
A Non-commutative Extension of Lee-Seung’s
Algorithm for Positive Semidefinite Factorizations

Yong Sheng Soh
Department of Mathematics

National University of Singapore
10 Lower Kent Ridge Road, Singapore 119076

and
Institute of High Performance Computing

1 Fusionopolis Way, #16-16 Connexis, Singapore 138632
matsys@nus.edu.sg

Antonios Varvitsiotis
Engineering and Systems Design Pillar

Singapore University of Technology and Design
8 Somapah Road, Singapore 487372

avarvits@gmail.com

Abstract

Given a data matrixX ∈ Rm×n
+ with non-negative entries, a Positive Semidefinite

(PSD) factorization of X is a collection of r × r-dimensional PSD matrices {Ai}
and {Bj} satisfying the condition Xij = tr(AiBj) for all i ∈ [m], j ∈ [n].
PSD factorizations are fundamentally linked to understanding the expressiveness
of semidefinite programs as well as the power and limitations of quantum re-
sources in information theory. The PSD factorization task generalizes the Non-
negative Matrix Factorization (NMF) problem in which we seek a collection of
r-dimensional non-negative vectors {ai} and {bj} satisfying Xij = aTi bj , for all
i ∈ [m], j ∈ [n] – one can recover the latter problem by choosing matrices in the
PSD factorization to be diagonal. The most widely used algorithm for computing
NMFs of a matrix is the Multiplicative Update algorithm developed by Lee and
Seung, in which non-negativity of the updates is preserved by scaling with posi-
tive diagonal matrices. In this paper, we describe a non-commutative extension of
Lee-Seung’s algorithm, which we call the Matrix Multiplicative Update (MMU)
algorithm, for computing PSD factorizations. The MMU algorithm ensures that
updates remain PSD by congruence scaling with the matrix geometric mean of
appropriate PSD matrices, and it retains the simplicity of implementation that the
multiplicative update algorithm for NMF enjoys. Building on the Majorization-
Minimization framework, we show that under our update scheme the squared loss
objective is non-increasing and fixed points correspond to critical points. The
analysis relies on Lieb’s Concavity Theorem. Beyond PSD factorizations, we
show that the MMU algorithm can be also used as a primitive to calculate block-
diagonal PSD factorizations and tensor PSD factorizations. We demonstrate the
utility of our method with experiments on real and synthetic data.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



1 Introduction

LetX ∈ Rm×n
+ be am×n dimensional matrix with non-negative entries and r ∈ N a user-specified

parameter. An r-dimensional positive semidefinite (PSD) factorization ofX is given by two families
of r × r PSD matrices A1, . . . , Am and B1, . . . , Bn satisfying

Xij = tr(AiBj), i ∈ [m], j ∈ [n]. (1)

Every non-negative matrix admits an r-dimensional PSD factorization for an appropriate value
of r ∈ N–we may, for instance, take Ai = diag(Xi:) and Bj = diag(ej), a choice that corresponds
to an n-dimensional PSD factorization. The smallest r ∈ N for which X admits an r-dimensional
PSD factorization is called the PSD-rank [6].

PSD factorizations are of fundamental importance to a wide range of areas, most notably towards
understanding the expressive power of linear optimization over the cone of positive semidefinite
matrices, [9, 12], studying the power and limitations of quantum resources within the framework of
information theory [9, 15], and as a natural non-commutative generalization of the extremely popular
dimensionality reduction technique of non-negative matrix factorizations (NMFs) [23, 24, 30]. We
elaborate further on the relevance of PSD factorizations to each of these areas below.

Links to Semidefinite Programming. A Semidefinite Program (SDP) is a convex optimization
problem in which we minimize a linear function over the set of PSD matrices intersected with an
affine subspace. SDPs are a powerful generalization of Linear Programs with extensive modeling
power and tractable algorithms for solving them, e.g., see [36] and references therein. SDPs are fre-
quently used as convex relaxations to combinatorial problems, and have many important applications
including optimal power flow computation [21], robustness certification to adversarial examples in
neural networks [31], and inference in graphical models [5].

Given a bounded polytope P = {x ∈ Rd : c>i x ≤ di, i ∈ [`]} = conv(v1, .., vk), a basic question
concerning the expressive power of SDPs is to find the smallest possible SDP description of P , i.e.,
the minimum r ∈ N for which we can express P as the projection of an the affine slice of the cone
of r × r PSD matrices. Concretely, the goal in this setting is to express P as:

P = π(Sr+ ∩ L), (2)

where Sr+ is the cone of r × r PSD matrices, L is an affine subspace of the space of r × r sym-
metric matrices and π a linear projection from the space of r × r symmetric matrices to Rd. A
representation of the form (2) is called an extended formulation or PSD-lift of P and is extremely
useful for optimization purposes. Indeed, the existence of a PSD-lift immediately implies that
min{〈c, x〉 : x ∈ P} = min{〈π>(c), y〉 : y ∈ Sr+ ∩ L}, and consequently, linear optimization
over P (which can be hard) corresponds to an SDP (which can be solved efficiently).

To describe the connection of PSD factorizations with SDP-lifts, let SP be the slack matrix of P ,
namely, SP is a rectangular matrix whose rows are indexed by the facets of P , its columns indexed
by extreme points vj , and the ij-entry of SP corresponds to the slack between the i-th facet and
the j-th vertex, Sij = di − c>i vj . Generalizing a seminal result by Yannakakis for LPs [38], it
was shown independently in [9] and [12] that if SP admits an r-dimensional PSD factorization, the
polytope P admits a PSD-lift over the cone of r × r PSD matrices. The proof is also constructive –
given a PSD factorization of S, there is an explicit description of L and π that gives rise to P .

An important special case of the PSD factorization problem is when the PSD factors are block-
diagonal PSD matrices, where both the number of blocks and the size of each block is fixed, i.e.,
Ai, Bj ∈ (Sr+)k. For a fixed and user-specified r ∈ N, the least k ∈ N for which X ∈ Rm×n

+ admits
a PSD factorization with PSD-factors in (Sr+)k is called the r-block diagonal PSD-rank of X . In
terms of the geometric interpretation of PSD factorizations, block-diagonal PSD factorizations of the
slack matrix SP correspond to extended formulations of P over a Cartesian product of PSD cones,
i.e., P = π((Sr+)k ∩ L). In terms of relevance to optimization, extended formulations over (Sr+)k

allow to perform linear optimization over P by solving block-diagonal SDPs, which can be solved
numerically much faster compared to dense SDPs. In fact, most interior-point algorithms for SDPs
are designed to exploit block-diagonal structure if it is present in the problem. The first systematic
study of block-diagonal PSD-lifts was given in [7], where the focus was mainly on lower bounds.

2



Links to quantum information theory. Consider two parties, Alice and Bob, that try to generate
samples (i, j) following some joint distribution P (i, j). For this section, it is crucial to think of
the distribution P (i, j) as being arranged in an entrywise non-negative matrix, and we use P to
simultaneously refer to both the distribution and its matrix representation. Clearly, if P is not a
product distribution, Alice and Bob should either communicate or share some common information
to be able to generate samples according to P . In the correlation generation problem, the goal is
to find the least amount of shared resources that are needed to achieve this task. The considered
resources can be either classical (shared randomness), quantum (shared entangled state) or hybrid.

In the quantum case, correlation generation boils down to finding a quantum state ρ ∈ Sr2+ with
tr(ρ) = 1 and quantum measurementsEi, Fj (i.e.,Ei, Fj ∈ Sr+ and

∑
iEi =

∑
j Fj = I) such that

P (i, j) = tr((Ei ⊗ Fj)ρ), i ∈ [m], j ∈ [n]. (3)

The least r ∈ N for which a factorization of the form (3) is possible is given by the (logarithm) of the
psd-rank of the matrix P [15]. Moreover, the proof of [15] is constructive, in the sense that, given
a r-dimensional PSD factorization of P , there is an explicit description of a quantum state ρ ∈ Sr2+
and measurement operators acting on Cr that satisfy (3), e.g., see [6, Proposition 3.8].

Moving beyond purely quantum protocols, there has been recent interest in hybrid classical-quantum
protocols, motivated by the fact that near-term quantum devices can only operate reliably on a lim-
ited number of qubits [26]. Specifically, assuming that their quantum capabilities are limited to
manipulating s qubits, hybrid classical-quantum protocols that allow to generate samples from a
joint distribution P (i, j), correspond to PSD factorizations of P where the PSD factors are block-
diagonal, with block-size at most 2s. Moreover, the minimum amount of classical resources required
in a classical-quatum protocol with s qubits, is given by the 2s-block diagonal PSD-rank of P .

Links to nonnegative matrix factorizations. An r-dimensional nonnegative matrix factorization
(NMF) of X ∈ Rm×n

+ [23, 30] is specified by two families of r-dimensional entrywise nonnegative
vectors a1, . . . , am ∈ Rr

+ and b1, . . . , bn ∈ Rr
+ satisfying

Xij = 〈ai, bj〉, i ∈ [m], j ∈ [n]. (4)

NMF is a widely used dimensionality reduction tool that gives parts-based representation of the
input data, as it only allows for additive, not subtractive, combinations. To make this point clear,
note that an equivalent reformulation of an r-dimensional NMF (4) isX = AB whereA ∈ Rm×r

+ is
the matrix whose rows are the ai’s and the matrixB ∈ Rr×n

+ has as columns the bj’s, or equivalently,

X:j ∈ cone(A:1, . . . , A:r), j ∈ [n]. (5)

The equivalent viewpoint for NMFs given in (5) is more amenable to interpretation, as it gives a
representation of each column of X (i.e., each data point) as nonnegative (and thus additive) combi-
nation of the r columns of A, and the columns of B give the coefficients of the conic combination.
NMF factorizations have applications in many areas, notable examples including document cluster-
ing [37], music analysis [8], speech-source separation [32] and cancer-class identification [10]. For
a comprehensive discussion on NMFs the reader is referred to the survey [11] and references therein.

NMF factorizations are a special case of PSD factorizations where the r × r PSD matrices Ai and
Bj are diagonal, i.e., we have that Ai = diag(ai) and Bj = diag(bj) for some vectors ai, bj ∈ Rr

+
(recall that a diagonal matrix is PSD iff its diagonal entries are nonnegative). Moreover, a PSD
factorization of X , Xij = tr(AiBj), for which all the PSD factors Ai, Bj commute corresponds
to an NMF factorization. In this sense, PSD factorizations are a non-commutative generalization of
NMF factorizations.

Interpretability of PSD factorizations. An equivalent way to define an r-dimensional NMF for
a data matrix X (cf. (4)) is through the existence of a liner mapping A : Rr → Rm satisfying

X:j ∈ A(Rr
+) for all j ∈ [n] and A(Rr

+) ⊆ Rn
+. (6)

Consequently, the mapping A (or rather, the image of the extreme rays of the cone Rr
+ under A),

describe a latent space that can generate all data points X:j via nonnegative combinations.

Analogously, in the setting of PSD factorizations, the existence of an r-dimensional PSD factoriza-
tion of X (cf. (1)) is equivalent to the existence of a linear mapping A : Sr → Rm satisfying

X:j ∈ A(Sr+) for all j ∈ [n] and A(Sr+) ⊆ Rn
+. (7)

3



Comparing (6) and (7), the difference between NMF and PSD factorizations is immediately appar-
ent. In the setting of PSD factorizations the latent space is infinite-dimensional, and specifically, it is
the image of the extreme rays of the cone of r×r PSD matrices (i.e., all matrices uu> where u ∈ Rr)
underA. In this latent space, each data pointX:j is represented by a PSD matrixBj ∈ Sr+, and using
its spectral decomposition Bj =

∑r
i=1 λiuiu

>
i , leads to the representation X:j =

∑
i λiA(uiu

>
i ).

Additional details and explicit examples demonstrating the qualitative difference in expressive power
between NMF and PSD factorizations are given in Section 6.

2 Prior Works on PSD Factorizations and Summary of Results

A canonical starting point for finding an (approximate) r-dimensional PSD factorization of a given
matrix X ∈ Rm×n

+ is to solve the non-convex optimization problem

inf
∑
i,j

(Xij − tr(AiBj))
2 s.t. A1, . . . , Am, B1, . . . Bn ∈ Sr+, (8)

aiming to find an approximate r-dimensional PSD factorization that minimizes the square loss over
all entries of X . Fixing one of the two families of matrix variables, say the Ai’s, problem (8) is
separable with respect to B1, . . . , Bm. Consequently, a reasonable solution approach for (8) is to
alternate between updating the Ai’s and Bj’s by solving the sub-problems:

Ai ← arg inf
∑
i,j

(Xij − tr(AiBj))
2 s.t. A1, . . . , Am ∈ Sr+ (9)

Bj ← arg inf
∑
i,j

(Xij − tr(AiBj))
2 s.t. B1, . . . , Bn ∈ Sr+ (10)

The two sub-problems in each update step are symmetric in the variables Ai and Bj , with the small
modification where we replace X with its transpose. As such, for the remainder of this discussion,
we only focus on the sub-problem (10) corresponding to fixing the Ai’s and updating the Bj’s.
Moreover, (10) is separable with respect to each variable Bi, so it suffices to focus on

inf
∑
i

(Xij − tr(AiBj))
2 s.t. Bj ∈ Sr+. (11)

Lastly, to simplify notation we omit subscripts, and specifically, we denote by x the j-th column of
X and by B the PSD matrix variable Bj . Defining A : Sr → Rm to be the linear map A(Z) =
(〈A1, Z〉, . . . , 〈Am, Z〉) , problem (11) can be then equivalently written as

inf ‖x−A(B)‖22 s.t. B ∈ Sr+. (12)

The optimization problem (12) is convex, and in fact, falls within the well-studied class of convex
quadratic SDPs. Nevertheless, there is no closed-form solution for this family of optimization prob-
lems, and consequently, typical solution strategies rely on numerical optimization, e.g., see [33].

Summary of results. In this paper we introduce and study an iterative algorithm (Algorithm 1)
we call the Matrix Multiplicative Update (MMU) algorithm for computing PSD factorizations. The
MMU algorithm builds on the Majorization-Minimization framework, and as discussed in the pre-
vious section, the main workhorse is an iterative algorithm for the convex quadratic SDP (12).

From a computational perspective, the iterates of the MMU algorithm are updated via conjugation
with appropriately defined matrices, so our method has the advantage of being simple to implement
and moreover, the PSDness of the iterates is automatically guaranteed. From a theoretical per-
spective, the squared loss objective is non-increasing along the algorithms’ trajectories (Theorem 1)
and moreover, its fixed points satisfy the first-order optimality conditions (Theorem 2). The anal-
ysis of the MMU algorithm relies on the use of several operator trace inequalities (including Von
Neumann’s trace inequality and Lieb’s Concavity Theorem).

An important feature of the MMU algorithm is that if it is initialized with block-diagonal PSD ma-
trices, the same block-diagonal structure is preserved throughout its execution, which leads to an
algorithm for calculating block-diagonal PSD factorizations. In particular, if the MMU algorithm

4



is initialized with diagonal PSD matrices, the iterates remain diagonal PSD throughout, and as it
turns out, our algorithm in this case reduces to Lee-Seung’s seminal Multiplicative Update algo-
rithm for computing NMFs [24]. Moreover, we show how the MMU algorithm can be used as a
primitive to calculate PSD factorizations of nonnegative tensors. In terms of numerical experiments,
we demonstrate the utility of our method for both synthetic and real data (CBCL image dataset).

Existing work. All existing algorithms for computing PSD factorizations employ the alternating
minimization approach described in the previous section, where we fix one set of variables and min-
imize over the other, and essentially boil down into finding algorithms for the convex problem (12).

Projected Gradient Method (PGM). The first approach for computing PSD factorizations is based on
applying PGM to (12), alternating between a gradient step to minimize the objective and a projection
step onto the set of PSD matrices [35]. The latter projection step uses the following useful fact:
Given the spectral decomposition C = Udiag(λi)U

> of a matrix C ∈ Sn, the projection onto
the PSD cone is Udiag(max(0, λi))U

> [13]. The vanilla PGM has slow convergence rate, so the
authors in [35] also propose an accelerated variant that incorporates a momentum term.

Coordinate Descent. The authors in [35] also propose a different algorithm combining the ideas
of coordinate descent and a change of variables that allows them to also control the rank of the
PSD factors, which was popularized by the seminal work of Burer and Monteiro for solving rank-
constrained SDPs [3]. Concretely, the authors use the parameterization Ai = aia

>
i , and Bj = bjb

>
j ,

where ai ∈ Rr×rAi , and bj ∈ Rr×rBj for some fixed rAi , rBj ∈ N, and optimize using a coordinate
descent scheme over the entries of the matrices ai and bj . In this setting, problem (12) is a quartic
polynomial in the entries of b. Thus, its gradient is a cubic polynomial, and its roots can be found
using Cardano’s method and careful book-keeping (for a similar approach see also [27]).

Connections to Affine Rank Minimization and Phase Retrieval. A different set of algorithms devel-
oped in [17, 18, 19] is based on the connections between computing PSD factorizations with the
affine rank minimization (ARM) and the phase retrieval (PR) in signal procesing. First, recall that
the PSD-ARM problem focuses on recovering a low-rank matrix from affine measurements:

min rank(B) s.t. A(B) = x, B ∈ Sr+.

Here,A is a known linear map representing measurements while x is known vector of observations.
Due to the non-convexity of the rank function, a useful heuristic initially popularized in the control
community is to replace the rank by the trace function, e.g., see [28] and [29], in which case the
resulting problem is an instance of an SDP. A different heuristic for PSD-ARM is to find a PSD
matrix of rank at most k that minimizes the squared loss function, i.e.,

inf ‖x−A(B)‖22 s.t. B ∈ Sr+, rank(B) ≤ k, (13)

where alternatively, the rank constraint can be enforced by parametrizing the PSD matrix variable
B ∈ Sr+ as B = bb> with b ∈ Rr×k. The point of departure for the works [17, 18, 19] is that
problem (13) corresponds exactly to the sub-problem (12) encountered in any alternate minimization
strategy for computing PSD factorizations, albeit with an additional rank constraint. In view of this,
any algorithm from the signal processing literature developed for ARM can be applied to (12).

The main algorithms considered in [17, 18, 19] are Singular Value Projection (SVP) [14], Procrustes
Flow [34], and variants thereof. In terms of convergence guarantees, for affine maps A obeying the
Restricted Isometry Property [4], both algorithms converge to an optimal solution. Nevertheless, it
is unclear whether these guarantees carry over when applied to the PSD factorization problem.

Roadmap. In Section 3 we derive our MMU algorithm for computing PSD factorizations and in
Section 4 we show that its fixed points correspond to KKT points. In Section 5 we give various
theoretical applications of the MMU algorithm and in Section 6 we go from theory to practise and
apply the MMU algorithm to synthetic and real datasets.

3 A Matrix Multiplicative Update Algorithm for PSD Factorizations

In this section we describe our algorithm for computing (approximate) PSD factorizations of a ma-
trix X . As we discussed, our method is an alternating minimization approach in which we alternate

5



between optimizing over the variables {Ai} and {Bj}. The sub-problem in each update step is sym-
metric in the variables {Ai} and {Bj}, with the small modification whereby we replace X with its
transpose. As such, in the remainder of this discussion, we assume that the variables {Ai} are fixed
and we perform the update on the variables {Bj}. The resulting sub-problem is given by (12).

Majorization-Minimization (MM) Framework. Our algorithm is an instance of the (MM)
framework, e.g. see [20] and references therein. To briefly describe this approach, suppose we
need to solve the optimization problem min{F (x) : x ∈ X}. The MM framework relies on the
existence of a parametrized family of auxilliary functions ux : X → R, one for each x ∈ X , where:

F (y) ≤ ux(y), for all y ∈ X and F (x) = ux(x). (14)

Based on these two properties, F is nonincresasing under the update rule:

xnew = argmin{uxold(y) : y ∈ X}, (15)

as can be easily seen by: F (xnew) ≤ uxold(xnew) ≤ uxold(xold) = F (xold).

We conclude with two important remarks concerning the MM framework. First, note that although
the iterates generated by the MM update rule (23) are nonincreasing in objective function value,
there is in general no guarantee that they converge to a minimizer. Secondly, for the MM approach
to be of any use, the auxilliary functions employed at each iteration need to be easy to optimize.

Matrix Geometric Mean. Our choice of auxilliary functions relies on the well-studied notion of
a geometric mean between a pair of positive definite matrices, whose definition we recall next. For
additional details and omitted proofs the reader is referred to [2, 22]. The matrix geometric mean of
two positive definite matrices C and D is given by

C#D = C1/2(C−1/2DC−1/2)1/2C1/2, (16)

or equivalently, it is the unique positive definite solution of the Riccati equation

XC−1X = D, (17)

in the matrix variable X . The matrix geometric mean also has a nice geometric interpretation in
terms of the Riemannian geometry of the manifold of positive definite matrices, and specifically,
C#D is the midpoint of the unique geodesic joining C and D. Finally, the matrix geometric mean
is symmetric in its two arguments C#D = D#C and also satisfies (C#D)−1 = C−1#D−1.

The MMU Algorithm for PSD Factorizations. The main step for deriving our algorithm for
approximately computing PSD factorizations is to apply the MM framework, with a meticulously
chosen auxilliary function, to the convex quadratic SDP (12). Our main result is the following:
Theorem 1. Consider a fixed vector x ∈ Rm

+ and let A : Sr → Rm be the linear map defined
by Z 7→ A(Z) = (tr(A1Z), . . . , tr(AmZ)) , for some fixed r × r positive definite matrices
A1, . . . , Am. Then, the objective function ‖x−A(B)‖22 is non-increasing under the update rule

Bnew = W (A>x)W, where W = ([A>A](Bold))−1#(Bold),

and moreover, if initialized with a positive definite matrix, the iterates remain positive definite.

Proof. First, note that if the Ai’s and Bold are all positive definite, the update rule is well-defined.
Indeed, we have [A>A](Bold) =

∑m
k=1 tr(AkBold)Ak is also positive definite, and thus invertible.

Set F (B) := ‖x−A(B)‖22 and define the function

uBold
(B) := F (Bold) + 〈∇F (Bold), B −Bold〉+ 〈B −Bold, T (B −Bold)), (18)

where T : Sr → Sr is the operator given by

T (Z) = W−1ZW−1 and W = ([A>A](Bold))−1#(Bold).

The claim of the theorem will follow as an immediate consequence of the MM framework, as long as
we establish that uBold

(B) is an auxilliary function, i.e., it satisfies the two properties given in (14).

Clearly, we have that uBold
(Bold) = F (Bold), so it only remains to show the domination property,

that is, uBold
(B) ≤ F (B), for all B ∈ Sr+. In fact, we show a slightly stronger result, namely that

6



uBold
(B) ≤ F (B) holds for all symmetric matrices B ∈ Sr. To see this we use the second order

Taylor expansion of F at Bold, which as F is quadratic in B, is given by
F (B) = F (Bold) + 〈∇F (Bold), B −Bold〉+ ‖A(B −Bold)‖22. (19)

Comparing the expressions (18) and (19), to show that F (B) ≤ uBold
(B) for all B ∈ Sr it suffices

to check that the operator T −A>A is positive; i.e., 〈Z, [T −A>A](Z)〉 ≥ 0 for any matrix Z ∈ Sr.
This claim is the main technical part of the proof, deferred to Lemma ?? in the Appendix.

Furthermore, the fact that T − A>A is a positive operator, also implies that T is itself a positive
operator. Consequently, the MM update (23) obtained by using the auxilliary function (18) can be
calculated just by setting the gradient equal to zero, and is given by

Bnew = Bold − T−1
(
[A>A](Bold)−A>(x)

)
. (20)

Moreover, as T−1(Z) = WZW and W = ([A>A](Bold))−1#(Bold) it follows that
Bold = W ([A>A](Bold))W = T−1([A>A](Bold)), (21)

where for the first equality we use the unicity property of the matrix geometric mean (recall (17)).
Subsequently, using (21), the MM update rule in (20) simplifies to the following:

Bnew = T−1(A>x) = W (A>x)W. (22)

Lastly, since the Ai’s are PSD, it follows that A> x =
∑

i xiAi is a conic combination of PSD
matrices (recall that x ∈ Rm

+ ), and thus, it is itself PSD. Consequently, Bnew is PSD. In fact, if the
matrices Ai and Bold are positive definite, the updated matrix Bnew is also positive definite.

Having established an iterative method for problem (12) that is non-increasing in value and retains
PSDness, we can incorporate this as a sub-routine in our alternating optimization scheme for com-
puting PSD factorizations. The pseudocode of the resulting method is given in Algorithm 1.

Algorithm 1 Matrix Multiplicative Update algorithm for computing PSD factorizations

Input: A matrix X ∈ Rm×n
≥0 , parameter r ∈ N

Output: {A1, . . . , Am}, {B1, . . . , Bn} ⊆ Sr+,Xij ≈ tr(AiBj) for all i, j
while stopping criterion not satisfied:

Ai ← Vi(B>xi)Vi where Vi = ([B>B](Ai))
−1#Ai, xi = Xi:

Bj ←Wj(A>xj)Wj where Wj = ([A>A](Bj))
−1#(Bj), xj = X:j

(23)

4 Fixed Points of the MMU Algorithm

In this section, we show that the fixed points of the MMU algorithm satisfy the Karush-
Kuhn-Tucker (KKT) optimality conditions for problem (8). Letting {A∗i }i∈[m], {M∗i }i∈[m] and
{B∗j }j∈[n], {Λ∗j}j∈[n] be pairs of primal-dual optimal solutions of (8) with zero duality gap, it is
straightforward to verify that the KKT conditions are

tr(A∗iM
∗
i ) = tr

(
B∗j Λ∗j

)
= 0, i ∈ [m], j ∈ [n]

B>(X:i)− [B>B](A∗i ) = M∗i , i ∈ [m]

A>(X:j)− [A>A](B∗j ) = Λ∗j , j ∈ [n].

Furthermore, assuming that the primal optimal solutions {A∗i }i∈[m] and {B∗j }j∈[n] are all positive
definite, it follows immediately from the complementary slackness conditions that M∗i = Λ∗j = 0
for all i ∈ [m], j ∈ [n]. Consequently, in the special case of positive definite optimal solutions
{A∗i }i∈[m] and {B∗j }j∈[n] , the KKT conditions reduce to

B>(X:i) = [B>B](A∗i ), i ∈ [m] and A>(X:j) = [A>A](B∗j ), j ∈ [n]. (24)

Based on the preceding discussion, in the next result (whose proof follows by Lemma ?? in the
Appendix) shows that we can interpret our MMU algorithm as a fixed-point method for satisfying
the KKT optimality conditions corresponding to problem (8).
Theorem 2. If {Ai}i∈[m] and {Bj}j∈[n] are positive definite fixed points of the update rule of the
MWU algorithm given in (23), then they also satisfy the KKT conditions (24).

7



5 Applications of the MMU algorithm

Block-diagonal (BD) PSD factorizations. If the MMU algorithm is initialized with BD posi-
tive definite matrices with the same block structure, the BD structure is preserved at each up-
date. Indeed, as [A>A](Bold) =

∑m
k=1 tr(AkBold)Ak we see that [A>A](Bold)−1, and thus,

([A>A](Bj))
−1#(Bj) share the same block structure. Lastly, by definition of the MMU algo-

rithm (23), Bnew is also block-diagonal with the same structure. Thus, if initialized with BD-PSD
matrices, the MMU algorithm gives a method for computing a BD-PSD factorization.

Recovering Lee-Seung’s algorithm for NMF. Diagonal matrices can be considered as block-
diagonal in a trivial manner. Nevertheless, by the preceding discussion, if initialized with diagonal
PSD matrices, the iterates of the MMU algorithm remain diagonal PSD throughout. In this special
case, our MMU algorithm reduces to Lee-Seung’s (LS) seminal Multiplicative Update algorithm
for computing NMFs [24]. LS’s algorithm is perhaps the most widely used method for computing
NMFs as it has succeeded to identify meaningful features in a diverse collection of real-life data sets
and is extremely simple to implement. Specifically, LS’s updates are

A← A ◦ XB>

ABB>
and B ← B ◦ A>X

A>AB
, (25)

where X ◦ Y,X/Y denote the componentwise multiplication, division of two matrices respec-
tively. Setting Ai = diag(ai) and Bj = diag(bj), the MMU algorithm updates Bj as

Bj ← Bj

(∑m
i=1〈ai, bj〉Ai

)−1(∑m
i=1XijAi

)
, which is also a diagonal PSD matrix. Setting

A> =
(
a>1 . . . a>m

)
and B = (b1 . . . bn), this coincides with LS’s update rule (25).

PSD factorizations for nonnegative tensors. Motivated by PSD factorizations of nonnegative
matrices, [16] define an r-dimensional PSD factorization of a nonnegative tensor T (with n indices
of dimension d) as a collection of PSD matrices C(1)

i1
, . . . , C

(n)
in
∈ Sr+ for all ik ∈ [d] such that

Ti1...in = sum(C
(1)
i1
◦ · · · ◦ C(n)

in
), for all ik ∈ [d], where ◦ denotes the Schur product of matrices

and sum(X) =
∑

ij Xij . The motivation for studying tensor PSD factorizations comes from the
fact that they characterize the quantum correlation complexity for generating multipartite classical
distributions [16]. We now show how our MMU algorithm can be used as a primitive to calculate
tensor PSD factorizations. For simplicity of presentation we restrict to n = 3 and consider

inf
∑

i1,i2,i3

(
Ti1i2i3 − sum(C

(1)
i1
◦ C(2)

i2
◦ C(3)

i3
)
)2

subject to C
(1)
i1
, C

(2)
i2
, C

(3)
i3
∈ Sr+. (26)

As in the case of PSD factorizations we employ a block coordinate descent approach. Specifi-
cally, fixing all matrices C(1)

i1
, C

(2)
i2

the optimization problem (26) is separable wrt each C(3)
i3

for all

i3 ∈ [d]. Thus, defining the map A : Sr → Rd2

, X 7→ (〈X,C(1)
i1
◦ C(2)

i2
〉)i1,i2 , we need to solve

arg inf ‖vec(T::i3)−A(C)‖22 subject to C ∈ Sr+, (27)

for all i3 ∈ [d]. Note that A> : Rd2 → Sr where x = (xx1x2) 7→
∑

i1,i2∈[d] xi1i2C
(1)
i1
◦ C(2)

i2
is a

PSD matrix, as the Schur product of PSD matrices is PSD. Thus, Theorem 1 gives an update rule
that preserves PSDness and for which the objective function (27) is nonincreasing.

6 Numerical experiments

Damping. The implementation of the MMU algorithm requires us to compute inverses and square-
roots of certain positive definite matrices. These operations become ill-conditioned whenever the in-
put matrices contain eigenvalues that are close to zero. To mitigate such issues, we apply a damping
operation. First, when computing ([B>B](Ai))

−1 in (23), we instead compute ([B>B](Ai)+εI)−1.
Second, when computing the matrix square root X1/2 in the process of computing the matrix geo-
metric mean (23) using the expression (16), we instead compute (X + εI)1/2. In our implementa-
tions, we apply a choice of ε = 10−8.

8



Distance matrices. Let v ∈ Rn be a vector and let M be a n × n matrix whose entries are
Mij = (vi − vj)2. M is known as a distance matrix and it admits the following 2-dimensional PSD
factorization

Mij = tr(AiBj), where Ai =
(

1
vi

) (
1
vi

)>
, Bj =

(−vj
1

) (−vj
1

)>
.

We generate a random v ∈ Rn with n = 20 where each entry is drawn from the standard normal
distribution. We apply our algorithm to compute a 2-dimensional factorization whereby we perform
500 iterations over 50 random initializations. We compute the normalized squared error loss of the
factorization from the data matrix, and we plot the error over each iteration Err =

∑
i,j(tr(AiBj)−

Mij)
2/
∑

i,j M
2
ij in Figure 1. Our experiments suggest that, with sufficient random initializations,

our algorithm finds a PSD factorization that is close to being exact.

0 100 200 300 400 500
Number of Iterates

0.0

0.1

0.2

0.3

0.4

0.5

No
rm

al
ize

d 
Sq

ua
re

d 
Er

ro
r

0 100 200 300 400 500
Number of Iterates

6

5

4

3

2

1

Lo
g 

No
rm

al
ize

d 
Sq

ua
re

d 
Er

ro
r

Figure 1: Performance of the MWU algorithm for computing a PSD factorization of a distance
matrix. Different curves correspond to different random initializations.

CBCL Face Image Dataset. In our second experiment, we apply the MMU method to compute
a PSD factorization of a matrix comprising face images from the CBCL Face Database [1]. The
objective of this experiment is to illustrate how computing a PSD factorization can be viewed as a
representation learning algorithm that generalizes NMF. The CBCL dataset comprises 2429 images
of faces, each of size 19× 19 pixels. We process the images so that the pixel intensity has mean 0.5
and standard deviation 0.25, with values subsequently clipped at [0, 1]. The resulting data matrix
has size 361× 2429.

We note that an r-dimensional PSD factorization of X specified by {Ai}, {Bj} gives rise to a
decomposition X:j =

∑r
i=1 λiA(uiu

>
i ), where Bj =

∑r
i=1 λiuiu

>
i is the spectral decomposition.

Subsequently, one can view the collection {A(uiu
>
i ) : ‖ui‖ = 1} as basic constituents from which

all face images are expressible via non-negative linear combinations. This is analogous to NMF in
which we express every data point as non-negative linear combinations from a collection of non-
negative basis vectors – these are precisely the linear image of a matrix factor B on standard basis
vectors. In this experiment, given a specific face image X:j , we show its decomposition as sums
of constituents identified by the MMU algorithm – these are the images A(uiu

>
i ), where ui are the

eigenvectors of Bj .

As our baseline, we compute a 27-dimensional NMF of the CBCL data matrix over 500 iterations. In
Figure 2 we illustrate the decomposition of one of images from the dataset into these 27 constituents.
Next, we calculate a 7-dimensional PSD factorization of the CBCL data matrix over 500 iterations
and illustrate the decomposition of the same image in the new basis in Figure 3. We compute a
7-dimensional PSD factorization because a symmetric matrix of dimension 7 × 7 has 28 degrees
of freedom, which is comparable with our NMF example. We note that the constituents learned
from the PSD factorization appear to capture global features, a phenomenon that has been been also
observed for NMF applied to datasets beyond CBCL [25].

Last, we apply the MMU algorithm to compute a block-diagonal PSD factorization with 9 blocks of
size 2×2 over 500 iterations (the number of degrees of freedom is 27), and we illustrate the decom-
position in Figure 4. In this instance, constituents contain more localized features. An advantage
of learning a continuum of basic building blocks is that one can express certain geometries in the
data that is otherwise not possible using a finite number of building blocks. As an illustration of this
intuition, in Figure 5, we show a continuum of atoms corresponding to a single 2 × 2 block which
captures a transition between the nose and the nostrils.

9



Computational specifications. Our experiments were conducted in Python on an Intel 7-th Gen i7
processor at 2.8GHz.

Code repository. Our codes are available on the following online repository

https://github.com/yssoh/PSD_MM

Figure 2: Image decomposition into building blocks learned from 27-dimensional NMF.

Figure 3: Image decomposition into building blocks learned from 7-dimensional PSD factorization.

Figure 4: Image decomposition into building blocks learned using 2× 2-block PSD factorization.

Figure 5: Visualization of continuum of building blocks learned using 2×2-block PSD factorization.

Funding transparency statement. Yong Sheng Soh gratefully acknowledges Ministry of Education
(Singapore) Academic Research Fund (Tier 1) R-146-000-329-133. Antonios Varvitsiotis gratefully
acknowledges Ministry of Education (Singapore) Start-Up Research Grant SRG ESD 2020 154 and
NRF2019-NRF-ANR095 ALIAS grant. Antonios Varvitsiotis acknowledges initial discussions with
Cédric Févotte, Sandra Tan, and Vincent Tan.

References
[1] MIT-CBCL Face Database, Center for Biological and Computational Learning, Massachus-

setts Institute of Technology. http://cbcl.mit.edu/software-datasets/FaceData2.
html.

[2] Rajendra Bhatia. Positive Definite Matrices. Princeton University Press, 2007.

[3] Samuel Burer and Renato D. C. Monteiro. A Nonlinear Programming Algorithm for Solving
Semidefinite Programs via Low-rank Factorization. Mathematical Programming, 95(2):329–
357, 2003.

[4] Emmanuel J. Candes and Terence Tao. Decoding by Linear Programming. IEEE Transactions
on Information Theory, 51:4203–4215, 2004.

[5] Murat A. Erdogdu, Yash Deshpande, and Andrea Montanari. Inference in graphical models via
semidefinite programming hierarchies. In Advances in Neural Information Processing Systems,
2017.

10

http://cbcl.mit.edu/software-datasets/FaceData2.html
http://cbcl.mit.edu/software-datasets/FaceData2.html


[6] Hamza Fawzi, João Gouveia, Pablo A. Parrilo, Richard Z. Robinson, and Rekha R. Thomas.
Positive Semidefinite Rank. Mathematical Programming, 153(1):133–177, 2015.

[7] Hamza Fawzi and Pablo A. Parrilo. Exponential lower bounds on fixed-size psd rank and
semidefinite extension complexity. https://arxiv.org/pdf/1311.2571.pdf, 2013.

[8] Cédric Févotte, Nancy Bertin, and Jean-Louis Durrieu. Nonnegative Matrix Factorization
with the Itakura-Saito Divergence: With Application to Music Analysis. Neural Computation,
21(3):793–830, 2009.

[9] Samuel Fiorini, Serge Massar, Sebastian Pokutta, Hans Raj Tiwary, and Ronald de Wolf. Ex-
ponential Lower Bounds for Polytopes in Combinatorial Optimization. Journal of the ACM,
(17), 2015.

[10] Yuan Gao and George Church. Improving Molecular Cancer Class Discovery Through Sparse
Non-negative Matrix Factorization. Bioinformatics, 21(21):3970–3975, 2005.

[11] Nicolas Gillis. The Why and How of Nonnegative Matrix Factorization, chapter Regularization,
Optimization, Kernels, and Support Vector Machines, pages 257–291. Number Chapman &
Hall/CRC in Machine Learning and Pattern Recognition Series. 2014.

[12] João Gouveia, Pablo A. Parrilo, and Rekha Thomas. Lifts of Convex Sets and Cone Factoriza-
tions. Mathematics of Operations Research, 38(2):248–264, 2013.

[13] Nicholas J. Higham. Computing a Nearest Symmetric Positive Semidefinite Matrix. Linear
Algebra and its Applications, 103:03–118, 1988.

[14] Prateek Jain, Raghu Meka, and Inderjit Dhillon. Guaranteed Rank Minimization via Singular
Value Projection. In Advances in Neural Information Processing Systems, 2010.

[15] Rahul Jain, Yaoyun Shi, Zhaohui Wei, and Shengyu Zhang. Efficient Protocols for Generat-
ing Bipartite Classical Distributions and Quantum States. IEEE Transctions on Information
Theory, 59:5171–5178, 2013.

[16] Rahul Jain, Zhaohui Wei, Penghui Yao, and Shengyu Zhang. Multipartite quantum correlation
and communication complexities. computational complexity volume, 26:199–228, 2017.

[17] Dana Lahat and Cédric Févotte. Positive Semidefinite Matrix Factorization: A Link to Phase
Retrieval and a Block Gradient Algorithm. In IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2020.

[18] Dana Lahat and Cédric Févotte. Positive Semidefinite Matrix Factorization Based on Trun-
cated Wirtinger Flow. In 28th European Signal Processing Conference (EUSIPCO), 2020.

[19] Dana Lahat, Yanbin Lang, Vincent Y. F. Tan, and Cédric Févotte. Positive Semidefinite Ma-
trix Factorization: A Connection with Phase Retrieval and Affine Rank Minimization. IEEE
Transactions on Signal Processing, in press, 2021.

[20] Kenneth Lange. MM Optimization Algorithms. SIAM, 2016.

[21] Javad Lavaei and Steven H. Low. Zero Duality Gap in Optimal Power Flow Problem. IEEE
Transactions on Power Systems, 27(1), 2012.

[22] Jimmie D. Lawson and Yongdo Lim. The Geometric Mean, Metrics, and More. In The Amer-
ican Mathematical Monthly, volume 108, pages 797–812, 2001.

[23] Daniel D. Lee and H. Sebastian Seung. Learning the Parts of Objects by Non-negative Matrix
Factorization. Nature, 401, 1999.

[24] Daniel D. Lee and H. Sebastian Seung. Algorithms for Non-negative Matrix Factorization. In
Advances in Neural Information Processing Systems 13, 2000.

[25] Stan Z. Li, Xin Wen Hou, Hong Jiang Zhang, and Qian Sheng Cheng. Learning Spatially
Localized, Parts-based Representation. In Proceedings of the 2001 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition., 2001.

11



[26] Xiaodie Lin, Zhaohui Wei, and Penghui Yao. Quantum and Classical Hybrid Generations for
Classical Correlations. https://arxiv.org/abs/2007.10673, 2020.

[27] Jakub Marecek and Martin Takac. A low-rank coordinate-descent algorithm for semidefi-
nite programming relaxations of optimal power flow. Optimisation Methods and Software,
32(4):849–871, 2017.

[28] Mehran Mesbahi and George P. Papavassilopoulos. On the Rank Minimization Problem Over
a Positive Semidefinite Linear Matrix Inequality. IEEE Transactions on Automatic Control,
42(2), 1997.

[29] Karthik Mohan and Maryam Fazel. New Restricted Isometry Results for Noisy Low-rank
Recovery. In IEEE International Symposium on Information Theory (ISIT), 2010.

[30] Pentti Paatero and Unto Tapper. Positive matrix factorization: A non-negative factor model
with optimal utilization of error. Environmentrics, 5:111–126, 1994.

[31] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Semidefinite relaxations for certifying
robustness to adversarial examples. In Advances in Neural Information Processing Systems
31, 2018.

[32] Mikkel N. Schmidt and Rasmus K. Olsson. Single-channel Speech Separation Using Sparse
Non-negative Matrix Factorization. In Ninth International Conference on Spoken Language
Processing, 2006.

[33] Kim-Chuan Toh. An inexact primal–dual path following algorithm for convex quadratic sdp.
Mathematical Programming, 112:221–254, 2008.

[34] Stephen Tu, Ross Boczar, Max Simchowitz, Mahdi Soltanolkotabi, and Benjamin Recht. Low-
rank Solutions of Linear Matrix Equations via Procrustes Flow. In Proceedings of The 33rd
International Conference on Machine Learning, pages 964–973, 2016.

[35] Arnaud Vandaele, François Glineur, and Nicolas Gillis. Algorithms for Positive Semidefinite
Factorization. Computational Optimization and Applications, 71(1):193–219, 2018.

[36] Lieven Vandenberghe and Stephen P. Boyd. Semidefinite Programming. SIAM Review,
48(1):49–95, 1996.

[37] Wei Xu, Xin Liu, and Yihong Gong. Document Clustering Based on Non-negative Matrix
Factorization. In the 26th Annual International ACM SIGIR Conference on Research and
Development in Informaion Retrieval, pages 267–273, 2003.

[38] Mihalis Yannakakis. Expressing Combinatorial Optimization Problems by Linear Programs.
Journal of Computer and System Sciences, 43:441–466., 1991.

12


	Introduction
	Prior Works on PSD Factorizations and Summary of Results
	A Matrix Multiplicative Update Algorithm for PSD Factorizations
	Fixed Points of the MMU Algorithm
	Applications of the MMU algorithm
	Numerical experiments

