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ABSTRACT

Transformer-based models have demonstrated a remarkable capacity for learning
complex nonlinear relationships. While previous research on generalization dy-
namics has primarily focused on small transformers (1-2 layers) and simple tasks
like XOR and modular addition, we extend this investigation to larger models
with 125M parameters, trained on a more sophisticated first-order logic (FOL)
task. We introduce a novel FOL dataset that allows us to systematically explore
generalization across varying levels of complexity. Our analysis of the pretrain-
ing dynamics reveals a series of distinct phase transitions corresponding to the
hierarchical generalization of increasingly complex operators and rule sets within
the FOL framework. Our task and model establish a testbed for investigating
pretraining dynamics at scale, offering a foundation for future research on the
learning trajectories of advanced AI systems.

1 INTRODUCTION
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Natural Language
Hard to verify ✗ (i.e. there isn't
necessarily an absolute "correctness"),
very large number of grammatical rules,
semantically rich and complex

Figure 1: First order logic (FOL) problem in the context of language modeling complexity.

Transformers achieve state-of-the-art performance across a wide range of tasks, but the mechanisms
that enable their effective generalization are not yet fully understood. Current interpretability methods
primarily focus on identifying linearly separable features, which overlook the complex, nonlinear
interactions that transformers exploit, such as XOR-like feature combinations that seem to be essential
for generalized learning, and that have been observed empirically (Marks, 2023).

A striking example of generalization in training dynamics is grokking, first discovered with overfitting
transformers on algorithmic datasets (Power et al., 2022). Subsequently, grokking has been extensively
studied with various algorithmic problems such as arithmatic, modular addition, and XOR (Nanda
et al., 2023), but Liu et al. (2022b) suggests that grokking can be induced with more realistic
data. With intuitions gained from toy model settings such as better representation learned by the
embeddings or higher initial weights, it suggests that grokking may occur with natural language as
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well. Current research on grokking, however, remains quite distant from being applicable to natural
language.

As highlighted in previous studies on grokking and generalization, generalization is usually tested
with out-of-distribution data relative to the training set. This poses a challenge in the context of
natural language, where distinguishing between between various categorizations of such unstructured
data becomes difficult. For instance, the distinction between “reasoning" and “non-reasoning" text
can be ambiguous. Consequently, research on grokking and generalization often employs algorithmic
datasets, where the distinction between in-domain and out-of-domain data is clear, such as modular
addition of three-digit integers versus five-digit integers. However, these algorithmic datasets often
lack complexity, meaning they do not require large models for training. Furthermore, they do not
adequately resemble natural language, making it difficult to draw parallels with the training of realistic
LLMs, which are trained on highly diverse and unstructured natural language data. So, to scale up
generalization studies, we must also scale up the problems too.

To that aim, we consider the task of learning first order logic (FOL). FOL combines various operators
and parenthetical expressions to mark phrases and predicates in a way that resembles natural language.
If we consider the spectrum of complexity with respect to natural language, we can situate FOL as
shown in Figure 1. On the simpler end, Dyck languages, consisting of parenthetical closures, share
a basic structural syntax of hierarchy similar to natural language. Due to this structural similarity,
it has been extensively studied in the context of hierarchical learning in transformers (Hewitt et al.,
2020; Murty et al., 2023; Yao et al., 2021; Manning et al., 2020), but it remains too abstract to legibly
compare to natural language.

In terms of grammar, FOL is even closer to natural language, as it can express more intricate
grammatical rules, including negation (¬) and conjunctions (∧, ∨). FOL also shares structural
similarities beyond simple rules, such as the composition of information within phrases demarcated
with parentheses much like Dyck languages, as well as reasoning structures. Additionally, FOL
incorporates semantic identifiers in its predicates, such as Eats(x) or HitchhikesToTheGalaxy(x),
adding significant semantic complexity. While it cannot fully capture the unstructured nuances of
natural language, FOL represents a subset of it. FOL stands as a step closer to natural language
compared to other simplistic algorithmic tasks. One of its most notable advantages is that, despite its
ability to represent complex concepts and even aspects of natural language, it remains controllable.
FOL statements can be definitively verified as either correct or incorrect. This semi-algorithmic
nature provides a unique and rare opportunity to quantify data complexity that can be scaled up or
down as needed.

In this work, We explore the pretraining dynamics of transformers in a much larger and more
complex setting compared to the shallow 1-2 layer transformers previously analyzed in grokking
studies. To move beyond the simple algorithmic tasks commonly used in grokking models, we
introduce a more challenging task: learning first-order logic (FOL). As this task is semi-algorithmic,
it allows for greater control over the complexity of the dataset while aligning closer with natural
language. This approach will enhance our understanding of the pretraining process of LLMs
unstructured language data. We present a novel, pretraining-scale dataset based on FOL, specifically
designed for this investigation. Through empirical analysis, we examine the generalization patterns
that arise at this larger scale and complexity. Our results show that hierarchical generalization follows
a staircase-like progression with distinct phases. Moreover, by analyzing the trajectories of operators
and logical rules acquired during training, we gain deeper insights into the mechanisms driving each
phase and how they contribute to the overall learning process.

Understanding the pretraining process is crucial, but it often remains obscure due to the vast size and
complexity of the models. To build a tractable system, gaining insights into their learning process is
essential. We address this by providing an effective testbed for exploring pretraining dynamics, to
scale up future work in generalization research.
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2 EXPERIMENTAL SETUP AND OVERVIEW

We begin by generating a synthetic pretraining corpus of FOL as detailed in Section 2.1.1 This
synthetic FOL dataset has syntactically simpler and controllable structures akin to algorithmic tasks,
but retains the semantic richness of natural language. Table 1 provides some example data to
demonstrate this. We then pretrain GPT-2-small implementation (Radford et al., 2019) on the FOL
corpus. Specifically, we use a modified implementation of Karpathy’s nanoGPT (Karpathy, 2024).
Finally, we examine the resulting learning curves by different subsets of data, both in-domain and
out-of-domain. We also examine the granular trajectories with particular operators of FOL and rule
sets.

2.1 FOL CORPUS: PRETRAINING DATASET GENERATION

We crafted a synthetic pretraining dataset2 with various LLMs and Sympy(Meurer et al., 2017), a
python library for symbolic expressions.3 We use Sympy for syntactic correctness of our random
expressions, and we used LLMs for generating semantically varied expressions. The LLMs used for
generating the logical expressions are much larger than a smaller model we are training. To train a
GPT-2-small size model with 125M parameters, we estimated that we need to generate around 2.5B
tokens as suggested by Hoffmann et al. (2022). Some examples of the FOL corpus are shown in
Table 1.

FOL Type Example

Modus Tollens ∀xAttendingParty(x) → ExpectedFormalAttire(x),
¬ExpectedFormalAttire(yoona) → ¬AttendingParty(yoona)

Disjunctive Syllogism ∀x((WatchMovie(x) ∨ PlayGame(x))),
¬WatchMovie(nadia) → PlayGame(nadia)

Elimination (E11) ¬Funny(gerald) ∨ Funny(gerald) → True

Complex (C21)

(Symptoms(x) → (GetsDiagnosis(x) ∨ AccessesOptions(x))),
(FollowsHealthGuidelines(x) → Wellbeing(x)),
(Symptoms(x) ∨ FollowsHealthGuidelines(x)) →

(GetsDiagnosis(x) ∨ (AccessesOptions(x) ∨ Wellbeing(x)))

Randomly Generated
And Correct Expression

((CosmicBackgroundRadiation(x) ∧ FormationOfStars(x))
∨¬CosmicBackgroundRadiation(x) ∨ ¬FormationOfStars(x))

↔ (True)

Table 1: Examples of First Order Logic (FOL) pretraining data and their categories. The explanations
for each FOL categories are detailed in the Appendix A, B, and C.

To illustrate how FOL can represent logic, we take a look at an example of the Eliminations Rule
(E11) given in Table 1. We can translate it to natural language as,

{gerald is not (¬) funny} or (∨) {gerald is funny}
implies (→) True.

Given a True or False function, Funny(x), this statement has to be True. There are multiple such
basic properties and inference rules that make up the “grammar" of FOL, as outlined in Appendix A.
Particularly, elimination rules as shown in Appendix B are useful for simplifying FOL expressions
and determining equivalences.

In order to teach FOL to a small scale LLM, we mass generate many such examples using much larger
LLMs. We primarily used GPT models (GPT-3.5-turbo, GPT-4-turbo, GPT-4o, and GPT-4-mini)
(Achiam et al., 2023) and Reka models (Core and Flash) (Ormazabal et al., 2024) to generate by
providing symbolic FOL rules and in-context examples in the prompts. The in-context examples
were provided from the existing high quality human annotated datasets, Folio (Han et al., 2022) and
LogicBench (Parmar et al., 2024). In addition to the basic properties (Table 3), inferencing rules

1The models and all checkpoints will be released upon publication.
2The datasets will be released upon publication.
3The code and prompts used for generating the dataset will be released upon publication.
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(Table 2), and elimination rules (Table 4), we can also craft more complex FOL expressions that
specifically combines a combination of annotated FOL properties and inferencing rules, as shown in
Table 5. To generate more unique and correct FOL rules at scale, we used Sympy to mass generate
400-500K unique rules of 1-8 variables, depth 1-4 and 1-4 sub-expressions per depth. Sympy relies on
graphical representation of FOL operations, and therefore, it can guarantee correctness of generated
expression as well as its simplifications. Around 70% of the training data consists of the randomly
generated and guaranteed correct expressions and their equivalent simplifications. The full breakdown
of the training data is summarized in Table 6.

2.2 DESIGNING THE TEST SETS

For our test data, we withhold a subset of the generated data as our validation set. Existing human
curated datasets such as Folio and LogicBench were used as another “human validation set.” Further-
more, in order to truly test generalization, we attempt to create test examples that the model has never
seen before. Since our model has only seen first-order logic, we use Dyck-(k,m) languages as our
generalization set, where k = number of parenthesis types and m = maximum depths of parenthetical
expressions. Using the setup from Hewitt et al. (2020), we generated dyck languages of varying
depths and vocabulary with finite-state automata. We hope to create an analogy for controllable
complexity of vocabulary (controllable semantic complexity) and controllable syntactical complexity
(number of nesting that occurs). Furthermore, we created complex chains of rules that combine
varying numbers of basic inference properties as summarized in Appendix C. We then include some
of the rules (C2, C3, C4, C5, C7, C8, C10, C11, C13, C14, C17, C20, C21, C23) in our pretraining,
and withheld some (C1, C6, C9, C12, C15, C18, C22) for another test of generalization. Sympy was
used to generate 400-500K syntactical rules, it is highly unlikely to have generated our exact sets of
complex rules, with the same variables, predicates, and orders of operations. While the complex rule
sets demonstrate varying levels of complexity by combining differing numbers of basic inference
properties, the rule set represents a limited number of syntactic variety.

2.3 PRETRAIN AN LLM ON FOL CORPUS

We train nanoGPT with 125M parameters, Karpathy (2024)’s implementation of GPT-2-small, with
12 layers and 12 heads per layer. We pretrain from scratch on our custom FOL corpus. We used an
embedding size of 768 and block size of 1024 tokens and a micro-batch size of 12, with gradient
accumulation steps set to 40 (5× 8) to simulate a larger effective batch size. No dropout was applied
during pre-training, and the AdamW optimizer is used with a learning rate of 1× 10−4, weight decay
of 0.1, and gradient clipping at 1.0. Learning rate included a warm-up phase over 1000 iterations,
with a decaying schedule until a minimum learning rate of 1× 10−5, over a total of 10,000 iterations.
We trained on 4 NVIDIA RTX A6000 for 62.8 hours.

3 RESULTS

3.1 LEARNING CURVES

The training curves for pretraining on the FOL corpus is shown in Figure 2. We see that there are
multiple phase transitions, captured by various test sets including our human annotated datasets,
and withheld complex chains of first order logic simplification derivations. Generally, we see that
the validation and human annotated validation sets follow similar trajectories as the training curve.
To assess generalization, we used Dyck languages with varying depths and types of parentheses
for validation, since we assume they possess a significantly different data distribution compared to
FOL and therefore appropriately out-of-domain. As shown in Figure 1, Dyck languages consist of
parentheses closures, making them an effective testbed for evaluating whether the model understands
syntactical hierarchies. The Dyck languages validation curves reveal hierarchical generalization
occurring in staircase-like phases. We label these regions by the phases of Dyck language losses, as
shaded and labeled in Figure 2.

We examine learning dynamics at various hierarchies with Dyck languages as shown in Figure 3.
Interestingly, we see that there might be multiple phases not captured by our test sets. Moreover,
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Figure 2: Training and Validation Curves for FOL pretraining

upon zooming into phase 4 region in Figure 3b, we see that there is an inflection point at which the
losses for shallower expressions increase past higher depth expressions. After this inflection point,
the model exhibits higher loss for lower depth expressions than higher depth expressions.
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(a) Train vs. Dyck languages validation sets
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Figure 3: Dyck languages of vocab 1-4 and varying depths

Normalized Per-Token Loss of Dyck Languages We hypothesize that lower depth expressions in
phase 4 and beyond exhibit higher loss because the model has fewer previous tokens to condition on,
resulting in worse predictive performance. This is exacerbated by the fact that our Dyck language test
sets have a token distribution that is quite different from that of our training data, as they only utilize
a subset of tokens—specifically, the parentheses. We suspect that the longer expressions may help
the model narrow its distribution to the valid tokens even if the model has not learn the underlying
syntactic rules.

To reduce this bias, we look at a normalized per-token loss that captures the negative log-likelihood
placed by the model on the correct next token when restricted to the set of valid tokens for that test
set. We compute this by setting the logits of invalid tokens to -∞ before loss computation. Because
of the use of softmax in logit normalization, setting logits to -∞ sets their likelihoods to 0.
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Figure 4: Normalized losses for Dyck languages of 1-4 parentheses types (vocab) and 1-7 depths.

The normalized losses for Dyck languages are shown in Figure 4. The inflection of losses continues
through the third phase transition but disappears after phase 6. At phase 6, shallow expressions
still exhibit higher loss values compared to lower-level expressions, which could suggest possible
overfitting or memorization for certain lengths. Additionally, phase 8 does not show any distinguish-
able patterns in the normalized losses. This perhaps indicates that the effect of length can account
for the drop in loss at phase 8, rather than syntactical generalization. However, the inflection of
deeper expressions in phase 6 still persist, possibly suggesting a complex syntactical learning and
generalization dynamics at various depths.

3.2 NORMALIZED PER-TOKEN LOSSES OF SYMBOLIC EXPRESSIONS

Additionally, we analyze the normalized per-token losses for a range of symbolic expressions, with
a specific focus on the first two phase transitions that occur before the 100th training step. These
transitions seem to mark significant points where key rules and foundational properties of FOL are
learned. To gain a clearer understanding, we first review the specific rules incorporated into the
training process, as summarized in Figure 5.

Several common patterns emerge across the various symbolic expressions. Notably, the parenthesis
symbols “(” and “)” exhibit sharp, two-stage drops in loss values, corresponding directly to the first
two phase transitions. These transitions are consistent with phases 2 and 4, as highlighted in Figure 2,
and are observed across all expressions. This sharp reduction indicates that the model quickly grasps
the hierarchical structure governed by these symbols in the early stages of learning.

In addition, various operators in first-order logic, such as “∧” and “∨,” offer further insight into the
process by which specific rules are learned. These operators appear to undergo a similar one-to-two-
stage learning progression, though their transitions tend to occur slightly later, typically following the
hierarchical acquisition of the parenthesis operators. The patterns exhibited by these operators shed
light on the incremental and structured nature of learning in this context, reinforcing the idea that the
model first internalizes the more basic structural elements before moving on to more complex logical
operators.

We then examine the granular loss curves for complex rules that the model has not encountered before.
Although our annotated complex test set for these unseen rules is limited, we still consider it a useful
indicator of training dynamics. Figure 6 summarizes the findings, with the rule templates detailed in
Appendix C. Notably, we see two staged phase transition with parenthetical operators. We also see
drops in losses for other operators of FOL. However, beyond the second phase transition, we observe
signs of memorization or overfitting in Figure 9 as the normalized losses begin to increase for these
templated complex rule sets. Since these are limited, templated rules rather than inherent properties
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Figure 5: Per token losses of rules seen by the model during pretraining.

of FOL, this outcome may be expected. This abrupt increase in normalized losses also aligns with the
third phase transition point shown in Figure 2, suggesting that the third phase transition may involve
a trade-off between further generalization and memorization.
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Figure 6: Per token losses of unseen rules.

3.3 EIGENVALUE ANALYSIS OF ATTENTION

A key aspect of first-order logic learning likely involves recognizing particular prior elements,
determining their placement in a rule context and reproducing them in correct places, such as through
prefix matching and copying. To gain further insight into the pretraining process, we consider the
eigenvalues of attention matrices.

We follow the circuit formulation outlined by Elhage et al. (2021) and approximately define the
QK and OV matrices as WT

QWK and WOWV , respectively, where WQ, WK , and WV represent the
query, key, and value matrices of attention, and WO corresponds to the weights of the output linear
layer. The QK-circuit describes the alignment between query and key values in the model, which can
be interpreted as how much a key token’s prediction relies on information from a query token. In
contrast, the OV-circuit can be seen as a copying mechanism, transferring specific information to
the resulting location. The eigenvalues of these matrices indicate how effectively the circuits scale
an input vector. Large positive eigenvalues can be interpreted as a "copy score" for the OV circuit
and a "prefix matching score" for the QK circuit. We track the eigenvalues of the attention matrices
throughout pretraining, and the results are presented in Figure 7.
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Figure 7: Traces of the Eigenvalues of Attention

The OV circuit appears to emerge within the first 100 steps of pretraining, indicating that the copying
behavior is acquired around the time the basic inferencing of FOL are learned. In contrast, the prefix
matching and QK eigenvalues continue to plateau well into the training, suggesting that focusing on
occurring patterns and incorporating them into possibly more complex rules may be a more ongoing
and challenging process. We also observe that the copying behavior appears to be concentrated in the
first layer, while the prefix matching tends to occur in the deeper layers of the model. This could help
clarify the transitions observed in the third and fourth hierarchical phase transitions in future work.

As highlighted by Olsson et al. (2022), transformers have a significant number of induction heads.
Effectively copying relevant past context in the right places is essential for generating accurate
expressions in FOL. This connection emphasizes the role of in-context learning in enhancing logical
reasoning within transformer models.

4 CONTEXTUALIZING THE TRAINING TRAJECTORY AND COMPLEXITY:
INSIGHTS AND FUTURE DIRECTIONS

We now consolidate our experimental findings to explain the training curve in Figure 2. Since
first-order logic (FOL) is of higher complexity than Dyck languages, we expect that training on
FOL should enable generalization to Dyck languages, even though the model has not been explicitly
trained on them. Our results confirm this expectation, with the models exhibiting generalization
at scale. These phases are marked by significant drops in the Dyck language losses, as illustrated
in Figure 3. We observe that, at scale, this generalization unfolds in multiple phases, resembling a
staircase pattern.

Empirically, we observe a flurry of activity during the first two phase transitions, both occurring
before the 100th step. It appears that the model learns the fundamental properties and rules of FOL
within these initial phases, as revealed by the fine-grained tracking of operator losses in Figure 5.
Following this, the model starts to pick up on copying behavior in the 0th layer, signaled by the
OV eigenvalues in Figure 7, which emerge shortly after the first 100 steps. The positivity of QK
eigenvalues seem to develop more gradually in the later layers of the model, possibly indicating that
prefix matching is learned well into the model training process.

The interpretation of the third hierarchical phase transition point, as well as the potential for a fourth
transition, calls for further investigation. Notably, we observe an inversion in depth, where shallower
expressions exhibit higher loss values than their deeper counterparts, as illustrated in both Figure 3
and normalized losses in Figure 4. Additionally, this phase transition point coincides with the point at
which the trajectories of unseen rules in Figures 6 and 9 begin to display higher losses. Although our
unseen test set is limited for this iteration of the study, we suspect that this may be due to the model
overfitting or memorizing specific rules while generalizing on others. To address this, we need to
evaluate the model on a much larger out-of-domain dataset, which is feasible in this context because
FOL is a unique case where complexity can be meticulously annotated, including factors such as the
number of variables, predicates, and depths of expressions.
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Having tested on a lower-complexity out-of-domain set, we can now explore a higher-complexity
out-of-domain set to examine whether we observe any phase transition behaviors. This could include
more complex first-order logic sets or significantly simplified form of natural language reasoning
sets. Such investigations will enhance our understanding of the role that complexity plays in phase
transitions and pretraining.

Moreover, we can further explore pretraining in curriculum of varying complexity. While we do not
delve deeper in this iteration, we also tried to “semantically prime" the model on the OpenWebText
dataset (Gokaslan and Cohen, 2019) for a few hundred gradient iterations prior to the FOL pretraining,
and the learning curves are shown in Appendix F. It seems to suggest that seeing structurally
representative data at the beginning of training is crucial for generalization.

5 CONCLUSION

In this work, we explore the emergence of generalization at the scale of pretraining. While prior
research has extensively studied grokking in small-scale models, our focus is on identifying similar
dynamics at a much larger scale. We find that hierarchical generalization during pretraining follows
staircase-like phase transitions. Furthermore, the acquisition of logically significant symbols and
rules occurs at distinct stages throughout training. Although the pretraining loss and validation curves
appears relatively smooth, multiple underlying learning and generalization processes are taking place
at scale and at high data complexity. These findings suggest that we are only beginning to uncover
the complexity of generalization in large models.

We are excited about the potential of this work to improve our understanding of how LLMs generalize
during pretraining. While FOL seems abstract, it represents a formalized subset of natural language
that captures key aspects of reasoning. Future work could help us understand how LLMs develop the
ability to reason and the phases they undergo in this process, offering a useful analogy for reasoning
in natural language. Additionally, this work provides a foundation for larger-scale interpretability on
how phase transitions affect various model components, what is learned at each stage, where it occurs,
and how learning is linked to the training data, with full transparency, thorough data annotation, as
well as training granular checkpoints.

6 RELATED WORKS

First-Order Logic (FOL) and Reasoning Propositional logic represents inferential relationships
between true or false statements. Then, FOL extends it to represent far more complex relationships
by introducing quantifiers (e.g. every as ∀), logical connectives (e.g. “and" as ∧), and predicates (e.g.
IsMadScientist(x)), allowing for a more expressive representation of knowledge. Then, by training an
LLM on FOL, we can then examine how a model might learn logic and reasoning. We build upon
some prior logic datasets such as LogicBench (Parmar et al., 2023), LogicNLI (Tian et al., 2021), and
Folio (Han et al., 2022).

Beyond its syntactical representations, FOL may potentially be instrumental for probing how LLMs
reason. Gulordava et al. (2018) argues that models can learn to track abstract hierarchical syntactic
structure, even when they are unable to rely on semantic cues. However, recent work indicates that
current language models are poorly skilled at basic boolean logic (Williams and Huckle, 2024). In
parallel, some work shows that language models can be easily misled by simple patterns within
the text such as lexical overlap (McCoy et al., 2019; Wu and Monz, 2023), entity boundary (Yang
et al., 2023), word order (Zhang et al., 2023). Moreover, some work argues that LLMs lack true
“undestanding" of logic (Yan et al., 2024), while others suggest that the current pretraining strategies
cause models to replicate human reasoning patterns, including inherent biases. As with human
cognition, one avenue for improving model reasoning is by teaching them to apply logic more
effectively (Ozeki et al., 2024). Another study highlights the limitations in logical reasoning in
today’s LLMs by evaluating 25 models, showcasing instances of logically inconsistent judgments,
even in advanced systems like GPT-4 (Holliday et al., 2024).

Training Dynamics Previous research has investigated the dynamics of pretraining in language
models, such as the study by Saphra and Lopez (2019), which examined how models implicitly
encode linguistic features. Likewise, Choshen et al. (2021) and Evanson et al. (2023) observed

9
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that linguistic generalizations are acquired in similar stages, regardless of the model’s architecture,
initialization, or data-shuffling methods. In masked language models, syntactic rules are acquired
early (Chen et al., 2023), while world knowledge may emerge later and more unstably (Li et al., 2023;
González and Nori, 2024). Notably, Olsson et al. (2022) observed that induction heads for in-context
learning appear at key inflection points during pretraining. These findings hint at the emergence of
generalized circuits at specific points during pretraining.

Pretraining Curriculum There has been a long line of curiosity about the efficacy of curriculum
learning for deep models Bengio et al. (2009). In particular relevance to this work, Wu et al. (2023)
demonstrated a curriculum of nested boolean logic, gradating from simple to hard problems, which
led to increased performance in logic learning. There are complex trade offs between memorization,
forgetting and generalization throughout a model’s training process. Chang et al. (2024) found that
forgetting is influenced by factors like training data characteristics, batch size, and model size. Beyond
the curriculum, these studies posit that de-duplication, large batch sizes, as well as paraphrasing are
keys to better knowledge acquisition and retention.

Generalization and Grokking Gromov (2023) introduced a sudden jump in generalization in a
2 layer neural network on a modular arithmetic task. This came to be known as grokking. Other
works since have linked grokking to compression. Liu et al. (2022a) used a compression measure
to track neural network evolution, and delayed memorization before generalization. Suggesting
that grokking possibly occurs when models shift from relying on memorization and retrieval to
discovering algorithms and heuristics which generalize better. The descent part of deep double
descent—a phenomenon where test error initially decreases, then increases, and finally decreases
again — seems illustrative of the competition between emerging memorization vs. generalization
circuits within the model.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th annual international conference on machine learning, pages 41–48, 2009.

Hoyeon Chang, Jinho Park, Seonghyeon Ye, Sohee Yang, Youngkyung Seo, Du-Seong Chang, and
Minjoon Seo. How do large language models acquire factual knowledge during pretraining?
ArXiv, abs/2406.11813, 2024. URL https://api.semanticscholar.org/CorpusID:
270559235.

Angelica Chen, Ravid Schwartz-Ziv, Kyunghyun Cho, Matthew L. Leavitt, and Naomi Saphra.
Sudden drops in the loss: Syntax acquisition, phase transitions, and simplicity bias in mlms.
ArXiv, abs/2309.07311, 2023. URL https://api.semanticscholar.org/CorpusID:
261822542.

Leshem Choshen, Guy Hacohen, Daphna Weinshall, and Omri Abend. The grammar-learning trajecto-
ries of neural language models. In Annual Meeting of the Association for Computational Linguistics,
2021. URL https://api.semanticscholar.org/CorpusID:237491997.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal
Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris
Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread, 2021.
https://transformer-circuits.pub/2021/framework/index.html.

Linnea Evanson, Yair Lakretz, and Jean-Rémi King. Language acquisition: do children and language
models follow similar learning stages? In Annual Meeting of the Association for Computational Lin-
guistics, 2023. URL https://api.semanticscholar.org/CorpusID:259089351.

10

https://api.semanticscholar.org/CorpusID:270559235
https://api.semanticscholar.org/CorpusID:270559235
https://api.semanticscholar.org/CorpusID:261822542
https://api.semanticscholar.org/CorpusID:261822542
https://api.semanticscholar.org/CorpusID:237491997
https://api.semanticscholar.org/CorpusID:259089351


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. http://Skylion007.github.io/
OpenWebTextCorpus, 2019.

Javier González and Aditya V Nori. Does reasoning emerge? examining the probabilities of causation
in large language models. arXiv preprint arXiv:2408.08210, 2024.

Andrey Gromov. Grokking modular arithmetic. arXiv preprint arXiv:2301.02679, 2023.

Kristina Gulordava, Piotr Bojanowski, Edouard Grave, Tal Linzen, and Marco Baroni. Colorless green
recurrent networks dream hierarchically. In North American Chapter of the Association for Com-
putational Linguistics, 2018. URL https://api.semanticscholar.org/CorpusID:
4460159.

Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting Qi, Martin Riddell, Luke Benson, Lucy
Sun, Ekaterina Zubova, Yujie Qiao, Matthew Burtell, David Peng, Jonathan Fan, Yixin Liu, Brian
Wong, Malcolm Sailor, Ansong Ni, Linyong Nan, Jungo Kasai, Tao Yu, Rui Zhang, Shafiq R.
Joty, Alexander R. Fabbri, Wojciech Kryscinski, Xi Victoria Lin, Caiming Xiong, and Dragomir R.
Radev. Folio: Natural language reasoning with first-order logic. ArXiv, abs/2209.00840, 2022.
URL https://api.semanticscholar.org/CorpusID:252070866.

John Hewitt, Michael Hahn, Surya Ganguli, Percy Liang, and Christopher D. Manning. Rnns can
generate bounded hierarchical languages with optimal memory. ArXiv, abs/2010.07515, 2020.
URL https://api.semanticscholar.org/CorpusID:222378364.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia
Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and L. Sifre.
Training compute-optimal large language models. ArXiv, abs/2203.15556, 2022. URL https:
//api.semanticscholar.org/CorpusID:247778764.

Wesley H. Holliday, Matthew Mandelkern, and Cedegao E. Zhang. Conditional and modal reasoning
in large language models, 2024. URL https://arxiv.org/abs/2401.17169.

Andrej Karpathy. nanogpt. https://github.com/karpathy/nanoGPT, 2024.

Kenneth Li, Aspen K Hopkins, David Bau, Fernanda Viégas, Hanspeter Pfister, and Martin Wat-
tenberg. Emergent world representations: Exploring a sequence model trained on a synthetic
task. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=DeG07_TcZvT.

Ziming Liu, Ouail Kitouni, Niklas S Nolte, Eric Michaud, Max Tegmark, and Mike Williams.
Towards understanding grokking: An effective theory of representation learning. Advances in
Neural Information Processing Systems, 35:34651–34663, 2022a.

Ziming Liu, Eric J. Michaud, and Max Tegmark. Omnigrok: Grokking beyond algorithmic data.
ArXiv, abs/2210.01117, 2022b. URL https://api.semanticscholar.org/CorpusID:
252683312.

Christopher D. Manning, Kevin Clark, John Hewitt, Urvashi Khandelwal, and Omer Levy. Emer-
gent linguistic structure in artificial neural networks trained by self-supervision. Proceed-
ings of the National Academy of Sciences, 117:30046 – 30054, 2020. URL https://api.
semanticscholar.org/CorpusID:219315567.

Sam Marks. What’s up with llms representing xors of arbitrary features?, Jan-
uary 2023. URL https://www.lesswrong.com/posts/hjJXCn9GsskysDceS/
what-s-up-with-llms-representing-xors-of-arbitrary-features.

Tom McCoy, Ellie Pavlick, and Tal Linzen. Right for the wrong reasons: Diagnosing syntactic
heuristics in natural language inference. In Anna Korhonen, David Traum, and Lluís Màrquez,
editors, Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
pages 3428–3448, Florence, Italy, July 2019. Association for Computational Linguistics. doi:
10.18653/v1/P19-1334. URL https://aclanthology.org/P19-1334.

11

http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://api.semanticscholar.org/CorpusID:4460159
https://api.semanticscholar.org/CorpusID:4460159
https://api.semanticscholar.org/CorpusID:252070866
https://api.semanticscholar.org/CorpusID:222378364
https://api.semanticscholar.org/CorpusID:247778764
https://api.semanticscholar.org/CorpusID:247778764
https://arxiv.org/abs/2401.17169
https://github.com/karpathy/nanoGPT
https://openreview.net/forum?id=DeG07_TcZvT
https://api.semanticscholar.org/CorpusID:252683312
https://api.semanticscholar.org/CorpusID:252683312
https://api.semanticscholar.org/CorpusID:219315567
https://api.semanticscholar.org/CorpusID:219315567
https://www.lesswrong.com/posts/hjJXCn9GsskysDceS/what-s-up-with-llms-representing-xors-of-arbitrary-features
https://www.lesswrong.com/posts/hjJXCn9GsskysDceS/what-s-up-with-llms-representing-xors-of-arbitrary-features
https://aclanthology.org/P19-1334


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondřej Čertík, Sergey B. Kirpichev, Matthew
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A FIRST ORDER LOGIC (FOL) CATEGORIES AND EXPLANATIONS

FOL Inference Rule Symbolic Expression Explanation

Bidirectional Dilemma (BD) ((p → q) ∧ (r → s)),
(p ∨¬s) |= (q ∨ ¬r)

If two conditional statements are true, given a true
antecedent or a false consequent, the respective
consequent is true or a respective antecedent is false.

Constructive Dilemma (CD) ((p → q) ∧ (r → s)),
(p ∨r) |= (q ∨ s)

If two conditional statements are true and at least one
of their antecedents are true, then at least one of their
consequents are true.

Destructive Dilemma (DD) ((p → q) ∧ (r → s)),
(¬q ∨ ¬s) |= (¬p ∨ ¬r)

If two conditional statements are true, and one of their
consequents has to be false, then one of their antecedents
has to be false.

Disjunctive Syllogism (DS) ((p ∨ q) ∧ ¬p) |= q
Disjunctive elimination. If we know one of two
statements, p or q, to be true, and one of them is not
true, the other must be true.

Hypothetical Syllogism (HS) ((p → q) ∧ (q → r))
|= (p → r)

Chain argument rule or transitivity of implication.

Modus Ponens (MP) ((p → q) ∧ p) |= q
Implication elimination rule. If p implies q and p is
true, the statement can be replaced with q.

Modus Tollens (MT) ((p → q) ∧ ¬q) |= ¬p Implication elimination rule. If p implies q and q is
false, the statement can be replaced with not p.

Universal Instantiation (UI) ∀xP (x) =⇒ ∃aP (a)
If a statement P holds for a variable x, then there exists
a particular value a for the statement to be true.

Existential Generalization (EG) ∃xP (x) =⇒ P (a)
If a statement P holds true for some subset of variables
x, then there’s a particular value of x = a for which
P holds true.

FOL proofs &
general statements - -

Table 2: First Order Logic (FOL) Inference Rule Categories and Explanations

FOL Properties Symbolic Expression

Distributive (Dist)
(p ∨ (q ∧ r)) ↔ ((p ∨ q) ∧ (p ∨ r))

(p ∧ (q ∨ r)) ↔ ((p ∧ q) ∨ (p ∧ r))

Association (AS)
(p ∨ (q ∨ r)) ↔ ((p ∨ q) ∨ r)

(p ∧ (q ∧ r)) ↔ ((p ∧ q) ∧ r)

Tautology (TT)
p ↔ (p ∨ p)

p ↔ (p ∧ p)

Transposition (TS) (p → q) ↔ (¬q → ¬p)

Importation (IM) (p → (q → r)) ↔ ((p ∧ q) → r)

Exportation (EX) ((p ∧ q) → r) → (p → (q → r))

Double Negation (DN) p ↔ ¬¬p

De Morgan’s Law (DM)
¬(p ∧ q) ↔ (¬p ∨ ¬q)
¬(p ∨ q) ↔ (¬p ∧ ¬q)

Negation of XOR (NX)
¬(p⊕ q) ↔ (¬p⊕ ¬q)
¬(p⊕ q) ↔ (p⊙ q)

Negation of XNOR (NN)
¬(p⊙ q) ↔ (¬p⊙ ¬q)
¬(p⊙ q) ↔ (p⊕ q)

Table 3: First Order Logic (FOL) Basic Properties
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B ELIMINATION RULES

Symbolic Expression

E0 p ∨ True ↔ True

E1 p ∨ False ↔ p

E2 p ∧ True ↔ p

E3 p ∧ False ↔ False

E4 True ∨ p ↔ True

E5 False ∨ p ↔ p

E6 True ∧ p ↔ p

E7 False ∧ p ↔ False

E8 p ∨ p ↔ p

E9 p ∧ p ↔ p

E10 p ∧ ¬p ↔ False

E11 p ∨ ¬p ↔ True

E12 ¬p ∧ p ↔ False

E13 ¬p ∨ p ↔ True

E14 p ∧ (p ∨ q) ↔ p

E15
p ∧ (¬p ∨ q) ↔ (p ∧ ¬p) ∨ (p ∧ q)

↔ False ∨ (p ∧ q) ↔ p ∧ q

E16 p ∧ (¬p ∨ q) ↔ False ∨ (p ∧ q) ↔ p ∧ q

E17 p ∧ (¬p ∨ q) ↔ (p ∧ ¬p) ∨ (p ∧ q) ↔ p ∧ q

E18 p ∨ (p ∧ q) ↔ p

E19 p ∨ (p ∧ q ∧ r) ↔ p

E20 r ∨ (p ∧ q ∧ r) ↔ r

E21 r ∨ (p ∧ q ∧ r ∧ s) ↔ r

E22
p ∨ (¬p ∧ q) ↔ (p ∨ ¬p) ∧ (p ∨ q)

↔ True ∧ (p ∨ q) ↔ (p ∨ q)

E23 p ∨ (¬p ∧ q) ↔ True ∧ (p ∨ q) ↔ (p ∨ q)

E24 p ∨ (¬p ∧ q) ↔ (p ∨ ¬p) ∧ (p ∨ q) ↔ (p ∨ q)

E25
p ∨ ¬(p ∧ q) ↔ p ∨ (¬p ∨ ¬q)
↔ (p ∨ ¬p) ∨ ¬q ↔ True ∨ ¬q ↔ True

E26
p ∨ ¬(p ∧ q) ↔ p ∨ (¬p ∨ ¬q)
↔ p ∨ ¬p ∨ ¬q ↔ True ∨ ¬q ↔ True

E27 p ∨ ¬(p ∧ q) ↔ (p ∨ ¬p) ∨ ¬q ↔ True ∨ ¬q ↔ True

E28 p ∨ ¬(p ∧ q) ↔ p ∨ (¬p ∨ ¬q) ↔ True ∨ ¬q ↔ True

E29 p ∨ ¬(p ∧ q) ↔ p ∨ (¬p ∨ ¬q) ↔ (p ∨ ¬p) ∨ ¬q ↔ True

E30
p ∧ ¬(p ∨ q) ↔ p ∧ (¬p ∧ ¬q) ↔ (p ∧ ¬p) ∧ ¬q
↔ False ∧ ¬q ↔ False

E31 p ∧ ¬(p ∨ q) ↔ (p ∧ ¬p) ∧ ¬q ↔ False ∧ ¬q ↔ False

E32 p ∧ ¬(p ∨ q) ↔ p ∧ (¬p ∧ ¬q) ↔ False ∧ ¬q ↔ False

E33 p ∧ ¬(p ∨ q) ↔ p ∧ (¬p ∧ ¬q) ↔ (p ∧ ¬p) ∧ ¬q ↔ False

Table 4: First Order Logic (FOL) Elimination Rules
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C COMPLEX FOL EXPRESSIONS

Symbolic Expression Combination of
FOL Rules

Included
in Training

C1 (((a ∨ b) → q) ∧ ¬q) → (¬a ∧ ¬b) MT + DM ✗

C2 (((a ∧ ¬b) → q) ∧ ¬q) → (¬a ∨ b) MT + DM + DN ✓

C3 (p → q), (q → r), (s → t), (¬t ∨ ¬r) → (¬p ∨ ¬s) TS + DD ✓

C4
(p ∨ (q ∧ (a ∨ b)))

↔ ((p ∨ q) ∧ ((p ∨ a) ∨ b))
DS + AS ✓

C5
(p ∧ ((a ∧ b) ∨ q ∨ r))

↔ (((p ∧ a) ∧ b) ∨ (p ∧ q) ∨ (p ∨ r))

↔ (((p ∧ a) ∧ b) ∨ (p ∧ (q ∨ r)))

DS + AS ✓

C6
((p ∧ q ∧ r) ∨ (a ∧ p ∧ b) ∨ (c ∧ d ∧ e))

↔ ((p ∧ ((q ∧ r) ∨ (a ∧ b))) ∨ (c ∧ d ∧ e))
DS + AS ✗

C7
(p ∨ (q ∧ r ∧ (a ∨ b) ∧ s))

↔ ((p ∨ q) ∧ (p ∨ r) ∧ (p ∨ a ∨ b) ∧ (p ∨ s))
DS + AS ✓

C8
(p ∨ (q ∧ (p ∨ b) ∧ r))

↔ ((p ∨ q) ∧ (p ∨ b) ∧ (p ∨ r))

↔ (p ∨ (q ∧ b ∧ r))

DS + AS + TT ✓

C9

¬(p ∨ (q ∧ (¬a ∨ b) ∧ ¬r))
↔ ¬((p ∨ q) ∧ (p ∨ ¬a ∨ b) ∧ (p ∨ ¬r))
↔ (¬(p ∨ q) ∨ ¬(p ∨ ¬a ∨ b) ∨ ¬(p ∨ ¬r))
↔ ((¬p ∧ ¬q) ∨ (¬p ∧ a ∧ ¬b) ∨ (¬p ∧ r))

↔ (¬p ∧ (¬q ∨ (a ∧ ¬b) ∨ r))

DS + DM + DN ✗

C10 (¬p → q) ↔ (¬q → p) TS + DN ✓

C11 (p → ¬q) ↔ (q → ¬p) TS + DN ✓

C12 ((a ∧ b) → q) ↔ (¬q → (¬a ∨ ¬b)) TS + DM ✗

C13 (p → (¬a ∨ ¬b)) ↔ ((a ∧ b) → ¬p) TS + DM ✓

C14 ¬((a ∨ b)⊕ c⊕ d) ↔ (¬(a ∨ b)⊕ ¬c⊕ ¬d) DM + NX ✓

C15 ¬(c⊕ (¬a ∨ b)⊕ d) ↔ (¬c⊕ (a ∧ ¬b)⊕ ¬d) DM + NX ✗

C17 ¬(p⊙ q ⊙ (a ∨ ¬b)) ↔ (¬p⊙ ¬q ⊙ (¬a ∧ b)) DM + NN ✓

C18

((a ∧ b) → q), ((a ∧ ¬c) → s), (¬q ∨ ¬s)
→ ((¬a ∨ ¬b) ∨ (¬a ∨ c))

→ (¬a ∨ ¬b ∨ c)

→ ¬(a ∧ b ∧ ¬c)

DD + DN + DM + AS + TT ✗

C20 ((a ∨ b) → q), (r → s), (a ∨ b ∨ r) → (q ∨ s) CD + AS ✓

C21 (p → (a ∨ b)), (r → s), (p ∨ r) → (a ∨ (b ∨ s)) CD + AS ✓

C22
(p → q), ((a ∨ ¬b) → s), (p ∨ ¬s)

→ (q ∨ (¬a ∧ b))

→ ((q ∨ ¬a) ∧ (q ∨ b))

BD + DN + DM + DS ✗

C23
(p → q), ((¬a ∧ ¬b) → s), (p ∨ ¬s)

→ q ∨ ¬(¬a ∧ ¬b)
→ (q ∨ a) ∨ b

BD + DM + AS ✓

Table 5: Complex FOL Expressions. (BD = Bidirectional Dilemma, CD = Constructive Dilemma,
DD = Destructive Dliemma, MT = Modus Tollens, DM = De Morgan’s, DN = Double Negation, DS
= Distribution, AS = Association, TS = Transposition, TT = Tautology, NN = Negation of XNOR,
NX = Negation of XOR)
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D TRAINING DATA

# Examples # Tokens # Examples # Tokens

BD 102.43K 778.57K DM 740.92K 34.11M
CD 856.78K 71.70M Dist 268.76K 17.97M
DD 806.15K 71.70M XOR∗ 17.46K 793.75K
DS 321.31K 12.79M XNOR∗ 15.42K 668.07K
HS 429.94K 23.20M XOR-XNOR∗ 14.49K 577.84K
MP 237.80K 7.49M
MT 285.19K 11.10M
UI 123.00K 4.03M
EG 9.10K 263.0K

General/fol proof 2.27M 286.12M

C2 94.36K 5.26M E0 5.23K 83.92K
C3 108.56K 20.21M E1 5.34K 141.32K
C4 102.73K 8.03M E2 5.28K 147.74K
C5 107.64K 16.67M E3 5.46K 88.60K
C7 109.03K 17.57M E4 5.18K 82.91K
C8 97.90K 12.38M E5 5.31K 146.08K

C10 102.43K 3.84M E6 5.35K 148.27K
C11 86.92K 3.55M E7 5.28K 84.61K
C13 93.22K 5.17M E8 5.40K 188.11K
C14 109.20K 10.03M E9 5.37K 194.38K
C17 108.53K 10.04M E10 5.23K 140.78K
C20 109.10K 10.58M E11 5.22K 139.83K
C21 109.37K 11.21M E12 5.16K 134.20K
C23 109.45K 14.94M E13 5.18K 135.07K

E14 5.60K 135.07K
E15 5.58K 720.92K
E16 5.56K 441.38K
E17 5.58K 569.09K
E18 5.61K 256.89K
E19 5.37K 291.75K
E20 5.21K 286.32K
E21 5.37K 352.57K
E22 5.61K 734.95K
E23 5.59K 470.14K
E24 5.63K 586.41K
E25 5.58K 703.58K
E26 5.57K 714.06K
E27 5.58K 501.50K
E28 5.57K 502.50K
E29 5.59K 625.27K
E30 5.59K 720.77K
E31 5.59K 499.31K
E32 5.59K 498.49K
E33 5.60K 648.88K

Complex Total 1.45M 149.48M Eliminations Total 185.09K 12.24M
Random 15.26M 1.89B

Total 24.07M 2.67B

Table 6: Full Breakdown of the Training Dataset. The labels are consistent with the FOL types
described in Table 2, Table 3, Table 4, and Table 5. Note: not all basic properties (Table 3) of
FOL were included explicitly in generation. This is because we qualitatively saw that the massive
random generation sufficiently and implicitly (and sometimes explicitly) captured the basic properties.

*We explicitly included negations of XOR, negations of XNOR and the equivalences be-
tween XOR and XNOR.
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E NORMALIZED PER TOKEN LOSS FOR COMPLEX RULES
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Figure 8: Total Per token losses.
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Figure 9: Per token losses of unseen rules.
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F SEMANTICALLY PRIME, THEN PRETRAIN

We then experiment with semantically priming the model on natural language first to see how it
affects the representations and model performance. We prime the model on OpenWebText for the
first few hundred iterations. During each iteration, the model is estimated to see 491,520 tokens.
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Figure 10: Training curves for semantically primed models. The shaded blue regions represent
semantic priming on OpenWebText.

The results are illustrated in Figure 10. After the first 100 steps of semantic priming, the generalization
curves for Dyck languages fail to reach the same low loss levels, suggesting that semantic priming
disrupts phase transitions. Many structural generalizations seem to occur within the first 200 iterations,
indicating that semantic priming has a detrimental effect on generalization. This could explain why
fine-tuning in some cases yields only limited improvements when (structurally) similar data were not
part of the pretraining stage. A potential follow-up experiment would be to incorporate FOL data into
the web priming dataset and compare the outcomes. We may also experiment with hyperparameters
such as learning rate matching and drop out.
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