
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ONLINE AUCTION FOR ADS AND ORGANICS

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper introduces the first online blending auction mechanism design for spon-
sored items (ads) alongside organic items (organics), ensuring guaranteed Pareto
optimality for platform revenue, advertiser utilities, and user interest (measured
through clicks). We innovatively define an umbrella term, ”traffic item,” to en-
compass both organics and auctionable ad items, where an organic represents a
unit of traffic to be auctioned, valued positively by attracting user interest with
a fixed zero bid and payment. The online blending traffic distribution problem
is thus transformed into an auction problem with unified valuation metric for the
traffic item, which is subsequently formulated as an online multi-objective con-
strained optimization problem. We derive a Pareto equation for this optimization
problem, characterizing the optimal auction mechanism set by its solution set.
This solution is implemented through a novel two-stage Adaptive Modeled Mech-
anism Design (AMMD), which (1) trains a hypernetwork to learn a family of pa-
rameterized mechanisms, each corresponding to a specific solution of the Pareto
equation, and (2) employs feedback-based online control to adaptively adjust the
mechanism parameters, ensuring real-time optimality in a dynamic environment.
Extensive experiments demonstrate that AMMD outperforms existing methods
in both click-through rates and revenue across multiple auction scenarios, partic-
ularly highlighting its adaptability to online environments. The code has been
submitted and will be released publicly.

1 INTRODUCTION

Online advertising has significantly contributed to the tech sector’s revenue, with PwC estimating
that the online ads sector will reach $723.6 billion by 2026 (PwC, 2023). Google reported $224
billion in advertising revenues in 2022 (Bianchi, 2023), while Meta earned $113 billion (Dixon,
2023). The distribution of commercial advertisements (ads) is typically conducted through auc-
tions, employing traditional techniques such as the Myerson auction (Myerson, 1981), GSP auction
(Edelman et al., 2007), and VCG auction (Varian & Harris, 2014). Deep learning has emerged as
a transformative force, enabling an end-to-end, modeled (i.e., parameterized) solution that learns
optimal auction mechanisms directly from online traffic (Sandholm & Likhodedov, 2015). In this
paradigm, an action mechanism—comprising an allocation rule and a pricing rule—is represented
by one or more deep neural networks, which are trained by optimizing objectives such as revenue
and regret concerning (dominant-strategy) incentive compatibility (Rahme et al., 2021). Due to their
efficiency, modeled auctions have been widely adopted in industry applications (Zhang et al., 2021;
Liu et al., 2021). However, in these works, organic traffic is treated as a static environment, with the
auction mechanism focusing solely on ads.

This paper investigates the design of mechanisms for distributing both ads and organics. Organics
play a crucial role in attracting user interest, which can lead to increased ad clicks. While they do
not directly generate commercial income, they help foster a healthy ecosystem that contributes to
long-term engagement. Consequently, the objectives of distributing ads and organics involve two
resources: immediate commercial interest from ads and the goal of attracting user interest.

This scenario defines a new economic setting that extends beyond current theoretical understanding
(as illustrated in Figure 1). Existing works are closest in two respects: (1) some use independent
ranking modules to distribute personalized organics and ads (Zhao et al., 2021; Chen et al., 2022b),
and (2) others unify the allocation and pricing of ads and organics, assuming a static environment
(Giagkiozis & Fleming, 2015; Gunantara, 2018; Wang et al., 2021; Xia et al., 2022; Li et al., 2024b).
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Figure 1: Mechanism design of e-commerce platforms, where only ad items generate revenue.

However, these approaches do not adequately address our setting due to their failure to consider the
dynamics of traffic. In online auctions, ensuring the optimality of the mechanism necessitates that
the modeled auction be adapt to online traffic characteristics, which is absent in previous studies.

To allocate and charge items with different attributes within a unified auction framework, we in-
novatively define a ”traffic item” as an umbrella term encompassing all attribute variables. In this
context, an organic is a special case, where the positive valuation arises from attracting user interest,
accompanied by fixed zero bids and payments. The three objectives—platform revenue, advertiser
utilities, and user interest—are abstracted into two valuation metrics (Clicks and Costs) related to
the distribution and pricing of ads and organics, combined with multiple constraints. We model this
challenge as an online multi-objective constrained optimization problem.

We derive a Pareto equation for this optimization problem, which characterizes the optimal auc-
tion mechanism set by its solution set. Our findings demonstrate that any independent or static
blending mechanism leads to suboptimal outcomes, highlighting the need for a unified adaptive auc-
tion mechanism. The solution is implemented through an Adaptive Modeled Mechanism Design
(AMMD) framework, which operates in a two-stage process.

The first stage involves training a hypernetwork to learn a family of parameterized mechanisms, each
corresponding to a specific solution of the Pareto equation. The model parameters include a virtual
value function for uniformly ranking both advertisements and organic items, along with incentive-
compatible pricing rules to derive revenue from ads. The hypernetwork dynamically controls these
mechanism parameters based on the evolving characteristics of online traffic.

The second stage utilizes feedback-based online control to adaptively adjust the mechanism param-
eters, ensuring real-time optimality in a dynamic environment. The optimal values of the weight pa-
rameters are influenced by traffic characteristics and the distribution of advertiser values. Since these
distributions are often unknown in online auctions, we implement weight control using a feedback-
based method. By continuously adjusting the mechanism parameters through the hypernetwork, we
achieve an adaptive and optimal mechanism design for online scenarios.

We conduct extensive experiments demonstrating that AMMD significantly outperforms state-of-
the-art methods (SOTA) across various generalized online auction scenarios. In both static and
dynamic auction contexts, AMMD consistently surpasses SOTA algorithms and achieves Pareto
optimality. To compare multiple objective results, such as clicks and costs, under a unified metric,
we define Utopia distance as a standard measure for different mechanisms. For generalized multi-
slot auctions with KPI constraints, AMMD improves the Utopia distance compared to SOTA by at
least 20%, successfully achieving Pareto optimality.

RELATED WORK

Online modeled mechanism design. Dütting et al. (2019) first proposed RegretNet, a deep
learning-based approach to mechanism design that employs parametric models to implement al-
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location and pricing rules, optimizing for revenue while adhering to incentive compatibility con-
straints. Shen et al. (2019) introduced MenuNet, a modeled mechanism design framework with
provable optimality. By designing a misreporting agent, Rahme et al. (2021) simplified the com-
putational complexity of incentive compatibility and improved the learning efficiency of optimal
mechanisms. Given its ability to learn optimal auctions entirely from samples, modeled mechanism
design has been widely adopted by e-commerce platforms, including implementations such as Deep
GSP (Zhang et al., 2021) and Deep Neural Auction (DNA) (Liu et al., 2021). Recent work has in-
corporated more practical factors into modeled mechanism design, such as list-wise representations
(Wang et al., 2022) and externality-aware ad auction design (Li et al., 2024b).

Blending mechanisms for ads and organics. Maintaining an appropriate percentage of ads in
exposed queue has been a crucial strategy for e-commerce platforms to balance revenue and user
engagement (Wang et al., 2011). Earlier research often allowed ads and organics to occupy prede-
fined positions in blended queues. However, Yan et al. (2020) demonstrated that inserting ads into
an ordered organic queue can improve allocation efficiency. Zhao et al. (2021); Xie et al. (2021)
applied reinforcement learning for the insertion of ads into organic queues. Chen et al. (2022b) used
a dynamic knapsack algorithm to blend ads and organics, though the ranking processes for both re-
mained independent. Recent work by Carrion et al. (2024); Li et al. (2024b) has introduced unified
virtual value functions for ranking all items. The research by Li et al. (2022; 2024a) incorporated
multiple objectives and various attributes of items into the auction mechanism, providing theoretical
support for the aforementioned blending mechanism design.

2 PROBLEM FORMULATION

When a user browses the homepage or searches for specific items, the e-commerce platform needs
to allocate both organic and ad items across k slots, denoted as T1, · · · , Tk. Slots are inseparable
and will not display same items. The total clicks received by item i allocated to slot Tj is given
by click = ci · cj , where ci ∼ Gi represents the click-through rate (CTR) of the item from bidder
i, and cj is a constant specific to slot Tj . When a displayed item is clicked by a user, it has a
certain probability of being ordered, thereby generating utility for the advertiser. We define the
conversion value per click for bidder i as vi ∈ [li,mi], drawn from a distribution Fi. There are n1

ad items competing for the opportunity to be displayed, while the remaining n2 organic items do
not participate in bidding and are not subject to charges. The widely used payment rule is Cost-Per-
Click (CPC) (Qin et al., 2015), which is defined as total cost = cpc × total click. Accordingly,
we define the allocation of slot j to item i as aji , and the CPC payment for item i winning slot j as
pji . We assume that the bids from these ad items are aimed at maximizing their utility:

Ui(a, p, vi, bi, ci, ·) =
k∑

j=1

ci · cj [vi · aji (bi, ·)− pji (bi, ·)]. (1)

The allocation and payment rules are collectively referred to as the mechanism. The goal of mecha-
nism design is to achieve Pareto optimality, which involves maximizing platform revenue, advertiser
utility, and user experience. According to classic auction theory, platform revenue is defined as the
total payment made by all advertisers: R1(a, p) =

∑n1

i=1

∑k
j=1 p

j
i (a, p, ·). Additionally, the objec-

tive of maximizing advertiser utility is typically simplified to ensuring incentive compatibility (IC)
and individual rationality (IR) constraints. User engagement is usually measured by the total clicks
on all displayed items, represented as R2(a, p) =

∑n1+n2

i=1

∑k
j=1 ci · cj · a

j
i . Previous research has

indicated that both excessively high and low percentages of ad exposure (PAE) can be detrimental to
the platform’s overall health. Therefore, maintaining a specific PAE is often imposed as a constraint
in mechanism optimization (Zhang et al., 2018; Liao et al., 2022).

Definition 1 (Multi-slot auction as a constrained multi-objective optimization problem). The mech-
anism design can be defined as a constrained optimization problem:

max(a,p) Φ[R1(a, p), R2(a, p)] s.t. ∀bi ̸= vi, Ui(a, p, bi, ·) ≤ Ui(a, p, vi, ·) (IC);

∀vi, Ui(a, p, vi, ·) ≥ 0 (IR);
n1∑
i=1

k∑
j=1

aji = k · λ0 (PAE constraint)
(2)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Traditional auctions that aim to maximize total payment fail to meet the requirements in the above
setting. Therefore, we define the constrained multi-objective multi-slot auction in definition 1.

In Definition 1, the position CTR cj is typically assumed to decrease with increasing position index
j (Cavallo et al., 2018). The function Φ represents a combination of multiple objectives in the
mechanism. Incentive compatibility (IC) and individual rationality (IR) ensure that advertisers’
truthful bidding strategy, where bids equal their valuations (b = v), maximizes their utility. The
parameter λ0 represents the optimal PAE. This definition is designed for scalability, allowing for
the inclusion of various key performance indicator (KPI) constraints in addition to the PAE, such as
expected conversion rate (CVR), diversity, and return on investment (ROI).

3 A UNIFIED MECHANISM DESIGN FRAMEWORK WITH ADS AND ORGANICS

We first consider the optimal mechanism design for a single slot without KPI constrains. We assume
that the value and CTR of bidder i ∈ {1, · · · , n1} are vi ∼ Fi and ci ∼ Gi, respectively. The
joint distributions are F = F1 × · · · × Fn1

and G = G1 × · · · × Gn1
, with density functions f

and g. There are also n2 organic items with CTR coj ∼ Go
j . First, we show that for the multi-

objective optimization problem defined in Equation 2, adopting an arbitrary combination function
Φ will result in the final optimization result being contained within the Pareto region defined below.
Definition 2 (Pareto Region). Given x ∈ X and functions Q1(x), Q2(x), D(x) is defined as:

∀x1 ∈ D(x), x2 ∈ X \ {x1}, if Q1(x1) ̸= Q1(x2) or Q2(x1) ̸= Q2(x2),

we have Q1(x1) > Q1(x2) or Q2(x1) > Q2(x2)
(3)

Theorem 1. Given Q1(x), Q2(x) and Φ(Q1, Q2), which satisfies that ∀i ∈ {1, 2},∇Qi
Φ > 0. If

x = argmax Φ(Q1, Q2), then we have x ∈ D(x), which is the Pareto region.

Theorem 1 demonstrates that employing a complex combination function Φ does not improve one
objective function without diminishing another. Therefore, we define the objective of mechanism as
simple linear function cost + αclick = R1 + αR2. When the slot is sold to bidder i, the platform
will receive multi-objective revenue ci · pi(v⃗, c⃗, c⃗o) + αci. If the slot is not sold as an ad, it will be
exposed as an organic. Therefore, we denote the revenue for not selling the slot as αc0 = αmax(c⃗o).

The seller needs to select allocation and payment rule (a, p) to maximize multi-objective revenue:

R1(a, p) + αR2(a, p) =

∫
G

∫
F

∫
Go

[αc0(1−
n1∑
i=1

ai(v⃗, c⃗, c0))

+

n1∑
i=1

(ci · pi(v⃗, c⃗, c0) + αai(v⃗, c⃗, c0)ci)] f(v⃗)g(c⃗)g
o(c0)dvdcdc0

(4)

Similar to Myerson mechanism (Myerson, 1981), we use feasible to denote the mechanism both
satisfying IC and IR constrains. Then we have the following conclusion:
Theorem 2. If the mechanism (a, p) is feasible, maximizing Equation 4 is equivalent to maximizing∫

G

∫
F

∫
Go

n1∑
i=1

ai(v⃗, c⃗, c⃗
o)[ci(vi −

1− Fi(vi)

fi(vi)
) + α(ci − c0)]dfdgdg

o (5)

where we use df, dg, dgo to denote f(v)dv, g(c)dc, go(c0)dc0.

This theorem indicates that the revenue of feasible mechanisms is solely related to the allocation
rule, and the slot should be allocated to the advertiser with highest

ci(vi −
1− Fi(vi)

fi(vi)
) + α(ci − c0), if maxi ci(vi −

1− Fi(vi)

fi(vi)
) + α(ci − c0) ≥ 0 (6)

otherwise the slot should be allocated to the organic item with CTR c0.

To build a unified mechanism framework, we define the value of organics is zero voi = 0,∀i ∈ {Org}
and thus every item including ads and organics can be represented as a ”traffic item” (v∗i , c

∗
i ). And

we define

Ψ(v∗i ) = 0, if v∗i ≡ 0, otherwise v∗i − 1− Fi(v
∗
i )

fi(v∗i )
(7)
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We denote the distribution Fi as a normal distribution if Ψ(v∗i ) is an increasing function of v∗i (This
is a generally adopted assumption in mechanism design which comes from (Myerson, 1981)). Then
we define the unified auction for ads and organics:
Definition 3 (Unified auction for ads and organics). Given all ads and organics (v∗i , c

∗
i ) (v∗i ∈

{0} = Vi if i ∈ {Org}, otherwise v∗i ∈ [li,mi] = Vi), and we assume that all the value distributions
Fi are normal. The allocation rule and payment rule are as follows:

• The slot is allocated to item i, where i = argmaxi[(c
∗
iΨ(v∗i ) + αc∗i ) · I(v∗i ∈ Vi)].

• The cost per click pi(v
∗
i , c

∗
i ) is max[Ψ−1((c∗jΨ(v∗j ) + αc∗j − αc∗i )/c

∗
i ),min(v∗ | v∗ ∈ Vi)],

where j = argmaxj ̸=ic
∗
jΨ(v∗j ) + αc∗j .

Here I is a characteristic function to prevent bids lower than li, its value is 1 when v∗i ∈ Vi, otherwise
0. Similar to the Myerson mechanism, c∗iΨ(v∗i )+αc∗i can be understood as the virtual value function
in this definition. And we have the following theorem for this unified auction.
Theorem 3. The auction defined in Definition 3 has the following properties.

• It satisfies IC and IR for all the items, ∀i, v∗i ≥ pi(v
∗
i , c

∗
i ) ≥ 0.

• It maximizes the multi objective R1(a, p) + αR2(a, p), which is the same to Equation 5.

• The percentage of ads satisfies Eλad = λ0 if and only if

Pv⃗∼F,⃗c∼G(maxi∈{Ad}ciΨ(vi) + α(ci − c0) > 0) = λ0. (8)

We denote Equation 8 as the Pareto equation, which shows that changing the multi-objective weight
α can control the proportion of ads in the impression. To achieve Pareto optimality while satisfying
PAE constraint, we can solve for the corresponding α for a given λ0 and any distribution F,G,Go

using the Pareto equation, and then execute the mechanism defined in Definition 3.

In previous works, exposed items were usually charged within the ads queue and blended with the
organics queue in a fixed proportion without changing the order (Ouyang et al., 2020; Li et al.,
2020). The approximate optimal revenue of these static blending mechanisms is

α(1− λ0)R
org
2 + λ0[R

ad
1 (a, p) + αRad

2 (a, p)] (9)

Compared to the Equation 5, we have the following property:
Theorem 4. Given the weight α and corresponding λ0 ∈ (0, 1) which satisfies Definition 3, we
have the following conclusion:

maxa,pR1(a, p) + αR2(a, p) > maxa,p(1− λ0)αR
org
2 + λ0[R

ad
1 (a, p) + αRad

2 (a, p)] (10)

where the left part comes from Equation 5 and right part comes from Equation 9.

This indicates that uniformly ranking and charging ads and organics will promote revenue.
Remark 1. Compared to the traditional optimal auction theory (revenue maximization as a single
objective), this framework allows for arbitrary extensions for item attributes. We provide an example
of the CVR attribute and the corresponding Pareto Equation in the Supplementary Material.
Remark 2. All the proofs are given in detail in the Supplementary Material. The main idea of the
proof is to establish the relationship between the multi-objective revenue of the mechanism and the
advertiser’s utility, thereby simplifying formula 4.

4 ADAPTIVE MODELED MECHANISM DESIGN FOR ONLINE AUCTIONS

In this section, we propose the Adaptive Modeled Mechanism Design (AMMD), illustrated in Fig-
ure 2. AMMD adopts the virtual value similar to Equation 6 and ensures incentive compatibility
through Vickrey-Clarke-Groves (VCG) pricing rules. It leverages a hypernetwork to learn the opti-
mal mechanism parameters corresponding to different objective weights. To adapt the mechanism to
changing traffic characteristics in online auctions, we use an online control algorithm to dynamically
adjust the multi-objective weights. By leveraging the hypernetwork to update the model parameters,
AMMD achieves Pareto optimality in constrained online environments. We take the CVR constrains
as an example to illustrate that AMMD has good scalability for arbitrary objectives.

5
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Figure 2: The AMMD framework consists of two main components: offline learning and online
controlling. In the offline learning stage, both the virtual value model and the hypernetwork pa-
rameters are updated simultaneously. During the online controlling stage, the weights produced by
the controller adjust the parameters of the replaced layers through the hypernetwork, allowing the
mechanism to adapt to evolving traffic characteristics in real time.

4.1 MODELED VIRTUAL VALUE AND VCG PRICING

From Theorem 2, we observe that once the sorting rules are fixed, the pricing rules that ensure
incentive compatibility are unique. Consequently, we can optimize the sorting process within the
family of IC mechanisms to achieve multi-objective Pareto optimality. Thus, we decompose the
optimal mechanism in a static setting into two components: the ranking rule based on the modeled
virtual value function and the VCG pricing rule, which is proven to satisfy incentive compatibility.

For online dynamic environments, we replace the virtual value function in Equation 6 with a pa-
rameterized model trained using deep learning. Let M(·, θ) represent this modeled virtual value
function. The modeled score for each ”traffic item” is calculated using its attributes, including the
values (v⃗, 0) and the CTR (c⃗, c⃗o), CVR (z⃗, z⃗o): qi(vi, ci, zi) = M [(vi, ci, zi), θ].

In order to maximize the mutil-objective revenue, the allocation rule should be:

aji (vi, ci, zi) = argmax
k∑

j=1

qi(vi, ci, zi) · cj · aji (vi, ci, zi) (11)

In real e-commerce scenarios, the simultaneous impression of ad and organic items can influ-
ence each other’s value and CTR. This phenomenon is known as externality, meaning that ci =
ci(a

1, · · · , ak) and vi = vi(a
1, · · · , ak). Recent studies have investigated optimal ranking meth-

ods in the presence of externalities and have improved the efficiency of slot allocation Chen et al.
(2022a); Li et al. (2023). However, in this work, we focus on constrained multi-objective optimal
mechanisms and therefore assume the absence of externalities. Algorithms that address externalities
can be directly integrated into our framework, and this will be considered in future research.

In multi-slot auctions, VCG pricing has been proven to satisfy incentive compatibility constraints
(Varian & Harris, 2014). It can be understood as the payment equating to the loss in social welfare
imposed on other items, where social welfare is defined as the sum of virtual values. We denote the

6
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inverse function q−1 for deriving v with fixed q, c, z. Then the VCG pricing rule can be written as:

pji (vi, ci, zi) = q−1
i [[maxs1,··· ,sk∈{1,··· ,N}\{i}

k∑
m=1

qsm(vsm , csm , zsm) · cm · amsm(vsm , csm , zsm)

− maxs1,··· ,sk∈{1,··· ,N}\{i}

k∑
m ̸=j

qsm(vsm , csm , zsm) · cm · amsm(vsm , csm , zsm)]/cm]

(12)
It is worth noting that this charging rule may result in charging below the lower bound of the value
distribution Vi (sometimes leads to negative payments). To avoid this problem, we actually adopt a
payment rule similar to that in Definition 3: p = max[pji (vi, ci, zi),min(v∗ | v∗ ∈ Vi)]. The above
are the modeled ranking and pricing rules in AMMD. We will introduce the training and online
execution of the parameterized model in detail in the next section.

4.2 HYPERNETWORK FOR ADAPTIVE MODELED MECHANISM DESIGN

For a static environment, we can directly adopt the loss function to train mechanism parameter θ:

Loss(θ) = −R1(θ)− αR2(θ) + βR3(θ) = −
k∑

m=1

N∑
i=1

cm · ci · pmi (θ)

− α

k∑
m=1

N∑
i=1

cm · ci · ami (θ) + βRelu(ρ0 −
k∑

m=1

N∑
i=1

cm · ci · ami (θ) · zmi )

(13)

However, online auctions need to deal with dynamically changing traffic characteristics and bidding
environments. Using modeled virtual value θ trained with static optimal weights (α, β) cannot
maintain optimality. To adapt the mechanism parameters to the online environment, we introduce
a hypernetwork module. We divide the parameter of the mechanism θ into a fixed part θ−w and
a controllable part θw, which is generated by the hypernetwork as θw = H(w⃗, θH). The input to
this hypernetwork w⃗ consists of multi-objective weights (α, β) and real-time bidding information
F,C,Z. The output is the parameters of the replaced layer, as shown in Figure 2.

To train the hypernetwork, we randomly sample a set of weight parameters (α, β) and value distri-
butions as inputs during each iteration. By applying the same parameters to weight the loss function,
we simultaneously train both the hypernetwork parameters θH and the fixed mechanism model pa-
rameters θ−w through backpropagation (as detailed in Supplementary Metarial Algorithm 1). Since
the modeled mechanism involves multiple sorting operations, we utilize the differentiable sorting
operator proposed in Grover et al. (2019) to support the training process.

By training the hypernetwork, we develop a family of mechanism parameters with strong general-
ization capabilities. As the weight parameters and bidding environment evolve, the modeled auction
can seamlessly adapt to the instantaneously optimal configuration.

4.3 ONLINE CONTROL FOR ADAPTIVE WEIGHTS SELECTION

According to the Pareto Equation, the multi-objective weights w⃗ that satisfy the constraints in the
optimal mechanism family are necessary. However, in online environments where traffic character-
istics fluctuate in real time, it is impractical to precisely determine the optimal weights.

Assuming a higher expected CTR for organic items, it is evident that the weight parameter α is
positively correlated with the proportion of organic items. We design an online control system that
continuously compares the real-time proportion of organic items to a predefined target proportion
λtarget. At each time step, the actual proportion of organic items is compared to the target, and the
difference is recorded as the error e(t) = λt

target − λt
org.

We employ a Proportional-Integral-Derivative (PID) controller, which is an efficient algorithm in
online feedback control (Yang et al., 2019; Balseiro et al., 2022). The control signal generated by
the PID controller consists of proportional, integral, and derivative terms, which adjust the weight
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Figure 3: Experiments in independent identical multi-slot auctions with various value distributions.

parameters within a reasonable range using an exponential function.

αt+1 = αt · eu(t) u(t) = kpe(t) + ki

t−1∑
k=t−l

e(k) + kd(e(t)− e(t− 1)) (14)

Here (kp, ki, kd) and l are hyper parameters for the algorithm. We can similarly construct PID
controllers for the other weight parameters. According to the research of Zhao & Guo (2017); Zhao
& Yuan (2024), the PID method demonstrates strong convergence in both static environment control
and dynamic environment tracking, which provides theoretical support for the application of AMMD
in online auction scenarios. The full AMMD algorithm is detailed in Supplementary Material 2.

5 EXPERIMENTS

5.1 EXPERIMENTS IN INDEPENDENT IDENTICAL MULTI-SLOT AUCTIONS

We first conduct experiments in independent identical multi-slot auction scenarios. In this environ-
ment, the CTR is determined solely by the attributes of the allocated items. Since the auctions be-
tween different slots are independent, this setting can be simplified to repeated single-slot auctions.
Our comparison baseline is the static modeled mechanism trained with RegretNet (Dütting et al.,
2019). RegretNet is a significant work in modeled mechanism design that efficiently achieves opti-
mal auctions through deep learning. However, since RegretNet only supports fixed multi-objective
weights, we trained multiple groups simultaneously with fixed objective weights. To maintain the
PAE for static RegretNet mechanisms, the probability of displaying organic item is set to λ0 = 50%.

Implementation: Experiments in independent identical multi-slot auctions consists of both static
and dynamic scenarios. In static scenarios, We show that the AMMD framework enables mechanism
to simultaneously learn the optimal auction under any traffic distribution. We randomly generate
n1 = 2 ads with different value distribution Fex ∼ U [0, 0.5 × ex], ex = 1, · · · , 4 and fixed CTR
distribution Cad ∼ U [0, 1]. There are also n2 = 2 organic items with expected maximum CTR c0 ∼
U [0, 2]. We train and test AMMD using samples from different value distribution Fex. Auctions in
all scenarios utilize a single AMMD model with independent PID-controlled weights.

We also simulate online auction environments, where traffic characteristics vary periodically over
time. Our experiments consist of mechanisms that can sense the real-time distribution (online) and
those that can only access expected distribution (offline). In this experiment, we plot the Pareto
curves learned by RegretNet with different weights α ∈ (0.1, 2).

Results: The static experimental results are shown in Figure 3. As observed, the mechanism
trained by AMMD Pareto-dominates the optimal mechanism learned by RegretNet, highlighting the

8
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Figure 4: Comparison between AMMD and Pareto curve of RegretNet in dynamic environments.

Figure 5: Comparison between AMMD and Pareto curve of GSP, VCG and SW-VCG in static (left),
dynamic (middle) and CVR constrained (right) scenarios.

advantages of an adaptive mechanism and supporting Theorem 4. Experiment details is given in the
Supplementary Material. The AMMD algorithm effectively maintains the PAE close to 50%, with
fluctuations not exceeding 3%. These fluctuations arise from the varying quality of ads and organic
items in batches of data sourced from random sampling, leading to instability in their virtual value
differences. When the average quality of ads in an episode is higher, it is reasonable to allocate
more slots to them. This also demonstrates that the application of online controller allows AMMD
to achieve more efficient allocation in each auction while ensuring the PAE constraint.

Figure 4 depicts the mechanisms learned by RegretNet with different multi-objective weights along-
side our AMMD mechanism in dynamic experiments. As shown, RegretNet with varying weights
forms a Pareto curve, representing a family of optimal static mechanisms. Notably, AMMD with
adaptive weights significantly surpasses the Pareto curve of the static RegretNet mechanism. This
result demonstrates that AMMD maximizes multi-objective revenue by enhancing the allocation
efficiency of each auction while maintaining incentive compatibility and proportion constraints.

5.2 EXPERIMENTS IN GENERALIZED MULTI-SLOT AUCTIONS

Implementation: We simulate an environment similar to online multi-slot auctions. We ran-
domly generated multiple ads and organic items for auction across four slots, with base CTRs of
(1.0, 0.8, 0.6, 0.5). In addition to static and dynamic scenarios similar to independent identical
multi-slot auctions, the experimental setting includes experiments with CVR constraints to illus-
trate the adaptability of AMMD to extended constraints. Our comparison methods consist of the
VCG and GSP mechanisms, as well as the modeled mechanism Score-Weighted VCG (SW-VCG)
(Li et al., 2024b). For the VCG and GSP mechanisms, all items are sorted according to their virtual
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Mechanism (α, β) click cost PAE CVR IC Utopia distance
VCG (0.01, 0.6) 2.635 0.430 50% 0.103 ✓ 100%VCG (0.5, 5.5) 3.432 0.187 50% 0.103 ✓
GSP (0.01, 0.6) 2.601 0.604 50% 0.103 ✗ 59.7%GSP (0.5, 5.5) 3.370 0.378 50% 0.103 ✗

offline SW-VCG (0.01, 0.4) 2.763 0.441 50% 0.103 ✓ 82.3%offline SW-VCG (0.5, 4.5) 3.570 0.235 50% 0.102 ✓
online SW-VCG (0.01, 0.4) 2.744 0.461 50% 0.103 ✓ 81.4%online SW-VCG (0.5, 4.5) 3.533 0.277 50% 0.101 ✓

offline AMMD 2.932 0.571 49.6%± 9.3% 0.103 ✓ 64.7%
online AMMD 2.954 0.588 49.7%± 3.2% 0.103 ✓ 59.2%

Table 1: Experiments detail in multi-slots auctions

values, and the cost per click is calculated using the corresponding pricing rules. It is important to
note that the GSP rule is non-incentive compatible. For the modeled SW-VCG mechanism, we first
train a modeled ranking network and then apply the VCG pricing rule. All the above mechanisms
use a family of static weights (detailed in Supplementary Material) to simulate Pareto curve.

In order to compare all algorithms under a unified metric, we refer to the study of Carrion et al.
(2024) and define the Utopia distance (detailed in Supplementary Material). For the objectives in
our tests (including clicks, costs, and CVR), we define the maximum value of the results obtained by
all algorithms as the Utopia point. The minimum distance between each algorithm and the Utopia
point is defined as the Utopia distance. The Utopia distance of VCG is set to 100% for comparison.

Results: We compare the performance of mechanisms in both static and dynamic environments,
with the results shown in Figure 5 (above). As can be seen from the figures, AMMD achieves
Pareto optimality in all experiment settings. In the CVR-constrained experiment (requiring a CVR
≥ 0.1), the increase in the Utopia distance of the AMMD algorithm over time reflects the PID
control process satisfying the constraints. Initially, both CVR and the proportion of organic items
were below the target values, resulting in certain losses in clicks and costs during the feedback
adjustment process. In the convergence stage, the AMMD algorithm improves the Utopia distance
by at least 20% in all settings (in Table 1). The reason why GSP achieved good results is that it
seriously violated IC constraints (analysed in Supplementary Material).
Remark 3. We verify that AMMD satisfies incentive compatibility in the supplementary material.

Remark 4. As part of an ablation study, we can observe that the improvement of the AMMD al-
gorithm in the ’online’ group trained with online data is more significant. This is due to the static
weighted mechanism’s inability to adjust the display proportion of ad items based on ad quality,
leading to no revenue improvement even when utilizing real-time distribution information. In con-
trast, AMMD with adaptive weights significantly surpasses the Pareto curve of static mechanisms,
demonstrating effective utilization of online information.

6 CONCLUSION

In this work, we propose Adaptive Modeled Mechanism Design (AMMD) for multi-slot auctions
that incorporate both ads and organics. We define the ranking and pricing rules based on a virtual
value function for multi-objective auctions, demonstrating their effectiveness in maximizing rev-
enue while maintaining incentive compatibility. We establish the Pareto equation that links multi-
objective weights and constraints, enabling the decomposition of the constrained multi-objective
optimization problem in online auctions into offline learning of a static mechanism family and on-
line weight control. In AMMD, a hypernetwork is employed to learn a family of optimal static
mechanisms, each tailored to specific traffic characteristics. Additionally, PID controllers are used
to update the weight parameters online, ensuring the mechanism’s optimality as traffic distribution
evolve. We validate the effectiveness of AMMD through a series of multi-slot auction experiments.
The results indicate that AMMD achieves Pareto optimal mechanisms across all tested environ-
ments. We anticipate that this work will encourage further research on multi-objective auctions that
blend ads and organic content on e-commerce platforms.
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REPRODUCIBILITY STATEMENT

The following information can be found in the appendix of the paper and the submitted code. Proofs
of all novel claims and theorems (see appendix A.1). A conceptual outline and pseudocode descrip-
tion of AI methods introduced (see appendix A.2). Any code required for pre-processing data and for
conducting and analyzing the experiments is included (see the submitted code). The experiment de-
tails, including the computing infrastructure used for running experiments (hardware and software),
including GPU/CPU models; amount of memory; operating system; names and versions of relevant
software libraries and frameworks; all final (hyper-)parameters used for each model/algorithm in the
paper’s experiments (see appendix A.3).
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A APPENDIX

A.1 OMITTED PROOFS

Theorem 1. Given Q1(x), Q2(x) and Φ(Q1, Q2), which satisfies that ∀i ∈ {1, 2},∇QiΦ > 0. If
x = argmax Φ(Q1, Q2), then we have x ∈ D(x), which is the Pareto region.

Proof. Assuming that:
x = argmax Φ1(Q1, Q2) (15)

If x /∈ D(x), then there must exists x′,

Q1(x) ≤ Q1(x
′), Q2(x) < Q2(x

′) or Q1(x) < Q1(x
′), Q2(x) ≤ Q2(x

′) (16)

Since ∀i ∈ {1, 2},∇Qi
Φ > 0, we have:

Φ[Q1(x), Q2(x)] < Φ[Q1(x
′), Q2(x

′)] (17)

This is conflict with x = argmax Φ(Q1, Q2). Therefore, Theorem 1 holds.

Theorem 2. If the mechanism (a, p) is feasible, maximizing Equation 4 is equivalent to maximizing∫
G

∫
F

∫
Go

n1∑
i=1

ai(v⃗, c⃗, c⃗
o)[ci(vi −

1− Fi(vi)

fi(vi)
) + α(ci − c0)]dfdgdg

o (18)

where we use df, dg, dgo to denote f(v)dv, g(c)dc, go(c0)dc0.

Proof. We denote the value of all bidders as v⃗ = (vi, v−i), the click-through rate of all bidders as
c⃗ = (ci, c−i). The utility of bidder i with value vi ∈ [li,mi] is :

Ui(a, p, vi) =

∫
Go

∫
Gi

ci

∫
F−i

∫
G−i

vi · ai(vi, v−i, ci, c−i, c0)− pi(vi, v−i, ci, c−i, c0)df−idgdg
o

(19)

The multi-objective revenue of the seller is:

R1(a, p) + αR2(a, p)

= α

∫
G

∫
F

∫
Go

co[1−
n1∑
i=1

ai(v⃗, c⃗, c0)] +

n1∑
i=1

[ci · pi(v⃗, c⃗, c0) + αai(v⃗, c⃗, c0) · ci]dfdgdgo

=

∫
G

∫
F

∫
Go

n1∑
i=1

[cipi(v⃗, c⃗, c0)− ciai(v⃗, c⃗, c0)vi]dfdgdg
o +

∫
G

∫
F

∫
Go

αc0[1−
n1∑
i=1

ai(v⃗, c⃗, c0)]

+

n1∑
i=1

[α · ciai(v⃗, c⃗, c0) + ciai(v⃗, c⃗, c0)vi]dfdgdg
o

(20)
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We record the two part above as :

I1 =

∫
G

∫
F

∫
Go

n1∑
i=1

[cipi(v⃗, c⃗, c0)− ciai(v⃗, c⃗, c0)vi]dfdgdg
o

I2 =

∫
G

∫
F

∫
Go

αc0[1−
n1∑
i=1

ai(v⃗, c⃗, c0)] +

n1∑
i=1

[α · ciai(v⃗, c⃗, c0) + ciai(v⃗, c⃗, c0)vi]dfdgdg
o

(21)

The IC constrains indicates that:

∀si ∈ [li,mi], Ui(a, p, si) ≤ Ui(a, p, vi) (22)

which means that:

Ui(a, p, vi) ≥
∫
G

∫
F−i

∫
Go

ci[vi · ai(si, v−i, ci, c−i, c0)− pi(si, v−i, ci, c−i, c0)]dgdf−idg
o

=

∫
G

∫
F−i

∫
Go

cisiai(si, v−i, ci, c−i, c0)− cipi(si, v−i, ci, c−i, c0)

+ (vi − si)ciai(si, v−i, ci, c−i, c0)dgdf−idg
o

= Ui(a, p, si) + (vi − si)

∫
G

∫
F−i

∫
Go

ciai(si, v−i, ci, c−i, c0)dgdf−idg
o

(23)

We denote:
Qi(a, vi) =

∫
G

∫
F−i

∫
Go

ciai(vi, v−i, ci, c−i, c0)dgdf−idg
o (24)

Using equation (23) twice, we get:

∀ti, (ti − si)Qi(a, si) ≤ Ui(a, p, ti)− Ui(a, p, si) ≤ (ti − si)Qi(a, ti) (25)

From equation (25), we can see that Qi(a, si) is increasing in si. This inequalities can be written
for any δ > 0:

Qi(a, si)δ ≤ Ui(a, p, si + δ)− Ui(a, p, si) ≤ Qi(a, si + δ)δ (26)

Since Qi(a, si) is increasing in si, it is Riemann integrable. Then we have the following property:∫ ti

li

Qi(a, si)dsi = Ui(a, p, ti)− Ui(a, p, li) (27)

According to this, we have:

I1 =

n1∑
i=1

∫
G

∫
Go

∫
F−i

∫
Fi

[cipi(v⃗, c⃗, c0)− ciai(v⃗, c⃗, c0)vi]dfidf−idgdg
o

= −
n1∑
i=1

∫
G

∫
Go

∫
F−i

∫ mi

li

[Ui(a, p, li) +

∫ ti

li

Qi(a, si)dsi]fi(ti)dtidf−idgdg
o

= −
n1∑
i=1

∫
G

∫
Go

∫
F−i

[Ui(a, p, li) +

∫ mi

li

∫ mi

si

fi(ti)Qi(a, si)]dtidsidf−idgdg
o

= −
n1∑
i=1

∫
G

∫
Go

∫
F−i

[Ui(a, p, li) +

∫ mi

li

(1− Fi(si))Qi(a, si)]dtidsidf−idgdg
o

= −
n1∑
i=1

∫
G

∫
Go

∫
F−i

[Ui(a, p, li) +

∫
Fi

(1− Fi(ti))ciai(v⃗, c⃗, c0)f−i(v−i)]dvdgdg
o

= −E

N∑
i=1

[Ui(a, p, li)]−
n1∑
i=1

∫
G

∫
F

∫
Go

(1− Fi(vi))

fi(vi)
ciai(v⃗, c⃗, c0)dfdgdg

o

(28)
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This implies that:

I1 + I2 = −E

n1∑
i=1

Ui(a, p, li) + αEc0

+

∫
G

∫
F

∫
Go

n1∑
i=1

ai(v⃗, c⃗, c0)[ci(vi −
1− Fi(vi)

fi(vi)
) + α(ci − c0)]dfdgdg

o

(29)

Since −E
∑n1

i=1 Ui(a, p, li) ≤ 0, we can set the allocation and payment rule to satisfies
Ui(a, p, li) = 0. This can be achieved by setting the payment rule not lower than min (vi | vi ∈ Vi).
Therefore, maximizing R1(a, p) + αR2(a, p) is equivalent to maximizing:∫

G

∫
F

∫
Go

n1∑
i=1

ai(v⃗, c⃗, c0)[ci(vi −
1− Fi(vi)

fi(vi)
) + α(ci − c0)]dfdgdg

o (30)

Theorem 3. The auction defined in Definition 3 has the following properties.

• It satisfies IC and IR for all the items, ∀i, v∗i ≥ pi(v
∗
i , c

∗
i ) ≥ 0.

• It maximizes the multi objective R1(a, p) + αR2(a, p), which is the same to Equation 5.

• The percentage of ads satisfies Eλad = λ0 if and only if

Pv⃗∼F,⃗c∼G(maxi∈{Ad}ciΨ(vi) + α(ci − c0) > 0) = λ0. (31)

Proof. • According to Definition 3, the cost for per click is

pi(v
∗
i , c

∗
i ) = max [Ψ−1((c∗jΨ(v∗j ) + αc∗j − αc∗i )/c

∗
i ),min (v∗ | v∗ ∈ Vi)] (32)

We use li to denote min (v∗ | v∗ ∈ Vi). Since i = argmax c∗iΨ(v∗i ) + αc∗i , we have:

(c∗jΨ(v∗j ) + αc∗j − αc∗i )/c
∗
i ≤ Ψ(v∗i ) (33)

In Definition 3, we assume that all the value distributions are normal. This implies that Ψ
and Ψ−1 are increasing functions of v∗i , which means that:

v∗i ≥ max(Ψ−1[(c∗jΨ(v∗j ) + αc∗j − αc∗i )/c
∗
i ], li) ≥ li ≥ 0 (34)

Since v∗i ≥ pi(v
∗
i , c

∗
i ) ≥ 0, we have pi(v

∗
i , c

∗
i ) ≡ 0 if i ∈ {Org}. This implies that the

mechanism satisfies IC and IR for all organic items.

In the proof of Theorem 2, we have already guarantee the incentive compatiblity of the
unified auction. Here we give a simple proof according to Myerson’s Lemma. From the
Myerson’s Lemma, the mechanism satisfies IC constrains for ad items if the allocation rule
ai(v⃗

∗, c⃗∗) is monotonic with respect to value v⃗∗i and the payment rule pi(v⃗
∗, c⃗∗) satisfies

the threshold condition:

pi(v⃗
∗, c⃗∗) = argminv[c

∗
iΨ(v) + αc∗i = maxjc

∗
jΨ(vj) + αc∗j ] (35)

Since all the value distributions are normal, we have Ψ(v∗i ) is increasing function of v∗i , and
c∗iΨ(v∗i ) + αc∗i is also increasing function of v∗i . Therefore, the allocation rule ai(v⃗

∗, c⃗∗)
is monotonic with respect to value v⃗∗i . According to equation (32), we have that when the
bidder bidding truthfully, its payment satisfies equation (35). Therefore, the mechanism
satisfies IC and IR for all ad items.
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• We denote c0 = maxc⃗o, F⃗ = (F, F o), G⃗ = (G,Go), and {Ad} as the set of ads, {Org} as
the set of organics. Then we have:

∫
F⃗

∫
G⃗

N∑
i=1

ai(v
∗
i , c

∗
i )[c

∗
i (v

∗
i − 1− Fi(v

∗
i )

fi(v∗i )
) + αc∗i ]df⃗dg⃗

= I(argmaxc∗i (v
∗
i − 1− Fi(v

∗
i )

fi(v∗i )
) + αc∗i ∈ {Ad})

·
∫
F⃗

∫
G⃗

|{Ad}|∑
i=1

ai(v
∗
i , c

∗
i )[c

∗
i (v

∗
i − 1− Fi(v

∗
i )

fi(v∗i )
) + αc∗i ]df⃗dg⃗

+ I(argmaxc∗i (v
∗
i − 1− Fi(v

∗
i )

fi(v∗i )
) + αc∗i ∈ {Org})

∫
F⃗

∫
G⃗

|{Org}|∑
i=1

[ai(v
∗
i , c

∗
i )αc

∗
i ]df⃗dg⃗

= I(argmaxc∗i (v
∗
i − 1− Fi(v

∗
i )

fi(v∗i )
) + αc∗i ∈ {Ad})

∫
F⃗

∫
G⃗

|{Ad}|∑
i=1

ai(v
∗
i , c

∗
i )[c

∗
i (v

∗
i − 1− Fi(v

∗
i )

fi(v∗i )
) + αc∗i ]− αc0df⃗dg⃗

+

∫
F⃗

∫
G⃗

|{Org}|∑
i=1

[ai(v
∗
i , c

∗
i )αc

∗
i ]df⃗dg⃗

=

∫
Go

αc0dg
o + I(argmaxc∗i (v

∗
i − 1− Fi(v

∗
i )

fi(v∗i )
) + αc∗i ∈ {Ad})

∫
F

∫
G

∫
Go

|{Ad}|∑
i=1

ai(vi, ci, c0) · [ci(vi −
1− Fi(vi)

fi(vi)
) + α(ci − c0)]dfdg

= αEc0 +

∫
G

∫
F

∫
Go

N∑
i=1

ai(vi, ci, c0)[ci(vi −
1− Fi(vi)

fi(vi)
) + α(ci − c0)]dfdgdg

o

(36)
This emplies that the mechanism maximizes the multi objective R1(a, p) + αR2(a, p),
which is the same to Equation 5. According to the proof of Theorem 2, it is necessary to
set the payment rule not lower that min (vi | vi ∈ Vi). Therefore this Theorem holds.

• Given a single slot, the PAE is equal to the probability of the maximum virtual value comes
from ads. Therefore, the percentage of ads satisfies Eλad = λ0 if and only if

Pv⃗∼F,⃗c∼G(maxi∈{Ad}ciΨ(vi) + αci > αc0) = λ0. (37)

Theorem 4. Given the weight α and corresponding λ0 ∈ (0, 1) which satisfies Definition 3, we
have the following conclusion:

maxa,pR1(a, p) + αR2(a, p) > maxa,p(1− λ0)αR
org
2 + λ0[R

ad
1 (a, p) + αRad

2 (a, p)] (38)

where the left part comes from Equation 5 and right part comes from Equation 9.
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Proof. According to equation (29), we have:

maxa,p(1− λ0)αCorg + λ0[Rad(a, p) + αCad(a, p)]

= (1− λ0)αEc0 + λ0[−
n1∑
i=1

EUi(a, p, li) +

n1∑
i=1

∫
F

∫
G

ai(v⃗, c⃗)(ci(vi −
1− Fi(vi)

fi(vi)
) + αci)dfdg]

= αEc0 + λ0[−E

n1∑
i=1

Ui(a, p, li) +

∫
F

∫
G

∫
Go

ai(v⃗, c⃗)[ci(vi −
1− Fi(vi)

fi(vi)
) + αci]− αc0dfdgdg

o]

≤ αEc0 + λ0[−E

n1∑
i=1

Ui(a, p, li) +

∫
F

∫
G

∫
Go

ai(v⃗, c⃗)[ci(vi −
1− Fi(vi)

fi(vi)
) + αci − αc0]dfdgdg

o]

< −
n1∑
i=1

Ui(a, p, li) + αEc0 +

∫
G

∫
F

∫
Go

n1∑
i=1

ai(v⃗, c⃗, c0)[ci(vi −
1− Fi(vi)

fi(vi)
) + α(ci − c0)]dfdgdg

o

= maxa,pR1(a, p) + αR2(a, p)
(39)

The last inequality holds because when λ > 0, it is obvious that

−E

n1∑
i=1

Ui(a, p, li) +

∫
G

∫
F

∫
Go

n1∑
i=1

ai(v⃗, c⃗, c0)[ci(vi −
1− Fi(vi)

fi(vi)
) + α(ci − c0)]dfdgdg

o > 0

(40)
in equation (29). This implies that

λ0[−E

n1∑
i=1

Ui(a, p, li) +

∫
F

∫
G

∫
Go

ai(v⃗, c⃗)[ci(vi −
1− Fi(vi)

fi(vi)
) + αci − αc0]dfdgdg

o]

≤ −E

n1∑
i=1

Ui(a, p, li) +

∫
G

∫
F

∫
Go

n1∑
i=1

ai(v⃗, c⃗, c0)[ci(vi −
1− Fi(vi)

fi(vi)
) + α(ci − c0)]dfdgdg

o

(41)

Remark 1: In order to illustrate that AMMD framework allows for arbitrary extensions for item
attributes, we provide an example of the CVR constraint and the corresponding Pareto Equation.
We assume that each item (including ads and organics) has an specific conversion rate zi (which is
independent with other attributes), and the average conversion rate (CVR) of all displayed items is
required to be no less than ρ0.

Adopting Lagrange multiplier, the constraint E(z̄i | i ∈ {exposed items}) ≥ ρ0 makes the objective
becomes:

max R1 + αR2 −M Relu[ρ0 −E(z̄i | i ∈ {exposed items})] (42)
Since the conversion rate is assumed independent with other attributes, it also forms a Pareto curve
with R1 and R2. Therefore, the multi-objective optimization can be simplified as:

max R1 + αR2 +
∑

i∈{all items}

βzi s.t. E(z̄i | i ∈ {exposed items}) = ρ0 (43)

Similar to the proof of Theorem 3, we can derive the equivalence between maximizing multi-
objective revenue and the virtual value function ciΨ(vi) + αci + βzi. Then we have the following
Pareto Equations in independent identical multi-slot auctions (generalized multi-slot auctions can
be calculated similarly):

Pv⃗∼F,⃗c∼G,z⃗∼Z(maxi∈{Ad}[ciΨ(vi) + αci + βzi]− (maxi∈{Org}[αci + βzi]) > 0) = λ0

Ev⃗∼F,⃗c∼G,z⃗∼Z(zi | i = argmax ciΨ(vi) + αci + βzi) = ρ0
(44)

Given the traffic characteristics, we can solve the weight parameters (α, β) according to the above
two equations. This implies that AMMD framework allows for extensions in item attributes and
objective constraints.
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Remark 3: The application of VCG pricing rule guarantees the incentive compatibility of AMMD.
For a complete proof, please refer to the work of (Varian & Harris, 2014). Here we give a simple
proof sketch.

Given an advertisement bidder i and its value vi, click-through rate ci. We assume that if it bids
truthfully bi = vi, it will win the kth slot.

• For any untruthful bidding b′i, if it still wins the kth slot, then its utility is the same with
truthful bidding. This is obvious because the utility of bidder is determined by its allocation
and payment. Given the same allocation, the payment of the bidder is independent with its
bidding.

• Then we prove that for any untruthful bidding b′i, if it wins a worse slot (taking the k+ 1th
slot as an example), then its utility is the same with truthful bidding.
We assume that the value of the current bidder is v0, and the CTR of the slot allocated to it
is c0. There are n slots worse than this slot, with CTR c1, · · · , cn satisfying c0 ≥ c1 ≥ · · · .
These slots are allocated to bidders with v1, · · · , vn values. We use qi(vi) to denote the
virtual value of the bidder i. Here we assume that all the virtual value functions qi and their
inverse functions q−1

i are linear functions (It holds when the value distributions of bidders
are uniform distributions).
Under these assumptions, the payment decrease of the current bidder for untruthful bidding
is:

q−1
0 [

∑n+1
j=1 cj−1q(vj)−

∑n
j=1 cjq(vj)

c0
] · c0 − q−1

0 [

∑n
j=1 cj−1q(vj)−

∑n
j=1 cjq(vj)

c1
] · c1

= q−1
0 [

n+1∑
j=1

cj−1q(vj)−
n∑

j=1

cjq(vj)]− q−1
0 [

n∑
j=1

cj−1q(vj)−
n∑

j=1

cjq(vj)]

= q−1
0 [c0q1(v1)− c1q1(v1)]

≤ q−1
0 (c0q0(v0)− c1q0(v0))

= v0(c0 − c1).
(45)

This implies that the payment decrease is lower than its value decrease, which means that
the utility of untruthful bidding is lower than truthful bidding.

According the above two conditions, we prove that the utility of untruthful bidding is lower than
truthful bidding in specific assumptions. Therefore the mechanism is incentive compatibility. We
also verified the incentive compatibility of the mechanism in the experiments.

Remark: In online controlling process, we adopt the PID controller because of its good theoretical
properties and wide application. Adjusting model parameters to control the percentage of advertise-
ment exposed in online traffic scenarios can be viewed as a time-varying signal tracking problem in
a nonlinear stochastic system. Theoretical analysis on the ability of the classical PID controller can
be referred to in the work of Zhao & Yuan (2024).

Briefly speaking, such control systems can be stabilized in the mean square sense, provided that the
three PID gains (kp, ki, kd) are selected from a stability region. The steady-state tracking error has
an upper bound proportional to the sum of the varying rates of the reference signals, the varying rates
of the disturbances and random noises. In our experiments, we found that the AMMD framework
with this online controller met the constraints such as the PAE and CVR.

Remark: The definition of Utopia distance is detailed as follows: For points (x1, y1), · · · , (xn, yn)

and arrays (x⃗k1, y⃗k1), · · · , (x⃗kj , y⃗kj), the Utopia point is defined as (x0, y0), where

x0 = max (x1, · · · , xn, x⃗k1, · · · , x⃗kj) , y0 = max (y1, · · · , yn, y⃗k1, · · · , y⃗kj) (46)
The utopia distance of (xi, yi) is defined as

d(xi, yi) = [(xi − x0)
2 + (yi − y0)

2]
1
2 (47)

The utopia distance of (x⃗ks, y⃗ks) is defined as

d(x⃗ks, y⃗ks) = min
x∈x⃗ks,y∈y⃗ks [(x− x0)

2 + (y − y0)
2]

1
2 (48)
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A.2 ALGORITHMS OF AMMD

A.2.1 TRAINING HYPERNETWORK AND MODEL NETWORK

For modeled auctions, both the allocation and charging rules are determined by the model param-
eters. According to the theory in Section 3, the revenue of the incentive-compatible mechanism
are only affected by the allocation rules. Since the AMMD framework adopts VCG pricing rule to
ensure IC, the multi-objective optimization only needs to be run on the modeled virtual value func-
tion. The network consists of two parts, a fixed parameter part θ−w and a controllable parameter
θw part. We hope to obtain a family of mechanisms that are applicable to any weight parameters
and traffic characteristics during offline training. Therefore, each training sample contains not only
item attributes, but also randomly sampled weight parameters. Detailed algorithm is provided in
Algorithm 1.

Algorithm 1 Training Hypernetwork and Model Network
Input: Hypernetwork H(·, θH), Modeled network M(·, [θw, θ−w]), Multi-objective loss function
L, Value distribution F , CTR and CVR distribution for ads C,Z and organics Co, Zo, Weight
distribution Dw.

1: repeat
2: Sample training sample (v⃗, c⃗, z⃗) from (F,C,Co, Z, Zo) and w⃗ from Dw

3: Hypernetwork generates parameters θw = H(w⃗, θH)
4: Input (v⃗, c⃗, z⃗) to M(·, [θw, θ−w]) to derive allocation and payment (a, p)
5: Compute loss L(a, p, w⃗, v⃗, c⃗, z⃗)
6: Update parameters θH and θ−w based on loss using back-propagation
7: until Maximum number of iterations reached
8: return H(·, θH),M(·, θ−w)

Output: Hypernetwork H(·, θH), Fixed parameters for modeled network M(·, [θw, θ−w]).

A.2.2 AMMD (ADAPTIVE MODELED MECHANISM DESIGN)

The AMMD framework does not update model parameters in online applications, but adjusts multi-
objective weights based on KPI feedback. Details algorithm is provided in Algorithm 2.

Algorithm 2 AMMD (Adaptive modeled mechanism design)
Input: Hypernetwork H(·, θH), Modeled network M(·, [θw, θ−w]), initialized parameter (α, β),
number of episodes N1, number of auctions in one episode N2, k slots with click-through rate
c1, · · · ck.

1: for i1 in range(N1) do
2: for i2 in range(N2) do
3: Receive all item attributes (v⃗ad, c⃗ad, z⃗ad) and (v⃗org, c⃗org, z⃗org)

4: Generating weight parameters by distribution approximation F̂ = F̂ (v⃗), Ĉ = Ĉ(c⃗) and
Ẑ = Ẑ(z⃗), w = [(α, β), F̂ , Ĉ, Ẑ]

5: Calculate the virtual value for each item θw = H(w, θH), v∗i = M [(vi, ci, zi), (θw, θ−w)]
6: Ranking the items with v∗ and impressing the top k items, adopting VCG pricing rule in

equation (12) for these items
7: Record the cumulative clicks, costs, and KPI feedbacks
8: end for
9: Update parameters (α, β) with the PID controller

10: end for
11: return Total clicks and costs
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A.3 ADDITIONAL EXPERIMENTS AND EXPERIMENT DETAILS

All experiments in this paper were run with one A100 GPU, 40 GB memory support. Experiments
can be performed under both Windows and Linux systems. The neural network module is built using
the pytorch framework. For specific details, please refer to the code submitted in the appendix.

A.3.1 INCENTIVE COMPATIBILITY TEST FOR MECHANISMS

In order to show that AMMD satisfies the incentive compatibility, we design an experimental ver-
ification. We randomly sample several groups of different item attribute samples and calculate the
allocation and payment under the trained model. In each auction, we randomly select an ad item and
set its bid to be untruthful (b = 0.99v, 0.95v.0.9v, 0.8v). By comparing the change in the adver-
tiser’s average utility compared with the truthful bidding, we analyze whether the mechanism meets
incentive compatibility. The experimental setting is the same to generalized multi-slot auctions
without CVR constraint in dynamic environments (setting is detailed in the following section).

The experimental results are given in Figure 6. From the figure, we can see that, except for GSP, the
utility of all mechanisms under untruthful bids is less than that under truthful bids. This result shows
from an experimental perspective that AMMD satisfies incentive compatibility. The experimental
results also show that the outcome of the GSP mechanism in actual application is significantly lower
than that in the experiment of this paper. This is because the failure to meet incentive compatibility
will cause advertisers to lower their bids. As can be seen from Figure 6, the actual outcome of GSP
is at least reduced by 20%.
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Figure 6: Experiments for testing utility change when bidder bidding untruthfully.

A.3.2 EXPERIMENT DETAILS IN INDEPENDENT IDENTICAL MULTI-SLOT AUCTIONS

In independent identical multi-slot auctions, we first conduct experiments in static environments.
The existence of the replaced layer in AMMD allows it to switch to the corresponding mechanism
in the optimal mechanism family according to the distribution characteristics. In all experiments,
1000 auctions are conducted per time unit and the results are averaged as feedback for network
parameter updates.
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Click Cost 100%-PAE
RegretNet AMMD RegretNet AMMD RegretNet AMMD

F∼U[0,0.5] 0.805 0.817 0.018 0.084 49.6% ± 2.8% 50.5% ± 3.2%
F∼U[0,1.0] 0.779 0.815 0.061 0.177 49.8% ± 2.3% 50.3% ± 3.0%
F∼U[0,1.5] 0.764 0.807 0.129 0.265 50.3% ± 2.1% 49.6% ± 3.4%
F∼U[0,2.0] 0.748 0.802 0.193 0.380 49.8% ± 2.6% 48.7% ± 2.9%

Table 2: AMMD Mechanism application in different traffic with hypernetwork.

We compare the AMMD model trained with random samples with RegretNet in different traffic
distributions. For the AMMD algorithm, all items are ranked by a unified virtual value network.
When the exposure ratio of advertisements and organic items does not meet the PAE constraint, the
controller will adjust the network parameters according to the feedback until it converges to a state
that meets the constraint. However, for RegretNet, it can only be trained using a certain loss function.
Here we give the comparison results of using Costs+αClicks, α = 0.3, 0.5 as loss functions. The
PID control module of AMMD is initialized with α=0.5, and its (kp, ki, kd) is selected as (0.005,
0.0002, 1), with l = 24. In other subsequent experiments, the selection of this hyperparameter is
similar. The specific details can be found in the code in the supplementary material.

Figure 7: α = 0.3

Detailed results of Figure 8 is given in Table 2. The reason why RegretNet does not strictly meet the
PAE constraint is that there are 1,000 auctions in each batch. Even if the probability of allocating
ads or organics is 50%, there will still be a certain error. This experimental result shows that a well-
trained AMMD framework can output the optimal auction mechanism under any traffic distribution
and surpass existing methods by combining multi-objective optimization with online control.

The comparison between AMMD and the Pareto curve of RegretNet in dynamic environments is
presented in Figure 4. Here, we provide detailed results from this experiment. In this setup, the click-
through rates (CTR) of all items are derived from independent static distributions, while the upper
bound of the value distribution changes periodically over time. Specifically, the value distribution
of the advertising items is uniformly distributed with a lower bound of 0, and its upper bound varies
evenly over time within a range of 0.5 to 1.5, following a 24-rollout cycle. This simulates the
willingness of advertisers to pay during different time periods on the e-commerce platform.

From Table 3, we observe that when there are no additional constraints, the adjustment of multi-
objective weights strictly adheres to the definition of the Pareto region; it is impossible to improve
multiple objective functions simultaneously by changing the weights. When constraints such as
the PAE are introduced, these constraints can be viewed as a plane subset in the overall space.
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Figure 8: α = 0.5

Mechanisms α click cost

offline RegretNet

0.1 0.683 0.103
0.5 0.775 0.074
1.2 0.808 0.039
2.0 0.815 0.025

online RegretNet

0.1 0.687 0.104
0.5 0.772 0.076
1.2 0.811 0.037
2.0 0.815 0.028

offline AMMD adaptive 0.836 0.177
online AMMD adaptive 0.839 0.184

Table 3: Comparison between AMMD and Pareto curve of RegretNet.

The intersection of this subset with the Pareto region represents the points that satisfy the Pareto
equation. Achieving multi-objective Pareto optimality under constraints requires solving the Pareto
equation to determine the optimal weights. This is the key reason why AMMD can outperform
existing methods.

A.3.3 EXPERIMENTS IN GENERALIZED MULTI-SLOT AUCTIONS

Figure 9: Generalized multi-slot auctions in static setting
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In this section we present the experimental setup and results for generalized multi-slot auctions in
detail. In all scenarios, four ad items and four organic items compete for four advertising slots. The
click-through rates of the four advertising slots are set to (1.0,0.8,0.6,0.5), and the click-through
rates of advertising items are sampled from uniform distribution U [0, 1], and the click-through rates
of organic items are sampled from uniform distribution U [0, 2.5]. When there are CVR constraints,
the CVR of each item is sampled from uniform distribution U [0, 0.175] with the constraint z̄ ≥ 0.1.

In static scenarios, the value distribution of ad items are sampled from static uniform distribution
U [0, 1.5]. For VCG and GSP mechanisms, all items are sorted according to the metric V alue ×
CTR + α × CTR, where α takes (0.01, 0.1, 0.2, 0.5, 1.0). In the uniformly sorted sequence, the
two highest ranked ad and organic items are each selected for impression. In the pricing process for
ad items using VCG and GSP rules, items added in suboptimal sequences are restricted to ads to
maintain the PAE constraint.

For SW-VCG, it maps the value and CTR of items to virtual values through neural networks and
uses VCG rules for pricing. The neural network is trained using the clicks and revenue after sorting
and pricing as the loss function Costs+ αClicks, where α takes (0.01, 0.1, 0.2, 0.5, 1.0).

In Figure 9 we give the auction results for the different mechanisms under two sets of random sam-
pling. Notice that the GSP mechanism does not satisfy incentive compatibility, and its actual results
should be approximately equivalent to the VCG mechanism. From the comparison of the SW-VCG
and VCG mechanisms we can see that SW-VCG strictly Pareto dominates the VCG mechanism at
different parameter settings. This illustrates that the virtual values obtained using multi-objective
training achieve a more optimal allocation compared to the real values.

In the comparison between AMMD and SW-VCG, we can see that AMMD significantly outperforms
the Pareto curve formed by the SW-VCG mechanism. Theorem 4 shows that charging the ad items
within the unified sequence strictly leads to an increase in total costs. However, for SW-VCG trained
with static multi-objective weights, it cannot naturally satisfy the PAE constraint. The process of
ensuring that sequences satisfy the PAE constraint (limiting the proportion of ad items in a uniform
sequence) makes it infeasible to charge for ads in a uniform sequence. This is due to the fact that
suboptimal sequences in VCG pricing are also required to satisfy the PAE constraint. However,
for AMMD, the satisfaction of PAE is achieved by adjusting the weights of multiple objectives.
This allows ad items to be charged in a uniform sequence, which significantly improves the multi-
objective revenue.

Figure 10: Generalized multi-slot auctions in dynamic setting

In dynamic scenarios, the parameter settings are basically the same as in a static scene. The value
distribution of the ad items is the same as the settings in the independent identical auction experi-
ment. The experiment results is given in Figure 10, 11.

In CVR constrained experiment, the selection of beta for GSP, VCG and SW-VCG is from
[0.6,2.0,3.0,5.5,8.0]. Other hyper parameters are the same to experiment without CVR constraint.
Detailed experiment can been seen in the submitted code.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 11: Generalized multi-slot auctions in dynamic setting (with CVR constraint)
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