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Abstract

Simultaneous translation of unbounded stream-001
ing speech remains a challenging problem due002
to the need for effectively processing the his-003
tory speech context and past translations so004
that quality and latency, including computa-005
tion overhead, can be balanced. Most prior006
works assume pre-segmented speech, limiting007
their real-world applicability. In this paper,008
we propose InfiniSST, a novel approach that009
formulates SST as a multi-turn dialogue task,010
enabling seamless translation of unbounded011
speech. We construct translation trajectories012
and robust segments from MuST-C with multi-013
latency augmentation during training and de-014
velop a key-value (KV) cache management015
strategy to facilitate efficient inference. Ex-016
periments on MuST-C En-Es, En-De, and017
En-Zh demonstrate that InfiniSST reduces018
computation-aware latency by 0.5 to 1 second019
while maintaining the same translation quality020
compared to baselines. Ablation studies further021
validate the contributions of our data construc-022
tion and cache management strategy.023

1 Introduction024

Simultaneous speech translation (SST) is the task025

of translating partial speech input from a source026

language into text in a target language, with a wide027

range of applications, including conference inter-028

pretation and live-streaming translation (Ma et al.,029

2020b; Ren et al., 2020). Most prior research on030

SST focuses on translating pre-segmented speech031

(SST-S), assuming that gold-standard segmenta-032

tion is provided (Liu et al., 2021; Zeng et al.,033

2021; Dong et al., 2022; Papi et al., 2023, 2024b).034

However, translating unbounded, streaming speech035

(SST-U) remains underexplored.036

Unbounded speech presents a major challenge037

that the model has to effectively process the history038

speech context and past translations so that qual-039

ity and latency, including computation overhead,040

can be balanced. Large language model (LLM)041

is a promising solution for long-context model- 042

ing with the recent advancements (Su et al., 2021; 043

Han et al., 2024). Moreover, LLM-based architec- 044

tures have been shown to improve SST-S perfor- 045

mance (Xu et al., 2024). However, conventional 046

SST-S approaches suffer from high computational 047

costs, as they require recomputing features for past 048

speech and generated text every time a new speech 049

chunk arrives. Some studies mitigate this issue by 050

framing SST as a multi-turn dialogue task, either 051

explicitly (Yu et al., 2025; Wang et al., 2024) or 052

implicitly (Ouyang et al., 2024; Raffel et al., 2024), 053

leveraging key-value (KV) caching to improve effi- 054

ciency. While effective for segmented speech and 055

text, these methods do not seamlessly extend to 056

unbounded speech. 057

In this paper, we propose InfiniSST, a method for 058

simultaneous translation of unbounded speech us- 059

ing a multi-turn dialogue format. We construct SST 060

trajectories and derive robust speech segments for 061

training from the MuST-C dataset, enhancing them 062

with a multi-latency strategy to increase diversity. 063

During inference, we employ a KV cache man- 064

agement strategy, inspired by Han et al. (2024), to 065

enable seamless extrapolation to unbounded speech 066

input. Experiments on MuST-C En-Es, En-De, 067

and En-Zh (Di Gangi et al., 2019) show that In- 068

finiSST reduces computation-aware latency by 0.5 069

to 1 second while maintaining the same BLEU 070

score as baselines. A detailed ablation study fur- 071

ther validates the effectiveness of our data con- 072

struction and cache management strategies during 073

inference. 074

2 Related Works 075

2.1 SST on Unbounded Speech 076

Cascade Approaches Cascade-based methods 077

typically use an automatic speech recognition 078

(ASR) model to segment and transcribe the in- 079

put, followed by a machine translation model that 080

1



translates the transcription (Fugen et al., 2006;081

Yoshimura et al., 2020; Huang et al., 2022; Donato082

et al., 2021). However, segmentation errors and083

the lack of punctuation degrade translation qual-084

ity, which complicates maintaining low latency and085

high quality.086

Direct SST on Unbounded Speech Several087

works explore end-to-end approaches for SST on088

unbounded speech (Schneider and Waibel, 2020;089

Iranzo-Sánchez et al., 2024). These methods avoid090

external segmentation by dynamically preserving091

relevant audio context and previously generated092

text while discarding older information. Papi et al.093

(2024a) extends AlignAtt to unbounded speech by094

storing text and audio history in a fully stream-095

ing way, which helps reduce latency and maintain096

contextual awareness. Despite these advances, bal-097

ancing translation quality, latency, and computa-098

tional demands remains a challenge. Our approach099

addresses these issues by managing unbounded100

speech input without loss in translation accuracy101

and with improved computational efficiency.102

2.2 Length Extrapolation of LLM103

Recent advances in positional encoding (Su et al.,104

2021; Press et al., 2021; Sun et al., 2023) have en-105

abled models to handle longer sequences with little106

or no additional training. ReRoPE (Su, 2023) in-107

troduces an NTK-aware Scaled RoPE that extends108

context length to infinite without fine-tuning. Han109

et al. (2024) and Xiao et al. (2024) propose on-110

the-fly length generalization based on a Λ-shaped111

attention window, allowing nearly unlimited input112

length with no fine-tuning. InfiniSST is a success-113

ful application of RoPE and Λ-shaped attention114

window in SST-U.115

3 Method116

3.1 Problem Formulation117

Let s1:t = (s1, s2, . . . , st) be the partial input of118

an unbounded input speech sequence and y1:i =119

(y1, y2, . . . , yi) represent the partial text translation.120

Here s1:t is raw speech input instead of speech fea-121

tures. Define π(s1:t,y1:i) ∈ [0, 1] as the policy122

to determine whether to take more speech input123

(=0) or to generate target translation tokens (=1).124

Whenever π(s1:t,y1:i) = 1, we define gi+1 = t as125

the delay of i + 1-th token. Let g0 = 0. In addi-126

tion, let θ be the model parameter, we define the127

probability of generating next token given a partial128

speech input as Pθ(yi+1 | s1:t,y1:i). In our formu- 129

lation, we use a simple policy by checking whether 130

the current generated token yi is a special ending 131

token T0 (e.g. stop writing translation and read 132

speech input when encountering “⟨EOT⟩” token in 133

Llama (Grattafiori et al., 2024)). 134

π(s1:t,y1:i) =

{
0, if yi = T0

1, otherwise
(1) 135

Given s, we define the conditional probability 136

of generating a translation sequence y1:i with asso- 137

ciated delays for each token g1:i as: 138

P (y, g|s) =
|y|∏
i=1

(
Pθ(yi|s1:gi ,y1:i−1) (2) 139

π(s1:gi ,y1:i−1)

gi−1∏
j=gi−1

(
1− π(s1:j ,yi−1)

))
140

The translation quality and latency are subse- 141

quently evaluated based on s, y and g. 142

3.2 Model Architecture 143

We design InfiniSST, a simultaneous speech trans- 144

lation model that can take unbounded streaming 145

speech input and generate target text efficiently. 146

The InfiniSST consists of 1) a streaming speech 147

encoder to incrementally compute representations 148

of partial speech input without recomputation, 2) 149

a speech-to-token embedding adapter to match 150

speech representations to LLM’s token embedding 151

space, and 3) an multi-turn LLM decoder to inter- 152

actively take speech input and generate translation 153

as needed (Figure 1). 154

Streaming Speech Encoder We modify a pre- 155

trained wav2vec2 (Baevski et al., 2020) speech en- 156

coder to encode the unbounded streaming speech 157

input. However, there is major limitation of the 158

original wav2vec2. It uses bidirectional attention 159

and bidirectional convolutional position embed- 160

ding, which needs to recompute the representa- 161

tions for every new segment of streaming speech 162

input. To handle unbounded speech input, we in- 163

troduce three modifications to the speech encoder. 164

Firstly, we replace the wav2vec2’s convolutional 165

positional embedding with a rotary positional em- 166

bedding (RoPE) (Su et al., 2024) because it shows 167

better extensibility for long sequences. Secondly, 168

we replace bidirectional attention with chunk-wise 169

causal attention (Deng et al., 2022). Each chunk 170
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𝐶! 𝐶"

Speech Encoder

Large Language Model

<SYSTEM> <INSTRUCTION> <USER>

1

<ASSISTANT> 我 <EOT> <USER><EOT> <ASSISTANT>

我 <EOT>

今 天 买 本 书了 <EOT>

今 天 买 本 书了 <EOT>

<EOT>

Adapter
2 3 4 5 6 7 8

1 2

1 2

I bought a book today

<INSTRUCTION>: Translate the following speech from English to Chinese.

<INSTRUCTION> Sliding Window 
of Size 𝑤#Discarded Current

Token

LLM Cache Management during Inference

KV Cache

Relative 
Position

0,1,2,…,|INS|-1 |INS|,…,|INS|+𝑤#-1 |INS|+𝑤#Discarded

Figure 1: Model architecture of InfiniSST. InfiniSST first encodes speech using a chunkwise-causal speech encoder,
then compresses the speech features into embeddings via an adapter. The large language model (LLM) processes the
input by first reading a system instruction, then alternating between consuming speech embeddings and generating
translations. The translation process stops when the LLM generates an EOT token. During inference, we employ a
sliding window of size wt for the LLM, conditioning the translation on the most recent wt KV caches along with
the KV cache of the system instruction, enabling extrapolation to unbounded speech input.

contains 48 frames in wav2vec2, with a total dura-171

tion of 960ms. The multihead attention within each172

chunk remains bidirectional while attention across173

chunks is causal. This is achieved by adding block-174

wise masking to the attention weights. Thirdly, we175

apply a sliding window mechanism with window176

size ws to maintain a finite context length, restrict-177

ing chunk i to attend only to hidden states of chunks178

[i−ws+1, i]. In practice, we use ws = 10 so each179

speech embedding is computed from roughly 9.6180

seconds of the preceding speech input.181

Speech-to-Token Embedding Adapter The182

above speech encoder would produce a slightly183

longer sequence of embeddings compared to the184

lengths of corresponding transcript. The encoder’s185

output embeddings are also different from the to-186

ken embeddings of the later LLM. To reduce the187

length of the speech encoder output, we apply two188

1d convolutional layers with a kernal size of 2 and189

a stride of 2. We add a linear projection layer that190

maps from convolutional output to the LLM’s em-191

bedding space. Our speech-to-token embedding192

adapter downsamples the input by a factor of 4.193

Therefore a chunk with 48 frames of speech input194

will result in 12 embedding vectors. 195

Multi-turn LLM Decoder Our decoder needs 196

to produce target text and a special token to in- 197

dicate the switching from generation to taking 198

speech input. To this end, we use Llama-3.1-8B- 199

Instruct (Grattafiori et al., 2024)1 and employ a 200

multi-turn dialogue format to formulate the input. 201

We first feed a system instruction 202

Translate the following speech 203

from <LangX> to <LangY>. 204

We then add a special USER token to indicate 205

that the following 12 embeddings and a trailing 206

END-OF-TURN token are for speech input. We then 207

prompt the LLM with a special ASSISTANT token 208

to force LLM to generate tokens. We add a policy 209

module to check generated tokens. When the pol- 210

icy module encounters the special END-OF-TURN 211

token, it will feed a special USER token and take 12 212

new streaming speech embeddings with a trailing 213

END-OF-TURN token as new input to the LLM. We 214

will describe later our inference method to incre- 215

1https://huggingface.co/meta-llama/Llama-3.
1-8B-Instruct
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我 今 天 买 本 书了

Speech:

Translation:

我 今 天 买 本 书了Translation:

MFA

Speech:

SimAlign

a

b

Chunks: 1       2       3       4       5      6       7       8      9      10     11 

c

I bought a book todayTranscript:

Figure 2: Segmenting speech into chunks and monoton-
ically aligning with translation (bottom).

mentally compute embeddings and generate target216

tokens for infinite speech input.217

3.3 Training Data Construction218

SST Trajectory Common speech translation219

datasets like MuST-C are segmented from com-220

plete talks (Di Gangi et al., 2019). To train an SST221

model in a multi-turn dialogue format, we trans-222

form segmented ST triplets (speech s, transcript223

x, translation y) from MuST-C dataset into SST224

trajectories. An SST trajectory represents an al-225

ternating action sequence of speech reading and226

translation writing.227

As shown in Figure 2, we first align speech utter-228

ances with their corresponding transcripts using the229

Montreal Forced Aligner (MFA) (McAuliffe et al.,230

2017)2. Let msx
k denote the right boundary of the231

speech segment corresponding to the transcript to-232

ken xk. Also, we utilize SimAlign (Jalili Sabet233

et al., 2020) with the LaBSE model (Feng et al.,234

2022) to align words between the transcript and235

translation. We then monotonize these alignments236

following Wang et al. (2024). Let xmxy
i

be the tran-237

script token that corresponds to translation token238

yi. By combining msx and mxy, we establish a239

mapping from translation token yi to its speech240

boundary msy
i = msx

mxy
i

, meaning that yi is gener-241

ated after reading s1:msy
i

.242

Finally, we cut the speech utterance into243

fixed-length chunks, each lasting 960 ms. We244

then concatenate translation tokens whose cor-245

responding speech boundaries fall within the246

same chunk, forming a sequence of trajectory247

(sC1 ,yC1), (sC2 ,yC2), . . ..248

2https://github.com/MontrealCorpusTools/
Montreal-Forced-Aligner

Robust Segments for Training Segmented 249

speech utterances primarily consist of human 250

speech; however, non-linguistic sounds (e.g., laugh- 251

ter, applause) are also present. To enhance the 252

robustness of the SST dataset, we cut the entire 253

talk evenly into robust segments that each span 30 254

speech chunks. If a robust segment starts in the 255

middle of a segmented speech utterance, we shift 256

the robust segment to start with this utterance. The 257

trajectories for a robust segment can then be built 258

by concatenating the trajectories of segmented ut- 259

terances within this robust segment according to 260

their timestamps and filling the rest translation en- 261

tries of the trajectory as empty strings. 262

Multi-Latency Augmentation To further en- 263

hance trajectory diversity during training, we pro- 264

pose a simple yet effective multi-latency augmen- 265

tation strategy. Specifically, given a trajectory 266

(sC1 ,yC1), (sC2 ,yC2), . . ., we randomly select a 267

latency multiplier m ∈ [1,M ] and merge every 268

m consecutive chunks of speech with their corre- 269

sponding translations. The i-th step in the aug- 270

mented trajectory is then represented as 271

(sCim,...,C(i+1)m−1
,yCim,...,C(i+1)m−1

). 272

We also multiply the chunk size of speech encoder 273

with m, i.e., number of frame in a chunk becomes 274

48m. 275

3.4 Training 276

We train InfiniSST with standard cross-entropy loss 277

on translation tokens, including END-OF-TURN, of 278

the augmented trajectory from robust segments. In 279

the first stage, we freeze the LLM and train only the 280

speech encoder and adapter. In the second stage, 281

we freeze the speech encoder and adapter, training 282

only the LLM. 283

3.5 Inference on Unbounded Speech 284

During inference, we cut the unbounded input 285

speech into 960 ms chunks. The latency multi- 286

plier m during inference regulates latency by en- 287

suring that translation begins only after every m 288

new chunks have arrived. 289

At the i-th step, suppose the newly received 290

speech chunks are Cim, . . . , C(i+1)m−1. Both the 291

speech encoder and the LLM maintain a key-value 292

(KV) cache to prevent redundant computations. 293

Notably, the stored key and value features are ex- 294

tracted before applying RoPE, ensuring that no 295
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positional information is embedded within the KV296

cache.297

The speech encoder processes the m new chunks298

into 48m speech features, utilizing the KV cache299

from chunks Cim−ws+1, . . . , Cim−1, where ws is300

the sliding window size defined in Section 3.2. The301

adapter then downsamples the 48m features into302

12m embeddings, which are passed to the LLM.303

As shown in Figure 3, the LLM employs a slid-304

ing window of size wt. By default, wt = 1000.305

Inspired by Han et al. (2024), we concatenate the306

KV cache of instruction with those of the most307

recent wt tokens and apply RoPE on top of them.308

Then the LLM generate translations conditioned309

on this combined KV cache.310

4 Experiment Setups311

4.1 Data312

We conduct experiments on the En-Es, En-De, and313

En-Zh directions of the MuST-C dataset (Di Gangi314

et al., 2019). Due to the poor alignment quality315

in the En-Zh training set, we filter out misaligned316

ST triplets using CometKiWi (Rei et al., 2022) and317

retranslate them using TowerInstruct (Alves et al.,318

2024). Then, we construct trajectories and robust319

segments as described in Section 3.3. Further de-320

tails can be found in the Appendix A.321

4.2 Training322

We adopt a two-stage supervised fine-tuning ap-323

proach. In the first stage, we freeze the LLM and324

train only the speech encoder and adapter for 6325

epochs with an effective batch size of 57.6K tokens.326

We use Adam optimizer (Kingma and Ba, 2017)327

with learning rate 2×10−4 and 1000 warmup steps.328

We apply gradient clipping with a norm of 1.0. In329

the second stage, we fine-tune the entire LLM for330

1 epoch with an effective batch size of 76.8K to-331

kens and a learning rate of 7× 10−6. We employ332

DeepSpeed Zero Stage-2 optimization3, and en-333

ables optimizer and parameter offloading during334

the second training stage.335

4.3 Evaluation336

We evaluate SST on complete TED Talks from337

the MuST-C tst-COMMON set, which consists of338

27 TED Talks with durations ranging from 3 to339

23 minutes. To assess translation quality, we use340

SacreBLEU (Post, 2018) and COMET (Guerreiro341

3https://github.com/deepspeedai/DeepSpeed

et al., 2024). Following the WMT24 practice (Fre- 342

itag et al., 2024), we compute the COMET score 343

by averaging the scores from XCOMET-XL and 344

XCOMET-XXL. For latency evaluation, we use 345

Length-Adaptive Average Lagging (LAAL) (Papi 346

et al., 2022) for segmented speech baselines and 347

StreamLAAL (Papi et al., 2024a) for unbounded 348

speech, both implemented within the SimulEval 349

framework (Ma et al., 2020a). Computation cost 350

is measured using both computation-aware Stream- 351

LAAL (StreamLAAL_CA) and the Real-Time Fac- 352

tor (RTF), defined as the ratio of wall-clock com- 353

putation time to speech duration. 354

4.4 Baselines 355

We compare our method against the following base- 356

lines: 357

AlignAtt (Papi et al., 2023) is a state-of-the-art 358

SST policy applied to offline ST models, translat- 359

ing based on attention scores between translation 360

outputs and speech utterances. It is designed for 361

SST on segmented speech, and we include its re- 362

sults as a reference. We train an offline ST model 363

using segmented ST triplets from MuST-C and ro- 364

bust segments that we constructed. It uses the same 365

model architecture as InfiniSST, except that the 366

speech encoder’s chunk size and window size are 367

set to +∞. We use the attention scores from layer 368

14 of the LLM and vary the number of frames from 369

1 to 8. 370

StreamAtt (Papi et al., 2024a) extends AlignAtt 371

to unbounded speech by maintaining both text and 372

audio history through attention-based selection. We 373

adopt the Fixed-Word approach from StreamAtt, 374

preserving 40 words in the text history. To pre- 375

vent excessively long preserved speech, we apply 376

truncation when the duration exceeds 28.8 seconds. 377

StreamAtt+ We observe that the vanilla trunca- 378

tion strategy sometimes removes too much audio, 379

leading to critical misalignment between the pre- 380

served speech and its translation. To mitigate this 381

issue, we modify StreamAtt by ensuring that au- 382

dio segments shorter than 10 seconds are never 383

truncated. 384

5 Main Results 385

Competitive Translation Quality at the Same 386

Theoretical Latency Results evaluated with non- 387

computation-aware StreamLAAL are shown in Fig- 388

ure 3. When StreamLAAL is no more than 1.5 389
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Figure 3: Quality-latency trade-off of InfiniSST compared to the baselines on complete TED talks from the MuST-C
tst-COMMON dataset in the En-Es, En-De, and En-Zh directions. Translation quality is measured using BLEU and
COMET scores, while latency is evaluated using the non-computation-aware StreamLAAL metric. For reference,
we also include offline translation quality and results from AlignAtt tested on segmented speech. InfiniSST achieves
slightly better translation quality than StreamAtt at latency ≤ 1.5 seconds and remains competitive at higher latency
levels.

second, InfiniSST achieves slightly higher BLEU390

scores (0.5 ∼ 1.0) and similar COMET scores391

than StreamAtt+ on all three language directions.392

When StreamLAAL is more than 1.5 second, In-393

finiSST still achieves higher BLEU score on En-Zh394

direction and competitive with StreamAtt+ on the395

En-De and En-Es directions. We note that Alig-396

nAtt tested on segmented speech exhibit significant397

higher COMET scores but not BLEU scores than398

both InfiniSST and StreamAtt on all three language399

directions. A possible reason is that StreamLAAL400

uses mWERSegmenter (Matusov et al., 2005) to401

find alignment between translation of the complete402

talk and segmented references, and COMET is403

more sensitive to such misalignment than BLEU.404

Significantly Lower Computation Cost We run405

all inference experiments on a single NVIDIA406

L40S GPU and an AMD EPYC 9354 32-Core407

CPU. Results evaluated with StreamLAAL_CA408

are shown in Figure 4. InfiniSST achieves 0.5 to 1409

second lower computation aware latency compared410

to StreamAtt and StreamAtt+ at the same quality411

level.412

We also compare the Real-Time Factor (RTF) 413

of InfiniSST and StreamAtt+ in Figure 8. The 414

RTF of InfiniSST is significantly lower than Strea- 415

mAtt+, indicating that the computation overhead 416

of InfiniSST is less than half of the StreamAtt+. 417

6 Ablation Studies 418

The default model we use in the ablation study is 419

trained with robust segments and a maximum la- 420

tency multiplier of M = 4 on the En-Zh direction. 421

6.1 Data 422

Robust Segments We evaluate the effectiveness 423

of robust segments by comparing InfiniSST trained 424

on trajectories of robust segments with In- 425

finiSST trained on trajectories of original MuST- 426

C segmented speech. Both models are evaluated 427

on tst-COMMON En-Zh with latency multipliers 428

m ∈ [1, 4], and the results are presented in Table 1. 429

The model trained on trajectories of non-robust 430

segments exhibits abnormal latency scores and 431

lower translation quality compared to the model 432

trained on mega-trajectories. Manual examination 433

of translation instances reveals that the segmented 434
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Figure 4: Quality-latency trade-off of InfiniSST compared to the baselines on complete TED talks from the MuST-C
tst-COMMON dataset in the En-Es, En-De, and En-Zh directions. Translation quality is measured using BLEU and
COMET scores, while latency is evaluated using the computation-aware StreamLAAL metric. For reference, we
also include offline translation quality and results from AlignAtt tested on segmented speech. InfiniSST achieves
significantly lower computation-aware latency compared to StreamAtt at the same quality.

Robust Non-Robust Non-Robust
Segments Segments Segments*

69.2 / 1.1 50.5 / -220 51.0 / -207
71.9 / 1.5 53.4 / -116 58.1 / -58
72.3 / 1.9 68.4 / 2 65.7 / -22
73.0 / 2.4 66.8 / -12 67.2 / -6

Table 1: Impact of robust segments evaluated on MuST-
C En-Zh tst-COMMON with latency multipliers m =
1, 2, 3, 4. The model trained on non-robust segments
fails to translate unbounded speech. *We suppress the
non-linguistic sound tokens but still the model fails to
generalize.

speech model frequently falls into repetition of435

non-linguistic tokens such as（笑声） whenever436

non-linguistic sounds appear in the audio.437

We attempted to suppress these tokens, and the438

results are reported in the last column of Table 1.439

Instead of producing repetitive tokens, the model440

stops generating translations upon encountering441

non-linguistic sounds. These findings highlight the442

importance of training with robust segments.443
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63

66

69

72

C
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T
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M=4

Figure 5: InfiniSST trained with max latency multiplier
M = 1, 2, 4.

Multi-Latency We evaluate the effectiveness of 444

the multi-latency augmentation strategy during 445

training. Specifically, we train models with a maxi- 446

mum latency multiplier of M = 1, 2, and 4 and per- 447

form inference with latency multipliers m ≤ M+2. 448

The results are presented in Figure 5. 449

The model trained with M = 1 fails to general- 450

ize to m = 2 during inference, exhibiting a signifi- 451

cant drop in translation quality and being unable to 452

generate meaningful translations for larger m. The 453

model trained with M = 2 generalizes somewhat 454
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Speech Cache LLM Cache
Quality / Latency

Window ws Window wt

10 1000 69.2 / 1.1

5
1000

68.7 / 1.1
20 68.3 / 1.0
40 66.1 / 0.9

10
500 69.0 / 1.0
2000 69.4 / 1.2
4000 69.4 / 1.2

Table 2: Impact of cache size during inference. Quality
is evaluated with COMET and latency is evaluated with
StreamLAAL (unit is second). Model is trained with
speech encoder sliding window ws = 10 and no sliding
window for LLM. Latency multiplier is set to m = 1.

to m = 3, but its quality deteriorates significantly455

when using m = 4. In contrast, the model trained456

with M = 4 achieves the best quality-latency trade-457

off and generalization; however, it still experiences458

a quality drop when m = 5 and 6.459

These findings suggest that using a relatively460

large M during training while ensuring m ≤ M461

during inference is crucial for achieving the best462

quality-latency trade-off.463

6.2 Speech Encoder464

Inference Cache Window We first evaluate how465

the speech encoder’s cache window during infer-466

ence affects model performance. The model is467

trained with ws = 10 and tested with ws =468

5, 10, 20, and 40. The results, presented in Table 2,469

indicate that using a different cache window size470

during inference than the one used during training471

degrades translation quality.472

Training Cache Window Furthermore, we train473

models with different cache window sizes ws =474

10, 20, 30 while ensuring that the cache window475

size matches between training and inference. Since476

each mega-chunk has a size of 30, training with477

ws = 30 disables the sliding window mechanism.478

The results, shown in Figure 7, reveal a surpris-479

ing observation: the model trained with ws = 30480

successfully scales to unbounded speech during in-481

ference despite not using a sliding window during482

training. It also achieves a slightly better quality-483

latency trade-off compared to the model trained484

with ws = 10. These findings suggest using the485

largest possible speech cache window that GPU486

memory allows.487

Model Talks ≤ 10min Talks > 10min

Llama-3-8K 70.9 / 1.0 67.1 / 1.1
Llama-3.1-128K 71.6 / 1.0 68.0 / 1.1

Table 3: Impact of LLM context length. Llama-3 with
8K context length is still able to generalize to talks
longer than 10 minutes.

6.3 LLM 488

Cache Instruction As described in Section 3.5, 489

we explicitly preserve the KV cache of the trans- 490

lation instruction at the beginning (i.e., the system 491

prompt). If this cache is not retained, the LLM 492

stops translating once the window starts sliding. 493

Cache Window wt We evaluate the impact of 494

the LLM’s cache window size during inference 495

on model performance. Notably, the sliding win- 496

dow mechanism is not applied to the LLM dur- 497

ing training. We vary the LLM cache window 498

size as wt = 500, 1000, 2000, 4000, and the re- 499

sults are presented in Table 2. Increasing the KV 500

cache size slightly improves translation quality 501

(69 → 69.4) at the cost of marginally higher la- 502

tency (1.0 → 1.2). Compared to the speech en- 503

coder, the LLM demonstrates greater robustness to 504

different KV cache window sizes. 505

Base LLM Context Length Throughout our ex- 506

periments, we use Llama-3.1-8B-Instruct as the 507

base LLM, which supports a context length of up 508

to 128K tokens. To assess whether InfiniSST gen- 509

eralizes to an LLM with a shorter context limit, 510

we replace it with Llama-3-8B-Instruct, which has 511

an 8K context length4. The results, presented in 512

Table 3, indicate that while Llama-3 exhibits lower 513

translation quality compared to Llama-3.1, it is still 514

capable of generalizing to unbounded speech with 515

InfiniSST. 516

7 Conclusion 517

We propose InfiniSST that enables simultaneous 518

translation of unbounded speech with state-of-the- 519

art quality latency trade-off on three language di- 520

rections of MuST-C dataset. Our ablations demon- 521

strate the effectiveness of our carefully constructed 522

data, including robust segments and multi-latency 523

augmentation, and cache management strategy dur- 524

ing inference. 525

4A 10-minute speech already generates 10·60·12 = 7.2K
speech embeddings, exceeding the 8K context limit of Llama-
3-8B-Instruct if combined with the translation tokens.
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Limitations526

On the higher theoretical latency level, In-527

finiSST still falls behind AlignAtt and StreamAtt528

in some cases. This can be attributed to the lim-529

ited bidirectional attention of the chunkwise-causal530

speech encoder. Also, we evaluated on En-X di-531

rections but not on other directions like X-En and532

X-X. We have not experimented other pretrained533

speech encoders and non-Llama LLMs due to com-534

putation budget. Besides, the StreamLAAL metric535

is not perfectly reliable due to alignment errors of536

mWERSegmenter. Finally, we have not conducted537

human evaluation on user experience of different538

SST models, which might reveal undetected flaws539

in current models.540
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A Additional Data Details963

A.1 QE filtering and forward translation964

We first use Whisper to perform automatic speech965

recognition (ASR) on all training segments. We966

then apply CometKiwi5 to estimate the quality of967

ASR outputs by computing quality estimation (QE)968

scores between the ASR results and the reference969

text. As shown in Figure 6, we retain only instances970

where the QE score is greater than 0.5, which ac-971

counts for 78.64% of the data, resulting in a total972

of 280K instances.973

Upon further inspection, we observed that many974

filtered-out cases exhibited acceptable word error975

rates (WER) between the ASR outputs and the976

source text. To recover these cases, we performed977

forward translation using the 7B version of Tow-978

erInstruct 6on the source text using TowerInstruct979

with the following decoding settings: temperature980

= 0.0 and frequency penalty = 0.1. The translations981

were generated using vLLM.982

5https://huggingface.co/Unbabel/
wmt23-cometkiwi-da-xxl

6https://huggingface.co/Unbabel/
TowerInstruct-7B-v0.2

A.2 Dataset Statistics 983

The MuST-C dataset used in our experiments con- 984

sists of 105,647 instances for En-Zh, 88,725 for 985

En-Es, and 70,037 for En-De. 986

Figure 9 shows the reference length distribution 987

across these language pairs. 988

For En-Zh, the reference text length averages 989

124.32 characters, with a maximum of 444. En- 990

Es has significantly longer references, averaging 991

400.06 characters and reaching a maximum of 992

1,116. En-De also exhibits long references, with 993

an average of 419.47 characters and a maximum of 994

957. Spanish reference lengths in word count aver- 995

age 67.1 words, with a median of 70.0 and a 90th 996

percentile of 90.0. German references are slightly 997

shorter, averaging 63.6 words, with a median of 998

65.0 and a 90th percentile of 87.0. 999

En-Zh segments average 26.85 seconds, En-Es 1000

25.25 seconds, and En-De 26.11 seconds, all with a 1001

maximum of 28.80 seconds, reflecting speech-text 1002

alignment across languages. 1003

B Additional Experiment Results 1004

Impact of speech encoder window size during train- 1005

ing ws is shown in Figure 7. The RTF of InfiniS- 1006

STand baseline StreamAtt+ is shown in Figure 8. 1007
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