metric
M(t, l) over predefined candidate sets T and L:

(t∗, l∗) = argt,l max
t∈T , l∈L

M(t, l). (5)

Here, M(t, l) evaluates the alignment quality based on the extracted feature maps at timestep t
and layer l. To clarify how M(t, l) is defined and quantified, we follow the standard semantic
correspondence protocol and extract diffusion features from image pairs on benchmark datasets
such as SPair-71k Min et al. (2019). For each content keypoint, we identify the location in the
style image that yields the highest cosine similarity, and adopt the Percentage of Correct Keypoints
(PCK) as the evaluation criterion to determine whether the predicted correspondence falls within an
acceptable distance of the ground-truth keypoint. The metric M(t, l) is thus defined as the average
PCK score over all evaluated samples, reflecting the reliability of semantic correspondence within
the feature space (t, l). Higher values indicate that the feature configuration provides a more reliable
semantic alignment foundation for subsequent style transfer.

We fix (t∗, l∗) and use the resulting correspondence map to steer correspondence-aware feature
injection in the subsequent feature injection stage. The final spatial location p∗s is:

p∗s = argps
max
ps∈Is

cos(pc, ps). (6)

3.4 FITTING CYCLE AND ITERATIVE CONTROL

We then use the semantic correspondence map mentioned before to guide style injection. To further
enhance the semantic consistency of the feature maps, we adjust attention weights based on the
cosine similarity at corresponding positions p∗s in Is:

feat[k] = w · attn[k][p∗s] + feat[k][pc], (7)

where k denotes the feature channel, pc is the spatial location in content image, p∗s is the corre-
sponding location in stylized content image and w is a weighting factor controlling the contribution
of the attention features. This update mechanism ensures precise injection of style features into
semantically aligned regions while maximally preserving the structural information of the content
image, resulting in high-quality style transfer. However, feature-based stylization is fragile when
the statistics of the style and content images vary widely. Directly matching features across these
disparate distributions can lead to imprecise or semantically misaligned results.

Closed-loop refinement. To progressively enhance correspondence while preserving content struc-
ture and improving visual fidelity, we introduce a cycle-consistent refinement with closed-loop fea-
ture fusion. In each fitting cycle, we first identify a set of images Ic and Is. We use the previously
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Content Style Ours StyleID AdaINStyTR-2 InSTAesPA-Net Instant+ SCSAS+StyleID

Figure 3: Qualitative comparison. We compare CoCoDiff (Ours) with seven representative methods,
selected from diffusion-based, patch-based, CNN-based, transformer-based, and other approaches,
to provide a comprehensive evaluation.
Algorithm 1: Correspondence-Guided Style Transfer
Input: Ic: content image; Is: style image; Istyc : style image with content features; fθ: pretrained

diffusion U-Net; T : candidate timesteps; L: candidate layers; w: injection weight; τc, τs:
stopping thresholds; z: max iterations

Output: I(z
∗)

gen

// Stage A: correspondence
Istyc ← Attn(Qs,Kc, Vc) // equation 3

Extract {F t,l
c }, {F t,l

styc
} for t∈T , l∈L; (t∗, l∗) = argmaxM(t, l) // equation 5

for each pc: p∗styc = argmaxpstyc
cos

(
F t∗,l∗
c (pc), F

t∗,l∗

styc
(pstyc)

)
// equation 4,equation 6

// Stage B: fitting & control
for z = 1 to Z do

ycs = σ(ys)
yc−µ(yc)

σ(yc)
+ µ(ys) // equation 11

feat[k]←w · attn[k][p∗styc ] + feat[k][pc] // equation 8

Lcontent = ∥Sobel(I(z)gen)− Sobel(Ic)∥, Lstyle =
∑

l ∥G(I
(z),l
gen )−G(Is)∥2F // equation 10

if Lcontent > τc and Lstyle < τs then
break

return I
(z)
gen

mentioned Feature Injection method to enable the style image to learn the style features of the con-
tent image, updating its attention map to obtain the reverse style transfer image Istyc

. Then, using
the Feature Matching method, we build correspondences between Ic and Istyc

to obtain coordinate
pairs (pc, p∗styc

). For Ic and Is, we perform feature injection again, leveraging the coordinate pairs to
inject attention values of corresponding features, achieving a correspondence-consistent cycle. The
updated formulation is as follows:

feat[k] = w · attn[k][p∗styc
] + feat[k][pc]. (8)

Optimal objectives. In each iteration, we execute one fitting cycle to progressively optimize the
generated image. Specifically, after each iterative generation, we update the feature map via Eq. 8,
achieving semantically consistent fusion of style and content features. To evaluate the quality of
the feature map generated in each cycle and enable adaptive iterative optimization, the following
objective functions are to measure content and style fidelity concerning two aspects. Here, the
image generated at iteration z is denoted as I(z)gen. The content perceptual loss Lcontent is defined as:

Lcontent = ∥Sobel(I(z)gen)− Sobel(Ic)∥, (9)
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where Sobel(·) computes edge maps to capture structural information. Meanwhile, the style percep-
tual loss Lstyle can be defined as:

Lstyle =
∑

l∈layers

∥G(I(z),lgen )−G(Is)∥2F , (10)

where G denotes the Gram Gatys et al. (2015; 2016) matrix capturing textural style properties across
selected feature layers.

The iterative process terminates when both Lcontent > τc and Lstyle < τs, where τc and τs are
predefined thresholds. This ensures the generated image prevents over-stylization or structural dis-
tortion. We describe in detail how we choose these hyperparameters in the next section.

Tone harmonization. In the process of artistic style transfer, the harmonization of color and tone
plays a pivotal role in achieving effective stylization. To this end, we employ AdaIN Huang &
Belongie (2017) to modulate statistical information during the style transfer process. Specifically,
we leverage the latent variables of the content image yc and style image ys, to facilitate tone transfer
through statistical alignment, as expressed in the following formula:

ycs = σ(ys)
yc − µ(yc)

σ(yc)
+ µ(ys), (11)

where µ(·) and σ(·) denote the channel-wise mean and standard deviation, respectively. This ap-
proach ensures that the tone information of the style image is effectively integrated while preserving
the structural integrity of the content image, thereby enhancing the quality of the stylized output.
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Figure 4: (A) Qualitative comparison with additional zoomed-in details. We compare our
method with StyleID and StyTR2 as baseline approaches, highlighting the differences through
zoomed-in details. (B) The illustration of cycle-based image style transfer. (a) Direct feature
matching between the style image and the content image often results in low matching accuracy
and feature correspondence failure. (b) By first transforming the style image to adopt the content
image’s style before performing feature matching, the matching accuracy is significantly improved.
(c) Direct correspondence result. (d) Indirect correspondence result.
4 EXPERIMENTS

Datasets and Settings We use MS-COCO Lin et al. (2015) as the content dataset and
WikiArt Phillips & Mackintosh (2011) as the style dataset. We conduct all experiments on a single
NVIDIA RTX 4090 GPU using the pre-trained Stable Diffusion V1.4 model as it allows for fair
comparison, with DDIM Rombach et al. (2022) sampling over 50 timesteps (t = {1, . . . , 50}) and
the attention temperature scaling parameter γ = 0.7.

Evaluation Protocol We compare our method against nine style transfer methods: StyleID Chung
et al. (2024), AesPA-Net Hong et al. (2023), StyTR2 Deng et al. (2022), InST Zhang et al. (2023b),
InstantStyle-Plus Wang et al. (2024a), AdaIN Huang & Belongie (2017), SCSA Shang et al.
(2025),FreeStyle He et al. (2024), SMS Jiang et al. (2025). Experiments are conducted by configur-
ing these methods according to their publicly available codes and settings. To quantitatively evaluate
the style transfer model, we conduct experiments across 13 distinct artistic styles, including oil paint-
ing, kids’ illustration, watercolor, Ghibli, landscape woodblock printing, etc. For quantitative com-
parison purposes, we adopt a methodology similar to StyleID Chung et al. (2024) and StyTR2 Deng
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Metric Ours StyleID AesPA StyTR2 InST Instant+ AdaIN SCSA FreeStyle SMS

FID ↓ 18.432 21.010 19.645 18.886 21.541 20.982 18.672 20.835 23.654 31.266
LPIPS ↓ 0.549 0.565 0.556 0.587 0.785 0.584 0.612 0.562 0.689 0.821
ArtFID ↓ 30.001 34.446 32.124 31.559 40.235 34.820 31.711 34.107 41.161 58.756
CFSD ↓ 0.609 0.619 0.632 0.687 0.881 0.710 0.642 0.612 0.660 0.704

Table 1: Quantitative evaluation results. We compare every methods across multiple metrics.
Columns 2nd-9th are reference-guided methods while columns 10th-11th are prompt-based meth-
ods.

et al. (2022), randomly selecting 30 content images and 30 style images from each dataset to create
a comprehensive evaluation suite. We employ four established metrics: FID Heusel et al. (2018),
LPIPS Zhang et al. (2018), ArtFID Wright & Ommer (2022), and CFSD Chung et al. (2024). Lower
FID scores indicate greater similarity between stylized images and the target style domain. LPIPS
quantifies perceptual similarity between stylized and original images. ArtFID measures alignment
with human aesthetic preferences, with lower values reflecting superior performance. CFSD is a
content-focused metric that evaluates the preservation of the original image’s structural integrity.
Together, these metrics provide a comprehensive evaluation of style transfer quality and content
preservation.

4.1 QUANTITATIVE COMPARISON

Table 1 reports the quantitative comparison on four metrics: FID, LPIPS, ArtFID, and CFSD (↓
represents lower is better). Our method showcases a comprehensive quantitative comparison with
baseline approaches, highlighting its superior efficacy in striking a robust balance between vivid
style transfer quality and content preservation.

4.2 QUALITATIVE COMPARISON

As shown in Fig. 3, CoCoDiff achieves superior performance in style transfer, producing visually
compelling results with precise feature alignment. For example, in the first row, the car exhibits
consistent and vibrant coloring, while the background mountains acquire deeper hues. Similarly,
in the third row, the boat’s hull seamlessly shifts to the target red color. These results highlight our
approach’s ability to achieve fine-grained stylization while preserving content integrity, significantly
outperforming baseline methods in both style expressiveness and visual coherence. Additionally, we
provide a qualitative comparison with zoomed-in details in Fig. 4(A). For the painting The Scream,
characterized by its distorted forms, vibrant colors, and dynamic lines, CoCoDiff more effectively
preserves stylistic fluidity and intricate details compared to other approaches. This reinforces the
precision of our method in achieving advanced feature alignment and stylistic fidelity.

4.3 DIFFUSION MODEL SCALING AND CORRESPONDENCE PERFORMANCE

In order to demonstrate the model-agnostic nature of CoCoDiff, we conduct experiments using SD
v1.4, SD v1.5, SD v2.1, and SDXL with identical configurations, as shown in the Tab. 2. The results
indicate that CoCoDiff adapts well to different scales of diffusion models, delivering stable perfor-
mance. However, significant differences arise in terms of semantic consistency and fine-grained
style transfer across these models. While SDXL shows strong performance in style transfer quality,
its stability in fine-grained semantic alignment decreases. This is due to the need for fine-tuning
hyperparameters such as γ and temperature for different models to optimize visual performance.

Metric SD v1.4 SD v1.5 SD v2.1 SD XL
FID ↓ 18.432 17.995 18.252 21.412

LPIPS ↓ 0.549 0.525 0.621 0.635
ArtFID↓ 30.1 28.94 31.18 36.69
CFSD ↓ 0.609 0.589 0.766 0.714

Table 2: Comparison across different diffu-
sion models.

Sobel Gram FID LPIPS CFSD
- - 26.513 0.697 0.804
✓ - 29.845 0.506 0.631
- ✓ 23.471 0.753 0.761
✓ ✓ 18.432 0.549 0.609

Table 3: Results for Sobel and Gram combi-
nations.
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4.4 EFFECTIVENESS OF FEATURE EXTRACTION

To demonstrate the critical limitations, we present our comparative results in Fig. 4(B). The left side
of the figure displays the original content image and the target style image, which share similar wave
patterns. We perform style transfer using three methods: a baseline direct style transfer method, a
direct correspondence method, and our indirect correspondence method, which relies on Istyc

.

Difference heatmaps are obtained by subtracting the results of the two correspon-
dence methods from the baseline output;brighter colors indicate more pronounced
differences.As shown in Fig. 4(B.c), the direct correspondence method produces
global differences, revealing its failure to maintain a consistent stylized output

Iter=1

Iter=2

Iter=3

Iter=4

Iter=5Ours

LPIPS

CFSD

Iter

Iter Ours

(a) (b)

FID

Figure 5: Quantitative comparison of the cycle module.
(a) Balance between LPIPS and FID metrics across itera-
tions. (b) CFSD variations across iterations.

compared to the baseline. In con-
trast, the heatmap (B.d) for our indi-
rect method shows strong differences
localized to the wave patterns, indicat-
ing that it successfully preserves the
elephant’s contour while applying a
high-fidelity style transfer. These ob-
servations underscore the inadequacy
of a direct approach and validates our
indirect feature-based strategy.

4.5 EFFECTIVENESS OF CYCLE MODULE

Iter=1 Iter=2 Iter=3 Iter=4Cnt/Sty

Figure 6: Visual results of the iteration process. The
group with the best quality is highlighted by a red line.

Recognizing the limitations of fixed it-
eration counts in style transfer, we in-
vestigate the crucial role of adaptive it-
eration within our CoCoDiff method.
We conduct experiments comparing
style transfer across 10 content and
10 style images, evaluating fixed iter-
ations (ranging from 1 to 5) against
an adaptive gating strategy with early
stopping. Performance evaluation em-
ploys FID, CFSD, and LPIPS. As
shown in Fig. 5(a), our adaptive gating
approach achieves an optimal trade-
off between style transfer and content
preservation, significantly surpassing fixed iteration counts in both LPIPS and FID metrics. Fig. 5(b)
further confirms this advantage through CFSD scores, demonstrating content preservation outcomes.
Additionally, Fig. 6 presents two sets of visualized iteration results, showcasing optimal visual qual-
ity with a red line for adaptive iteration selection.

4.6 ABLATION STUDY

To optimize the attention injection weight w, we introduce a scaling factor to modulate the intensity
of style feature injection based on cosine similarity. We conduct an ablation study, evaluating the
visual quality of the generated images with w set to 0.3, 0.6, 1.8, 2.4 and 3.0. The results are
presented in the Tab 4a. The results indicate that w = 0.6 strikes an optimal balance between
content preservation and style fidelity, maintaining semantic consistency and structural integrity.
Lower values (e.g., w = 0.3) may lead to insufficient stylization, while higher values (e.g., w = 3.0)
risk introducing structural distortions. These results underscore the critical role of carefully tuning
w to achieve high-quality, visually coherent style transfer outcomes. Tab. 4b validates AdaIN Huang
& Belongie (2017)’s effectiveness in harmonizing color and tone during the style transfer process.

Table 3 reports an ablation on the Sobel and Gram. Without either component, the model produces
the weakest results across all metrics. Adding Sobel alone significantly improves LPIPS and CFSD
by enforcing clearer structural alignment, while adding Gram alone yields better FID by enhancing
global style coherence but tends to distort local perceptual details. When combined, Sobel and
Gram provide complementary benefits, achieving the best overall performance with the lowest FID
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w 0.3 0.6 1.8 2.4 3

FID 23.717 18.432 21.911 33.980 35.937
LPIPS 0.681 0.549 0.588 0.656 0.667
CFSD 0.642 0.609 0.746 0.735 0.791

(a) Effect of feature injection weight (w).

w/ AdaIN w/o AdaIN

FID 18.432 20.515
LPIPS 0.549 0.762
CFSD 0.609 0.646

(b) Effect of AdaIN on model performance metrics.
Table 4: Ablation study analyzing the impact of various design choices on model performance.

and strongest content–style balance. This demonstrates that integrating structural cues with style
correlation statistics leads to more stable optimization and higher-quality stylization.

4.7 USER STUDY

We conduct a user study to evaluate the performance of our proposed style transfer method in
terms of semantic consistency and style fidelity. Participants view content and style images
alongside randomized style transfer results from various methods to ensure unbiased comparisons.

Method Style Content Avg

StyleID Chung et al. (2024) 0.212 0.135 0.174
AesPA Hong et al. (2023) 0.033 0.134 0.084
StyTR2 Deng et al. (2022) 0.132 0.036 0.084
InST Zhang et al. (2023b) 0.004 0.025 0.015
Instant+ Wang et al. (2024a) 0.002 0.174 0.088
AdaIN Huang & Belongie (2017) 0.038 0.013 0.026
FreeStyle He et al. (2024) 0.021 0.013 0.017
SMS Jiang et al. (2025) 0.012 0.032 0.022

CoCoDiff(Ours) 0.546 0.438 0.492

Table 5: User study results in consistency and quality.

We collected comparisons from 25
participants (aged 19–45) across
10 distinct content images and 8
style images. Table 5 summarizes
the preference rates, with CoCoDiff
achieving the highest scores across
all criteria, thereby substantiating
its effectiveness. These findings not
only further substantiate the effi-
cacy of our approach in producing
high-quality stylizations but also
provide compelling evidence of a
consistent user preference for re-
sults that maintain strong feature
alignment while exhibiting expressive and visually appealing stylistic characteristics.

5 CONCLUSIONS

In this paper, we introduce Correspondence-Consistent Diffusion (CoCoDiff), a novel training-free
framework that utilizes pre-trained latent diffusion models to achieve high-fidelity style transfer.
By extracting intermediate features to establish pixel-wise correspondences and applying cyclic
optimization techniques, CoCoDiff ensures robust semantic consistency and preserves structural
integrity between the content and the transferred style. Through extensive experiments across var-
ious benchmarks, we demonstrate that CoCoDiff significantly outperforms current state-of-the-art
models, not only in terms of style fidelity but also in content alignment. These results reveal the
potential of CoCoDiff to unlock new possibilities for diffusion-based generative tasks, paving the
way for more effective and flexible style transfer solutions in generative modeling.

ETHICS STATEMENT

This work focuses on developing a training-free style transfer framework, CoCoDiff, built upon
pre-trained diffusion models. Our research does not involve the collection of personal data, human
subjects, or sensitive information, and all datasets used are publicly available under appropriate
licenses. We encourage responsible use of CoCoDiff within creative, educational, and research
contexts, and emphasize that any deployment of this method should adhere to ethical guidelines
and legal standards. We hope our work can inspire further research and contribute to advancing the
positive impact of generative modeling in both academic and real-world contexts.
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REPRODUCIBILITY STATEMENT

The code is available in the supplementary materials. For full reproducibility, we have detailed
datasets used for testing are also provided as described in Sec. 4 and Appendix D.1. The experimen-
tal hyperparameters and model selections in the Sec. 4 and the Appendix D.2.
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A OVERVIEW

This supplementary material supports the main paper with:

- The use of Large Language Models (Section B)

- Evaluation metrics (Section C).

- Experiment details (Section D).

- Visual comparisons results (Section F).

- Impact (Section G).

B USE OF LLMS

In accordance with ICLR 2026 policy on AI assistance disclosure, we acknowledge the use of large
language models in our paper preparation process. Our usage limits to language polishing and
grammatical improvements of the final manuscript. The language models do not involve experimen-
tal design, data analysis, result interpretation, or the generation of substantive content. They serve
solely as writing assistance tools to improve clarity and readability of text already authored by the
human authors listed on this paper. The scientific contributions, methodology, experiments, results,
and conclusions belong entirely to the work of the human authors.

C EVALUATION METRICS

C.1 LPIPS

LPIPS Zhang et al. (2018) is a perceptual metric designed to mimic how humans perceive image
differences. Instead of comparing pixels directly, it measures the distance between images in the
feature space of a deep network that has been trained on a perceptual similarity task. To calculate
LPIPS, a reference image and a generated image are fed into a pre-trained network, and feature maps
are extracted from several of its layers. These feature maps are L2-normalized, and a weighted L2
distance is computed between the corresponding features of the two images at each layer. The final
LPIPS score is the sum of these weighted distances. The formula is given by:

d(x, x0) =
∑
l

1

HlWl

∑
h,w

wl · ∥ϕl(x)h,w − ϕl(x0)h,w∥22. (12)

A lower LPIPS score indicates higher perceptual similarity between the generated and real images,
making it a valuable metric for tasks like image reconstruction and super-resolution.

C.2 FID

FID Heusel et al. (2018) assesses the quality and realism of an entire set of generated images from
a statistical perspective. It doesn’t compare individual images but rather measures the distance
between the feature distributions of a generated image set and a real image set. The calculation
relies on a pre-trained Inception-v3 network. Feature vectors are extracted from the last pooling
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Figure 7: Additional classic visual outcomes in diverse artistic styles.

layer for both the real and generated image sets. The mean vectors (µ) and covariance matrices
(Σ) are then computed for both sets. FID is the Fréchet distance between these two multivariate
Gaussian distributions, calculated using the formula:

FID = ∥µr − µg∥22 +Tr(Σr +Σg − 2(ΣrΣg)
1/2). (13)

A lower FID score indicates that the generated image distribution is closer to the real image distri-
bution, which implies better diversity and realism. FID is widely considered the standard metric for
evaluating Generative Adversarial Networks (GANs).

C.3 ARTFID

ArtFID Wright & Ommer (2022) is a composite metric specifically designed for evaluating neural
style transfer models, aiming to balance content fidelity and style fidelity in a way that aligns better
with human subjective judgments. It combines LPIPS, which measures perceptual content similarity,
with FID, which assesses style distribution realism, through a multiplicative formula to penalize
deviations in either aspect. To calculate ArtFID, first compute the average LPIPS score between the
stylized images and the original content images, and the FID score between the stylized images and
the reference style images, using pre-trained networks like VGG for LPIPS and Inception-v3 for
FID. The final ArtFID score is then obtained by the formula:

ArtFID = (1 + LPIPS)× (1 + FID). (14)

A lower ArtFID score indicates superior style transfer performance, where both content preservation
and style matching are optimized, making it particularly useful for comparing methods in artistic
image generation tasks.

C.4 CFSD

CFSD Chung et al. (2024) is a content-focused metric that evaluates the structural similarity in
neural style transfer by emphasizing spatial relationships between image patches, addressing limi-
tations in metrics like LPIPS that may be influenced by style elements. It operates on feature maps
extracted from a pre-trained VGG19 network’s conv3 layer to capture mid-level structural details.
To calculate CFSD, extract feature maps F from both the content image Ic and stylized image Ics,
compute self-correlation matrices M = F ×FT , and normalize each row via softmax to form prob-
ability distributions S. The CFSD score is the average Kullback-Leibler divergence across these
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Figure 8: Visualization results of our proposed methods.

distributions:

CFSD =
1

hw

hw∑
i=1

DKL(Sci∥Scsi). (15)

A lower CFSD score signifies better preservation of the content’s structural integrity, such as edges
and patch interrelations, independent of stylistic changes, rendering it an effective complement to
perceptual metrics in style transfer evaluations.

D EXPERIMENT DETAILS

D.1 DATASET

Our work utilizes two primary datasets: the MS-COCO 2017 Lin et al. (2015) dataset for content
and the WikiArt Phillips & Mackintosh (2011) dataset for artistic styles. We use the 118,287 images
from the MS-COCO 2017 training set as our content source, leveraging its rich variety of everyday
scenes and objects. For our style library, we meticulously select 13 distinct artistic styles from
WikiArt, which include: Oil painting, Kids’ illustration, Watercolor, Ghibli, Landscape woodblock
printing, Chinese Ink, Sketch, Pop art, Impressionism, Cubism, Cyberpunk, Pointillism, and Crayon.

To ensure experimental fairness across different style transfer expressions, we adopted specific
strategies: 1) For exemplar-guided generation(e.g., StyleID Chung et al. (2024)), we carefully se-
lected paired images from the dataset, using style images as guidance; 2) For text-guided genera-
tion(e.g., SMS Jiang et al. (2025)), we crafted appropriate prompts that accurately describe the same
style images used in the exemplar approach, thereby facilitating high-quality generation. This dual
approach allows for comprehensive evaluation of our method’s versatility across different guidance
modalities.
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Content Style Ours StyleID StyTR-2 InSTAesPA

Figure 9: Comparison of style transfer results. Visual results of our CoCoDiff method compared
against four baseline approaches across diverse artistic styles: Ghibli Style, Pixel Art, Chinese Ink,
Kid Illustration, and Vintage Style.

D.2 IMPLEMENTATION DETAILS

We conduct experiments on a single NVIDIA RTX 4090 GPU with 24GB of VRAM. The soft-
ware environment is built on Python 3.9, utilizing PyTorch 1.13.1 and CUDA 12.5 to leverage the
GPU’s computational power for accelerated processing. Crucially, our feature injection technique
is applied starting from the 49th timestep. This strategic timing allows the model to first establish
a strong content structure before introducing detailed style information, preventing the style from
overwhelming the original content. Our method can be applied to various diffusion-based models;
however, for fair comparison, we chose to use v1.4.

D.3 OPTIMAL OBJECTIVES

D.3.1 GRAM MATRIX

In style transfer tasks, a central challenge lies in accurately capturing the style characteristics of an
image, particularly global features such as texture and color. Traditional pixel-level operations fail
to capture these global statistics and cannot disregard spatial information. To solve this problem, the
Gram matrix Gatys et al. (2015) is introduced. The Gram matrix extracts statistical information by
calculating the inner product between every pair of feature maps. Specifically, the Gram matrix is
defined as:

Gij = ⟨fi, fj⟩ =
∑
k

fi(k)fj(k), (16)

effectively captures the second-order statistical information of feature vectors, encapsulating global
distribution patterns such as texture and color while disregarding spatial positions.

The Gram matrix can be considered as a two-dimensional covariance matrix, capturing the corre-
lations between different feature channels. In their seminal work, Gatys et al. demonstrated that
two-dimensional covariance is particularly well-suited for style transfer tasks. They showed that
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among different types of covariance, two-dimensional covariance, as represented by the Gram ma-
trix, is the most effective for describing style.

In style transfer applications, the Gram matrix facilitates optimization by minimizing distributional
differences in feature spaces, enabling target images to emulate the distinctive patterns present in
style reference images. The scale-invariance and robustness of Gram matrices establish them as
ideal tools for style description, allowing for effective style transfer across diverse visual domains
regardless of content structure or dimensional variations.

D.3.2 SOBEL

A critical balance must be maintained in style transfer: on one hand, the algorithm must effectively
learn and incorporate the distinctive feature information from the style reference image, while on
the other hand, it must preserve the structural integrity of the content image without distortion. This
dual objective presents a fundamental challenge in the field.

The Sobel operator, defined by convolving an image with kernels for vertical edges, effectively
detects intensity gradients to highlight edges and line textures in generated images. By computing
the gradient magnitude, typically as (

√
G2

x +G2
y ), it emphasizes regions of rapid intensity change,

which correspond to line structures and textures. This edge-enhancing capability allows the Sobel
operator to control and refine the linear patterns and textural details in image generation, ensuring
that stylistic elements like contours and boundaries are preserved or accentuated.

E MORE COMPARISONS WITH PATCHED-BASED METHODS

We include representative methods such as CNNMRF Li & Wand (2016), Style-Swap Chen &
Schmidt (2016), etc. and conduct systematic quantitative comparisons. As shown in Tab. 6 and
Fig. 6, CoCoDiff (Ours) achieves superior or highly competitive performance across all metrics.
These results indicate that our method not only captures meaningful correspondences but also ben-
efits from diffusion-based semantic alignment, enabling performance beyond conventional patch-
level approaches. Importantly, our method is also training-free.

Metric Ours CNNMRF Style-Swap DIA Avatar-Net SCSA+StyleID
FID (↓) 18.432 27.872 35.642 31.933 22.356 20.835

LPIPS (↓) 0.549 0.672 0.793 0.661 0.641 0.562
CFSD (↓) 0.609 0.844 0.761 0.649 0.753 0.612

Table 6: Comparison of metrics across methods.

F VISUAL COMPARISONS RESULTS

We present additional experimental results in Fig. 7 that showcase classic visual outcomes across a
diverse range of artistic styles. Our method, CoCoDiff, effectively transfers styles from several artis-
tic movements, including Primitive Art, Romanticism, Impressionism, Post-Impressionism, Cartoon,
and Sketch. More results can be found in Fig. 8.

Further experiments confirm the robustness and versatility of our proposed method. The results
demonstrate its ability to produce visually compelling stylized images while preserving high content
fidelity. CoCoDiff maintains a superior balance between expressive styling and content preservation
across a wide range of artistic scenarios.

Additionally, we present a comprehensive evaluation of our style transfer method (CoCoDiff) by
comparing it with four established baseline approaches: StyleID Chung et al. (2024), AesPA-
Net Hong et al. (2023), StyTR² Deng et al. (2022) and InST Zhang et al. (2023b). We test these
methods across diverse artistic styles, including Ghibli Style, Pixel Art, Chinese Ink, Kid Illustration,
and Vintage Style as shown in Fig. 9. Our experiments show that CoCoDiff consistently outperforms
these baselines, achieving an outstanding balance of vivid stylistic rendering and accurate content
preservation in each style. For example, in Ghibli Style, CoCoDiff captures the fluid, whimsical
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Content Style Ours SCSAS+StyleIDAvatar-NetCNNMRF Style-Swap DIA

Figure 10: Additional comparisons with patch-based methods

aesthetic more effectively than others, while in Chinese Ink, it preserves intricate brushstroke details
with greater fidelity than StyleID. Similarly, for Pixel Art and Kid Illustration, CoCoDiff produces
sharp, stylized images with minimal structural distortion compared to StyTR² and InST. These find-
ings underscore CoCoDiff’s adaptability and precision, ensuring visually striking and structurally
coherent outputs across a broad spectrum of artistic domains.reinforcing its effectiveness across
diverse artistic contexts.

F.1 FINE-GRAINED FEATURE CORRESPONDENCE

A key contribution of our approach is the implementation of fine-grained feature correspondence. To
clearly demonstrate this capability, we have included detailed style transfer results on three distinct
subjects: flower, cow and house. These images in Fig. 11, Fig. 12 and Fig. 13 effectively illustrate
how our method precisely aligns and transfers stylistic elements while meticulously preserving the
unique content of each subject.

G IMPACT

We believe our proposed training-free style transfer matching module achieves remarkable results
through its novel approach. The concept of cyclic consistency can be readily integrated to vari-
ous other style transfer methods to achieve high-fidelity feature correspondence. From a societal
perspective, our work brings positive implications for entertainment devices, animation media, and
related fields, while simultaneously raising important considerations regarding copyright protection
and intellectual property rights.
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Figure 11: Fine-grained style transfer visual results: Flower.
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Figure 12: Fine-grained style transfer visual results: Cow.
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Figure 13: Fine-grained style transfer visual results: House.

22


	Introduction
	Related Work
	Diffusion models
	Style Transfer

	Methodology
	Preliminary
	Framework Overview
	Fine-grained Feature Matching
	Fitting Cycle and Iterative Control

	Experiments
	Quantitative Comparison
	Qualitative Comparison
	Diffusion model scaling and correspondence performance
	Effectiveness of feature extraction
	Effectiveness of cycle module
	Ablation study
	User study

	Conclusions
	Overview
	Use of LLMs
	Evaluation metrics
	LPIPS
	FID
	ArtFID
	CFSD

	Experiment details
	Dataset
	Implementation details
	Optimal objectives
	Gram matrix
	Sobel


	More comparisons with patched-based methods
	Visual comparisons results
	Fine-grained feature correspondence

	Impact

