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Abstract

The task of geometry problem solving has been a long-standing focus in the
automated mathematics community and is drawing growing attention due to its
complexity for both symbolic and neural models. Although prior studies have
explored various effective approaches for enhancing problem solving performances,
two fundamental challenges remain unaddressed, which are essential to the appli-
cation in practical scenarios. First, the multi-step reasoning gap between the initial
geometric conditions and ultimate problem goal leads to a large search space for
solution exploration. Second, obtaining multiple interpretable and shorter solu-
tions remains an open problem. In this work, we introduce the Causal-Reasoning
Geometry Problem Solver to overcome these challenges. Specifically, the Causal
Graph Reasoning theory is proposed to perform symbolic reasoning before problem
solving. Several causal graphs are constructed according to predefined rule base,
where each graph is composed of primitive nodes, causal edges and prerequisite
edges. By applying causal graph deduction from initial conditions, the reachability
status of nodes is iteratively conveyed by causal edges until reaching the target
nodes, representing feasible causal deduction paths. In this way, the search space
of solutions is compressed from the beginning, the end and intermediate reasoning
paths, while ensuring the interpretability and variety of solutions. To achieve this,
we further propose Forward Matrix Deduction which transforms the causal graphs
into matrices and vectors, and applies matrix operations to update the status value
of reachable nodes in iterations. Finally, multiple solutions can be generated by
tracing back from the target nodes after validation. Experiments demonstrate the
effectiveness of our method to obtain multiple shorter and interpretable solutions.

1 Introduction

Geometry Problem Solving (GPS) is a long-standing task |30} [10} [27/in the automated mathematics
problem solving community [11}, 15, 28l It aims to obtain the final numerical answer with a given
geometric diagram and problem text which includes a problem goal (e.g., “Find length of AD.”),
as illustrated in an example in fig. [I|(a). In recent years, this task has attracted increasing attention
due to its challenging requirements of multiple capabilities of the model, including multi-modal
understanding, abstract geometric reasoning and mathematical computation.

Existing methods can be categorized into two main branches according to their reasoning mechanisms.
Neural-based methods 2} 3| 135/ extract the multi-modal features of original geometry problem and
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Figure 1: Illustration of solving a typical geometry problem. The red part in solutions in (c) refers to
redundant applied theorem indices in case 1 (19) and redundant program sequences in case 2 (33).

predict executable program sequences by neural models, which are then executed by external symbolic
engine for the answer. Recent approaches 21} 4] applying large language models primarily distinguish
in the output content 9. Symbolic-based methods transform the raw problem into formal language
representation 19} (13} [15/which is acceptable by symbolic systems, and continuously apply predefined
theorem rules |19, [24] 25/to deduce new geometric conditions until the problem goal is solved. Both
approaches have been making efforts on the integration of multi-modal information [18} 20, theorem
prediction |39} [14/and development of symbolic systems 23| resulting in significant improvements on
problem solving capabilities of the model. However, the application of these models in real-world
scenarios 31, such as educational use, is still impeded. We identify the following two overlooked
challenges from a broader perspective, which need further exploration from the research community.

First, the multi-step reasoning gap between the initial geometric conditions and ultimate problem goal
causes a great search space for solution exploration. Different from general visual reasoning tasks
16, 1, geometry problem solving requires multi-step logical and mathematical deduction, involving
many geometric elements and intermediate values that are unknown in the problem. As a result, the
search space of potential solution paths becomes extremely large when numerous combinations of
deduction paths and geometric conditions are considered (as illustrated in fig. [I] (b)). For complex
problems, the search space greatly challenges the pattern-fitting prediction mechanism of neural
networks which are trained with only limited geometry problems requiring simple solutions. For
symbolic-based approaches, some studies 19, 23| employ pretrained neural models for step-wise
theorem prediction to prune the search space in each step, but with limited gains and unreliable
performance. E-GPS [31/novelly proposes to solve the problem from the target in a top-down manner,
which effectively narrows the search space to a scope which finally leads to the problem goal being
solved. Nevertheless, it ignores the constraints of “bottom” known conditions and still searches for
paths that should be abandoned from the beginning.

Second, obtaining multiple interpretable and shorter solutions remains an open problem. On one
hand, the correctness and interpretability of solutions are not well guaranteed in previous works,
impeding the application of models in situations that require solution accuracy (e.g., educational use).
Despite leveraging the prediction power of neural models, most prior methods are inherently unable
to prevent the introduction of redundant and incorrect steps, even if the final answer is accurate. We
list some representative results given by these models in fig.|I|(c). This issue becomes more serious
for intricate geometry problems that require longer solution steps, not only increasing the difficulty of
problem solving but also decreasing the reliability. On the other hand, obtaining shorter and diverse
solutions remains unexplored. For majority of geometry problems, the solution path to problem goal
is not unique. Obtaining shorter solution paths, as well as multiple solutions, is beneficial to providing
optimized solutions to a problem from various perspectives, enabling the deployment of models
in practical scenarios. Simultaneously, it could also address the limitations of existing manually
annotated GPS datasets for neural training, using fixed and sub-optimal solution annotations 18} |31}

To overcome the aforementioned challenges, we take a step further into the common process of
geometry problem solving, which can be roughly divided into problem understanding, problem



reasoning and problem solving. Interestingly, most works utilize neural networks for the task of
reasoning (e.g., theorem prediction in symbolic-based methods or sequence prediction in neural-based
methods). Besides E-GPS[31], there is a notable absence of research grounded in symbolic reasoning
approaches, where we have identified much potential. Take Pythagorean Theorem as an example, if
the lengths of two sides of the triangle are known and that one of its interior angles is a right angle,
the system could then calculate the length of the third side. Without performing detailed calculation,
the process can be simplified as known A cond — result, where known represents known attributes
of primitives (e.g., lengths of two sides), cond represents the prerequisite conditions (e.g., right angle)
and result refers to the conditions that are acquirable (e.g., length of the third side). Such causal
deduction reasoning process is challenging for neural models to learn, particularly under complicated
theorem base and scarce GPS datasets, but is promising for symbolic systems. In this way, the model
is able to perform symbolic reasoning by continuously applying the simplified and unified deduction
process from the initial geometric conditions, excluding the complicated calculation. Furthermore, the
deduction path explicitly records the intermediate outcomes between the start and the end, providing
a traceable and explainable reasoning paths.

To achieve this, we propose the Causal-Reasoning Geometry Problem Solver (Causal-R). Specifically,
we first follow the common strategy to parse the raw geometry problem into structural formal language
representations. Then, we introduce the theory of Causal Graph Reasoning (CGR), where the causal
relations between geometric primitives are built in causal graphs according to the predefined theorem
base. Each causal graph is a hypergraph consisting of primitive nodes, causal edges and prerequisite
edge. Primitive nodes represent the attributes of unique geometric primitives in the parsed conditions,
with initial status of positive (i.e., value is known) and negative (i.e., value is unknown). Causal edge
builds the causal relations between head nodes and tail nodes, representing a feasible deduction path.
Prerequisite edge points from the prerequisite conditions to a causal edge, controlling its application.
In this way, the model is able to perform symbolic-reasoning before actually solving the problem by
continuously applying the causal graph deduction until the problem goal is reached. It compresses
the search space of solution paths not only from the established conditions at the beginning, but also
from the problem goal at the end and the intermediate reasoning paths. Based on the CGR theory,
we further introduce the Forward Matrix Deduction (FMD) method which transforms the exhaustive
application of causal deductions into matrix operation, enabling the model to perform faster reasoning
within iterations. In each iteration, the value vector, representing the reachability of primitive nodes,
is updated by matrix operations. When all target values are obtained, the solutions w.r.t. each target
can be generated easily by tracking back from the target values to the initial conditions according to
the recorded deduction path. These candidate solutions are then sorted in a length-increasing order to
verify the feasibility, after which we can obtain multiple solutions to solve the geometry problem.
Our contributions can be summarized into the following three points:

* We propose the Causal Graph Reasoning theory which simplifies the theorem deduction as unified
causal deduction path for symbolic reasoning. It compresses the search space from the beginning,
the end and intermediate process, and ensures the obtaining of optimized solutions.

* We propose the Forward Matrix Deduction method to transform causal graph deduction into matrix
operation, enabling the model to perform faster reasoning for solution exploration within iterations.

* We propose the Causal-Reasoning Geometry Problem Solver to verify the above methods. Ex-
perimental results demonstrate the effectiveness of our method to obtain optimized solutions, i.e.,
interpretable, shorter and multiple solutions, in geometry problem solving. Reference of codes is
available at https://github.com/nicktech-git/Causal-R.

2 Related works

Automated mathematical problem solving has always been a hot topic in the community |11} |5}
28, where geometry problem solving has obtained increasing attention in recent years due to its
complexity, requiring multiple crucial capabilities of machine. Earlier methods [7} |8, [32| such as
Wu’s Method 30! built fundamental approaches for understanding and proving geometry problems.
Recent advancements in neural networks and symbolic systems have spurred increasing researches
for breakthroughs in problem solving performances of automated geometry problem solvers, which
can be categorized into two mainlines.



Neural-based methods predict executable or human-readable sequences based on the extracted
multi-modal features of raw problem. For example, Chen et al. [2] made the first attempt and
established a baseline to uniformly process textual and visual data by encoder-decoder framework
and generate program sequences, which are then executed by external symbolic engine. Since then,
continuous improvements have been made on the problem types 3l information extraction 3518} and
cross-modal information alignment 20} [18. With the exploitation of large language models (LLMs),
many studies have evaluated and developed the performances of LLMs on mathematic tasks|17, 26,
including geometry problem solving 33l Some works focus on improving the multi-modal problem
understanding capabilities of multi-modal LLMs 21}, especially on geometric diagrams 4, 137, |36.
Other works try to enhance the problem reasoning and solving skills of MLLMs by integration of
external symbolic engines 22} 16, such as ToRA |12/ and MathCoder 29

However, these methods fall short of guaranteeing the accuracy and interpretability of generated
solution paths due to the inherent shortcomings of autoregressive models, likely introducing redundant
and wrong steps.

Symbolic-based methods continuously apply predefined theorem rules on parsed geometric con-
ditions until the problem goal is solved. Inter-GPS |19|proposes to use a pretrained neural model
to predict a sequence of potential needed theorems, improving the efficiency based on brute-search
strategy. Subsequently, several works aim at enhancing the capabilities of neural models to analyze
the pattern and make improved predictions. For example, Peng et al. [23] and Zou et al. [39] utilize
reinforcement learning to enable the model with step-wise prediction power before each step of
theorem application. Following them, Huang et al. [14] builds global hologram of geometric con-
ditions and pattern holograms of theorems and uses neural models to predict appropriate theorem
based on pattern matching at each step. Recent work Pi-GPS |38/ mainly focuses on resolving the
textual ambiguities with diagrammatic information, significantly improving the applicability of
symbolic-based methods. As an outstanding work, AlphaGeometry [28 highlights the potentials of
symbolic models on mathematical proof problems even at Olympic-level, encouraging researchers
to keep exploring. E-GPS [31lis the first work that emphasizes the importance of explainability of
solutions, advancing the practical application of geometry problem solvers.

However, most of these works mainly focus on solving the geometry problems instead of reasoning
for optimized solutions, ignoring the importance of reasonable solutions in real application scenarios.
Besides E-GPS, they are unable to ensure the interpretability and accuracy of solutions (e.g., without
introducing redundant steps), leaving the exploration of shorter and multiple solutions an ongoing
research problem.

3 Methodology

Given a geometry problem (D, T'), where D and T represent the geometric diagram and problem
text respectively, our model aims at obtaining the answer of problem goal ¢ as well as corresponding
solutions S. The overall framework of our Causal-R is illustrated in fig.[2]

3.1 Problem understanding

Understanding the detailed content of multi-modal geometry problem is the basis of following stages.
Unlike ordinary multi-modal question answering tasks, solving geometry problems critically relies
on the symbolic abstraction and precise mathematical expression. We follow the previous symbolic-
based methods 19| 31/to first parse the geometry problem into formalized geometric conditions (e.g.,
Equals(LengthOf (BD),32)), represented in structural clauses, with a commonly used diagram
parser 34 and text parser [19. In this way, the problem is converted into a geometric condition
set, describing the basic definitions of geometric primitives (e.g., line and angle), non-geometric
primitives (e.g., text and symbol), math expressions and their relations.

3.2 Causal graph reasoning
3.2.1 Causal graph construction

In this work, causal graph is used to represent the deduction path from known conditions to new
acquirable conditions if the prerequisites are met w.r.t. a specific theorem rule. Given the theorem
rule base KB of K rules, K corresponding causal graphs G = {G1, G2, -+ , Gk } are constructed
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Figure 2: The overall framework of our Causal-R. It mainly contains four parts: (a) in problem
understanding stage, the raw geometry problem is parsed into formalized geometric conditions in
section [3.T} (b) causal graph reasoning in section [3.2] provides the fundamental theory for causal
deduction based on causal graphs; (c) in fast problem reasoning stage in section[3.3] the causal graph
deduction is implemented by forward matrix deduction to reason for solutions to final problem goal
in iterations; (d) the solutions are generated by tracing back from the target node, and are then verified
to obtain the final answer in section 3.4l

according to the detailed theorem knowledge of rules. Each causal graph Gy is a hypergraph
consisting of primitive nodes N' = {ny,n2,--- ,na}, causal edges Ef = {ef,e5, -+ ,ef, } and
prerequisite edges £ = {ef,eh,--- , e}, }, which are defined as follows:

Primitive node: represents the attribute of a unique geometric primitive in the condition set, which
stands for visually identified primitive in the geometric diagram. Each node n; has an initial status
(i.e., positive and negative), where positive means the corresponding value of attribute is known or
acquirable and negative means it is unknown. For example, /BDA and ZCDB are allocated to the same
primitive node with negative status. For simplification, we use n; to represent its status.

Causal edge: builds the causal relation between the primitive nodes that points from one or more
head nodes to a tail node, denoted as 77, <— g(k, @) - €5 (124, 7, 7). When the prerequisite is satisfied,
i.e., g(k,1) is positive, n, is considered reachable and 1, is set positive if all status of these head
nodes are positive. Note that n,. will not be changed into negative once it has been changed to
positive. Here we use 1, np, 1. as placeholder for easier reference and understanding. Please refer
to appendix [B] for detailed formulation of each theorem rule.

Prerequisite edge: defines the prerequisite constraints to enable a specific causal deduction, denoted
as g(k, 1) < e¥ (11, rel(ny, n.)), where the prerequisite conditions can be either status of primitive
nodes or the relation status of nodes (e.g., length of BD equals length of BC). g(k, ) is positive only
when all the prerequisite statuses are positive, otherwise negative. Please refer to Appendix C for
detailed formulation of each theorem rule.

In this way, each G, = {N, E, E} } records all the possible deduction paths between the geometric
primitives in a unified and simplified format according to a specific theorem rule without detailed
calculation, which provides the basis for the following reasoning stage. To distinguish the problem
goal ¢, we parse it into a series of needed primitive nodes N* = {n},nk,--- ,nl,} , n! € N, where
the problem goal is reached only if all status of N are positive.

3.2.2 Causal graph deduction

Based on the constructed causal graphs, we are able to perform symbolic reasoning from the initial
status of primitive nodes NN to a final status of target primitive nodes N*. Theoretically, for an a-step
geometry problem, the model needs « iterations of causal graph deduction to update all status of N



to positive. For an application of each causal graph G, in an iteration, all prerequisite edges are first
automatically applied to generate the controlling gates g(k, -) of causal edges. Subsequently, all the
causal edges are applied based on the status of primitive nodes from last iteration and the controlling
gates g(k, -) to update the related node status (i.e., all the tail nodes in this causal graph). In each
iteration, all causal graphs are applied separately to deduce new reachable node based on the previous
status of IV from last iteration, so the deduction process of causal graph is self-contained without
interference. After each iteration, the status of NV is updated according to all causal graph deduction
results. Therefore, the causal graph deduction process is able to explore all acquirable primitive nodes
after o iterations. The corresponding algorithm is given in appendix [A]

To be more specific, we provide a causal graph deduction example in fig. [3] to illustrate how the
problem goal is reached regarding the given geometry problem. After two iterations of causal
graph deduction, primitive node AD is considered acquirable. By tracing back from node AD, two
different solution paths of causal deduction (i.e., 1-A—2-C and 1-C—2-B) can be generated, which
corresponds to the actual solutions on the left. It can be seen that the causal graph deduction process
includes all possible solution paths but narrows the solution space from the beginning, the end and
the intermediate process. On one hand, it constrains the solution path to originate from the known
conditions and terminate at the ultimate problem goal, with all intermediate steps adhering to the
geometry theorem deduction. On the other hand, any solution path that is feasible to acquire the
ultimate answer should be contained in such solution space because it should satisfy these three
requirements. It imitates the process by which human experts reason for possible solutions based on
the given conditions, but in a full exploration manner.

We highlight three advantages of our causal graph reasoning: (1) Interpretability: Since deduction
paths are recorded specifically in the causal graphs, it is able for us to trace back for specific causal
deduction path and head primitive nodes w.r.t. any acquirable tail node in each iteration, ensuring
that the reasoning and solving solution is detailed and explainable. (2) Multiple solutions: For a
target primitive node, multiple solutions can be obtained by different combinations of feasible causal
deduction paths and intermediate nodes. (3) Shorter solution: Benefiting from the fact that any
feasible solution should be included within the space constrained by our method, it is possible to
identify the shortest solution path by tracing back from the first iteration that acquires the target node.
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Figure 3: Illustration of 2-iteration causal graph deduction (CGD). Two feasible solution paths of
the problem are given on the left, which can be deduced by CGD on the right. For simplification,
only the major content is presented in the figure. In iteration 1, the primitive node /BDA is acquirable
by applying Isosceles Triangle Theorem (1-A) on node /BCA, because node /BCA is positive and
prerequisite of rel (BD,BC) is satisfied in conditions (i.e., BD equals to BC). Similar situation applies
to Cosine of Triangle (1-C). However, in graph 1-B that represents Congruent Triangle Theorem,
node AC is still negative, causing the failed deduction to obtain node AD. Next in iteration 2, AD is now
acquirable due to the positive status of either node AC or BDA being just changed in the last iteration.



It can be seen that causal graph reasoning lays the theoretical groundwork for optimized solution
path exploration in geometry problem solving. However, the sequential and exhaustive application
of causal graph deduction will diminish the advantages of reasoning-solving strategy, making the
reasoning process inefficient and cumbersome. To overcome this, we introduce the forward matrix
deduction method to realize faster problem reasoning before problem solving stage.

3.3 Faster problem reasoning

Moving beyond the aforementioned causal graph reasoning that sequentially applies the causal graph
deduction, we novelly propose a faster reasoning method for search space compression. Specifically,
the causal graph deduction process is transformed into forward matrix deduction, changing from
obtaining the acquirable positive status of target node to obtaining its status value.

3.3.1 Matrix definition

To achieve matrix deduction, several matrices are implemented according to the causal graphs G
and primitive nodes N. First, an M -dimension status vector is designed to represent the status of
primitive nodes N, denoted as v = [v1,vq,- - ,vp]" ,v; € {—00, 1}, where v; = 1 means the
n; 18 positive, otherwise negative, and oo is an infinite number. Second, the established relations
between the primitive nodes given in the geometry problem are converted into an indicative condition
matrix R* € {0, 1} where R}; = 1 represents rel(n;, n;) is positive otherwise negative. Third,
the prerequisites of causal graphs are transformed into another unchangeable prerequisite matrix
P e {0, 1}KXLXMXM, where P..;; = 1 indicates the relation rel(n;,n;) between primitive node
n; and n; is required to perform corresponding causal graph deduction, and L refers to number of
possible deduction combinations within a causal graph. Fourth, the causal deduction path from head
nodes to tail node is recorded by an indicative causal matrix C' € {0, I}KXLXMXM, where C.;; =1
means the value v; is needed to obtain the value v;. To specify the target nodes, an indicative target
vector v = [v},vh, -+ ol v! € {0,1} is used, where v} = 1 means n; € N*.

In this way, all the requirements of causal graph deduction are represented as the positional values in
these matrices and vectors, enabling the model to achieve fast reasoning by matrix operation.

3.3.2 Forward matrix deduction

Based on these matrices and status vectors, the causal graph deduction process is transformed into
forward matrix deduction for problem reasoning. For an a-step geometry problem, the matrix
deduction needs « iterations to obtain all values of target primitive nodes. Specifically, in each
iteration o, an intermediate relation matrix R° is generated by combining the condition matrix R*

with a value-relation matrix V' that is calculated by v°~!:
RY; = max(R;;, V),V = max(v{~ 10) x max (v}~ 10, (1)

where max(-, -) operation keeps the max value of two arguments and 0 < ¢, 5 < M. In this way, the
relation matrix R° records whether there is comparable relation, either from the problem conditions
or the values obtained from last iteration, between the primitive nodes in iteration o. Then, it is used
to check whether the existing conditions satisfy the prerequisites by comparing it with the prerequisite
matrix P and generate the controlling gate signal g(k, [):

M-1M-1

g(k,l) = max(1 — Z Z max (P ; — R ;,0),0), (2)

=0 5=0

where 0 < k < K and 0 < I < L. Subsequently, the gate signal g(k, ) is utilized to control the
following process of value deduction, using causal matrix C' and previous status vector v~

K-1L— M-1
Vo=v+(1—7) v v = min( ZZ (k,1) - max(0, ZCMMXV N, B
=0 7=0

where min(+, -) returns the minimum of two arguments and 0 < ¢ < M. In this way, the status of
acquirable primitive node in this iteration is all recorded in the status vector v° and it is feasible to
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Figure 4: The illustration of forward matrix deduction (FMD) for iteration 1-Isosceles Triangle
Theorem (1-A) in fig.[3]

check whether the problem goal is reached by verifying the values between v° and v using:

M-1
f(v',v°) = max(0,1 — Z vi x min(vi — v¢, 1)), 4)
i=0

where f(v?,v°) = 1 indicates the problem goal is reached, otherwise f(v?,v®) = 0. We give an
example of the matrix deduction procedures in fig. @] to illustrate how the primitive /BDA is obtained
by Isosceles Triangle Theorem in iteration 1 in fig.[3] By applying forward matrix deduction,
the update process of primitive node status can be transferred to GPU devices. Benefited from the
matrix operation, this method is able to compress the solution search space with an approximate time
complexity of O(«) for a a-step geometry problem.

3.4 Problem solving

After applying forward matrix deduction, the model completes the process of problem reasoning
and obtains a solution space leading to the ultimate problem goal. It is noteworthy that although
the forward matrix deduction may acquire many values of those primitive nodes that are not related
to problem goal (e.g., new values obtained after « iterations), these values can be easily excluded
from the end when tracing back. Theoretically, all feasible solutions are included in this search space,
which is recorded in the intermediate results of matrix deduction in iterations. In order to generate
shorter solutions, we start from the earliest iteration where each target node is acquired for the first
time. Tracing back from the target node with the causal graphs and matrix deduction recordings,
a candidate verified solution set S = {s1, 92, -+, $x} can be obtained, where ) is a manually set
constraint or the actual number of solutions that exist. Each solution path s; is an ordered sequence
of theorem rule application that is then executed by external symbolic engine for generating the final
answer of geometry problem.

4 Experiments

4.1 Experimental settings

Dataset. Following previous symbolic-based methods, we choose the popularly used Geometry3K
19 as our benchmark, which includes 3,002 geometry problems that covers a wide range of problem
types such as triangles, circles and polygons. Each problem has a geometric diagram and problem text,
and is annotated with explicit formal language representations of geometric conditions, providing a
friendly platform for symbolic-based methods. For use of neural models, it is split into 2,101, 300
and 601 samples for training, validation and testing respectively.

Metrics. For fair comparison, two main evaluation metrics are used: (1) Accuracy: A geometry
problem is considered correctly solved only if the answer obtained by model is the closest to the
ground-truth. (2) Solution Length: The average length of solution paths (i.e., the length of theorem
application steps) for the solved geometry problems. Each step is vigorously defined in the theorem



Table 1: The main performance comparison results. Solution refers to the Solution Length metric. GT
means using the annotated parsing results of the problem. A means using improved and disambiguated
parsing results for reasoning. Methods with a ! mark and 2 mark use theorem rule base of 17 theorems
and 24 theorems, respectively. Human (expert) performances are borrowed from Inter-GPS19L

Methods Question Type Geometric Shape Accuracy  Solution
Measure Length Area Line Triangle Quad Circle

Human 53.7 59.3 577 46.7 53.8 68.7 61.7 56.9 -
Human Expert 89.9 92.0 939 959 92.2 90.5 89.9 90.9 -
PGPSNet|35 - - - - - - - 77.9 -
LANSI18 - - - - - - - 82.3 -
GeoGen-SFT-7B 22 - - - - - - - 58.4 -
nter-GPS[19 59.1 61.7 30.2 593 66.0 524 455 57.5 -
Mnter-GPS[19](GT) 83.1 77.9 623 864 83.3 776 615 78.3 7.10
'E-GPS[31 76.8 62.6 245 72.8 73.0 557 515 64.7 (3.49) 4.19
'B-GPS[31(GT) 83.8 80.0 66.7 87.7 85.3 792 659 79.8 (3.35) 3.99
2GeoDRL23 75.5 70.5 22.6 778 76.0 629 538 68.4 -
2GeoDRL23|(GT) 86.5 93.7 75.5 87.7 93.1 90.2 783 89.4 2.34
2E-GPS[31 78.3 67.2 27.7 76.1 75.6 594 550 67.9 (1.63) 2.28
2E-GPS311(GT) 90.4 92.2 73.6 914 93.1 879 8l1.1 89.8 (1.57)2.18
2Pi-GPS[38/(A) 83.9 81.4 59.0 79.6 83.9 76.4  73.0 77.8 (2.31)4.12
20urs 79.3 69.5 22.6 76.5 76.4 552  60.8 69.2 (1.83) 1.98
2Qurs (GT) 90.7 93.7 774 914 94.8 86.7 825 91.2 (1.68) 1.89

rule base /B, so that the comparison is reasonable. For comprehensiveness, we follow previous
works 31} 38| to report the average used theorem rules in the parenthesis under Solution Length.
However, we contend that this metric lacks significance in identifying shorter solutions, because it
merges two steps of the same theorem rule into one.

Baselines. For symbolic-based methods, Inter-GPS [19] is the first and representative work that
sequentially and continuously applies predefined theorem rules to deduction new geometric conditions.
GeoDRL 23| presents a typical collaboration of neural networks and symbolic systems, predicting
the theorem to be used each step by neural model trained with reinforcement learning. E-GPS 131
introduces a top-down decomposition mechanism for explainable solution exploration. Pi-GPS [38
adopts LLMs to refine the parsed formal language content for disambiguation and predict appropriate
theorems. Additionally, several neural-based methods are selected for in-depth comparison, namely
PGPSNet 35, LANS (18 and GeoGen-SFT-7B 22 AlphaGeometry 28| is not considered as our
competitor because we handle different kinds of tasks.

Implementation details. In consistency with previous symbolic-based methods 31,23, we use the
same theorem rule base provided by Peng et al. [23]], which includes 24 predefined rules that represent
basic geometry theorems. The maximum constraints of deduction iterations and number of candidate
solution paths w.r.t. each target are set to 7 and {1,2,3}, respectively. The early stopping mechanism
is used to terminate the iterative deduction process once all target nodes have been reached and the
number of iterations exceeds 4. The machine is 24GB NVIDIA GeForce RTX 3090.

4.2 Performance comparison

Quantitative analysis. Since our method is designed particularly for optimized solution exploration,
we mainly focus on the solutions generated by the models, then the problem solving performances.
The detailed experimental results are recorded in table[I] We mainly make the following observations:
(1) Our method is able to obtain the best Solution Length score, i.e., the shortest average solution
lengths, compared with all previous methods using the same theorem rule base. Specifically, our
Causal-R further shortens the average length of feasible solution steps to 1.89 which is the only one
lower than 2. It indicates that Causal-R not only generates more interpretable solutions with less
redundancy, but also succeeds in finding shorter solutions at global-level. Although E-GPS also
ensures the explainability of solution, it fails to distinguish the shorter solution path when searching
from the problem goal. (2) Causal-R achieves the best overall problem solving performances, with



Table 2: The problem solving performances and
solution length comparison with different can-
didate solution constraint. A means the set con-
straint number of candidate solutions w.r.t. to
each target. Best results are in bold.

Table 3: Comparison of solution quality from
five aspects. Inter, Rea. and Solv. refer to
interpretability, reasoning and solving process,
respectively. Mul. means multiple solutions.
v'means possessing the quality.

Solution Length Methods Inter. Rea. Solv. Shorter Mul.
A Accuracy
Step Theorem Inter-GPS 19
GeoDRL 23 v
: oy 189 1.68 Pi-GPS[38 v
2 90.7 1.97 1.71 E-GPS[31 v v Y
3 91.0 1.92 1.71 Causal-R (ours) Vv v v v

a 1.4% gain on Accuracy. Our method is validated as effective across all tested question types and
geometric shapes, presenting promising applicability for future extension of symbolic systems. It
even surpasses the accuracy of human experts, showing great potentials of symbolic-based methods
for GPS. (3) For all symbolic-based methods, the performance is sensitive to the changes of theorem
rule base KB and parsing results of geometric conditions. It not only affects the accuracy of solving
geometry problems, but also leads to longer solutions if /U3 is smaller. Since developing [CB3 is easy
and a comprehensive 13 is promising for problem solving performance, the key challenge lies in
the parsing performance and optimized solution exploration, which is the focus of this work. (4)
Neural-based methods are trained with extra GPS data sets and present limited problem solving
performances. Furthermore, they usually lack feasible mechanisms to ensure the interpretability of
solutions, as well as to find shorter solutions.

To validate the effectiveness of the proposed Forward Matrix Deduction (FMD), we have implemented
a basic strategy based on Python dictionaries for Causal Graph Reasoning (CGR). It is noteworthy that
CGR is introduced as the theoretical foundation to achieve causal reasoning for solution exploration,
and FMD is one of possible detailed strategies that we propose to implement it. Results and according
analysis are recorded in appendix |C| We conduct further experiments on different number of candidate
solution constraint w.r.t. each target node in table[2] Overall, Causal-R presents stable performances
when A changes, remaining the best among previous methods in table[I] Surprisingly, the highest
accuracy and shortest solution length is achieved when only one solution is needed. We analyze that,
on one hand, the symbolic system still exhibits certain randomness such as symbolic assignment
order in parsing stage and searching order in back tracing. On the other hand, there is possibility that
one target node is the head node of another one. Therefore, acquiring multiple solution has a chance
to change the shortest combination of solutions of the two.

Qualitative analysis. We further provide a comprehensive comparison between previous methods on
the quality of generated solutions from five aspects, as shown in table[3] Both Causal-R and E-GPS
are able to ensure the interpretability of solutions, including the explainable reasoning and solving
process. However, Causal-R is the only method that is able to generate multiple solutions as short
as possible, benefiting from the mechanism of global-level reasoning that acquires the first iteration
when target node is achieved. Therefore, our Causal-R possesses the key factors for application in
practical scenarios that requires interpretable and accurate solutions. To discuss more profoundly, we
have presented several typical cases in appendix [D] accordingly with case analysis.

5 Conclusion

In this work, we propose a novel model Causal-R to obtain optimized solutions of problem goal from
the symbolic-reasoning perspective based on causal graph reasoning theory, which is implemented by
the proposed forward matrix deduction method for faster reasoning in iterations. On one hand, Causal-
R compresses the search space of solutions from the beginning, the end and intermediate process,
alleviating the difficulties for solution exploration. On the other hand, it is capable of obtaining shorter
and varied solution paths, while ensuring the interpretability. It presents a promising framework for
scenarios where symbolic-reasoning is applicable to. We suggest that our method has potential for
generality and applicability to specific problems whose reasoning processes can be approximated
into a causal deduction format, beyond the scope of geometry problem solving. However, there are
also limitations, which we discussed carefully with feasible solutions in appendix
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Please refer to Abstract and end of Introduction in section[1]
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to the Conclusion section [5]and Appendix for details.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: We do not include any new theoretical results besides the causal deduction.
This is based on common knowledge.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We include all crucial details needed for reproducibility of our method in
Methodology section 3] Experimental settings in section[d]and Appendix. Besides, the code
is accessible after acceptance.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
Justification: We prefer to and we will release the codes after acceptance.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https !
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Please refer to Experimental settings in section [4]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: It does not apply to our method. Also, we strictly follow the metrics of previous
works for fair comparison and justification. Please see the details in Section Performance
Comparison.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please refer to the Implementation Details in Experimental settings in section 4}
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: It conforms with NeurIPS Code of Ethics.
Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of our work.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We use Geometry3K, a public dataset (CC-BY 4.0).
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The codes of our method will be released along with the needed documentation
after acceptance. No other new asset such as data set.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20


https://neurips.cc/Conferences/2025/LLM

A Algorithm

Algorithm 1 Causal Graph Deduction

Input: G, N #0, Nt #£0,a > 0,0 = 1.

/* Initialize the causal graphs, primitive nodes, target nodes maximum
iteration constraint and current iteration index. x/

Output: N,signal

/* Return the primitive nodes with their updated status and a signal
indicating whether the problem is solvable. */

signal < False

while o < « and signal is False do

signal < True

N° = N;

for G, = {N,E{,E.} in G do
for ¢ in EY, do

| g(k,i) < e} (14, rel(ny, n.)) // >Generate the deduction control signal.

for ef in E do
L n? « g(k,i) - €§(riq, 1y, 7.) // >Apply the causal deduction.
N = N° // pUpdate the primitive node status.
for n! in N* do
if 7;5 is negative then
| signal < False // >The problem target nodes are not fully achieved.

o=o0o+1

B Theorem rule simplification

We provide a detailed illustration of how we simplify the theorem rule into unified causal deduction
representation forms in table 4] and table[5] Note that we only list partial transformations w.r.t. each
theorem rule for clarity and brevity. For example, in Angle Sum of Triangle in table 4 we only list
one deduction path, while the deduction path remains valid after the alteration of n,, n; and n..
Similar situations exist in Law of Sines in table[5] too. These deduction paths are extracted from the
equations between these values of nodes, where any one of them can be obtained if the other values
are known. More detailed implementation of causal graph construction can be found in codes.
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Table 4: The simplified causal deduction paths of original theorem rule base. For clarity and brevity,
only partial deduction paths w.r.t. each rule are presented. A is used as placeholder to represent the

same content within each rule.

Geometry Theorem/Definition

Simplified Causal Deduction

Circle Definition

For radius OA (n,), OB (ny) of circle O:
Mg <— €5 (1)

Thales Theorem

Point A, B, C on circle O, for ZABC (n;), ZAOC (n,):
1y, < g(A) - ef(0)

g8(A) « €7 (1)

Inscribed Angle Theorem

Point A, B, C on circle O, for ZABC (n;), ZAOC (n,):
iy <— €5(1,)

Parallel Lines Theorem

AB // CD, P on AB, Q on CD, for ZAPQ (n,,) and ZDQP (n,):
1y < €5 (1ig)

Angle Sum of Triangle

For ZABC (), ZACB (n.), ZBAC (n,) in AABC:

Ty — €5(1p, 1)

Isosceles Triangle Theorem
(Side)

For AB (1231), AC (ne1), ZABC (ny), ZACB (n1e9) in AABC:
np1 < g(A) - e (nz1)
g(A) < el (rel(np2, ne2))

Isosceles Triangle Theorem
(Angle)

For AB (n,), AC (ne1), ZABC (n43), ZACB (nu2) in AABC:
np2 < g(A) - ef(ne2)
g(A) + eP(rel(np1,nc1))

Equilateral Triangle Theorem

For AB (n¢1), AC (np1), BC (nq1) ZABC (np2), ZACB (nc2),
/BAC (ngs) in AABC:
na2 < 8(A) - ef(+), nb2 < 8(A) €51 (), ne2 < 8(A) - €745()
g(A) el (rel(na, np1), rel(na1, net))

Triangle’s Center of Gravity

If Q on AB, M on BC, N on AC, CQ,AM,BN intersects at P, for
AQ (n¢1), BQ (ne2), BM (n41), CM (n42), AN (n1), CN (np2),
CP (nq41), PQ (ng2), AP (1), PM (N2), BP (15,1), PN (n52):
g2 < 8(A) - ef(ng1), nma2 < 8(A) - €1 (nm1),
Nn2 < 8(A) - efo(nn1)
g(A) « el (rel(na1, na2), rel(np1, np2), rel(ner, nes))

Congruent Triangle Theorem
(Proving)

For AB (1), AC (113), ZBAC (1241, BC (1142) in AABC and DE
(). DF (n), ZEDF (ng1), EF (ng2) in ADEF (SAS):
naz < g(A) - ef(na2)
g(A) < el(rel(nc,nyg), rel(ny, ne), rel(ngi, nar))

Congruent Triangle Theorem

For AB (1201, AC (1), BC (1141), ZACB (112), ZABC (n132),
/BAC (ng2) in AABC and DE (n41), DF (n¢1), EF (ngy),
/DFE (n5), ZDEF (n.3), ZEDF (ngs) in ADEF:
nya < g(A) - ef(nea), nea < g(A) - e (np2),
ngz < 8(A) - ef o (a2
g(A) ef(rel(ncl, ns1), rel(npr, ne1), rel(ngi, nai))

Tangent Secant Theorem

AB and circle O tangent at point B, AM intersects circle O at N,
for AB (ng), AN (n,,) and AM (n,,):
My < €5, 1)

Chord Theorem

A,B,C,D on circle O, AB and CD intersects at point M, for AM
(nq), BM (np), CM (n.), DM (ng):
777(1 < ef(ﬁb, ﬁc, ﬁd)

Angle Bisector Theorem

In AABC, M on BC, for AB (131), BM (1232), AC (121), CM
(ne2), ZBAM (ng1), ZCAM (ng»):
/ni)l — g(A) : eg(”’éZ; nzl; an)
g(A) < el (rel(ng1, ng2))
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Table 5: The rest simplified causal deduction paths of original theorem rule base, following table 4]
For clarity and brevity, only partial deduction paths w.r.t. each rule are presented. A is used as
placeholder to represent the same content within each rule.

Geometry Theorem/Definition Simplified Causal Deduction
For AB (n.), AC (ny), BC (n,) in AABC, ZACB=90°:
Ne < €5 (g, 1Mp)
For AB (n.1), ZACB (n.2), AC (n1), ZABC (np2) in AABC:
Mot <= €5 (1e2, My1, Nb2)

For AB (n.1), AC (np), BC (ng), ZACB (n.2) in AABC:
e <+ € (1ia, 1p, Nea)
For ZABC (ny), ZACB (n.), ZBAC (n,) in AABC and /DEF
Similar Triangle Theorem (ne), £DFE (ny), ZEDF (ng) in ADEF:
(Proving) 1 < g(A) - ef(1iq)
g(A) < e (rel(ny, ne), rel(ng, ny))

For Z/ABC (np1), ZACB (n.1), ZBAC (ng), AB (ne2), AC (np2)
in AABC and ZDEF (n.1), ZDFE (n¢1), ZEDF (ng), DE (n¢2),
DF (n2) in ADEF:

Nz < g(A) - e (nb2)

g(A) «

e? (rel(np1, ne1), rel(ner, nyr), rel(ng, ng), rel(n o, ne2))
For AB (n,), BC (n), EF (n.), FG (ny) in similar polygons
ABCD and EFGH:

1 < g(A) - €7 (1e)

g(A) < e} (rel(ny,ny))

Point M on AB and point N on AC, for AM (1,,1), BM (1,,2),
AN (n,1), CN (n,2), MN (n41), BC (n42) in AABC:
na1 4 8(A) - ef(naz)

g(A) «+ el (rel(nm1, nma), rel(np1, ny2))

In AABC, point M on BC, AM_LBC, for BC (n,), AM (n.,,),

Area Equation Theorem Area_ AABC (n,):
Mg < €5(1q, M)
For ZABC (n3), ZBCD (n.), ZCDA (ng), ZDAB (n,) in
Angle Sum of Polygon Quadrilateral ABCD:
Ng ef(ﬁb, ﬁc, de)

Pythagoras Theorem

Law of Sines

Law of Cosines

Similar Triangle Theorem

Similar Polygon Theorem

Median Line Theorem

Table 6: Comparison of time, grouped by number of all deduction paths.

<100 100 — 1000 1000 — 2000 2000 — 5000 5000 — 10000 > 10000

Basic 1.57 x 1073 1.26 x 1072 9.62x 1073 1.31x 1072 260 x 1072 1.86x 1072
FMD 1.19x 1073 1.70 x 1073 2.35 x 1072 6.46 x 1073 2.87 x 1072 7.76 x 1072

C Ablation studies of FMD

To provide a fair and detailed comparison, we record the average reasoning time per iteration of
these two methods, grouped by the number of deduction paths (i.e., sum of all deduction paths in
all causal graphs) in table [f] and the number of unique primitive nodes in table[7] The other parts
and settings remain the same. From the results, we mainly have the following observations: (1)
FMD consistently performs faster than using Basic strategy when the number of deduction paths is
smaller than 5,000 in table |§| and when the number of primitive nodes is smaller than 70 in table m
Within this range, the time of FMD generally exhibits a steady increasing trend with the increasing of
deduction paths and primitive nodes. (2) When the number of deduction paths exceeds 10,000, the
time of Basic strategy is surprisingly lower than when the number of paths ranges between 5,000
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Table 7: Comparison of time, grouped by number of unique primitive nodes.

<20 20— 30 30 — 50 50 — 70 > 70

Basic 1.23 x 1073 4.55 x 1073 1.02x 1072 1.93 x 1072 4.41 x 1072
FMD 1.19x 1073 1.88x 1073 4.11 x 1073 1.65 x 1072 6.86 x 1072

and 10,000. This is because in this kind of extreme samples, there are only few feasible deduction
paths (i.e., successfully activate the path because head nodes and prerequisites are activated) even
if there are many connected deduction paths. While for FMD, these paths are still recorded in the
matrices and involved in matrix manipulation, resulting in more resource demands. In practice, we
simply adopt sequential theorem application of a smaller theorem base that corresponds to feasible
causal graphs in each iteration on this problem or the original theorem base, when resources run
short. Under such extreme and abnormal circumstances, which is not applicable to most geometry
problems, it is recommended to simply use basic strategy of causal graph reasoning.

Moreover, we suggest that FMD can be further optimized by matrix manipulation refinement tech-
niques (we did not adopt any optimization techniques to matrix manipulations in current version).
FMD presents great potential for future development in complex scenarios (i.e., scenarios with a
higher degree of node involvement), and provides certain insights for similar scenarios in other fields.
(Note: A higher degree of node involvement refers to more head nodes and prerequisites required
within one causal deduction path. FMD leverages the matrix manipulation and consolidates the
sequential condition check into one single operation. This means, regardless of the number of head
nodes and prerequisites in a causal deduction path, FMD is able to produce the deducted results at a
similar speed. While for the Basic strategy, the needed time increases with the increasing of node
involvement degree.)

D Case analysis

In order to provide more detailed qualitative analysis, we conduct some cases from Causal-R and
present them in fig.[5} In case (a), the model is able to generate two solutions, where the order of
theorem application is consistent but the detailed involved primitives are different. Both solutions are
reasonable and feasible and lead to correct answer. In case (b), two different solutions with inverted
order of theorem applications are obtained. The solutions are simple even if the geometric conditions
of the problem seems complex. On one hand, it shows the superiority of Causal-R to explore shorter
solutions. On the other hand, it also benefits from the design of symbolic-based strategy which can
precisely match the needed conditions within a large set of complicated and redundant geometric
conditions. Case (c) is a typical case that our FMD fails to perform matrix manipulation due to
resource constraint. The number of deduction paths becomes extremely large when these triangles
form different combinations in causal graphs, especially for theorems such as Congruent Triangle
Theorem. Therefore, the model only performs sequential application of theorems in /CB and obtains
the final answer. Case (d) is a failure case that our model fails to obtain the solutions and answer,
which mainly attributes to the incorrect parsing of the geometric problem and incomplete design of
symbolic system. It remains a difficult task to parse the content with irregular representations such as
shaded area. These two cases both indicate the necessity of further developing the symbolic system
for adapting to more question types and more theorems.

E Limitations

While certain advantages and performance improvements have been obtained by our Causal-R, we
also identify some limitations, along with potential solutions, from the following aspects: (1) The
effectiveness of causal graph reasoning is influenced by the design of theorem rule base 5. It not
only limits the upper bound of problem solving performances (i.e., the geometry problem can not
be solved if the needed theorem rule is not contained in XB), but also affects the comprehensive
outcome of transformation from theorem rules to causal graphs. This can be resolved by future
development and refinement of I3, providing a more standard and larger theorem rule base. Note
that once the /I3 is determined, the deduction logic for causal graph construction is also determined
(such as presented in table ] and table5)) and does not change for different geometry problems. (2)
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Problem Text :

Find CD if AC = x-3, BE = 20, AB = 16,

Problem Text :
ARSV 2 ATVS. Find x.

Problem Text :
In regular hexagon UV W XY Z, the

Problem Text :
Find the area of the shaded region.

and CD = x+5. side is 12 centimeters long. Find WY.
Geometric Diagram : Geometric Diagram : Geometric Diagram : Geometric Diagram :
w X
C - S °
R 2y—1 us . 240
A i x — [ ]
iy o T v Y
B 2 6 mm
E z
Solutions : Solutions : Solutions : Solutions :
Step1 - Parallel Lines Theorem Step1 - Congruent Triangle Theorem Steps: None
"."BC//DE .". /ABC=/AED " ARSV L ATVS .. /TSV=/RVS=78" 1,2,3,4,5,6,7,8,9,10, 11,12,13,
Step2 - Similar Triangle Theorem /TVS=/RSV=90° 14,15
" Z/ABC=/AED, /CAB=/DAE Step2 - Angle Sum of Triangle
. AABC~ AAED '/ TSV=78", /TVS=90"
.*.AB/(AB+BE)=AC/(AC+CD), CD=40.0 .\, /STV=180"-78"-90°=12"
Step1 - Parallel Lines Theorem Step1 - Angle Sum of Triangle
“."BC//DE .". /ACB=/ADE "' /RSV=90°, /RVS=78"
Step2 - Similar Triangle Theorem .. /SRV=180"-90°-78°=12"
*." /ACB=/ADE, /CAB=/DAE Step2 - Congruent Triangle Theorem
.. AABC ~ AAED “."ARSV 2 ATVS
.*.AB/(AB+BE)=AC/(AC+CD), CD=40.0 .. /VTS=/SRV=12"
(a) (b) (c) (d)

Figure 5: Four typical cases from Causal-R. (a), (b) are successful cases and (c), (d) are failure cases.

For more intricate geometry problems, when the combinations of geometric primitives and theorem
rules become extremely large, the temporary storage requirement for matrix-based deduction also
increases. It can be optimized through both refinement of '3 and application of more efficient matrix
operation methodologies. (3) Currently, the method does not support theorem rules that involve
constructing geometric primitives (e.g., connect point A and point B as a new line primitive AB). One
possible solution is to apply such rules before the causal graph construction to augment the base
geometric primitive nodes for a wider solution space that includes the action of constructing new
primitives.
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