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Abstract
Despite the potential of differentially private data
visualization to harmonize data analysis and pri-
vacy, research in this area remains underdevel-
oped. Boxplots are a widely popular visualization
used for summarizing a dataset and for compar-
ison of multiple datasets. Consequentially, we
introduce a differentially private boxplot. We
evaluate its effectiveness for displaying location,
scale, skewness and tails of a given empirical
distribution. In our theoretical exposition, we
show that the location and scale of the boxplot are
estimated with optimal sample complexity, and
the skewness and tails are estimated consistently,
which is not always the case for a boxplot naively
constructed from a single existing differentially
private quantile algorithm. As a byproduct of
this exposition, we introduce several new results
concerning private quantile estimation. In simu-
lations, we show that this boxplot performs simi-
larly to a non-private boxplot, and it outperforms
the naive boxplot. Additionally, we conduct a
real data analysis of Airbnb listings, which shows
that comparable analysis can be achieved through
differentially private boxplot visualization.

1. Introduction
It is now well established that differential privacy (Dwork
et al., 2006) is a powerful framework for protecting the
privacy of individuals’ data. As a result, a plethora of differ-
entially private data analysis tools have been developed over
the last several decades (Dwork, 2008; Ji et al., 2014; Liu
et al., 2023). However, one area that has been considerably
underdeveloped is that of differentially private visualization.
This is despite the fact that data visualization is a key tool
in exploratory analysis, which is an essential component of
data analysis. In fact, in a recent study of data analysts and
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practitioners, Garrido et al. (2023) found that “most analysts
employed aggregations and visualizations to fulfill their use
case,” rather than machine learning models.

Differentially private versions of several popular visualiza-
tions have been considered in the literature. Nanayakkara
et al. (2022) developed a plot to visualize privacy utility
trade-offs. Zhou et al. (2022) developed DPVisCreator,
a visualization system, which relies on publishing a syn-
thetic dataset. Visualizations in other privacy models were
considered by Dasgupta & Kosara (2011); Dasgupta et al.
(2013; 2019), and recently reviewed by Bhattacharjee et al.
(2020). There has been substantial study of the differen-
tially private histogram (Hay et al., 2010; Li et al., 2010;
Acs et al., 2012; Kellaris & Papadopoulos, 2013; Xu et al.,
2013; Zhang et al., 2014; Budiu et al., 2022). Visualiza-
tions based on clustering (Hongde et al., 2014), for mobility
data (He et al., 2016), heatmaps (Zhang et al., 2016) and
scatterplots (Panavas et al., 2024) have also been considered.

Surprisingly, despite its widespread use, a differentially
private boxplot has not been directly studied. Boxplots,
invented by Tukey et al. (1977), are used for visualizing
the characteristics of a univariate sample, as well as for
visualizing the relationship between a continuous variable
and a categorical variable. Despite its simplicity, many
key distributional characteristics can be evaluated from the
boxplot: namely, location, scale, skewness, and tails. This
has made it popular among practitioners.

In addition, its simplicity is beneficial from a privacy stand-
point. The boxplot only requires estimating a few summary
statistics in order to convey the distributional characteristics
of a univariate sample, making the boxplot efficient in its
use of privacy budget. For instance, by contrast, a histogram
can also be used to convey the same information. However,
a histogram is generally a consistent estimate of the popu-
lation density, which intuitively, should then require more
noise to ensure privacy.

Motivated by these observations, we take the first steps in de-
veloping and studying differentially private boxplots. First,
one can observe that a boxplot is made up of sample quan-
tiles. It is then natural to first consider how well a boxplot
constructed from naive applications of existing differentially
private quantile algorithms performs. Succinctly:
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How well does the “naive” private boxplot perform?

On this front, with a combination of new theoretical re-
sults and simulations, we demonstrate that this method may
fail on data coming from common distribution families.
We focus on the state-of-the-art algorithms JointExp
(Gillenwater et al., 2021), PrivateQuantile (Smith,
2011), ApproxQuantile (Kaplan et al., 2022), and
unbounded (Durfee, 2023). Due to limited space, our
rationale for this choice, and a full literature review on
private quantiles, including how our results build on this
literature, is relegated to Appendix D. See also the related
problem of differentially private range estimation (Kaplan
et al., 2020). While range queries can be used to compute
quantiles (Bun et al., 2015; Kulkarni, 2019; Kaplan et al.,
2020), our focus is on more practical methods that estimate
differentially private quantiles. In summary:

• We prove that JointExp, PrivateQuantile and
ApproxQuantile are (almost always) inconsistent
for extreme quantiles (Lemma 4.1), which makes them
a poor choice for generating the whiskers in the box-
plot. (To our knowledge, no results concerning the
consistency of extreme private quantiles previously ex-
isted. Lalanne et al. (2023b) proved consistency for
inner quantiles, under the assumption of a lower bound
on the density, which would not apply to extreme quan-
tiles.)

• We prove that unbounded is consistent for extreme
quantiles (Lemma B.3) . This result also confirms an
empirical observation of Durfee (2023), which says
that the unbounded quantile algorithm performs bet-
ter than existing algorithms for estimating extreme
quantiles. (To our knowledge, no statistical results
concerning unbounded previously existed.)

• Our simulations reveal that the unbounded al-
gorithm does not perform as well as JointExp,
ApproxQuantile or PrivateQuantile for es-
timating the inner quantiles of Gaussian data. This
makes it a poor choice for generating the box in
the plot. We support this finding by providing
matching (up to logarithmic factors) upper and lower
bounds for the sample complexity of JointExp,
ApproxQuantile and PrivateQuantile for
estimating inner quantiles, under general distributional
assumptions (Theorem 4.2 and Theorem 4.4). In par-
ticular, we only assume that the density is positive in a
neighborhood of the theoretical quantile and bounded
everywhere (Condition 1). Previous concentration re-
sults for these algorithms assume the population den-
sity has bounded support (Lalanne et al., 2023a). The
lower bound is new, and does not follow from the

lower bound on private medians (Tzamos & Vlatakis-
Gkaragkounis, 2020).

Given that the naive boxplot is not satisfactory, we then
sought to answer:

Can we develop a novel private boxplot, which performs
well at generating both the box and whiskers?

To this end, building on the aforementioned results concern-
ing private quantiles, we present a novel differentially pri-
vate boxplot, which we call DPBoxplot. We then evaluate
its ability to represent key features–location, scale, skew-
ness, and tails–both theoretically and empirically. Figure 1
provides an informal, graphical illustration of our approach.
Specifically, we use JointExp for estimating the quartiles
and the median to construct the box, and unbounded for
determining extreme values necessary for the whiskers and
the number of outliers. Instead of revealing the precise loca-
tions of outliers, we privately disclose their count using the
Laplace mechanism. In summary, our main contributions
concerning the new differentially private boxplot are:

• We carefully combine private quantile estimators, en-
suring that those used for the location and scale of the
boxplot are estimated optimally (Theorem 4.2), while
the extreme quantiles required to depict skewness and
tails remain consistent (Theorem 4.5).

• Extensive simulations demonstrate that DPBoxplot
is often more accurate than those constructed naively
using existing differentially private quantile methods,
see Section 5.

• We conduct a differentially private exploratory data
analysis, showcasing the practical utility and shortcom-
ings of DPBoxplot, see Section 6.

2. Preliminaries
First, we briefly review the boxplot. It is also helpful to in-
troduce some notation used throughout the paper. We define
a dataset of size n ∈ N to be a set of n real numbers. LetDn

be the set of datasets of size n and let Xn = {X1, . . . , Xn}
be a dataset size n. In this work, we assume the analyst has
access to a dataset, denoted by Xn. We will also assume
that Xn consists of n independent draws of from a common
population distribution or measure, denoted ν. We consider
the traditional boxplot, which consists of a box with a line
drawn through it, with two whiskers emanating from the
lower and upper bounds of the box, see Figure 1. The box is
made up of the median and the quartiles, while the whiskers,
represent the tails and skewness of the data. Points beyond
the whiskers are explicitly plotted. Together, this 5 number
summary describes the empirical distribution of the data,
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Figure 1. Graphical illustration of algorithms for the traditional
non-private boxplot (left) and our proposed differentially private
boxplot DPBoxplot (right).

including its location, scale, skewness and tails. A more
detailed review of the boxplot can be seen in Appendix A.

2.1. Differential privacy

Next, we introduce differential privacy. First, we say that
Yn ∈ Dn, is adjacent to Xn if Xn and Yn differ in exactly
one point. Let An be the set of pairs of adjacent datasets of
size n. Next, denote by PXn a probability measure which
depends on Xn. For a space S, let B(S) denote the Borel
sets of S and let M1(S) be the set of Borel probability
measures over S. Formally, PXn

is a map from Rn to
M1(Rd), for some d ∈ N. We can now define differential
privacy.

Definition 2.1. Given ϵ > 0, the quantity θ ∼ PXn is
ϵ-differentially private if

sup
(Xn,Yn)∈An

sup
B∈B(Rd)

PXn(B)

PYn
(B)
≤ eϵ. (1)

Here, θ is a d-dimensional differentially private quantity and
ϵ is the privacy budget, where values of ϵ which are closer
to zero enforce stricter privacy constraints.

The proposed differentially private boxplot makes use of
existing differentially private algorithms. Specifically, the
Laplace mechanism, and algorithms for computing differ-
entially private quantiles. The Laplace mechanism (Dwork
et al., 2006) is a fundamental mechanism for constructing
differentially private statistics. Let Z be a standard Laplace
random variable. Specifically, for a statistic T : Dn → R,
define its global sensitivity to be sup(Xn,Yn)∈An

|T (Xn)−
T (Yn)|. If T has global sensitivity bounded by 1, then
T̃ = T (Xn) + Z/ϵ is a differentially private quantity. This
is known as the Laplace mechanism.

2.2. Private quantiles

Of course, a private boxplot relies on differentially pri-
vate quantiles. The proposed private boxplot relies on

the unbounded algorithm of Durfee (2023) and the
JointExp algorithm of Gillenwater et al. (2021). These
algorithms are the main focus of our theoretical expo-
sition. However, the PrivateQuantile is a special
case of JointExp and so our results also apply to
PrivateQuantile. In addition, combining our results
with those of Kaplan et al. (2022) allows our results to also
hold for ApproxQuantile. We do, however, consider
the performance of the naive boxplot constructed from all
three of these algorithms in our simulation study, see Sec-
tion 5.

We now give a brief overview of JointExp and
unbounded. JointExp works as follows: Suppose
we wish to estimate m ∈ N quantiles of levels 0 <
q1 < . . . < qm ≤ 1. For an integer k ∈ N, let [k]
denote the set {1, . . . , k}. Define the jth quantile gener-
ated by JointExp for a given j ∈ [m] to be ξ̃qj , and let
ξ̃q = (ξ̃q1 , . . . , ξ̃qm). For a given µ ∈ M1(R), let Fµ be
the cumulative distribution function (CDF) of µ and, if it
exists, let fµ be its probability density function. For the
dataset Xn, let ν̂ be the corresponding empirical measure,
so that Fν̂ is then the associated empirical CDF. For x ∈ Rm

with x1 < . . . < xm, define the following utility function:
ϕ(x) = −

∑m+1
j=1 |Fν̂(xj)−Fν̂(xj−1)−(qj−qj−1)|,where

x0 = −∞, xm+1 = ∞, q0 = 0 and qm+1 = 1. Then ξ̃q
is a random vector drawn from the density fQXn

(x) ∝
exp(−nϕ(x)/2ϵ)1 {x ∈ [a, b]m} , where QXn

is used to
denote the distribution of ξ̃q, given Xn.1 It was shown by
Gillenwater et al. (2021) that ξ̃q is ϵ-differentially private.
Furthermore, Lalanne et al. (2023b) showed that this algo-
rithm is consistent if ν is continuous. If one suspects that
ν contains atoms, then we recommend that one uses the
jittering modification proposed by Lalanne et al. (2023b).
We show in Section 4 that, for a large class of distributions,
this algorithm has optimal sample complexity for estimat-
ing a single inner quantile, and therefore, for the scale and
location of the boxplot. (Here we are only interested in
estimating three quantiles, and so, how sample complexity
scales in m in not of particular concern.)

The original unbounded algorithm produces a private
quantile given a lower bound on the data. We present a
slightly modified version, which performs better for ex-
treme quantiles. For a given quantile q ∈ [1/2, 1] and
a > 0, let V0, V1, . . . be independent, standard exponential
random variables and let βn > 1. Define i∗ = inf{i ∈
N : Fν̂(β

i
n + a − 1) + 2

nϵVi ≥ q + V0
2
nϵ}. Here i∗ is the

smallest integer i such that a noisy empirical CDF com-
puted at βi

n + a− 1 is greater than a noisy version of q. The
quantile estimate generated by the unbounded algorithm
is given by: ψ̃q = βi∗

n +a−1. The intuition is that if a noisy
version of Fν̂(β

i∗

n + a− 1) is close to a noisy version of q,

1Note fQXn
is only defined for x ∈ Rm with x1 < . . . < xm.
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then βi∗

n + a− 1 should be close to the nonprivate quantile.
If q ∈ (0, 1/2), then, we apply the above procedure to the
dataset −Xn = {−X1, . . . ,−Xn}, with input parameters
1−q+1/n and a = −b. It follows from (Durfee, 2023) that
this algorithm is ϵ-differentially private. In the proposed dif-
ferentially private boxplot algorithm, we use unbounded
to estimate the minimum and maximum of the dataset. For a
measure µ ∈ M1(R), let ξp,µ = inf{x ∈ R : p ≤ Fµ(x)}
be the associated pth quantile, min(µ) = inf{x : Fµ(x) >
0} and max(µ) = inf{x : Fν(x) = 1}. We show that if Xn

is an independent sample from ν, then ψ̃1 is weakly consis-
tent for max(ν), and ψ̃1/n is weakly consistent for min(ν),
see Lemma B.3. By contrast, we show that when the sup-
port of fν is bounded below, JointExp is inconsistent for
min(ν) when q = 1/n, unless a = min(ν), see Lemma 4.1.
Lastly, we note that instead of exponential noise, one could
also use Laplace or Gumbel noise (Durfee, 2023). We found
this to make little difference in simulation, and so we only
present the version which incorporates exponential noise.

3. A differentially private boxplot
We can now introduce the differentially private boxplot.
Given lower and upper bounds on the data a and b, we first
generate the minimum and maximum estimates using the
unbounded algorithm, ψ̃1/n and ψ̃1 with a privacy budget
of 3ϵ/16 each. If one does not wish to supply input bounds
for the data, one can use the “fully unbounded” version
of unbounded (Durfee, 2023). However, in simulation,
(see Section 5), we have observed that the procedure is
still accurate, even when the input bounds are very loose.
Critically, we use the unbounded algorithm because
JointExp (and, by consequence, PrivateQuantile
and ApproxQuantile) is often inconsistent for estimat-
ing the aforementioned extreme quantiles, unless the in-
put bounds a and b match min(ν) and max(ν), respec-
tively, see Lemma 4.1. Next, we run one instance of
JointExp with a total privacy budget of ϵ/2 to generate
ξ̃1/4, ξ̃1/2, ξ̃3/4 simultaneously to be the lower box bound,
center line and upper box bound, respectively. We then cal-
culate the private interquartile range ˜IQR = ξ̃3/4−ξ̃1/4. Let
ℓ̃1 = ξ̃1/4−1.5× ˜IQR, ũ1 = ξ̃3/4+1.5× ˜IQR and λn > 0
be the buffer parameter. The lower and upper whisker are
defined as

ℓ̃ =

{
ℓ̃1 ξ̃1/n ≤ λn|ℓ̃1|+ ℓ̃1

ψ̃1/n ξ̃1/n > λn|ℓ̃1|+ ℓ̃1,

and

ũ =

{
ũ1 ξ̃1 ≥ ũ1 − λn|ũ1|
ψ̃1 ξ̃1 < ũ1 − λn|ũ1|

,

respectively. To elaborate, the role of the minimum and the
maximum of the dataset in a traditional boxplot is played

by the estimated extreme quantiles ψ̃1/n and ψ̃1. Given that
estimated extreme quantiles are more variable than the esti-
mated inner quantiles, we add a buffer λn to account for this.
Specifically, we take the upper whisker equal to the extreme
quantile ψ̃1 when ψ̃1 is (λn×100)% smaller than 1.5 times
the ˜IQR. An analogous procedure is done for the lower
whisker. The role of λn is to account for the fact that the
algorithm is more prone to erroneously replacing the IQR-
based whisker with an extreme quantile. This is because the
extreme quantiles are more variable than the inner quantiles.
To mitigate this, we introduce λn as a trust parameter that
favors the IQR whisker—allowing it to be replaced only
when the extreme quantile is smaller in magnitude by at
least (λn×100)%. We take λn = n−1/4. Simulation results
(Appendix C.2) indicate that the performance of the method
is not overly sensitive to the choice of this parameter.

The boxplot includes the observations that lie above and be-
low the upper and lower whiskers, respectively. We cannot
release such data points under the constraints of differential
privacy. Instead, we plot a noisy version of the number of
points above ũ, denoted õu and below ℓ̃, denoted õℓ. These
are generated via the Laplace mechanism, where it is easy to
see that the count of observations above or below a threshold
has global sensitivity 1. Lastly, we attribute less privacy bud-
get for computing the outliers, as we deem these values to
be of less interest than the box itself. We assign each noisy
outlyingness number a privacy budget of ϵ/16. Together,
these seven values make up the differentially private boxplot:
B̃(Xn, ϵ) = B̃(ν̂, ϵ) = (õℓ, ℓ̃, ξ̃1/4, ξ̃1/2, ξ̃3/4, ũ, õu). The
algorithm, which we call DPBoxplot, is summarized in
Algorithm 3, see also, Figure 1. It follows from sequential
composition that DPBoxplot is ϵ-differentially private.

Note that the time and space complexities of DPBoxplot
are given by the maximum of those of the differentially
private quantile algorithms unbounded and JointExp.
Since the unbounded quantile can be computed in linear
time (Durfee, 2023), the overall complexity of DPBoxplot
is determined by that of JointExp, which is O(n log(n))
(Gillenwater et al., 2021).

4. Theoretical results
In this section, we derive several results concerning private
quantiles and the different elements of the private boxplot.
Recall that we assume that the dataset Xn consists of n
independent, identically distributed random variables drawn
from a population measure ν ∈M1(R). We first present a
lemma which says that JointExp is inconsistent for ex-
treme quantiles. We then present an upper bound on the
sample complexity of the inner quantiles generated from
JointExp. After which, we present a minimax lower
bound for privately estimating a quantile from a population
measure lying in a general set, which matches the upper
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Algorithm 1 DPBoxplot
Input: data Xn, ϵ, a, b, λn
{Construct the private quantiles2}
ψ̃1 ←unbounded(1, a, b, 3ϵ/16)
ψ̃1/n ←unbounded(1/n, a, b, 3ϵ/16)
ξ̃q ←JointExp(q, a, b, ϵ/2)
{Ensure the box contains the median}
ξ̃1/4 ← min(ξ̃1/4, ξ̃1/2)

ξ̃3/4 ← max(ξ̃3/4, ξ̃1/2)
{Construct the whiskers and outlyingness counts}
ℓ̃← ξ̃1/4 − 1.5(ξ̃3/4 − ξ̃1/4)
ũ← ξ̃3/4 + 1.5(ξ̃3/4 − ξ̃1/4)
if ψ̃1/n > λn|ℓ̃|+ ℓ̃ then
ℓ̃← ψ̃1/n

õℓ ← 0
else
õℓ ←

∑n
i=1 1

{
xi < ℓ̃

}
+ Laplace(0, 1

ϵ/16 )

end if
if ψ̃1 < ũ− λn|ũ| then
ũ← ψ̃1

õu ← 0
else
õu ←

∑n
i=1 1 {xi > ũ}+ Laplace(0, 1

ϵ/16 )

end if
Output: B̃(Xn, ϵ) = (õℓ, ℓ̃, ξ̃1/4, ξ̃1/2, ξ̃3/4, ũ, õu)

bound up to logarithmic terms. Lastly, we present a re-
sult that says the whiskers and outlyingness numbers are
consistent for their population counterparts.

We now define a boxplot rigorously, as a function of a
measure on the set of real numbers, which is convenient
mathematically. The non-private boxplot constructed from
the data is taken to be the boxplot computed on the empirical
measure of the dataset Xn, denoted by ν̂. For ν ∈M1(R),
let IQR(ν) = ξ3/4,ν − ξ1/4,ν . Now, letting ℓ1,ν =
ξ1/4,ν − 1.5× IQR(ν) and u1,ν = ξ3/4,ν + 1.5× IQR(ν),
the whiskers are defined as ℓν = max(ℓ1,ν , min(ν))
and uν = min(u1,ν , max(ν)). Lastly, we can define
oℓ,ν = Fν(ℓν) − ν({X = ℓν}), ou,ν = 1 − Fν(uν). The
“population” boxplot is the following seven number sum-
mary B(ν) = (oℓ,ν , ℓν , ξ1/4,ν , ξ1/2,ν , ξ3/4,ν , uν , ou,ν).

The next lemma says that JointExp (and, by conse-
quence, PrivateQuantile and ApproxQuantile
since these algorithms are equivalent for m = 1 quantile) is
inconsistent for the minimum of ν when we set q = O(1/n)
if the input bounds do not exactly match those of the sup-
port of the population distribution, and the support of the
population distribution is bounded.

Lemma 4.1. For −∞ < a < b < ∞, 0 < q ≤ 1, if there
exists M > a such that ν({X ≤M}) = 0, then for any

0 < t < M − a, we have that

Pr
(
|ξ̃q − ξq,ν | ≥ t

)
≥ e−ϵnq

2
M − t− a
b− a

.

In this case, if q = n−1, then the sample complexity is
bounded below by infinity, which implies inconsistency.
The proof of Lemma 4.1 can be seen in Appendix B.

Before getting to our next results, we introduce a condition
on the population distribution. For L, r > 0 and q ∈ (0, 1],
let GL,r,q be the set of absolutely continuous measures
µ ∈ M1(R) such that infξq−r≤x≤ξq+r fµ(x) ≥ L > 0.
Therefore, if the population measure ν ∈ GL,r,q , then it has
a density which is bounded below by L in a neighborhood
of size r around its qth quantile.
Condition 1. Given p = (p1, . . . , pm) with 0 < p1 < . . . <
pm ≤ 1 then a ≤ ξp1

< ξpm
≤ b and there exists K, r, L >

0 such that ν ∈ ∩mi=1GL,r,pi and supx∈[a,b] fν(x) ≤ K.

This condition has three requirements. First, we require
that the interval [a, b] contains the population quantiles we
wish to estimate. Our theoretical and simulation results
show that this interval can be chosen loosely, as the error in
our estimates does not depend strongly on the size of this
interval. Thus, this is not a strict requirement. Next, we
require that for each pi, i ∈ [m], in a neighborhood of size r
of the pith quantile of ν, the density is bounded away from
0. This requirement is standard in quantile estimation, e.g,
(Tzamos & Vlatakis-Gkaragkounis, 2020; Lalanne et al.,
2023a). Lastly, we require that the population density is
bounded above everywhere. Requiring the density being
bounded above is a weak restriction, which is satisfied by
many distribution families, such as the Gaussian, Beta and
Gamma families.

We can now state an upper bound on the sam-
ple complexity of the private quantiles generated via
JointExp, and by consequence, PrivateQuantile
and ApproxQuantile, see Remark 4.3. For q =
(q1, . . . , qm) such that 0 < q1 < . . . < qm ≤ 1, define
ξq,ν = (ξq1,ν , . . . , ξqm,ν). Next, for x, y ∈ R, we write
x ∨ y (x ∧ y) for the maximum (minimum) of x and y.

Theorem 4.2. Given −∞ < a < b < ∞ and q =
(q1, . . . , qm) such that 0 < q1 < . . . < qm ≤ 1, if Con-
dition 1 holds with p = q, then there exists a universal
constant C > 0 such that for all 0 < γ < 1 and 0 < t ≤ r,
it holds that ∥ξq,ν̃ − ξq,ν∥ ≤ t with probability 1− γ, pro-
vided that

n ≥ C

(
m5/2 log(1/γ) ∨m log(m/ctL)

t2L2

∨
m2

log (1/γ) ∨ log
(

K(b−a)
q1∧(1−qm)∧tL

)
tLϵ

)
.
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The proof of Theorem 4.2 relies on a general bound for the
exponential mechanism detailed by Ramsay et al. (2024),
it can be seen in Appendix B. Theorem 4.2 gives an upper
bound on the sample complexity of the quantiles generated
by JointExp for distributions who satisfy Condition 1
with p being the vector of quantile levels to be estimated.
Comparing to existing results, Lalanne et al. (2023a) give a
concentration result for JointExp which yields the same
upper bound given by Theorem 4.2, when the support of
fν is bounded. Therefore, our bound is essentially a gen-
eralization of theirs, though we assume that fν is bounded
above. The sample complexity of the median of Tzamos
& Vlatakis-Gkaragkounis (2020), which is a different esti-
mator, also matches the upper bound given in Theorem 4.2,
under similar assumptions. Lastly, we note that by com-
bining our techniques used to prove the upper bound given
in Theorem 4.2 with the ApproxQuantile algorithm of
Kaplan et al. (2022), one can obtain logarithmic scaling
in m. However, in this context, m = 3, and this is not
particularly relevant, thought may be interesting for other
applications. In simulation, we observe almost identical per-
formance between ApproxQuantile and JointExp
for the purposes of DPBoxplot.
Remark 4.3. We now expand on how Theorem 4.2 applies
to PrivateQuantile and ApproxQuantile. The
PrivateQuantile algorithm only generates one quan-
tile. So, for PrivateQuantile, we would be applying it m
times to estimate m quantiles. Given that all three algo-
rithms are the same with m = 1, Theorem 4.2 applies to
PrivateQuantile with m = 1. Applying Theorem
4.2 m times with t = t/m1/2 yields the same bound that
is given in Theorem 4.2. For ApproxQuantile, if you
inspect the ApproxQuantile algorithm, it is made up
of successive applications of PrivateQuantile at each
level of a tree, with the input bounds depending on the
previous levels of the tree. In that case, you can com-
bine our bound for PrivateQuantile with m = 1,
t = t/(log(m) + 1) and γ = γ/m. Then you can ap-
ply Lemma 3.2 of Kaplan et al. (2022) (Note their notation
uses β for γ and gamma for t) and the result follows im-
mediately.

Next, we present a minimax lower bound for estimating a
single quantile subject to differential privacy. Next, for a set
S, let M̃1,ϵ,n(S) be the set of maps fromDn toM1(S) that
satisfy (1). Note that M̃1,ϵ,n(S) is just a formal way of writ-
ing the set of all differentially private mechanisms whose
output lies in S. Next, we write Tϵ ∼ M̃1,ϵ,n(R) to denote
the set of all univariate differentially private estimators.3 For
0 < q ≤ 1, let hq(x) = x

√
(− log x− [Φ−1 (q)]2/2)/π

and Cq = argmaxx>0 hq(x). Denote the minimax risk for

3To be clear, given an element of M̃1,ϵ,n(R), say P., Tϵ could
be the associated estimator. Given a dataset Xn with empirical
measure ν̂, Tϵ(ν̂) would be a draw from PXn , or Tϵ(ν̂) ∼ PXn .

differentially private quantile estimation byR(ϵ, L, r, q) =
infTϵ∼M̃1,ϵ,n(R) supν∈GL,r,q

E|Tϵ(ν̂)− ξq,ν |.

Theorem 4.4. For all n ≥ 1, q ∈ (0, 1), L, r > 0 such that
rL ≤ supx>0 hq(x), it holds that

n = Ω

(
C2

q

L2t2
∨ Cq

Ltϵ

)
, (2)

samples are required forR(ϵ, L, r, q) ≤ t to hold.

Theorem 4.4 gives a lower bound on the sample com-
plexity for estimating the qth quantile from a distribution
whose density is bounded below by L in a neighborhood
of size r around the qth population quantile. That is, ev-
ery differentially privacy quantile estimator requires at least

Ω
(

C2
q

L2t2 ∨
Cq

Ltϵ

)
samples in order to have a minimax risk

bounded above by t. What is important for this context,
is that Theorem 4.4 implies a lower bound on the sample
complexity for estimating m quantiles from a distribution
whose density is bounded below by L in neighborhoods
of size r around each of the m population quantiles. That
is, for all q = (q1, . . . , qm), n ≥ 1, L, r > 0 with rL ≤
infj∈[m] Cqj , it holds that (2) samples are also required for
infTϵ∼M̃1,ϵ,n(Rm) supν∈GL,r,q

E∥Tϵ(ν̂)−ξq,ν∥ ≤ t. Apply-
ing this lower bound in conjunction with Theorem 4.2 yields
that the scale and location of the proposed private boxplot
are estimated optimally, up to logarithmic factors. Note
that Tzamos & Vlatakis-Gkaragkounis (2020) give a simi-
lar minimax lower bound on differentially private median
estimation. However, their proof does not directly extend
to estimating an arbitrary quantile, since it relies on a set of
uniform distributions that have the property that the median
coincides with the mean. The proof of Theorem 4.4 makes
use of the differentially private version of Fano’s inequality
(Acharya et al., 2021), it is deferred to Appendix B.

Next, we show that the whiskers and the outlyingness num-
bers, when appropriately normalized, are weakly consistent
for their population counterparts.

Theorem 4.5. For −∞ < a < b < ∞, if λn → 0
and βn → 1 as n → ∞, and Condition 1 holds for
p = (1/4, 1/2, 3/4), then it holds that ℓ̃

p→ ℓν , ũ
p→ uν

õℓ/n
p→ oℓ,ν and õu/n

p→ ou,ν .

Here
p→ denotes convergence in probability. Theorem 4.5

says if the population density is bounded below in neighbor-
hoods of each of the population median and the population
quartiles, the population density is bounded above every-
where, and [a, b] contain the quartiles, then the whiskers and
outlyingness numbers will be consistent. To our knowledge,
this is the first result concerning extreme, private quantiles.
Together, Theorems 4.2 and 4.5 imply that, given a large
enough sample size, DPBoxplot will correctly represent
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Figure 2. Average error in each metric with 95% confidence intervals between the different differentially private boxplots and their
corresponding population boxplot (y-axis) with ϵ = 1 and increasing n (x-axis). The DPBoxplot algorithm is presented, along with the
naive method paired with each of the algorithms JointExp, ApproxQuantile, unbounded and PrivateQuantile (line color).
The different generated distributions are represented row-wise, and the different metrics: location, scale, skewness and tails are presented
column-wise. The non-private line is the distance between the non-private boxplot and its corresponding population boxplot.

the location, scale, skewness and tail of the underlying dis-
tribution. Thus, making it statistically valid for one to use
the private boxplot to describe samples in a differentially
private exploratory data analysis.

5. Simulations
We now assess the empirical performance of DPBoxplot.
We compare DPBoxplot to the “naive private boxplot”
and the non-private sample boxplot. The naive private
boxplot is one where a single differentially private quantile
algorithm is used to generate all quantiles that are used
in the boxplot. Using these quantiles, the whiskers and
outlyingness counts are then constructed in the same manner
as that of Algorithm 3. We consider the following quantile
estimation methods: PrivateQuantile, unbounded,
ApproxQuantile and JointExp. For all algorithms,
we set a = −50 and b = 50 and λn = n−1/4. We ran the
same simulations with other values of λn and found it did
not alter the conclusions of the study, see Appendix C.2. For
the unbounded algorithm, β was set to the default value
of 1.001 for both the naive boxplot and DPBoxplot.

We assess the boxplots across the four key metrics: scale,
location, skewness and tails. We consider the error between
each boxplot and the population boxplot. For DPBoxplot,
errors in each of the components are quantified as follows:

|ξ̃1/2 − ξ1/2,ν | (location), | ˜IQR − IQR(ν)| (scale), |ℓ̃ −
ℓν |+ |ũ−uν | (skewness), |õℓ−noℓ,ν |+ |õu−nou,ν | (tails).
Errors for remaining boxplots are defined analogously.

Data were generated from the five distinct distributions
parametrized to have mean 0 and variance 1: normal dis-
tribution (normal), skew normal distribution (skew), uni-
form distribution (uniform), beta distribution (beta),
and an empirical distribution of 2019 NY airbnb listing
prices (airbnb)4. We considered values of n and ϵ and
each scenario was simulated 1000 times. (For more details,
see Appendix C.1). Results from beta and airbnb dis-
tributions, and those with ϵ = 0.5 or ϵ = 5 did not add
additional insights, so we also defer to Appendix C.1. We
also assessed DPBoxplot’s ability to compare multiple
distributions simultaneously, concluding that DPBoxplot
also performs well under this setting. For brevity, these
results are deferred to Appendix C.3.

Figure 2 provides a comprehensive summary of the simula-
tion results. Each column of figures corresponds to a distinct
boxplot component, while each row pertains to a different
generating distribution. The sample size is depicted along
the x-axis, while the average error is represented on the
y-axis. The line color within the figures denotes the method
used to generate the boxplot.

4These data were sampled without replacement.
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Consistent with Theorems 4.2, 4.4, and 4.5, the error for
all components of DPBoxplot is converging to zero as
n increases in all scenarios. Further, we see that the er-
ror for DPBoxplot is similar to that of the error for
non-private. This means that the sampling error is
larger than that of the error attributed to privatization.

On the other hand, the naive boxplots do not always ex-
hibit the same behavior. In particular, the inconsistency of
the whiskers for the naive methods based on JointExp,
ApproxQuantile, and PrivateQuantile is re-
flected through poor performance in the skew metric for
the skew and uniform distributions. On the other hand,
though it does well at estimating the extreme quantiles, the
unbounded algorithm worse than the other algorithms for
estimating scale and location. We see that DPBoxplot
retains the best of both worlds.

In the setting of normally distributed data at small sam-
ple sizes, DPBoxplot does perform worse than the naive
methods in the skewness metric. This happens because at
small sample sizes, the unbounded algorithm tends to un-
derestimate the magnitude of the minimum and maximum
of the dataset, while the other algorithms overestimate the
magnitude of the minimum and maximum. Nevertheless,
we can still conclude that overall, DPBoxplot exhibits
consistently better behavior than the naive methods.

6. Case study
We now conduct an exploratory data analysis via boxplots,
within the framework of differential privacy. We consider
two business inquiries, each with a privacy budget of ϵ = 1.
Each inquiry consists of several visualizations. The privacy
budget for each visualization is proportional to the number
of boxplots in the visualization. To elaborate, out of the total
budget (ϵ = 1), each visualization (and therefore, as a result
of parallel composition, each boxplot) is assigned a privacy
budget equal to the number of boxplots in the visualization,
divided by the number of boxplots on all generated visual-
izations. We chose this allocation so that more budget is
allotted to visualizations where the data is partitioned more
times. The intuition is that if the data is partitioned more
times, then each boxplot in the visualization has a sample
size which is smaller.Code for replicating our visualizations
has been made publicly accessible ().

We analyze a dataset containing Airbnb listing prices and
associated metrics within New York City (NYC) in 2019
(Kaggle, 2019). After removing listings priced above 500
US dollars (USD) and requiring minimum nights of stay
fewer than 10, this dataset has n = 40738 observations
and d = 4 explanatory variables of business interest. We
only consider listings priced below 500 USD, and so we
set a = 0 and b = 500. We address two distinct business

inquiries, the first of which is presented. The second one,
due to space requirements, is deferred to Appendix ??.

Inquiry 1: Do discernible patterns emerge in Airbnb
listing prices across various boroughs in New York City
and differing room types?

The dataset encompasses five distinct boroughs within New
York City, namely the Bronx, Brooklyn, Manhattan, Queens,
and Staten Island, alongside three offered room types: En-
tire Home, Private Room, and Shared Room. We present
three visualizations: boxplots of prices by borough, room
type, and by borough and room type combinations. These
generate 5, 3, and 15 boxplots, respectively, totaling 23.

The differentially private boxplots are displayed in Figure
3, juxtaposed with non-private counterparts. Only looking
at the differentially private boxplots, Figure 3 reveals that
prices predominantly lie in the bottom end of the range
[0,500], with a right skew and heavy right tail observed
across all boroughs and rooms, except for in the Bronx, and
for shared rooms. The distribution of prices in the Bronx still
exhibits a right skew, but has light tails. The distribution of
prices for shared rooms appears to be symmetric, with light
tails. Notably, prices appear elevated for Manhattan. As
expected, entire homes are priced higher than shared spaces.
The right-most plot, which displays prices by both borough
and room type, affirms previous observations, except shared
rooms in Staten Island and the Bronx. Staten Island and the
Bronx exhibits higher variability for shared rooms.

It is natural to compare the patterns observed on the differ-
entially private boxplots to those observed in the non-private
boxplots. As previously mentioned, Figure 3 juxtaposes the
differentially private boxplots with the non-private boxplots.
Many conclusions derived from the private visualizations
persist in the non-private domain. However, there are sev-
eral disparities, which are outlined are as follows: In reality,
both the listing prices for shared rooms and properties in
the Bronx do have a heavy, right tail. The second disparity
occurs in the third plot, where non-private plots does not
indicate higher prices and variability for properties in Staten
Island and the Bronx in shared rooms. These discrepancies
can be explained by small sample sizes and our conserva-
tive choice of privacy budget. For instance, the number of
shared room listings in Staten Island is only 9. Overall,
the patterns observed are generally consistent between the
private and non-private boxplots. The principal disparities
are attributable to sample size, a factor we encourage practi-
tioners to consider when conducting differentially private
exploratory analyses.

Inquiry 2: Are there observable trends in Airbnb listing
prices concerning minimum nights required for reserva-
tion and the types of rooms offered?

We create a new categorical variable called minimum nights,
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in which a listing is assigned “low” if it has less than or
equal to three minimum nights, and “high” otherwise. For
this inquiry, we generate two visualizations: Boxplots of
prices by minimum nights, and prices by combinations of
minimum nights and room offered. These visualizations
require 2, and 6 boxplots, respectively, totaling 8.

The differentially private boxplots are displayed in Figure 4,
juxtaposed with their non-private counterparts. Again, we
first analyze the patterns in the differentially private box-
plots, and compare to those observed in the private boxplots
afterward. The differentially private boxplots indicate the
emergence of a phenomenon akin to Simpson’s paradox.
Specifically, a preliminary examination suggests that listings
requiring a higher minimum number of nights are priced
more steeply than their counterparts with lower minimum
requirements. However, this trend disappears when the data
is divided by room type. Listings for entire rooms exhibit
no significant price differential based on minimum night
requirement, while private rooms slightly favor lower mini-
mum nights in terms of price. In shared rooms the median
price does not seem to be significantly different.

A comparative analysis with non-private boxplots reaffirms
these observations; we observe relatively consistent pat-
terns between the private and non-private boxplots. The pri-

mary visual disparity pertains to the positioning of the lower
whiskers on the boxplots. This underscores the recognized
challenge associated with differentially private estimation
of extreme quantiles. However, this discrepancy does not
materially impede the analytical value of our findings.

7. Discussion
We have demonstrated that differentially private boxplots
are a theoretically and practically viable standalone tool for
private data analysis. Our work concerns differentially pri-
vate data visualization, which, despite its impact potential,
is severely underexplored. Though some work has been
done in this area, a deep investigation into the practical as-
pects of differentially private exploratory data analysis is
still needed, and a promising direction of future research.
In particular, a large barrier for private exploratory analy-
sis is optimal budget allocation for sequential and iterative
workflows. Addressing this challenge is crucial to facilitate
real-world adoption of differential privacy in data analysis
pipelines.

Code. Official implementation is available at https:
//github.com/jairoadiazr/DPBoxplot.
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A. A review of the boxplot
The boxplot consists of a box with a line drawn through it, with two whiskers emanating from the lower and upper bounds
of the box. Specific points are sometimes indicated above or below the whiskers. The central line inside the box marks the
median of the dataset. The box itself is constructed from the quartiles, detailing the middle 50% of Xn. The lower (upper)
whisker is constructed from the larger (smaller) of the minimum (maximum) of Xn and the lower (upper) quartile of Xn

minus (plus) 1.5 times the interquartile range of Xn. Lastly, any points in Xn falling outside of the whiskers are added to
the plot. See Figure 3 for an example. The boxplot describes various characteristics of Xn. The median line approximates
the location of Xn. The box itself approximates the spread or scale of Xn. The skewness of Xn can be approximated
as follows: A median line placed in the center of the box, along with whiskers that are similar in magnitude, suggests a
symmetric distribution. A median line placed away from the center of the box or asymmetric whiskers indicates skewness.
Additionally, the tails can be assessed by the number of points beyond the whiskers. Many such points signify outliers or
heavy tails, highlighting data points that deviate significantly from the rest.

B. Technical proofs
Here for a, b ∈ R, a ∨ b (a ∧ b) denotes the maximum (minimum) of a and b.

Proof of Lemma 4.1. We have that

Pr
(
|ξ̃qn − ξqn,ν | ≥ t

)
≥ Pr

(
ξ̃qn ≤M − t

)
≥
∫M−t

a
e−ϵ

n|Fν̂ (x)−qn|
2 dx∫ b

a
e−

n|Fν̂ (x)−qn|
2ϵ dx

≥ e−ϵnqn
2
M − t− a
b− a

.

Before presenting the proof of Theorem 4.2, we first prove a general sample complexity bound for quantiles. For t ≥ 0,
q = (q1, . . . , qm) such that 0 < q1 < . . . < qm < 1, −∞ < a < b <∞, and ν ∈M1(R), define:

α(t) = inf
a<x1<...<xm<b, ∥x−ξq,ν∥≥t

m+1∑
i=1

|qj − qj−1 − Fν(xj) + Fν(xj−1)|.

One may wish to recall that inf ∅ =∞, and so α(t) is still defined if {a < x1 < . . . < xm < b, ∥x− ξq,ν∥ ≥ t} = ∅.
Lemma B.1. For −∞ < a < b < ∞, if ν ∈ M1(R) is absolutely continuous such that supx∈[a,b] fν(x) ≤ K < ∞,
then there exists universal constants C, c > 0 such that for all q = (q1, . . . , qm) such that 0 < q1 < . . . < qm < 1 and
a ≤ ξq1,ν ≤ . . . ξqm,ν ≤ b, all t ≥ 0 and 0 < γ < 1, it holds that ∥ξq,ν̃ − ξq,ν∥ ≤ t, with probability 1− γ, provided that

n ≥ Cm2 log(1/γ) ∨m logm/cα(t)

α2(t)

∨
m
log (1/γ) ∨ log

(
K(b−a)

q1∧(1−qm)∧α(t)

)
α(t)ϵ

. (3)

Proof of Lemma B.1. Given that ξ̃q,ν̂ is a draw from the exponential mechanism, the result follows from an application of
Corollary 7 of (Ramsay et al., 2024). Corollary 7 of (Ramsay et al., 2024) gives an upper bound on the sample complexity
of a draw from the exponential mechanism, provided the utility function meets certain criteria. In order to apply Corollary 7
of (Ramsay et al., 2024), we must show that the following function

ϕ′(x, ν) = −
m+1∑
j=1

|Fν(xj)− Fν(xj−1)− (qj − qj−1)|1 {[x1, xm] ∈ [a, b]} −∞ · (1− 1 {[x1, xm] ∈ [a, b]}),

and ν satisfy three conditions. First, we must show that ϕ′(x, ν) has a maximum, which is easily seen by definition,
ϕ′(x, ν) is maximized at ξq,ν . The second requirement is that ϕ′(x, ν) is K-Lipschitz, which follows by assumption. Lastly,
Corollary 7 of (Ramsay et al., 2024) requires that ϕ′(x, ν) is a (L,F) regular function for some L > 0 with VC(F) <∞,
see Definition E.2. It is easy to see that ϕ′(x, ν) is (m,F) regular function with VC(F) = 1. In order to apply the bound
given in Corollary 7 of (Ramsay et al., 2024), we must compute the discrepancy function of ϕ′, ν, which is given by:
α′(t) = ϕ′(ξq,ν , ν)− sup∥x−ξq,ν∥≥t ϕ

′(x, ν). A straightforward calculation yields that α′(t) = α(t). Applying Corollary
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7 of (Ramsay et al., 2024), yields that there exists a universal constant C > 0 such that for any t > 0 and 0 ≤ γ ≤ 1,
∥ξq,ν̃ − ξq,ν∥ ≤ t with probability at least 1− γ, if

n ≥ C

m2 log(1/γ) ∨m logm/cα(t)

α2(t)

∨
m
log (1/γ) ∨ log

(
(b−a)

|ξq1,ν−a|∧|b−ξqm,ν |∧α(t)/K

)
α(t)ϵ

 .

Define a ≳ b (a ≲ b) if there is a universal constant c > 0 such that a ≥ cb (a ≤ cb). Next, using the Lipschitz assumption
and the mean value theorem, we have that |ξq1,ν−a|∧ |b− ξqm,ν | ≳ [q1∧ (1− qm)]/K, which yields the desired result.

We can now prove Theorem 4.2.

Proof of Theorem 4.2. The proof is based on an application of Lemma B.1. All of the conditions of Lemma B.1 are satisfied
by assumption, and so it remains to lower bound α. To this end, let kx = argmaxi∈[m] |xi − ξqi,ν |. Using this notation, for
0 ≤ t ≤ r, the definition of α in conjunction with the mean value theorem yields that

α(t) = inf
a<x1<...<xm<b, ∥x−ξq,ν∥≥t

m+1∑
j=1

|qj − qj−1 − Fν(xj) + Fν(xj−1)|

≥ inf
a<x1<...<xm<b, ∥x−ξq,ν∥≥t

kx∑
j=1

|qj − qj−1 − Fν(xj) + Fν(xj−1)|

≥ inf
a<x1<...<xm<b, ∥x−ξq,ν∥≥t

|
kx∑
j=1

qj − qj−1 − Fν(xj) + Fν(xj−1)|

≥ inf
a<x1<...<xm<b, ∥x−ξq,ν∥≥t

|qkx
− Fν(xkx

)|

≥ tL/
√
m.

Applying this bound, in conjunction with Lemma B.1, yields the desired result.

Next, we prove Theorem 4.4.

Proof of Theorem 4.4. We apply Corollary 4 of (Acharya et al., 2021), of which a simpler version is restated below for
clarity. For P ⊂M1(R), let n∗ = inf{n : infTϵ∼M̃1,ϵ,n(R) supν∈P

∫
|Tϵ(ν̂)− Tϵ(ν)|dνn ≤ τ}.

Corollary B.2 ((Acharya et al., 2021)). For all ϵ, τ > 0 and any P ⊂M1(R), letQ = {Q1, . . . , Qm} ⊂ P . If for all i ̸= j,
it holds that |Tϵ(Qi)− Tϵ(Qj)| ≥ 3τ , KL(Qi, Qj) ≤ βn, and TV(Qi, Qj) ≤ γ, then n∗ = Ω

(
logm(β−1

n ∨ (γϵ)−1)
)
.

In order to apply Corollary B.2, we first define a class of Gaussian measures which lie in GL,r,q. Recall that we consider
ν with densities which satisfy: infx∈ξq,ν±r fν(x) ≥ L. Let Pµ,σ = N (µ, σ2) and let hµ,σ denote the associated quantile
function. We have that for q ≤ 1/2, it holds that

inf
x∈hµ,σ(q)±r

fPµ,σ
(x) ≥ (2πσ2)−1/2 exp

(
−[erf−1(2q − 1)− r/

√
2σ]2

)
≥ (2πσ2)−1/2 exp

(
−r2/2σ2 − [erf−1(2q − 1)]2

)
.

Taking σ = Cq/
√
2πL gives that

inf
x∈hµ,σ(q)±r

fPµ,σ (x) ≥ L/Cq exp
(
−[erf−1(2q − 1)]2 − πr2L2/C2

q

)
.

Now, note that

erf−1(2q − 1) = Φ−1 (q) /
√
2,
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which in turn implies that
inf

x∈hµ,σ(q)±r
f(x) ≥ L exp

(
−[Φ−1 (q)]2/2− r2L2

)
/
√
π.

Next, we have that

L/Cq exp
(
−[Φ−1 (q)]2/2− πr2L2/C2

q

)
≥ L

⇐⇒ exp
(
−[Φ−1 (q)]2/2− πr2L2/C2

q

)
≥ Cq

⇐⇒ [Φ−1 (q)]2/2 + πr2L2/C2
q ≤ − logCq

⇐⇒ rL ≤ Cq

√
(− logCq − [Φ−1 (q)]2/2)/π.

We must then have that rL ≤ Cq

√
(− logCq − [Φ−1(q)]2/2)/π, which holds by assumption. Define FL,r ={

N (µ,C2
q /2πL

2) : µ ∈ R
}

. We find the values of βn, γ and τ for FL,r. Consider the values µ0, µ1, and for i=1 or
i = 0, denote Qi = Pµi,C2

q/2πL
2 . Note that for any quantile q, we have that |ξq,Q0

− ξq,Q1
| = |µ0 − µ1|. That is, the

distance between the quantiles is just the difference between the means. For some τ > 0, take any µ0, µ1 such that
|µ0 − µ1| ≥ 3τ . It follows that KL(Q0, Q1) ≲ τ2L2/C2

q and TV(Q0, Q1) = 2Φ(cτL/Cq) − 1 ≲ Lτ/Cq. Therefore,
applying Corollary B.2 gives that

n∗ = Ω

(
C2

q

L2τ2
∨ Cq

Lτϵ

)
.

Before proceeding with the proof of Theorem 4.5, we first prove that the unbounded algorithm estimates extreme quantiles
consistently.

Lemma B.3. For all non-increasing sequences βn → 1 and qn → 0, and all ν ∈M(R), it holds that

i if min(ν) < b, then ψ̃qn
p→ min(ν).

ii if max(ν) > a, then ψ̃1−qn
p→ max(ν).

Proof. First, without loss of generality, take a = 0. Next, using the fact that V0 is a standard exponential random variable.

Pr (2V0/nϵ > 1− qn) = e−n(1−qn)ϵ/2. (4)

In addition, letting cn = 1/ log n, the Dvoretzky–Kiefer–Wolfowitz inequality yields that

Pr

(
sup
x∈R
|Fν̂(x)− Fν(x)| > cn

)
≤ 2e−2n/(logn)2 . (5)

It suffices to show that for all t > 0, it holds that Pr
(
|ψ̃1−qn −max(ν)| > t

)
→ 0 as n → ∞. (A symmetric argument

then implies that also, Pr
(
|ψ̃qn −min(ν)| > t

)
→ 0 as n→∞.) Letting k be the integer such that ψ̃1−qn = βk

n − 1, we
have that

Pr
(
|ψ̃1−qn −max(ν)| > t

)
= Pr

(
max(ν)− βk

n − 1 > t
)
+ Pr

(
βk
n − 1−max(ν) > t

)
,

for which we can write

Pr
(
max(ν)− βk

n − 1 > t
)
= Pr

(
k <

log (max(ν)− t− 1)

log βn

)
:= Pr (k < Rt,1) ,

Pr
(
βk
n − 1−max(ν) > t

)
= Pr

(
k >

log (max(ν) + t+ 1)

log βn

)
:= Pr (k > Rt,2) .

It suffices to show that Pr (k < Rt,1) ,Pr (k > Rt,2)→ 0 as n→∞. To this end, first, note that if

log (max(ν) + t+ 1)

log βn
− log (max(ν)− t− 1)

log βn
< 1,
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then Pr ({k < Rt,1} ∪ {k > Rt,2}) = 1. However, we have that βn is decreasing to 1. This immediately implies that for
all t > 0, there exists n0 > 1 such that for all n > n0, we have that

log (max(ν) + t+ 1)

log βn
− log (max(ν)− t− 1)

log βn
> 1.

Next, utilizing (5), the fact that V0 > 0 and the definition of Vi, we have that

Pr (k < Rt,1) = 1−
Rt,1∏
i=1

Pr
(
Fν̂(β

i
n − 1) + 2Vi/nϵ < 1− qn + 2V0/nϵ

)
≤ 1−

Rt,1∏
i=1

Pr
(
Fν(β

i
n − 1) + 2Vi/nϵ < 1− qn − cn

)
+ 2e−2n/(logn)2

≤ 1−
Rt,1∏
i=1

(
1− exp

(
−nϵ(1− qn − cn − Fν(β

i
n − 1))/2

))
+ 2e−2n/(logn)2

:= 1− I + 2e−2n/(logn)2 . (6)

Now, using the fact that (1 + x/n)n ≥ 1 + x for all n ≥ 1 and |x| ≤ n, we have that

I =

Rt,1∏
i=1

(
1− exp

(
−nϵ(1− qn − cn − Fν(β

i
n − 1))/2

))
≥
(
1− exp

(
−nϵ(1− qn − cn − Fν(β

Rt,1
n − 1))/2

))Rt,1

≥ 1−Rt,1 exp
(
−nϵ(1− qn − cn − Fν(β

Rt,1
n − 1))/2

)
.

Now, applying the preceding inequality in conjunction with (6) yields that

Pr (k < Rt,1) ≤ Rt,1 exp
(
−nϵ(1− qn − cn − Fν(β

Rt,1
n − 1))/2

)
+ 2e−2n/(logn)2 → 0,

as n→∞. On the other hand, for the term Pr (k > Rt,2), utilizing (4) and (5), we have that

Pr (k > Rt,2) ≤
Rt,2∏
i=1

Pr
(
Fν(β

i
n − 1) + 2Vi/nϵ < 1− qn/2 + cn

)
+ 2e−2n/(logn)2 + e−nϵ(1−qn)/2

≤ Pr
(
Fν(β

Rt,2
n − 1) + 2VRt,2/nϵ < 1− qn/2 + cn

)
+ 2e−2n/(logn)2 + e−nϵ(1−qn)/2

≤ 1
{
1− qn/2 + cn − Fν(β

Rt,2
n − 1) ≥ 0

}
+ 2e−2n/(logn)2 + e−nϵ(1−qn)/2 → 0,

as n→∞.

We can now prove Theorem 4.5.

Proof of Theorem 4.5. We first prove that the whiskers are consistent. Theorem 4.2 implies that ℓ̃1
p→ ℓ1,ν and Lemma B.3

implies that ℓ̃2
p→ min(ν). Continuous mapping theorem and the fact that λn → 0 as n→∞ yields that ℓ̃

p→ ℓν . The same
argument applies to the upper whisker.

For the outlyingness number, first, we have that |oℓ,ν/n − õℓ| ≤ |oℓ,ν̂ − õℓ/n| + |oℓ,ν − oℓ,ν̂ | := I + II . Next, the
properties of the Laplace distribution give that Pr (|oℓ,ν̂ − õℓ/n| ≥ t) ≲ e−nϵt. Therefore I

p→ 0. Next, using the fact that
supx∈R fν(x) ≤ K, we have that Fν is K-Lipschitz. It follows that |oℓ,ν/n− oℓ,ν̂/n| ≤ K|ℓν̂ − ℓν |+ supx∈R |Fν(x)−
Fν̂(x)|. Next, the Dvoretzky–Kiefer–Wolfowitz inequality yields that supx∈R |Fν(x) − Fν̂(x)|

p→ 0 and the fact that
the whiskers are consistent implies that K|ℓν̂ − ℓν |

p→ 0. The same argument can be made for the upper outlyingness
number.
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Figure 5. Average error in each metric with 95% confidence intervals between the different differentially private boxplots and their
population (oracle) counterparts (y-axis) with ϵ = 0.5 and increasing n (x-axis). The DPBoxplot algorithm is presented, along with
the naive method paired with each of the algorithms JointExp, ApproxQuantile, unbounded and PrivateQuantile (line
color). The different generated distributions are represented row-wise, and the different metrics: location, scale, skewness and tails are
presented column-wise. The non-private line is the distance between the non-private boxplot and its population counterpart.

C. Simulation details and additional results
C.1. Single boxplot estimation

This section presents more details on the simulation study described in Section 5. We simulated data from five distributions,
each with mean 0 and variance 1: standard normal distribution (normal), skew normal distribution with scale parameter 20
(skew), uniform distribution with interval [−

√
3,
√
3] (uniform), a normalized and mean-centered version of the beta

distribution with α = βn = 2 (beta), and normalized and mean-centered empirical distribution generated from 2019
NY airbnb listing prices. We considered sample sizes of n ∈ {1000, 3500, 10000, 35000, 100000} and privacy budgets of
ϵ ∈ {0.5, 1, 5, 10}. Each scenario was simulated 1000 times, leading to simulated data vectors Xn. For each generated
dataset, we computed both the non-private boxplot B(Xn) = B(ν̂) and the population boxplot. We also calculated
differentially private boxplots B̃(Xn, ϵ) using each of the methods. Figure 5 and Figure 6 are analogous to Figure 1 in
the manuscript, except under ϵ = 0.5 and ϵ = 5, respectively. As anticipated, the performance of all methods decreases
with lower ϵ values, and increases with higher ϵ values, reflecting the trade-off between privacy and accuracy. However,
the variation in performance is marginal in most of the cases, and the same conclusions as those given in Section 5 hold
across both privacy levels. In addition, we present Figures 7 and 8, which give a comprehensive summary of the results for
DPBoxplot from this simulation study.

C.2. Parameter tuning

We performed simulations under similar settings as those discussed in Section C.1. We varied λn ∈ {n−1/2, n−1/4, 1},
fixing ϵ = 1 and estimated differentially private boxplots with all methods. Figure 9 summarizes the results for simulated
distributions (column-wise), boxplot metrics (row-wise). Variations in the method and λn and are represented with different
line colors and line styles, respectively. We observe that none of the methods are highly sensitive to the chosen parameters,
except for skewness and tails. Moreover, DPBoxplot was generally the best regardless of λn. Based on this observation
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Figure 6. Average error in each metric with 95% confidence intervals between the different differentially private boxplots and their
population (oracle) counterparts (y-axis) with ϵ = 5 and increasing n (x-axis). The DPBoxplot algorithm is presented, along with
the naive method paired with each of the algorithms JointExp, ApproxQuantile, unbounded and PrivateQuantile (line
color). The different generated distributions are represented row-wise, and the different metrics: location, scale, skewness and tails are
presented column-wise. The non-private line is the distance between the non-private boxplot and its population counterpart.

and to account for better results in small samples, we concluded that λn = n−1/4 was a reasonable choice for all methods.

C.3. Multiple boxplot estimation

This section presents an extensive simulation study to assess the differentially private boxplot’s ability to describe, and
facilitate comparison of multiple samples. Specifically, we analyze whether the metrics (quantified by distances on
location, scale, skewness and tails as in Section 5) between differentially private boxplots across distinct datasets mirror
the corresponding pairwise distances observed between their population counterparts. The similitude between two distinct
differentially private boxplots is anticipated to align closely with the similitude observed between their respective population
counterparts, thereby facilitating analogous visual comparisons and interpretation. For the purpose of quantifying this
phenomenon, we introduce the concept of relative similitude between two differentially private boxplots as follows:

d̃
(
B̃(Xn, ϵ), B̃(Ym, ϵ)

)
=

∣∣∣∣∣∣1−
d
(
B̃(Xn, ϵ), B̃(Ym, ϵ)

)
+ 1

d (B(νX), B(νY )) + 1

∣∣∣∣∣∣ .
Here, distance is related to the four metrics previously described. In order to empirically validate the consistency of our
proposed approach with this behavior, we conducted Monte Carlo simulations by generating t datasets (z1, z2, · · · , zt),
and two vectors m and s of size t sampling from uniform distributions with interval [−1, 1] and [0.5, 2], respectively. Each
vector zi is size ni for i ∈ {1, 2, · · · t} where ni is chosen randomly such that n = n1 + n2 + · · ·nt. Here, t plays the role
of the number of treatments in an experiment. We replicated this simulation 1000 times for each combination of t ∈ 4, 8 and
n ∈ {500, 5000, 50000} leading to datasets (X1,X2, · · · ,Xt) such that Xi = sizi +mi. We performed this simulation
generating the initial t datasets using mixture of the five distributions described in the previous section such that each
distribution generates the same amount of vectors on each replica. For each dataset we calculated non-private boxplots
B(X1), B(X2), · · · , B(Xt), and differentially private boxplots using each of the quantile estimation methods and for each
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Figure 7. Average error in each metric with 95% confidence intervals between estimated differentially private boxplots and oracle
boxplot (y-axis) with ϵ ∈ {0.5, 1, 5, 10} (line colors) and increasing n (x-axis); using DPBoxplot for private boxplot estimation; from
all sampled distributions (column-wise) comparing location, scale, skewness and tails (row-wise). In the legend, non-private refers
to the distance between the non-private boxplot and the population boxplot.

ϵ ∈ {0.5, 1, 5, 10}. We then calculated pair-wise relative boxplot distances for every pair of differentially private boxplots.

Figure 10 and 11 offers a detailed overview of the results obtained from various scenarios considered. Each boxplot within
these plots represents the average pairwise distances observed among all differentially private boxplots generated in a
specific scenario. The x-axis on each plot denotes the sample size (n). Variations in hue color correspond to different
methods and different privacy budgets (ϵ), respectively. The first and last two plots in the first row correspond to relative
location and relative scale, respectively. The first and last two plots in the second row correspond to relative skewness and
relative outliers, respectively. For each pair of relative distance plots, the first and second visualization correspond to t = 5
and t = 10, respectively. Figure 11 uses ϵ = 1 and Figure 10 shows results with DPBoxplot method.

Figure 10 shows that DPBoxplot performs consistently well across different scenarios. All other methods have poor
performance in at least one scenario. In Figure 11 relative distances exhibit a diminishing trend with augmented sample
sizes and ϵ, consistent with expectations illustrated by the non-private boxplot. A marginal increase in the parameter
t leads to a slight augmentation in the relative distances, attributable to the partitioning of data into smaller subsets and
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Figure 8. Average error in each metric with 95% confidence intervals between estimated differentially private boxplots and oracle box-
plots (y-axis) with ϵ = 1 and increasing n (x-axis); using boxplot estimation methods JointExp, ApproxQuantile, unbounded,
PrivateQuantile, and DPBoxplot (line colors); from all sampled distributions (column-wise) comparing location, scale, skewness
and tails (row-wise). In the legend, non-private refers to the distance between the non-private boxplot and the population boxplot.

consequent reduction in sample sizes; however, this impact appears to be negligible. Hence, our analysis suggests that our
proposed methodology effectively maintains the visual coherence of relative similarities among diverse boxplots during the
execution of multiple comparisons.

C.4. Computational requirements

All simulations were conducted on a single CPU and did not require significant computational resources. The execution
time for the simulations presented in the paper did not exceed 24 hours.

D. Differentially private quantiles
Here, we include a longer review of the differentially private quantile estimation literature. We focus on the existing
statistical results for such estimators, as statistical results for private quantiles is one of our main contributions. It is
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Figure 9. Average error in each metric with 95% confidence intervals between estimated differentially private boxplots (y-axis) and
oracle boxplots with ϵ = 1 and increasing n (x-axis); using various methods (color), with varying λn (line style); from all sampled
distributions (column-wise) comparing location, scale, skewness and tails (row-wise).

also important to mention that range queries can be used to compute quantiles (Bun et al., 2015; Kulkarni, 2019; Kaplan
et al., 2020), however, currently, these algorithms may not be very practical, so we do not cover a full review of those.
First, Smith (2011) introduced PrivateQuantile based on the empirical CDF and the exponential mechanism, and
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Figure 10. Average pair-wise relative boxplot distances (y-axis) between multiple sample boxplots in terms of relative location, scale,
skewness and outliers, with ϵ = 1 using different boxplot estimations (color), n ∈ {500, 5000, 50000} (x-axis) and t ∈ {5, 10}
(columns). Legend non-private is the relative similitude of the non-private boxplots.
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Figure 11. Average pair-wise relative boxplot distances (y-axis) between multiple private boxplots in terms of relative location, scale,
skewness and outliers, under varying conditions of ϵ ∈ {0.5, 1, 5, 10} (color), n ∈ {500, 5000, 50000} (x-axis); using DPBoxplot
quantile estimation and t ∈ {5, 10} (columns). Legend non-private is the relative similitude between the non-private boxplots.

present a finite sample accuracy guarantee, under the assumption that the population distribution is close to the normal
distribution. An extension of this algorithm is JointExp, which can be used to estimate multiple quantiles (Gillenwater
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et al., 2021). Later, Lalanne et al. (2023b) and Lalanne et al. (2023a) considered the statistical properties of JointExp.
Lalanne et al. (2023a) show various concentration results, assuming that the population density has bounded support
and is positive in a neighbourhood of the quantiles being estimated. Lalanne et al. (2023b) show that JointExp is
consistent when the population distribution is continuous, and provide a modified algorithm which can be consistent for
population distributions with atoms. This algorithm could also be used to generate the box in the boxplot, if atoms are
suspected. Earlier, Asi & Duchi (2020) provided an instance optimal algorithm for the median, based on the inverse
sensitivity mechanism. We do not consider this algorithm here because it was shown by Lalanne et al. (2023b) that the
algorithm is very similar to PrivateQuantile. Similarly, a multiple quantile version based on the inverse sensitivity
mechanism is similar to JointExp (Lalanne et al., 2023b). Tzamos & Vlatakis-Gkaragkounis (2020) also consider
private median estimation, which could be used for private quantile estimation, however, their algorithm takes n4 time,
which may be slow in practice, so we did not consider it here. However, we see no reason it would perform poorly to
generate the median line in the box. Recently, (Alabi et al., 2022) present a bounded space quantile algorithm, with
some concentration bounds that condition on the dataset at hand, and require the sample space to be finite. They also
present some statistical guarantees under the assumption of normality. On a related note, some general works imply that
no differentially private quantile estimate can have finite sample complexity without making distributional assumptions,
.e.g, (Bun et al., 2015). Recently, Durfee (2023) present the unbounded algorithm for quantile estimation, which is
meant to estimate extreme quantiles well. They do not provide statistical guarantees. Recently, Kaplan et al. (2022)
introduce a clever algorithm for estimating multiple quantiles from an existing quantile algorithm, where the statistical
error has minimal dependence on the number of quantiles. We call this algorithm paired with PrivateQuantile
the ApproxQuantile. We build on this literature by providing some new statistical results concerning JointExp,
PrivateQuantile, ApproxQuantile and unbounded. Specifically, we show consistency of the unbounded
algorithm under general distributional assumptions, a lower bound on differentiall private quantile estimation for a large
class of distributions, and that JointExp, PrivateQuantile, and ApproxQuantile provide minimax optimal,
single quantile estimates. We also show that JointExp, PrivateQuantile, and ApproxQuantile are inconsistent
for extreme quantiles.

E. Auxiliary results
Lemma E.1. For all n ≥ 1, a, c ∈ R, we have that n ≥ a log n+ c if n ≥ 2(a log a+ c) ∨ a.

Proof. First, note that h(n) = n − a log n − c is increasing for n ≥ a. Now, for n ≥ a we can use the fact that
x− log x ≥ x/2 for x ≥ 1 to get h(n) ≥ 0 whenever n ≥ 2(a log a+ c).

Let B denote the space of Borel functions from Rd to [0, 1]. For a family of functions, F ⊆ B, define a pseudometric on
M1(Rd), dF (µ, ν) = supg∈F |

∫
gd(µ− ν)|, where µ, ν ∈M1(Rd).

Definition E.2 ((Ramsay et al., 2024)). We say that ϕ(x, ν) is (K,F )-regular if there exists a class of functions F ⊂ B
such that ϕ(x, ·) is K-Lipschitz with respect to the F -pseudometric uniformly in x, i.e., for all µ, ν ∈M1(Rd)

sup
x
|ϕ(x, µ)− ϕ(x, ν)| ≤ KdF (µ, ν).
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