

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CoCoDIFF: CORRESPONDENCE-CONSISTENT DIFFUSION MODEL FOR FINE-GRAINED STYLE TRANSFER

Anonymous authors

Paper under double-blind review

ABSTRACT

Transferring visual style between images while preserving semantic correspondence between similar objects remains a central challenge in computer vision. While existing methods have made great strides, most of them operate at global level but overlook region-wise and even pixel-wise semantic correspondence. To address this, we propose **CoCoDiff**, a novel *training-free* and *low-cost* style transfer framework that leverages pretrained latent diffusion models to achieve fine-grained, semantically consistent stylization. We identify that correspondence cues within generative diffusion models are under-explored and that content consistency across semantically matched regions is often neglected. CoCoDiff introduces a pixel-wise semantic correspondence module that mines intermediate diffusion features to construct a dense alignment map between content and style images. Furthermore, a cycle-consistency module then enforces structural and perceptual alignment across iterations, yielding object and region level stylization that preserves geometry and detail. Despite requiring no additional training or supervision, CoCoDiff delivers state-of-the-art visual quality and strong quantitative results, outperforming methods that rely on extra training or annotations.

1 INTRODUCTION

Diffusion models have achieved remarkable success in the field of generative artificial intelligence. By performing the diffusion process within a compressed latent space, Latent Diffusion Models (LDMs) Rombach et al. (2022) achieve substantial advantages in both generation efficiency and image quality. This efficient and flexible architecture has established them as a powerful backbone, including text-to-image generation Nichol et al. (2021); Ramesh et al. (2022); Saharia et al. (2022), image editing Meng et al. (2021); Tumanyan et al. (2022); Brooks et al. (2023), image restoration Lin et al. (2024); Wang et al. (2024b); Wu et al. (2024), and style transfer Wang et al. (2023; 2024a); Chung et al. (2024). Although diffusion models exhibit significant potential, style transfer remains challenging when semantic alignment and fine-grained correspondence are required. Beyond global appearance changes, high-fidelity stylization must respect region- and object-level structure. This calls for a principled way to mine the correspondence signals already encoded in pretrained diffusion models, enabling structure-aware, semantically consistent style transfer.

Neural style transfer Johnson et al. (2016); Zhang & Tang (2025); An et al. (2021) aims to render the content of one image in the visual appearance of another. A central challenge is to ensure that the stylistic features are applied in a semantically consistent manner, particularly across corresponding regions or objects Jiang & Chen (2025). With the rise of large-scale generative models, pre-trained latent diffusion models have become a powerful foundation for this task. However, as shown in Fig. 1(b), a representative method for training-free diffusion models suffers structural degradation and correspondence errors. In contrast, in Fig. 1(c), a representative of another neural-based method fails to capture the style information of the target image effectively. Similarly, Fig. 1(d) and (e), both prompt-guided methods, provided with a clear style prompt “oil painting, Claude Monet’s Impression, Sunrise”, also fail to capture the stylistic features. Almost all of these approaches treat the pre-trained model as a simple black-box generator. They either apply style globally(*e.g.*, StyleID) Chung et al. (2024); Deng et al. (2022), which leads to structural inconsistencies and content detail loss, or they build complex external modules that attempt to learn correspondences from scratch (*e.g.*, SMS Jiang et al. (2025)). Such methods are inefficient and overlook the powerful alignment information already present within the diffusion backbone itself. This results in a critical

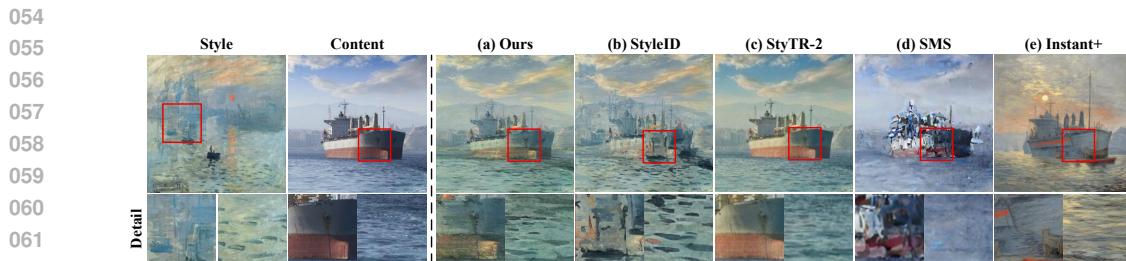


Figure 1: **Comparison of different style transfer methods.** We compare our proposed CoCoDiff with three other representative methods with zoomed-in details.

gap: a failure to directly mine and utilize the model’s own semantic understanding for high-fidelity style transfer. Therefore, we argue that the full potential of these models for style transfer remains largely under-explored.

These issues point to a more fundamental, two-fold challenge at the core of style transfer. The first challenge is finding dense, semantically meaningful correspondences between content and style images. This is inherently difficult because content and style images often have vast differences in color, texture, and geometry. An effective method must identify features that are robust enough to match high-level concepts (*e.g.*, the structure of the ship, the texture of the waves in Fig. 1) across domains, yet precise enough to align fine-grained details (*e.g.*, the color of the sky, and the subtle, almost elusive representation of the ship in Fig. 1). The second, equally significant challenge is utilizing these correspondences to guide the stylization. Even with a perfect alignment map, how to perform feature injection is also a difficult problem. Therefore, a method is required to transfer local style characteristics onto the content’s structure without creating disharmony in the overall global style. Solving this dual problem of correspondence-aware analysis and feature injection remains the primary barrier to achieving high-fidelity, structure-preserving style transfer.

To this end, we take a step forward by leveraging the implicit alignment capabilities of pre-trained diffusion models and introducing a cyclic optimization mechanism to enhance semantic consistency across domains. We propose Correspondence-Consistent Diffusion (**CoCoDiff**), a novel framework that achieves fine-grained feature correspondence and structure-preserving style transfer through adaptive, correspondence-aware guidance. Our approach is built upon the generative priors and semantic representation capabilities of pre-trained diffusion models, enabling structure-aware and semantically aligned stylization without the need for additional supervision or fine-tuning. Unlike existing methods that rely on coarse global matching or expensive supervised learning, CoCoDiff explicitly models pixel-level correspondences between content and style images by mining intermediate features at optimal denoising steps and network layers. Specifically, we perform a two-dimensional grid search over temporal and spatial resolutions of the diffusion backbone to identify the feature representations that best capture semantic structures. Using these features, we construct a dense correspondence map via cosine similarity, aligning each spatial location in the content image with its most semantically similar counterpart in the style image. Based on this alignment, we design a novel feature injection mechanism that selectively modulates the self-attention maps during the diffusion inversion process, transferring style information in a spatially aware manner. Furthermore, we introduce a cycle-consistency module that iteratively refines the stylized output by enforcing structural preservation and appearance fidelity across generations. The optimization process is guided by perceptual and style losses, as well as statistical alignment via Adaptive Instance Normalization (AdaIN), ensuring that the final stylized image remains faithful to the original content while accurately reflecting the reference style. Our contributions can be summarized as follows:

- We propose **CoCoDiff**, a training-free, diffusion-based framework for fine-grained, structure-preserving style transfer that operates directly on pretrained backbones without additional supervision or fine-tuning.
- We introduce a **pixel-wise semantic correspondence module** that mines intermediate features from pre-trained diffusion models to build dense alignment maps between content and style images, enabling region- and object-level stylization.

108 • We design a **cyclic optimization method** that integrates attention-guided feature injection
 109 with consistency constraints, enabling more stable and coherent stylization.
 110

111
 112 The remainder of the paper is organized as follows. Section 2 reviews prior work on diffusion models
 113 and style transfer. Section 3 presents the proposed CoCoDiff framework, including the fine-gained
 114 feature matching module and fitting cycle and iterative control strategy. In Section 4, we describe
 115 the experimental setup, datasets, evaluation metrics, and provide a comprehensive analysis of the
 116 results. Finally, Section 5 summarizes the contributions and discusses potential future directions.
 117
 118

119 **2 RELATED WORK**
 120

121 **2.1 DIFFUSION MODELS**
 122

123 Diffusion models have transformed generative modeling through iterative denoising, producing
 124 high-quality images, excelling in style transfer and similar applications. Starting with Denoising
 125 Diffusion Probabilistic Models (DDPM) Ho et al. (2020), achieving superior sample quality com-
 126 pared to GANs Goodfellow et al. (2014); Chen et al. (2016); Karras et al. (2019), with high com-
 127 putational cost. Denoising Diffusion Implicit Models (DDIM) Song et al. (2022) addressed this by
 128 using a non-Markovian sampling process, reducing inference steps. LDM Rombach et al. (2022),
 129 like Stable Diffusion, further improved efficiency by operating in a compressed latent space. The
 130 DALL-E2 Ramesh et al. (2022) and Imagen Saharia et al. (2022) integrate text-conditioned diffusion
 131 with CLIP Radford et al. (2021), enabling photorealistic text-to-image generation.
 132

133 In downstream tasks, diffusion models have shown remarkable versatility. They are used for image
 134 editing through techniques like Null-Text Inversion Mokady et al. (2023) and ControlNet Zhang
 135 et al. (2023a), and DiffusionCLIP Kim et al. (2022). DIFT Tang et al. (2023) enables feature cor-
 136 respondence by aligning object-specific features across domains. For super-resolution, SRDiff Li
 137 et al. (2021) reconstructs high-quality images from low-resolution inputs, while RePaint Lugmayr
 138 et al. (2022) advances inpainting by seamlessly reconstructing missing regions. Additionally, style
 139 transfer is enhanced through approaches like DiffStyle Jiang & Chen (2025); Li (2024) which in-
 140 tegrates text-guided diffusion with feature alignment for precise stylization. These advancements
 141 highlight diffusion models’ fidelity and robustness across diverse generative tasks.
 142

143
 144 **2.2 STYLE TRANSFER**
 145

146 The field of neural style transfer has evolved significantly since the seminal work of Gatys et al.
 147 Gatys et al. (2016), who showed that hierarchical layers in CNNs can separate content structures
 148 from style textures, more efficient approaches like including AdaIN Huang & Belongie (2017) and
 149 WCT Li et al. (2017) soon followed. To better preserve structural details, researchers introduced
 150 transformer architectures, StyTR² Deng et al. (2022) pioneered the first step and StyleFormer Wu
 151 et al. (2021) incorporated transformer modules into CNN pipelines. Moreover, patch-based meth-
 152 ods Liao et al. (2017); Shang et al. (2025); Wang et al. (2022); Chen & Schmidt (2016); Li & Wand
 153 (2016); Sheng et al. (2018) provide fine-grained local constraints for style transfer and offer impor-
 154 tant insights into maintaining style stability for objects appearing at different positions or scales. Dif-
 155 fusion models have revolutionized this field through two main approaches: training-based methods
 156 like StyleDiffusion Wang et al. (2023); Li (2024), use neural flows, while training-free approaches
 157 like DiffArtist Jiang & Chen (2025); Chung et al. (2024); Xu et al. (2024), manipulate attention
 158 in pre-trained models. Recent innovations include InstantStyle-Plus Wang et al. (2024a), which
 159 balances content and style using inverted noise, and FreeStyle He et al. (2024) uses a dual-stream
 160 encoder for text-guided transfer. However, these methods have largely overlooked the challenge of
 161 maintaining style consistency for identical objects in style transfer.

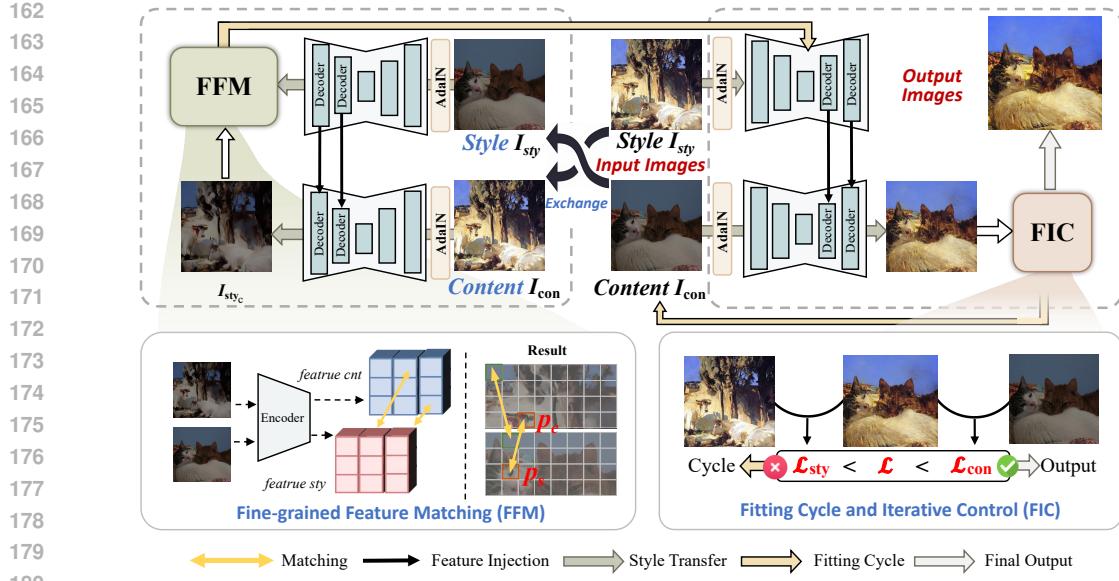


Figure 2: Framework Overview of our proposed Correspondence-Consistent Diffusion (CoCoDiff).

3 METHODOLOGY

3.1 PRELIMINARY

Starting from pure noise $x_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, the diffusion model predicts noise $\epsilon_\theta(x_t, t)$ at each timestep t and updates x_t to x_{t-1} via:

$$q(\mathbf{x}_t \mid \mathbf{x}_{t-1}) = \mathcal{N}\left(\mathbf{x}_t; \sqrt{1 - \beta_t} \mathbf{x}_{t-1}, \beta_t \mathbf{I}\right) \quad (1)$$

where \mathbf{x}_t and \mathbf{x}_{t-1} are the latent variables at timestep t and $t-1$ with $t \in \{1, \dots, T\}$. The parameter $\beta_t \in (0, 1)$ defines the noise variance at each timestep, as determined by a predefined schedule β_t .

Stable Diffusion (SD) has a compressed latent space. It uses an encoder to transform input images into a compact latent representation, and a decoder to reconstruct them. The U-Net architecture of Stable Diffusion generates images from latent representations through iterative denoising. A key point of this process is self-attention (SA) blocks. For a feature ϕ , the SA block computes as:

$$\phi^{\text{out}} = \text{Attn}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d}}\right) \cdot V. \quad (2)$$

In our work, we perform style transfer by leveraging the self-attention (SA) mechanism of Stable Diffusion (SD) to inject features from a style image I_s into a content image I_c . We adopt the DDIM inversion procedure Rombach et al. (2022) to traverse the denoising trajectory from $t=0$ (clean image) to $t=T$ (Gaussian noise). At each timestep t , we extract queries Q_c^t from I_c and keys and values K_s^t, V_s^t from I_s . Styling is effected by replacing the content keys/values K_c^t, V_c^t with K_s^t, V_s^t inside the SA blocks, and computing:

$$\phi_c^{\text{out}} = \text{Attn}(Q_c^t, K_s^t, V_s^t). \quad (3)$$

This process forms the foundation for injecting style features.

3.2 FRAMEWORK OVERVIEW

As illustrated in Fig. 2 and Algorithm 1, our method consists of two key stages: *Fine-grained Feature Matching* that mines correspondences of content and style; *Fitting Cycle and Iteration Control* that ensures consistency in the generative process. We will detail them at the following part.

216
217

3.3 FINE-GRAINED FEATURE MATCHING

218
219
220
221

Diffusion features for correspondence. Pretrained diffusion U-Nets have the ability to encode semantic cues across timesteps t and network layers l Tang et al. (2023). We treat intermediate activations as per-pixel descriptors for dense correspondence. For notational simplicity, throughout this subsection we use $I_c(p_c)$ and $I_s(p_s)$ to denote the pixels of content and style images, respectively.

222
223
224
225
226
227

Dense correspondence by diffusion features. Just as a painter maintains stylistic consistency when depicting the same object, our method prioritizes stylistic coherence across semantically corresponding regions to ensure entire visual consistency. Exploiting the semantic encoding of diffusion features, we extract feature maps and, for each spatial location p_c in the content image, identify the most semantically similar location p_s in the style image through cosine similarity measurements of normalized diffusion features:

228
229
230

$$\cos(p_c, p_s) = \frac{I_c(p_c) \cdot I_s(p_s)}{\|I_c(p_c)\| \|I_s(p_s)\|}. \quad (4)$$

231
232

This process yields a dense semantic correspondence map that guides style transfer with improved accuracy and structure preservation.

233
234
235
236
237

Selecting optimal combination. We employ a two-dimensional grid search to determine the optimal combination of timestep t and network layer l , aiming to balance semantic representation and low-level detail. The optimal pair (t^*, l^*) is selected by maximizing a correspondence quality metric $\mathcal{M}(t, l)$ over predefined candidate sets \mathcal{T} and \mathcal{L} :

238
239

$$(t^*, l^*) = \arg_{t, l} \max_{t \in \mathcal{T}, l \in \mathcal{L}} \mathcal{M}(t, l). \quad (5)$$

240
241
242
243
244
245
246
247
248

Here, $\mathcal{M}(t, l)$ evaluates the alignment quality based on the extracted feature maps at timestep t and layer l . To clarify how $\mathcal{M}(t, l)$ is defined and quantified, we follow the standard semantic correspondence protocol and extract diffusion features from image pairs on benchmark datasets such as SPair-71k Min et al. (2019). For each content keypoint, we identify the location in the style image that yields the highest cosine similarity, and adopt the Percentage of Correct Keypoints (PCK) as the evaluation criterion to determine whether the predicted correspondence falls within an acceptable distance of the ground-truth keypoint. The metric $\mathcal{M}(t, l)$ is thus defined as the average PCK score over all evaluated samples, reflecting the reliability of semantic correspondence within the feature space (t, l) . Higher values indicate that the feature configuration provides a more reliable semantic alignment foundation for subsequent style transfer.

249
250
251

We fix (t^*, l^*) and use the resulting correspondence map to steer correspondence-aware feature injection in the subsequent feature injection stage. The final spatial location p_s^* is:

252
253

$$p_s^* = \arg_{p_s} \max_{p_s \in \mathcal{L}} \cos(p_c, p_s). \quad (6)$$

254
255

3.4 FITTING CYCLE AND ITERATIVE CONTROL

256
257
258
259

We then use the semantic correspondence map mentioned before to guide style injection. To further enhance the semantic consistency of the feature maps, we adjust attention weights based on the cosine similarity at corresponding positions p_s^* in I_s :

260

$$feat[k] = w \cdot attn[k][p_s^*] + feat[k][p_c], \quad (7)$$

261
262
263
264
265
266
267

where k denotes the feature channel, p_c is the spatial location in content image, p_s^* is the corresponding location in stylized content image and w is a weighting factor controlling the contribution of the attention features. This update mechanism ensures precise injection of style features into semantically aligned regions while maximally preserving the structural information of the content image, resulting in high-quality style transfer. However, feature-based stylization is fragile when the statistics of the style and content images vary widely. Directly matching features across these disparate distributions can lead to imprecise or semantically misaligned results.

268
269

Closed-loop refinement. To progressively enhance correspondence while preserving content structure and improving visual fidelity, we introduce a cycle-consistent refinement with closed-loop feature fusion. In each fitting cycle, we first identify a set of images I_c and I_s . We use the previously

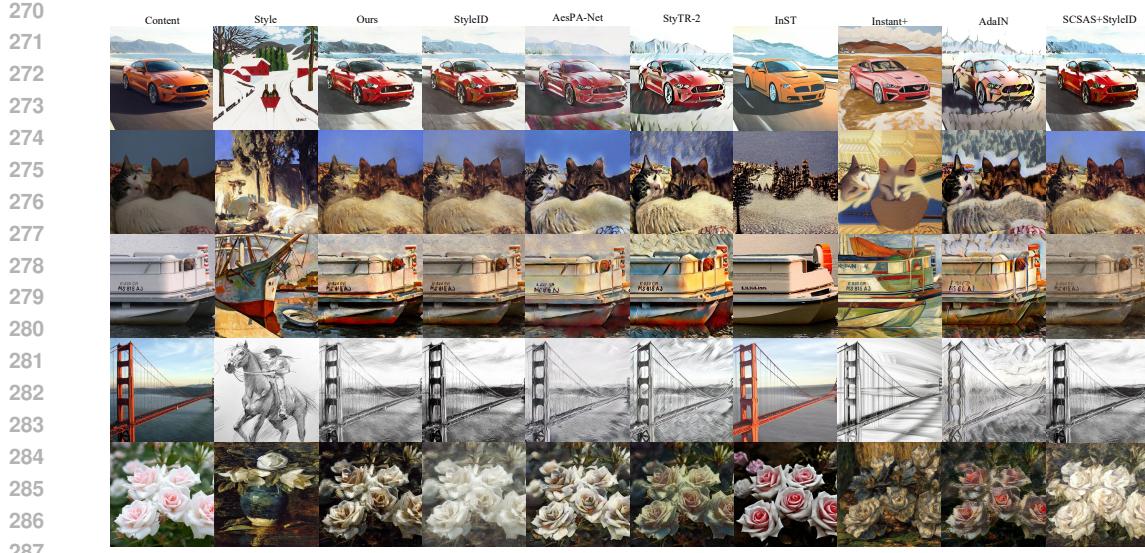


Figure 3: Qualitative comparison. We compare **CoCoDiff** (Ours) with seven representative methods, selected from diffusion-based, patch-based, CNN-based, transformer-based, and other approaches, to provide a comprehensive evaluation.

Algorithm 1: Correspondence-Guided Style Transfer

Input: I_c : content image; I_s : style image; I_{sty_c} : style image with content features; f_θ : pretrained diffusion U-Net; \mathcal{T} : candidate timesteps; \mathcal{L} : candidate layers; w : injection weight; τ_c, τ_s : stopping thresholds; z : max iterations

Output: $I_{gen}^{(z^*)}$

// **Stage A: correspondence**

$$I_{sty_c} \leftarrow \text{Attn}(Q_s, K_c, V_c) \quad // \text{equation 3}$$

$$\text{Extract } \{F_c^{t,l}\}, \{F_{sty_c}^{t,l}\} \text{ for } t \in \mathcal{T}, l \in \mathcal{L}; (t^*, l^*) = \arg \max \mathcal{M}(t, l) \quad // \text{equation 5}$$

$$\text{for each } p_c: p_{sty_c}^* = \arg \max_{p_{sty_c}} \cos(F_c^{t^*, l^*}(p_c), F_{sty_c}^{t^*, l^*}(p_{sty_c})) \quad // \text{equation 4, equation 6}$$

// **Stage B: fitting & control**

for $z = 1$ to Z do

$$y_{cs} = \sigma(y_s) \frac{y_c - \mu(y_c)}{\sigma(y_c)} + \mu(y_s) \quad // \text{equation 11}$$

$$feat[k] \leftarrow w \cdot attn[k][p_{sty_c}^*] + feat[k][p_c] \quad // \text{equation 8}$$

$$\mathcal{L}_{content} = \|\text{Sobel}(I_{gen}^{(z)}) - \text{Sobel}(I_c)\|, \mathcal{L}_{style} = \sum_l \|G(I_{gen}^{(z)}, l) - G(I_s)\|_F^2 \quad // \text{equation 10}$$

if $\mathcal{L}_{content} > \tau_c$ and $\mathcal{L}_{style} < \tau_s$ then

break

return $I_{gen}^{(z)}$

310 mentioned Feature Injection method to enable the style image to learn the style features of the content image, updating its attention map to obtain the reverse style transfer image I_{sty_c} . Then, using the Feature Matching method, we build correspondences between I_c and I_{sty_c} to obtain coordinate pairs $(p_c, p_{sty_c}^*)$. For I_c and I_s , we perform feature injection again, leveraging the coordinate pairs to inject attention values of corresponding features, achieving a correspondence-consistent cycle. The updated formulation is as follows:

$$feat[k] = w \cdot attn[k][p_{sty_c}^*] + feat[k][p_c]. \quad (8)$$

311 **Optimal objectives.** In each iteration, we execute one fitting cycle to progressively optimize the 312 generated image. Specifically, after each iterative generation, we update the feature map via Eq. 8, 313 achieving semantically consistent fusion of style and content features. To evaluate the quality of 314 the feature map generated in each cycle and enable adaptive iterative optimization, the following 315 objective functions are to measure content and style fidelity concerning two aspects. Here, the 316 image generated at iteration z is denoted as $I_{gen}^{(z)}$. The content perceptual loss $\mathcal{L}_{content}$ is defined as:

$$\mathcal{L}_{content} = \|\text{Sobel}(I_{gen}^{(z)}) - \text{Sobel}(I_c)\|, \quad (9)$$

324 where $\text{Sobel}(\cdot)$ computes edge maps to capture structural information. Meanwhile, the style perceptual
 325 loss \mathcal{L}_{style} can be defined as:
 326

$$\mathcal{L}_{style} = \sum_{l \in \text{layers}} \|G(I_{gen}^{(z),l}) - G(I_s)\|_F^2, \quad (10)$$

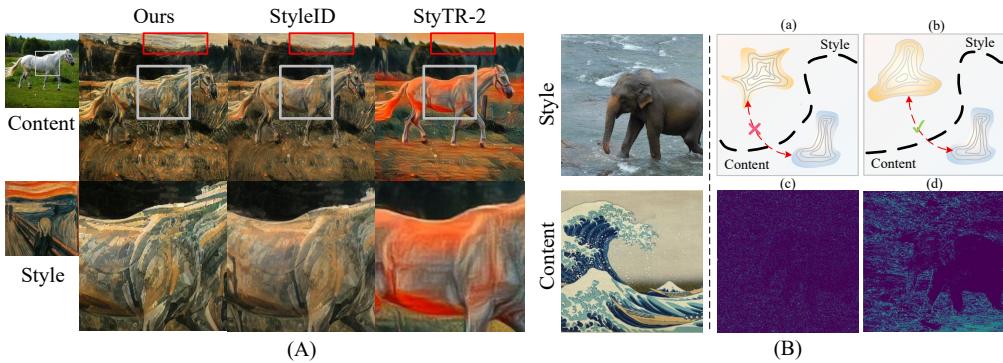
329 where G denotes the Gram Gatys et al. (2015; 2016) matrix capturing textural style properties across
 330 selected feature layers.

331 The iterative process terminates when both $\mathcal{L}_{content} > \tau_c$ and $\mathcal{L}_{style} < \tau_s$, where τ_c and τ_s are
 332 predefined thresholds. This ensures the generated image prevents over-stylization or structural dis-
 333 tortion. We describe in detail how we choose these hyperparameters in the next section.

335 **Tone harmonization.** In the process of artistic style transfer, the harmonization of color and tone
 336 plays a pivotal role in achieving effective stylization. To this end, we employ AdaIN Huang &
 337 Belongie (2017) to modulate statistical information during the style transfer process. Specifically,
 338 we leverage the latent variables of the content image y_c and style image y_s , to facilitate tone transfer
 339 through statistical alignment, as expressed in the following formula:
 340

$$y_{cs} = \sigma(y_s) \frac{y_c - \mu(y_c)}{\sigma(y_c)} + \mu(y_s), \quad (11)$$

342 where $\mu(\cdot)$ and $\sigma(\cdot)$ denote the channel-wise mean and standard deviation, respectively. This ap-
 343 proach ensures that the tone information of the style image is effectively integrated while preserving
 344 the structural integrity of the content image, thereby enhancing the quality of the stylized output.



358 Figure 4: **(A) Qualitative comparison with additional zoomed-in details.** We compare our
 359 method with StyleID and StyTR² as baseline approaches, highlighting the differences through
 360 zoomed-in details. **(B) The illustration of cycle-based image style transfer.** (a) Direct feature
 361 matching between the style image and the content image often results in low matching accuracy
 362 and feature correspondence failure. (b) By first transforming the style image to adopt the content
 363 image’s style before performing feature matching, the matching accuracy is significantly improved.
 364 (c) Direct correspondence result. (d) Indirect correspondence result.

365 4 EXPERIMENTS

366 **Datasets and Settings** We use MS-COCO Lin et al. (2015) as the content dataset and
 367 WikiArt Phillips & Mackintosh (2011) as the style dataset. We conduct all experiments on a single
 368 NVIDIA RTX 4090 GPU using the pre-trained Stable Diffusion V1.4 model as it allows for fair
 369 comparison, with DDIM Rombach et al. (2022) sampling over 50 timesteps ($t = \{1, \dots, 50\}$) and
 370 the attention temperature scaling parameter $\gamma = 0.7$.

371 **Evaluation Protocol** We compare our method against nine style transfer methods: StyleID Chung
 372 et al. (2024), AesPA-Net Hong et al. (2023), StyTR² Deng et al. (2022), InST Zhang et al. (2023b),
 373 InstantStyle-Plus Wang et al. (2024a), AdaIN Huang & Belongie (2017), SCSA Shang et al.
 374 (2025), FreeStyle He et al. (2024), SMS Jiang et al. (2025). Experiments are conducted by config-
 375 uring these methods according to their publicly available codes and settings. To quantitatively evaluate
 376 the style transfer model, we conduct experiments across 13 distinct artistic styles, including oil paint-
 377 ing, kids’ illustration, watercolor, Ghibli, landscape woodblock printing, etc. For quantitative com-
 378 parison purposes, we adopt a methodology similar to StyleID Chung et al. (2024) and StyTR² Deng

Metric	Ours	StyleID	AesPA	StyTR ²	InST	Instant+	AdaIN	SCSA	FreeStyle	SMS
FID ↓	18.432	21.010	19.645	18.886	21.541	20.982	18.672	20.835	23.654	31.266
LPIPS ↓	0.549	0.565	<u>0.556</u>	0.587	0.785	0.584	0.612	0.562	0.689	0.821
ArtFID ↓	30.001	34.446	32.124	31.559	40.235	34.820	<u>31.711</u>	34.107	41.161	58.756
CFSD ↓	0.609	<u>0.619</u>	0.632	0.687	0.881	0.710	0.642	0.612	0.660	0.704

Table 1: **Quantitative evaluation results.** We compare every methods across multiple metrics. Columns 2nd-9th are reference-guided methods while columns 10th-11th are prompt-based methods.

et al. (2022), randomly selecting 30 content images and 30 style images from each dataset to create a comprehensive evaluation suite. We employ four established metrics: FID Heusel et al. (2018), LPIPS Zhang et al. (2018), ArtFID Wright & Ommer (2022), and CFSD Chung et al. (2024). Lower FID scores indicate greater similarity between stylized images and the target style domain. LPIPS quantifies perceptual similarity between stylized and original images. ArtFID measures alignment with human aesthetic preferences, with lower values reflecting superior performance. CFSD is a content-focused metric that evaluates the preservation of the original image’s structural integrity. Together, these metrics provide a comprehensive evaluation of style transfer quality and content preservation.

4.1 QUANTITATIVE COMPARISON

Table 1 reports the quantitative comparison on four metrics: FID, LPIPS, ArtFID, and CFSD (↓ represents lower is better). Our method showcases a comprehensive quantitative comparison with baseline approaches, highlighting its superior efficacy in striking a robust balance between vivid style transfer quality and content preservation.

4.2 QUALITATIVE COMPARISON

As shown in Fig. 3, CoCoDiff achieves superior performance in style transfer, producing visually compelling results with precise feature alignment. For example, in the first row, the car exhibits consistent and vibrant coloring, while the background mountains acquire deeper hues. Similarly, in the third row, the boat’s hull seamlessly shifts to the target red color. These results highlight our approach’s ability to achieve fine-grained stylization while preserving content integrity, significantly outperforming baseline methods in both style expressiveness and visual coherence. Additionally, we provide a qualitative comparison with zoomed-in details in Fig. 4(A). For the painting *The Scream*, characterized by its distorted forms, vibrant colors, and dynamic lines, CoCoDiff more effectively preserves stylistic fluidity and intricate details compared to other approaches. This reinforces the precision of our method in achieving advanced feature alignment and stylistic fidelity.

4.3 DIFFUSION MODEL SCALING AND CORRESPONDENCE PERFORMANCE

In order to demonstrate the model-agnostic nature of CoCoDiff, we conduct experiments using SD v1.4, SD v1.5, SD v2.1, and SDXL with identical configurations, as shown in the Tab. 2. The results indicate that CoCoDiff adapts well to different scales of diffusion models, delivering stable performance. However, significant differences arise in terms of semantic consistency and fine-grained style transfer across these models. While SDXL shows strong performance in style transfer quality, its stability in fine-grained semantic alignment decreases. This is due to the need for fine-tuning hyperparameters such as γ and temperature for different models to optimize visual performance.

Metric	SD v1.4	SD v1.5	SD v2.1	SD XL	Sobel	Gram	FID	LPIPS	CFSD
FID ↓	18.432	17.995	18.252	21.412	-	-	26.513	0.697	0.804
LPIPS ↓	0.549	0.525	0.621	0.635	✓	-	29.845	0.506	0.631
ArtFID↓	30.1	28.94	31.18	36.69	-	✓	23.471	0.753	0.761
CFSD ↓	0.609	0.589	0.766	0.714	✓	✓	18.432	0.549	0.609

Table 2: Comparison across different diffusion models.

Table 3: Results for Sobel and Gram combinations.

432 4.4 EFFECTIVENESS OF FEATURE EXTRACTION
433

434 To demonstrate the critical limitations, we present our comparative results in Fig. 4(B). The left side
435 of the figure displays the original content image and the target style image, which share similar wave
436 patterns. We perform style transfer using three methods: a baseline direct style transfer method, a
437 direct correspondence method, and our indirect correspondence method, which relies on I_{sty_c} .

438 Difference heatmaps are obtained by subtracting the results of the two correspondence
439 methods from the baseline output; brighter colors indicate more pronounced
440 differences. As shown in Fig. 4(B.c), the direct correspondence method produces
441 global differences, revealing its failure to maintain a consistent stylized output
442 compared to the baseline. In contrast, the heatmap (B.d) for our indirect method shows strong differences
443 localized to the wave patterns, indicating that it successfully preserves the
444 elephant’s contour while applying a high-fidelity style transfer. These observations
445 underscore the inadequacy of a direct approach and validate our
446 indirect feature-based strategy.

452 4.5 EFFECTIVENESS OF CYCLE MODULE
453

454 Recognizing the limitations of fixed iteration counts in style transfer, we investigate the crucial role of adaptive iteration
455 within our CoCoDiff method. We conduct experiments comparing style transfer across 10 content and
456 10 style images, evaluating fixed iterations (ranging from 1 to 5) against an adaptive gating strategy with early
457 stopping. Performance evaluation employs FID, CFSD, and LPIPS. As shown in Fig. 5(a), our adaptive gating
458 approach achieves an optimal trade-off between style transfer and content
459 preservation, significantly surpassing fixed iteration counts in both LPIPS and FID metrics. Fig. 5(b)
460 further confirms this advantage through CFSD scores, demonstrating content preservation outcomes.
461 Additionally, Fig. 6 presents two sets of visualized iteration results, showcasing optimal visual quality
462 with a red line for adaptive iteration selection.

471 4.6 ABLATION STUDY
472

473 To optimize the attention injection weight w , we introduce a scaling factor to modulate the intensity
474 of style feature injection based on cosine similarity. We conduct an ablation study, evaluating the
475 visual quality of the generated images with w set to 0.3, 0.6, 1.8, 2.4 and 3.0. The results are
476 presented in the Tab 4a. The results indicate that $w = 0.6$ strikes an optimal balance between
477 content preservation and style fidelity, maintaining semantic consistency and structural integrity.
478 Lower values (e.g., $w = 0.3$) may lead to insufficient stylization, while higher values (e.g., $w = 3.0$)
479 risk introducing structural distortions. These results underscore the critical role of carefully tuning
480 w to achieve high-quality, visually coherent style transfer outcomes. Tab. 4b validates AdaIN Huang
481 & Belongie (2017)’s effectiveness in harmonizing color and tone during the style transfer process.

482 Table 3 reports an ablation on the Sobel and Gram. Without either component, the model produces
483 the weakest results across all metrics. Adding Sobel alone significantly improves LPIPS and CFSD
484 by enforcing clearer structural alignment, while adding Gram alone yields better FID by enhancing
485 global style coherence but tends to distort local perceptual details. When combined, Sobel and
Gram provide complementary benefits, achieving the best overall performance with the lowest FID

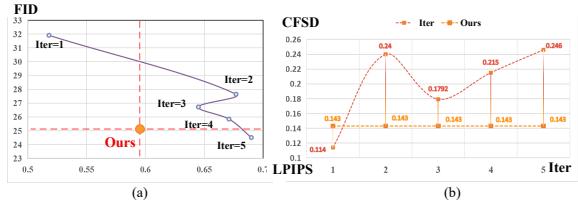


Figure 5: Quantitative comparison of the cycle module.
(a) Balance between LPIPS and FID metrics across iterations.
(b) CFSD variations across iterations.



Figure 6: Visual results of the iteration process. The group with the best quality is highlighted by a red line.

<i>w</i>	0.3	0.6	1.8	2.4	3		w/ AdaIN	w/o AdaIN
FID	23.717	18.432	21.911	33.980	35.937	FID	18.432	20.515
LPIPS	0.681	0.549	0.588	0.656	0.667	LPIPS	0.549	0.762
CFSD	0.642	0.609	0.746	0.735	0.791	CFSD	0.609	0.646

(a) Effect of feature injection weight (*w*). (b) Effect of AdaIN on model performance metrics.

Table 4: Ablation study analyzing the impact of various design choices on model performance.

and strongest content–style balance. This demonstrates that integrating structural cues with style correlation statistics leads to more stable optimization and higher-quality stylization.

4.7 USER STUDY

We conduct a user study to evaluate the performance of our proposed style transfer method in terms of semantic consistency and style fidelity. Participants view content and style images alongside randomized style transfer results from various methods to ensure unbiased comparisons. We collected comparisons from 25 participants (aged 19–45) across 10 distinct content images and 8 style images. Table 5 summarizes the preference rates, with CoCoDiff achieving the highest scores across all criteria, thereby substantiating its effectiveness. These findings not only further substantiate the efficacy of our approach in producing high-quality stylizations but also provide compelling evidence of a consistent user preference for results that maintain strong feature alignment while exhibiting expressive and visually appealing stylistic characteristics.

Method	Style	Content	Avg
StyleID Chung et al. (2024)	0.212	0.135	0.174
AesPA Hong et al. (2023)	0.033	0.134	0.084
StyTR ² Deng et al. (2022)	0.132	0.036	0.084
InST Zhang et al. (2023b)	0.004	0.025	0.015
Instant+ Wang et al. (2024a)	0.002	0.174	0.088
AdaIN Huang & Belongie (2017)	0.038	0.013	0.026
FreeStyle He et al. (2024)	0.021	0.013	0.017
SMS Jiang et al. (2025)	0.012	0.032	0.022
CoCoDiff(Ours)	0.546	0.438	0.492

Table 5: User study results in consistency and quality. These findings not only further substantiate the efficacy of our approach in producing high-quality stylizations but also provide compelling evidence of a consistent user preference for results that maintain strong feature alignment while exhibiting expressive and visually appealing stylistic characteristics.

5 CONCLUSIONS

In this paper, we introduce Correspondence-Consistent Diffusion (CoCoDiff), a novel training-free framework that utilizes pre-trained latent diffusion models to achieve high-fidelity style transfer. By extracting intermediate features to establish pixel-wise correspondences and applying cyclic optimization techniques, CoCoDiff ensures robust semantic consistency and preserves structural integrity between the content and the transferred style. Through extensive experiments across various benchmarks, we demonstrate that CoCoDiff significantly outperforms current state-of-the-art models, not only in terms of style fidelity but also in content alignment. These results reveal the potential of CoCoDiff to unlock new possibilities for diffusion-based generative tasks, paving the way for more effective and flexible style transfer solutions in generative modeling.

ETHICS STATEMENT

This work focuses on developing a training-free style transfer framework, CoCoDiff, built upon pre-trained diffusion models. Our research does not involve the collection of personal data, human subjects, or sensitive information, and all datasets used are publicly available under appropriate licenses. We encourage responsible use of CoCoDiff within creative, educational, and research contexts, and emphasize that any deployment of this method should adhere to ethical guidelines and legal standards. We hope our work can inspire further research and contribute to advancing the positive impact of generative modeling in both academic and real-world contexts.

540 REPRODUCIBILITY STATEMENT
541542 The code is available in the supplementary materials. For full reproducibility, we have detailed
543 datasets used for testing are also provided as described in Sec. 4 and Appendix D.1. The experimen-
544 tal hyperparameters and model selections in the Sec. 4 and the Appendix D.2.
545546 REFERENCES
547548 Jie An, Siyu Huang, Yibing Song, Dejing Dou, Wei Liu, and Jiebo Luo. Artflow: Unbiased image
549 style transfer via reversible neural flows, 2021. URL <https://arxiv.org/abs/2103.16877>.
550551 Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow image
552 editing instructions. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
553 *recognition*, pp. 18392–18402, 2023.
554555 Tian Qi Chen and Mark Schmidt. Fast patch-based style transfer of arbitrary style, 2016. URL
556 <https://arxiv.org/abs/1612.04337>.
557558 Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Info-
559 gan: Interpretable representation learning by information maximizing generative adversarial nets.
560 *Advances in neural information processing systems*, 29, 2016.
561562 Jiwoo Chung, Sangeek Hyun, and Jae-Pil Heo. Style injection in diffusion: A training-free approach
563 for adapting large-scale diffusion models for style transfer. In *Proceedings of the IEEE/CVF*
564 *conference on computer vision and pattern recognition*, pp. 8795–8805, 2024.
565566 Yingying Deng, Fan Tang, Weiming Dong, Chongyang Ma, Xingjia Pan, Lei Wang, and Changsheng
567 Xu. Stytr²: Image style transfer with transformers, 2022. URL <https://arxiv.org/abs/2105.14576>.
568569 Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. A neural algorithm of artistic style, 2015.
570 URL <https://arxiv.org/abs/1508.06576>.
571572 Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. Image style transfer using convolutional
573 neural networks. In *2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*,
574 pp. 2414–2423, 2016. doi: 10.1109/CVPR.2016.265.
575576 Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
577 Aaron Courville, and Yoshua Bengio. Generative adversarial networks, 2014. URL <https://arxiv.org/abs/1406.2661>.
578579 Feihong He, Gang Li, Fuhui Sun, Mengyuan Zhang, Lingyu Si, Xiaoyan Wang, and Li Shen.
580 Freestyle: Free lunch for text-guided style transfer using diffusion models, 2024. URL <https://arxiv.org/abs/2401.15636>.
581582 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
583 Gans trained by a two time-scale update rule converge to a local nash equilibrium, 2018. URL
584 <https://arxiv.org/abs/1706.08500>.
585586 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models, 2020. URL
587 <https://arxiv.org/abs/2006.11239>.
588589 Kibeam Hong, Seogkyu Jeon, Junsoo Lee, Namhyuk Ahn, Kunhee Kim, Pilhyeon Lee, Daesik Kim,
590 Youngjung Uh, and Hyeran Byun. Aespa-net: Aesthetic pattern-aware style transfer networks,
591 2023. URL <https://arxiv.org/abs/2307.09724>.
592593 Xun Huang and Serge Belongie. Arbitrary style transfer in real-time with adaptive instance normal-
594 ization. In *Proceedings of the IEEE international conference on computer vision*, pp. 1501–1510,
595 2017.
596597 Ruixiang Jiang and Changwen Chen. Diffartist: Towards structure and appearance controllable
598 image stylization, 2025. URL <https://arxiv.org/abs/2407.15842>.
599

594 Yuxin Jiang, Liming Jiang, Shuai Yang, Jia-Wei Liu, Ivor Tsang, and Mike Zheng Shou. Balanced
 595 image stylization with style matching score. In *ICCV*, 2025.

596

597 Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer and
 598 super-resolution, 2016. URL <https://arxiv.org/abs/1603.08155>.

599 Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
 600 adversarial networks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 601 *recognition*, pp. 4401–4410, 2019.

602

603 Gwanghyun Kim, Taesung Kwon, and Jong Chul Ye. Diffusionclip: Text-guided diffusion models
 604 for robust image manipulation, 2022. URL <https://arxiv.org/abs/2110.02711>.

605 Chuan Li and Michael Wand. Combining markov random fields and convolutional neural networks
 606 for image synthesis, 2016. URL <https://arxiv.org/abs/1601.04589>.

607

608 Haoying Li, Yifan Yang, Meng Chang, Huajun Feng, Zhihai Xu, Qi Li, and Yueting Chen.
 609 Srdiff: Single image super-resolution with diffusion probabilistic models, 2021. URL <https://arxiv.org/abs/2104.14951>.

610

611 Shaoxu Li. Diffstyler: Diffusion-based localized image style transfer, 2024. URL <https://arxiv.org/abs/2403.18461>.

612

613 Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu, and Ming-Hsuan Yang. Universal style
 614 transfer via feature transforms, 2017. URL <https://arxiv.org/abs/1705.08086>.

615

616 Jing Liao, Yuan Yao, Lu Yuan, Gang Hua, and Sing Bing Kang. Visual attribute transfer through
 617 deep image analogy, 2017. URL <https://arxiv.org/abs/1705.01088>.

618

619 Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro
 620 Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft coco: Common objects
 621 in context, 2015. URL <https://arxiv.org/abs/1405.0312>.

622

623 Xinqi Lin, Jingwen He, Ziyan Chen, Zhaoyang Lyu, Bo Dai, Fanghua Yu, Yu Qiao, Wanli Ouyang,
 624 and Chao Dong. Diffbir: Toward blind image restoration with generative diffusion prior. In
 625 *European Conference on Computer Vision*, pp. 430–448. Springer, 2024.

626

627 Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van
 628 Gool. Repaint: Inpainting using denoising diffusion probabilistic models, 2022. URL <https://arxiv.org/abs/2201.09865>.

629

630 Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon.
 631 Sdedit: Guided image synthesis and editing with stochastic differential equations. *arXiv preprint*
 632 *arXiv:2108.01073*, 2021.

633

634 Juhong Min, Jongmin Lee, Jean Ponce, and Minsu Cho. Spair-71k: A large-scale benchmark for
 635 semantic correspondence, 2019. URL <https://arxiv.org/abs/1908.10543>.

636

637 Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Null-text inversion for
 638 editing real images using guided diffusion models. In *Proceedings of the IEEE/CVF Conference*
 639 *on Computer Vision and Pattern Recognition*, pp. 6038–6047, 2023.

640

641 Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
 642 Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
 643 text-guided diffusion models. *arXiv preprint arXiv:2112.10741*, 2021.

644

645 Fred Phillips and Brandy Mackintosh. Wiki art gallery, inc.: A case for critical thinking. *Issues*
 646 *in Accounting Education*, 26(3):593–608, 08 2011. ISSN 0739-3172. doi: 10.2308/iace-50038.
 647 URL <https://doi.org/10.2308/iace-50038>.

648

649 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
 650 wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
 651 Sutskever. Learning transferable visual models from natural language supervision, 2021. URL
 652 <https://arxiv.org/abs/2103.00020>.

648 Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
 649 conditional image generation with clip latents, 2022. URL <https://arxiv.org/abs/2204.06125>.
 650

651 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 652 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 653 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.
 654

655 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
 656 Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
 657 text-to-image diffusion models with deep language understanding. *Advances in Neural Informa-
 658 tion Processing Systems*, 35:36479–36494, 2022.
 659

660 Chunnan Shang, Zhizhong Wang, Hongwei Wang, and Xiangming Meng. Scsa: A plug-and-play
 661 semantic continuous-sparse attention for arbitrary semantic style transfer, 2025. URL <https://arxiv.org/abs/2503.04119>.
 662

663 Lu Sheng, Ziyi Lin, Jing Shao, and Xiaogang Wang. Avatar-net: Multi-scale zero-shot style transfer
 664 by feature decoration, 2018. URL <https://arxiv.org/abs/1805.03857>.
 665

666 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models, 2022. URL
 667 <https://arxiv.org/abs/2010.02502>.
 668

669 Luming Tang, Menglin Jia, Qianqian Wang, Cheng Perng Phoo, and Bharath Hariharan. Emer-
 670 gent correspondence from image diffusion, 2023. URL <https://arxiv.org/abs/2306.03881>.
 671

672 Narek Tumanyan, Michal Geyer, Shai Bagon, and Tali Dekel. Plug-and-play diffusion features
 673 for text-driven image-to-image translation, 2022. URL <https://arxiv.org/abs/2211.12572>.
 674

675 Haofan Wang, Matteo Spinelli, Qixun Wang, Xu Bai, Zekui Qin, and Anthony Chen. In-
 676 stantstyle: Free lunch towards style-preserving in text-to-image generation. *arXiv preprint
 677 arXiv:2404.02733*, 2024a.
 678

679 Jianyi Wang, Zongsheng Yue, Shangchen Zhou, Kelvin CK Chan, and Chen Change Loy. Exploiting
 680 diffusion prior for real-world image super-resolution. *International Journal of Computer Vision*,
 681 132(12):5929–5949, 2024b.
 682

683 Zhizhong Wang, Lei Zhao, Haibo Chen, Zhiwen Zuo, Ailin Li, Wei Xing, and Dongming Lu.
 684 Divswapper: Towards diversified patch-based arbitrary style transfer, 2022. URL <https://arxiv.org/abs/2101.06381>.
 685

686 Zhizhong Wang, Lei Zhao, and Wei Xing. Stylediffusion: Controllable disentangled style transfer
 687 via diffusion models, 2023. URL <https://arxiv.org/abs/2308.07863>.
 688

689 Matthias Wright and Björn Ommer. Artfid: Quantitative evaluation of neural style transfer, 2022.
 690 URL <https://arxiv.org/abs/2207.12280>.
 691

692 Rongyuan Wu, Lingchen Sun, Zhiyuan Ma, and Lei Zhang. One-step effective diffusion network
 693 for real-world image super-resolution. *Advances in Neural Information Processing Systems*, 37:
 694 92529–92553, 2024.
 695

696 Xiaolei Wu, Zhihao Hu, Lu Sheng, and Dong Xu. Styleformer: Real-time arbitrary style transfer via
 697 parametric style composition. In *2021 IEEE/CVF International Conference on Computer Vision
 698 (ICCV)*, pp. 14598–14607, 2021. doi: 10.1109/ICCV48922.2021.01435.
 699

700 Sihan Xu, Ziqiao Ma, Yidong Huang, Honglak Lee, and Joyce Chai. Cyclenet: Rethinking cycle
 701 consistency in text-guided diffusion for image manipulation, 2024. URL <https://arxiv.org/abs/2310.13165>.
 702

703 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
 704 diffusion models, 2023a. URL <https://arxiv.org/abs/2302.05543>.
 705

702 Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The unreasonable
 703 effectiveness of deep features as a perceptual metric, 2018. URL <https://arxiv.org/abs/1801.03924>.
 704

705 Tianshan Zhang and Hao Tang. Style transfer: A decade survey, 2025. URL <https://arxiv.org/abs/2506.19278>.
 706

708 Yuxin Zhang, Nisha Huang, Fan Tang, Haibin Huang, Chongyang Ma, Weiming Dong, and
 709 Changsheng Xu. Inversion-based style transfer with diffusion models, 2023b. URL <https://arxiv.org/abs/2211.13203>.
 710

712 A OVERVIEW

714 This supplementary material supports the main paper with:

- 716 - The use of Large Language Models (Section B)
- 717 - Evaluation metrics (Section C).
- 718 - Experiment details (Section D).
- 719 - Visual comparisons results (Section F).
- 720 - Impact (Section G).

724 B USE OF LLMs

726 In accordance with ICLR 2026 policy on AI assistance disclosure, we acknowledge the use of large
 727 language models in our paper preparation process. Our usage limits to language polishing and
 728 grammatical improvements of the final manuscript. The language models do not involve experimen-
 729 tal design, data analysis, result interpretation, or the generation of substantive content. They serve
 730 solely as writing assistance tools to improve clarity and readability of text already authored by the
 731 human authors listed on this paper. The scientific contributions, methodology, experiments, results,
 732 and conclusions belong entirely to the work of the human authors.

734 C EVALUATION METRICS

736 C.1 LPIPS

738 LPIPS Zhang et al. (2018) is a perceptual metric designed to mimic how humans perceive image
 739 differences. Instead of comparing pixels directly, it measures the distance between images in the
 740 feature space of a deep network that has been trained on a perceptual similarity task. To calculate
 741 LPIPS, a reference image and a generated image are fed into a pre-trained network, and feature maps
 742 are extracted from several of its layers. These feature maps are L2-normalized, and a weighted L2
 743 distance is computed between the corresponding features of the two images at each layer. The final
 744 LPIPS score is the sum of these weighted distances. The formula is given by:

$$745 \quad d(x, x_0) = \sum_l \frac{1}{H_l W_l} \sum_{h,w} w_l \cdot \|\phi_l(x)_{h,w} - \phi_l(x_0)_{h,w}\|_2^2. \quad (12)$$

748 A lower LPIPS score indicates higher perceptual similarity between the generated and real images,
 749 making it a valuable metric for tasks like image reconstruction and super-resolution.

751 C.2 FID

753 FID Heusel et al. (2018) assesses the quality and realism of an entire set of generated images from
 754 a statistical perspective. It doesn't compare individual images but rather measures the distance
 755 between the feature distributions of a generated image set and a real image set. The calculation
 relies on a pre-trained Inception-v3 network. Feature vectors are extracted from the last pooling

Figure 7: Additional classic visual outcomes in diverse artistic styles.

layer for both the real and generated image sets. The mean vectors (μ) and covariance matrices (Σ) are then computed for both sets. FID is the Fréchet distance between these two multivariate Gaussian distributions, calculated using the formula:

$$FID = \|\mu_r - \mu_g\|_2^2 + \text{Tr}(\Sigma_r + \Sigma_g - 2(\Sigma_r \Sigma_g)^{1/2}). \quad (13)$$

A lower FID score indicates that the generated image distribution is closer to the real image distribution, which implies better diversity and realism. FID is widely considered the standard metric for evaluating Generative Adversarial Networks (GANs).

C.3 ARTFID

ArtFID Wright & Ommer (2022) is a composite metric specifically designed for evaluating neural style transfer models, aiming to balance content fidelity and style fidelity in a way that aligns better with human subjective judgments. It combines LPIPS, which measures perceptual content similarity, with FID, which assesses style distribution realism, through a multiplicative formula to penalize deviations in either aspect. To calculate ArtFID, first compute the average LPIPS score between the stylized images and the original content images, and the FID score between the stylized images and the reference style images, using pre-trained networks like VGG for LPIPS and Inception-v3 for FID. The final ArtFID score is then obtained by the formula:

$$\text{ArtFID} = (1 + \text{LPIPS}) \times (1 + \text{FID}). \quad (14)$$

A lower ArtFID score indicates superior style transfer performance, where both content preservation and style matching are optimized, making it particularly useful for comparing methods in artistic image generation tasks.

C.4 CFSD

CFSD Chung et al. (2024) is a content-focused metric that evaluates the structural similarity in neural style transfer by emphasizing spatial relationships between image patches, addressing limitations in metrics like LPIPS that may be influenced by style elements. It operates on feature maps extracted from a pre-trained VGG19 network's conv3 layer to capture mid-level structural details. To calculate CFSD, extract feature maps F from both the content image I_c and stylized image I_{cs} , compute self-correlation matrices $M = F \times F^T$, and normalize each row via softmax to form probability distributions S . The CFSD score is the average Kullback-Leibler divergence across these

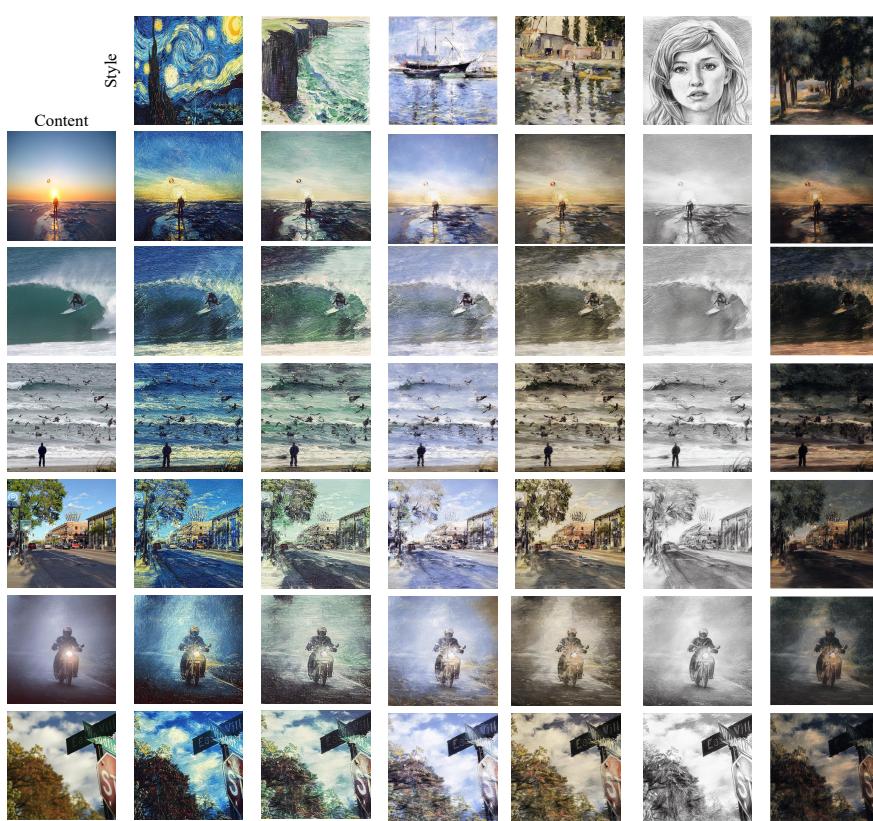


Figure 8: Visualization results of our proposed methods.

837 distributions:

$$\text{CFSD} = \frac{1}{hw} \sum_{i=1}^{hw} D_{\text{KL}}(S_{c_i} \| S_{cs_i}). \quad (15)$$

844 A lower CFSD score signifies better preservation of the content’s structural integrity, such as edges
 845 and patch interrelations, independent of stylistic changes, rendering it an effective complement to
 846 perceptual metrics in style transfer evaluations.

848 D EXPERIMENT DETAILS

849 D.1 DATASET

852 Our work utilizes two primary datasets: the MS-COCO 2017 Lin et al. (2015) dataset for content
 853 and the WikiArt Phillips & Mackintosh (2011) dataset for artistic styles. We use the 118,287 images
 854 from the MS-COCO 2017 training set as our content source, leveraging its rich variety of everyday
 855 scenes and objects. For our style library, we meticulously select 13 distinct artistic styles from
 856 WikiArt, which include: Oil painting, Kids’ illustration, Watercolor, Ghibli, Landscape woodblock
 857 printing, Chinese Ink, Sketch, Pop art, Impressionism, Cubism, Cyberpunk, Pointillism, and Crayon.

858 To ensure experimental fairness across different style transfer expressions, we adopted specific
 859 strategies: 1) For exemplar-guided generation(*e.g.*, StyleID Chung et al. (2024)), we carefully
 860 selected paired images from the dataset, using style images as guidance; 2) For text-guided genera-
 861 tion(*e.g.*, SMS Jiang et al. (2025)), we crafted appropriate prompts that accurately describe the same
 862 style images used in the exemplar approach, thereby facilitating high-quality generation. This dual
 863 approach allows for comprehensive evaluation of our method’s versatility across different guidance
 modalities.

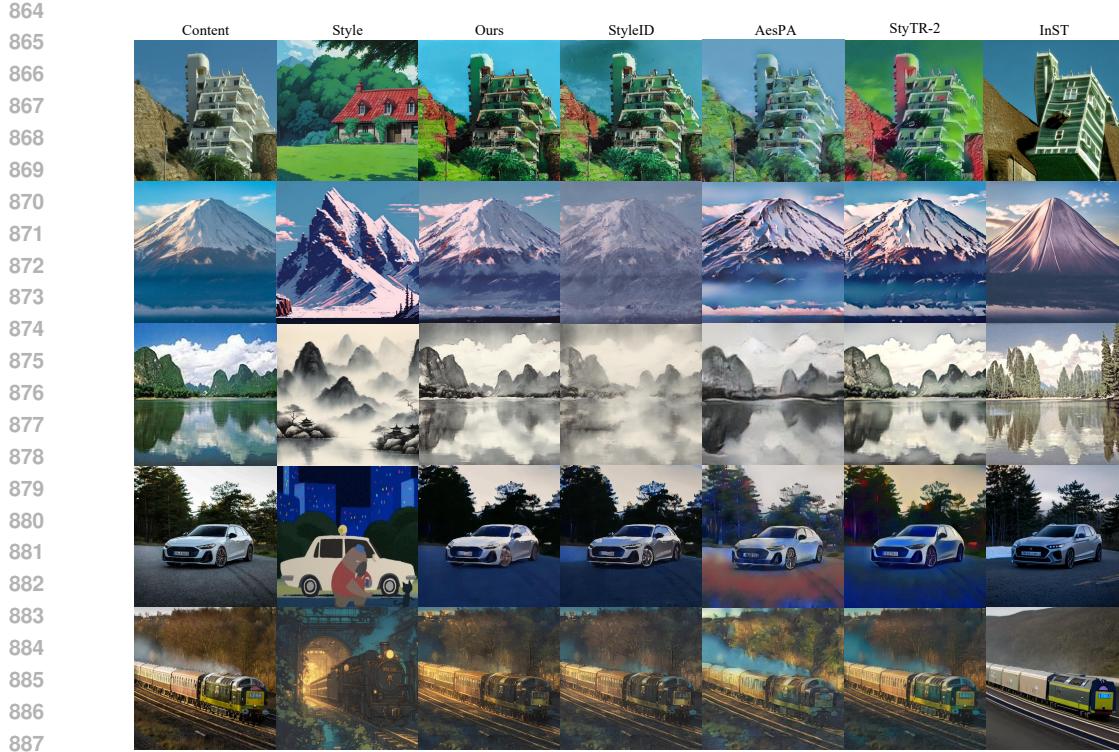


Figure 9: Comparison of style transfer results. Visual results of our CoCoDiff method compared against four baseline approaches across diverse artistic styles: Ghibli Style, Pixel Art, Chinese Ink, Kid Illustration, and Vintage Style.

D.2 IMPLEMENTATION DETAILS

We conduct experiments on a single NVIDIA RTX 4090 GPU with 24GB of VRAM. The software environment is built on Python 3.9, utilizing PyTorch 1.13.1 and CUDA 12.5 to leverage the GPU’s computational power for accelerated processing. Crucially, our feature injection technique is applied starting from the 49th timestep. This strategic timing allows the model to first establish a strong content structure before introducing detailed style information, preventing the style from overwhelming the original content. Our method can be applied to various diffusion-based models; however, for fair comparison, we chose to use v1.4.

D.3 OPTIMAL OBJECTIVES

D.3.1 GRAM MATRIX

In style transfer tasks, a central challenge lies in accurately capturing the style characteristics of an image, particularly global features such as texture and color. Traditional pixel-level operations fail to capture these global statistics and cannot disregard spatial information. To solve this problem, the Gram matrix Gatys et al. (2015) is introduced. The Gram matrix extracts statistical information by calculating the inner product between every pair of feature maps. Specifically, the Gram matrix is defined as:

$$G_{ij} = \langle f_i, f_j \rangle = \sum_k f_i(k) f_j(k), \quad (16)$$

effectively captures the second-order statistical information of feature vectors, encapsulating global distribution patterns such as texture and color while disregarding spatial positions.

The Gram matrix can be considered as a two-dimensional covariance matrix, capturing the correlations between different feature channels. In their seminal work, Gatys et al. demonstrated that two-dimensional covariance is particularly well-suited for style transfer tasks. They showed that

918 among different types of covariance, two-dimensional covariance, as represented by the Gram ma-
 919 trix, is the most effective for describing style.
 920

921 In style transfer applications, the Gram matrix facilitates optimization by minimizing distributional
 922 differences in feature spaces, enabling target images to emulate the distinctive patterns present in
 923 style reference images. The scale-invariance and robustness of Gram matrices establish them as
 924 ideal tools for style description, allowing for effective style transfer across diverse visual domains
 925 regardless of content structure or dimensional variations.
 926

926 D.3.2 SOBEL 927

928 A critical balance must be maintained in style transfer: on one hand, the algorithm must effectively
 929 learn and incorporate the distinctive feature information from the style reference image, while on
 930 the other hand, it must preserve the structural integrity of the content image without distortion. This
 931 dual objective presents a fundamental challenge in the field.
 932

933 The Sobel operator, defined by convolving an image with kernels for vertical edges, effectively
 934 detects intensity gradients to highlight edges and line textures in generated images. By computing
 935 the gradient magnitude, typically as $(\sqrt{G_x^2 + G_y^2})$, it emphasizes regions of rapid intensity change,
 936 which correspond to line structures and textures. This edge-enhancing capability allows the Sobel
 937 operator to control and refine the linear patterns and textural details in image generation, ensuring
 938 that stylistic elements like contours and boundaries are preserved or accentuated.
 939

940 E MORE COMPARISONS WITH PATCHED-BASED METHODS 941

942 We include representative methods such as CNNMRF Li & Wand (2016), Style-Swap Chen &
 943 Schmidt (2016), etc. and conduct systematic quantitative comparisons. As shown in Tab. 6 and
 944 Fig. 6, CoCoDiff (Ours) achieves superior or highly competitive performance across all metrics.
 945 These results indicate that our method not only captures meaningful correspondences but also ben-
 946 efits from diffusion-based semantic alignment, enabling performance beyond conventional patch-
 947 level approaches. Importantly, our method is also training-free.
 948

Metric	Ours	CNNMRF	Style-Swap	DIA	Avatar-Net	SCSA+StyleID
FID (\downarrow)	18.432	27.872	35.642	31.933	22.356	20.835
LPIPS (\downarrow)	0.549	0.672	0.793	0.661	0.641	0.562
CFSD (\downarrow)	0.609	0.844	0.761	0.649	0.753	0.612

952 Table 6: Comparison of metrics across methods.
 953
 954

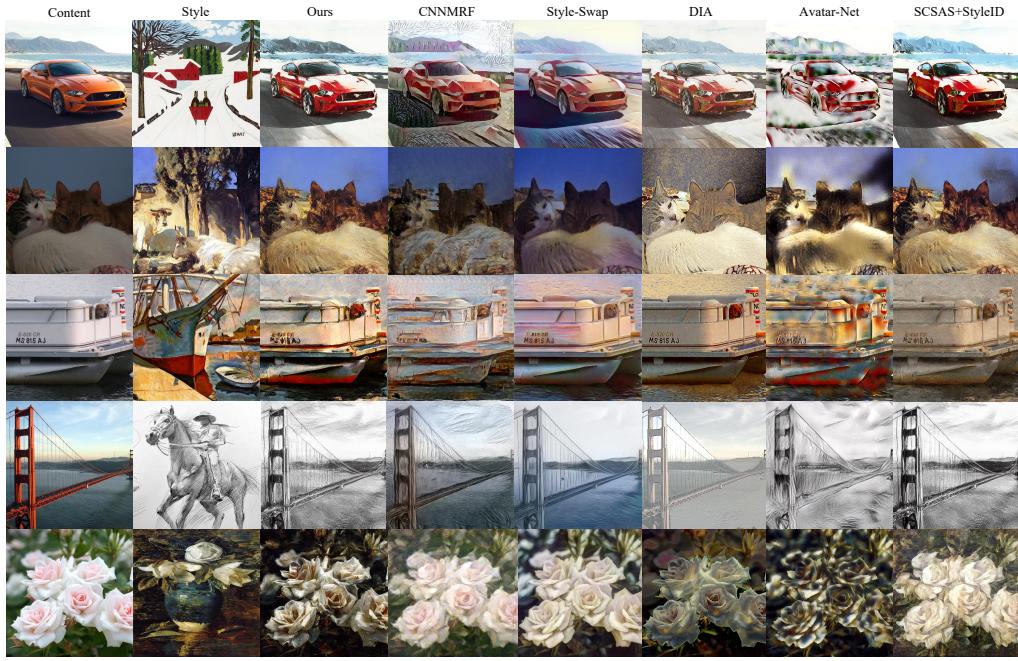
955 F VISUAL COMPARISONS RESULTS 956

958 We present additional experimental results in Fig. 7 that showcase classic visual outcomes across a
 959 diverse range of artistic styles. Our method, CoCoDiff, effectively transfers styles from several artis-
 960 tic movements, including *Primitive Art*, *Romanticism*, *Impressionism*, *Post-Impressionism*, *Cartoon*,
 961 and *Sketch*. More results can be found in Fig. 8.
 962

963 Further experiments confirm the robustness and versatility of our proposed method. The results
 964 demonstrate its ability to produce visually compelling stylized images while preserving high content
 965 fidelity. CoCoDiff maintains a superior balance between expressive styling and content preservation
 966 across a wide range of artistic scenarios.
 967

968 Additionally, we present a comprehensive evaluation of our style transfer method (CoCoDiff) by
 969 comparing it with four established baseline approaches: StyleID Chung et al. (2024), AesPA-
 970 Net Hong et al. (2023), StyTR² Deng et al. (2022) and InST Zhang et al. (2023b). We test these
 971 methods across diverse artistic styles, including *Ghibli Style*, *Pixel Art*, *Chinese Ink*, *Kid Illustration*,
 972 and *Vintage Style* as shown in Fig. 9. Our experiments show that CoCoDiff consistently outperforms
 973 these baselines, achieving an outstanding balance of vivid stylistic rendering and accurate content
 974 preservation in each style. For example, in *Ghibli Style*, CoCoDiff captures the fluid, whimsical
 975

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993



994
995
996

Figure 10: Additional comparisons with patch-based methods

997
998
999
1000
1001
1002

aesthetic more effectively than others, while in Chinese Ink, it preserves intricate brushstroke details with greater fidelity than StyleID. Similarly, for Pixel Art and Kid Illustration, CoCoDiff produces sharp, stylized images with minimal structural distortion compared to StyTR² and InST. These findings underscore CoCoDiff’s adaptability and precision, ensuring visually striking and structurally coherent outputs across a broad spectrum of artistic domains.reinforcing its effectiveness across diverse artistic contexts.

1003

1004 F.1 FINE-GRAINED FEATURE CORRESPONDENCE

1005
1006
1007
1008
1009
1010

A key contribution of our approach is the implementation of fine-grained feature correspondence. To clearly demonstrate this capability, we have included detailed style transfer results on three distinct subjects: flower, cow and house. These images in Fig. 11, Fig. 12 and Fig. 13 effectively illustrate how our method precisely aligns and transfers stylistic elements while meticulously preserving the unique content of each subject.

1011
1012

G IMPACT

1013
1014
1015
1016
1017
1018
1019

We believe our proposed training-free style transfer matching module achieves remarkable results through its novel approach. The concept of cyclic consistency can be readily integrated to various other style transfer methods to achieve high-fidelity feature correspondence. From a societal perspective, our work brings positive implications for entertainment devices, animation media, and related fields, while simultaneously raising important considerations regarding copyright protection and intellectual property rights.

1020
1021
1022
1023
1024
1025

Figure 11: Fine-grained style transfer visual results: Flower.

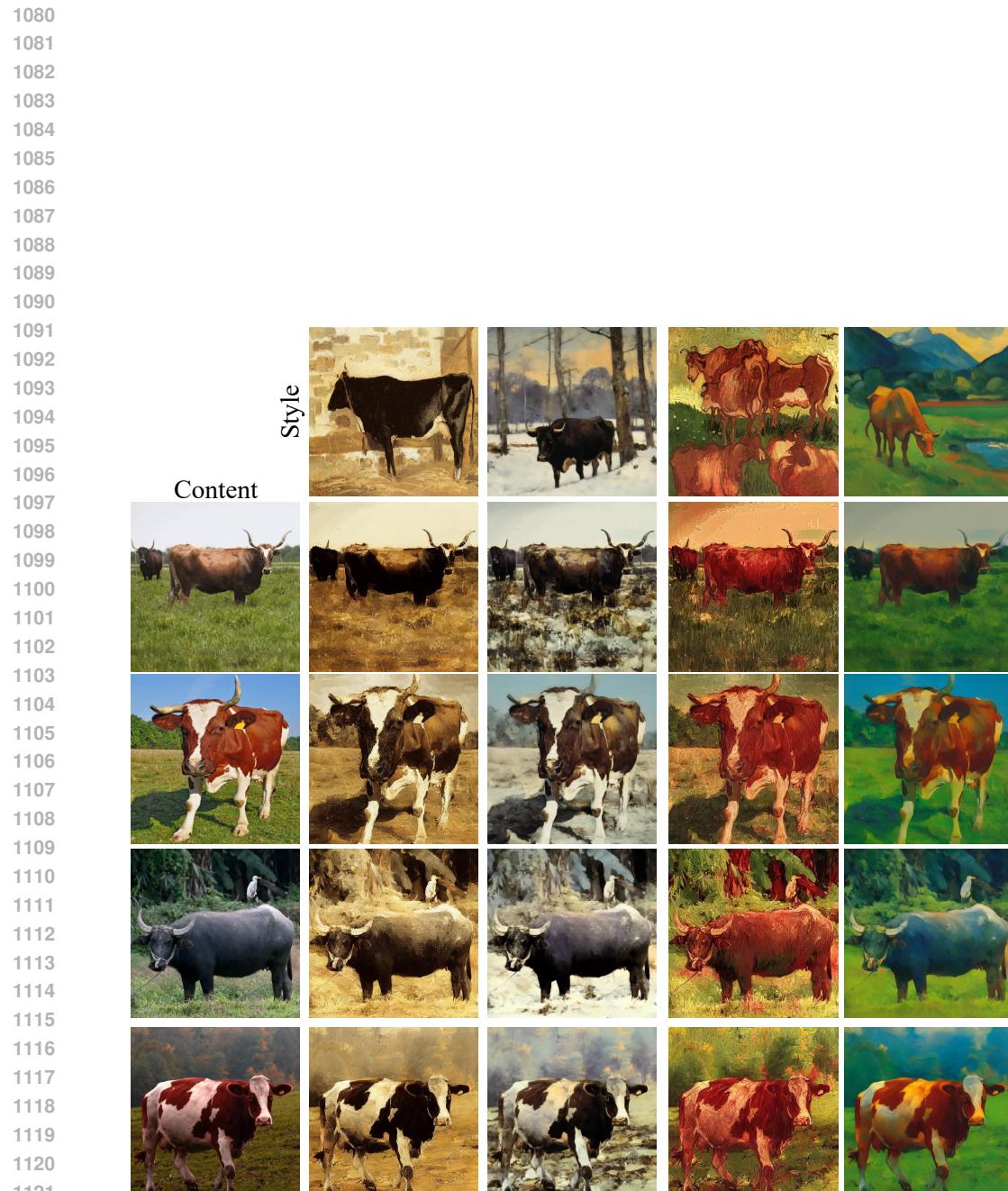


Figure 12: Fine-grained style transfer visual results: Cow.

Figure 13: Fine-grained style transfer visual results: House.

1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187