
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

DebFlow: Automating Agent Creation via Agent Debate

Anonymous Authors1

Abstract

Large language models (LLMs) have demon-
strated strong potential and impressive perfor-
mance in automating the generation and optimiza-
tion of workflows. However, existing approaches
are marked by limited reasoning capabilities, high
computational demands, and significant resource
requirements. To address these issues, we pro-
pose DebFlow, a framework that employs a debate
mechanism to optimize workflows and integrates
reflexion to improve based on previous experi-
ences. We evaluated our method across six bench-
mark datasets, including HotpotQA, MATH, and
ALFWorld. Our approach achieved a 3% average
performance improvement over the latest base-
lines, demonstrating its effectiveness in diverse
problem domains. In particular, during training,
our framework reduces resource consumption by
37% compared to the state-of-the-art baselines.
Additionally, we performed ablation studies. Re-
moving the Debate component resulted in a 4%
performance drop across two benchmark datasets,
significantly greater than the 2% drop observed
when the Reflection component was removed.
These findings strongly demonstrate the critical
role of Debate in enhancing framework perfor-
mance, while also highlighting the auxiliary con-
tribution of reflexion to overall optimization.

1. Introduction
Large Language Models (LLMs) have demonstrated excep-
tional capabilities across diverse domains, such as code
generation(Shinn et al., 2023), data analysis(Hong et al.,
2024a), decision-making(Song et al., 2023), question an-
swering(Zhu et al., 2024), autonomous driving(Jin et al.,
2023). Historically, the development of LLMs has relied on
manually crafted agents, which require significant human

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

input for their design and orchestration. This dependency
limits the scalability of LLMs, their adaptability to complex
new domains, and their ability to generalize skills across
diverse tasks(Tang et al., 2023). However, the history of
machine learning teaches us that hand-designed solutions
are eventually replaced by learned solutions.

Current research aims to develop automated frameworks for
discovering efficient agentic workflows, thus minimizing hu-
man intervention. ADAS(Hu et al., 2024a) defines the entire
agentic system in code. However, the efficiency limitations
of the linear heuristic search algorithm of ADAS hinder its
ability to generate effective workflows within a constrained
number of iterations. AFlow (Zhang et al., 2024a) models
the workflow as a series of interconnected LLM-invoking
nodes, where each node corresponds to an LLM action,
and the edges capture the logical structure, dependencies,
and execution flow between these actions. AFLOW em-
ploys the Monte Carlo Tree Search (MCTS) algorithm to
automatically optimize LLM agent designs. In the search
process, Monte Carlo Tree Search (MCTS) often performs
numerous redundant optimizations, leading to significant
computational overhead. This inefficiency increases the
overall cost of the search, as it spends excessive resources
on exploring suboptimal or irrelevant branches in the deci-
sion tree. Consequently, the algorithm’s performance can be
hindered by this unnecessary expenditure of computational
effort, impacting its scalability and effectiveness in large
or complex problem spaces. This underscores the need for
more cost-effective and efficient methods to automate the
generation of agentic workflows.

Furthermore, previous works on ADAS(Hu et al., 2024a)
and AFlow (Zhang et al., 2024a) primarily comprised three
core components: search space, search algorithm, and eval-
uation. In terms of search algorithms, these approaches pre-
dominantly relied on generating workflows through a single
large language model (LLM), which significantly constrains
the performance to the capabilities of the individual model.

In response to these challenges, we introduce an innovative
framework for automatically generating agentic workflows.
We propose DebFlow, a multi-agent framework that employs
a collaborative debate mechanism to optimize workflow
generation and integrates reflective learning to iteratively
improve performance based on previous experiences. Our

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Submission and Formatting Instructions for ICML 2025

Figure 1. The overall framework of DebFlow. The basic unit of framework invocation is the llm-invoking node, which can be combined to
form different operators. Debflow selects the most promising workflow for optimization through agent debate, then optimizes it through
multi-role debate, and conducts reflection to provide direction for subsequent optimization.

work represents the first application of debate frameworks
within Automated Agentic Optimization. Prior studies have
predominantly utilized debate methods to augment model
reasoning capabilities through direct analytical engagement
with problems. For examples, LLM-Debate(Du et al., 2023),
MultiPersona(Wang et al., 2023b). DebFlow uses operator
nodes, that is, a set of LLM agent-invoking nodes, as the
fundamental units of its search space. These operators are
reusable combinations of nodes representing common agen-
tic operations (e.g., Ensemble, Review & Revise). DebFlow
optimizes LLM agents through the mechanisms of Debate
and reflection. The debate-driven optimization framework
facilitates comprehensive improvements in both prompts
and operators. Through structured multi-agent deliberations,
the system analyzes task specifications and historical perfor-
mance logs to explore optimal operator configurations while
simultaneously refining prompts, thereby synthesizing more
efficient workflows. To avoid unnecessary branch expan-
sions inherent in MCTS approaches, we employ reflection
to analyze execution logs and identify failure patterns, which
serve as one of the optimization factors for subsequent it-
erations. Furthermore, we leverage LLMs for workflow
selection, incorporating both performance metrics and these
derived optimization factors in the decision-making pro-
cess and we employ long-term and short-term memory to
maintain the structural integrity of the search process. A
simplified illustration is shown in Figure1.

The key contributions of this work are as follows:

• We design the DebFlow framework that efficiently
searches for novel and good-performing LLM agents
via the novel mechanism of Debate, Reflection.

• Experiments across six diverse tasks show that our
method discovers novel LLM agents that outperform
all known human designs. Besides, DebFlow offers
better cost-performance efficiency, with significant im-
plications for real-world applications.

2. Related Work
Agentic workflow. Agentic workflows primarily involve the
static execution of predefined processes, which are typically
established by humans based on prior domain experience
and iterative refinement. Agentic workflows can be broadly
divided into two categories: general workflows and domain-
specific workflows. General workflows are typically used
for simple tasks, focusing on universal problem-solving ap-
proaches, such as (Wei et al., 2022a; Wang et al., 2023a;
Madaan et al., 2023a). In contrast, domain-specific work-
flows are designed for specific fields, such as code genera-
tion (Hong et al., 2024b), data analysis (Xie et al., 2024),
mathematical computation (Zhong et al., 2024), and com-
plex question answering (Zhou et al., 2024a). Traditional
agentic workflows are usually predefined manually, which
limits general workflows in handling complex tasks, while
domain-specific workflows are only capable of addressing
tasks within their specific domains, lacking universality. As
a result, new automated workflow methods have emerged,

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Submission and Formatting Instructions for ICML 2025

capable of generating workflows that are both universal and
effective in solving complex tasks. The agentic workflow
and autonomous agents(Zhuge et al., 2024; Hong et al.,
2024a; Zhang et al., 2024c; Wang et al., 2024a) represent
two different paradigms of the application of LLM.

Automated Agentic Optimization. Recent advancements
in automating the design of agentic workflows have ex-
plored three primary strategies: optimizing prompts, tuning
hyperparameters, and refining entire workflows. Techniques
for prompt optimization (Fernando et al., 2024; Yang et al.,
2024) utilize large language models to enhance prompts
within fixed workflows, but they often fail to generalize
well to new tasks and require considerable manual effort.
Hyperparameter optimization (Saad-Falcon et al., 2024) fo-
cuses on adjusting predefined parameters, yet it remains con-
strained by its narrow scope. On the other hand, automated
workflow optimization (Li et al., 2024; Zhou et al., 2024b;
Zhuge et al., 2024; Hu et al., 2024a) aims to improve the
overall structure of workflows, presenting a more compre-
hensive approach to automation. For example, ADAS (Hu
et al., 2024a) employs code-based representations and stores
historical workflows in a linear structure, but its search al-
gorithm’s reliance on overly simplistic representations of
past experiences significantly limits its efficiency in discov-
ering effective workflows. AFlow (Zhang et al., 2024a) also
utilizes code-based workflow representations but advances
further by employing an MCTS algorithm for automated
optimization, leveraging tree-structured experience and exe-
cution feedback to efficiently discover effective workflows.

Figure 2. The visualization of notations in DebFlow

3. Problem Formulation
In this section, we provide a formal definition of DebFlow’s
search space and articulate the objectives of workflow opti-
mization. For the core concept of this section, we provide
an example explanation in Figure 2.

Search Space. We define the atomic units within the search
space as LLM-invoking nodes N , which can be intercon-
nected via edges E to form more widely recognized opera-
tors O, eventually being integrated to constitute comprehen-
sive workflows W . Each node is represented as follows:

Ni = (Mi, Pi, τi), Pi ∈ P, τi ∈ [0, 1], (1)

where Mi represents an LLM instance, Pi represents the
associated prompt, with P denoting the feasible prompt

space and τi is the temperature parameter. The operators
are composed of nodes and edges, represented as follows:

Oj = (N o
j , Eo

j),N o
j = {N1, . . . , Nn}, Eo

j ⊆ E, (2)

where N o
j is a subset of the invoking nodes, and Eo

j repre-
sents the connection between the nodes, which governs the
sequence of execution and E represents the collection of
connectivity patterns established between nodes and nodes,
nodes and operators, as well as between operators and oper-
ators. The overall agentic workflow W is defined as:

W = (OS , Ea) = (N S , E), OS = {O1, . . . , Om}, Ea, E ⊆ E,
(3)

where OS ⊆ O, N S ⊆ N , m represents the number of
operators in W .

Automated Workflow Optimization. Given a task domain
T and an performance evaluator function U , the goal of
workflow optimization is to discover a workflow W that
maximizes U(W, T), the objective function is defined as:

W∗ = argmax
W∈S

U(W, T) = argmax
NS⊆N ,E⊆E

U
(
(N S , E), T

)
,

(4)
where N represents the feasible space of invoking nodes.

4. DebFlow Framework: Automated Agent
Generation

In this section, we describe the framework for automating
the generation workflows using the DebFlow system. As
shown in Figure 1, we utilize agent debate and reflexion
mechanisms to facilitate automated exploration of optimal
workflow configurations.

4.1. Agent debate

Figure 1 illustrates the general framework of Agent Debate,
where debaters and a judge are involved in a debate to
resolve problems. Generally, the Agent Debate framework
is composed of two roles, which are elaborated as follows:

Debater. In the framework, there are N debaters, denoted
D = {Di}Ni=1. During each iteration of the debate, the
debaters Di present their arguments sequentially in a prede-
termined order. The argument of each debater is formulated
based on the accumulated history of the debate H , such that
Di(H) = h. The Debaters utilizes a structured dialectical
process featuring proponents and opponents. When one side
proposes a solution, the opposing side critically evaluates
and thinks about it. Moreover, the opposing side integrates
the insights from the proposed solution to refine and en-
hance its own approach. This process allows each side to
absorb the strengths of the other’s solution while addressing
its weaknesses, ultimately leading to a more robust and im-
proved solution. This iterative exchange fosters a dynamic

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Submission and Formatting Instructions for ICML 2025

and collaborative environment, where each debater’s con-
tribution not only challenges, but also enriches the overall
discourse.

Judge. we introduce a judge J to supervise and regulate
the entire debate process. After each round of debate, the
judge J reviews the proposals of both the proponents and
opponents, summarizing their respective strengths and weak-
nesses. The judge J then evaluates which side currently has
the advantage and determines whether the proposed solution
can be considered the optimal workflow in this round. If the
solution is deemed optimal, the process skips subsequent
rounds and proceeds to the next phase. If not, another round
of debate is initiated. If the maximum number of debate
rounds is reached without identifying an optimal workflow,
the judge J selects the best solution from the accumulated
proposals based on the historical outcomes of the debate.
This structured approach ensures a balanced and efficient
decision-making process, guided by continuous evaluation
and refinement.

4.2. Selecting candidate workflows

The Selection component of our framework is designed to
choose the most appropriate workflow for a given task. In
analogous fashion, we implement agent debate to realize
this objective. In debate competitions, the selection phase
can be analogized to choosing the most powerful arguments
or strategies available. Debaters must select from multiple
potential arguments those most likely to persuade judges or
audiences. This process parallels the selection of the most
promising nodes for further exploration in Monte Carlo
Tree Search (MCTS). It draws on long-memory, which cap-
tures historical insights from past workflow performances,
to avoid repeating former errors. Additionally, it considers
short memory, focusing on individual workflow failures to
exclude those with a history of underperformance. The com-
ponent also ensures that its selections align with the specific
requirements of the current task, thereby guaranteeing that
the chosen workflow is well-suited to achieve the task’s
objectives.

4.3. Reflexion

In our framework, the Large Language Model (LLM) serves
as a critical reflection model, generating detailed verbal feed-
back to guide future iterations. This feedback is instrumen-
tal in refining the workflow and enhancing its performance.
Post-debate, when the optimal workflow is identified, it is
executed on the dataset, and the instances of failure are
meticulously recorded. The reflection model then analyzes
these failed cases and the workflow itself to determine the
root causes of the failures, providing valuable insights for
subsequent optimization efforts.

For instance, if a workflow execution results in unsuccessful

data points, the reflection model dissectes the workflow to
pinpoint the specific steps that contributed to these outcomes.
This nuanced feedback is subsequently integrated into the
current workflow’s nodes, thereby informing and improving
future decision-making processes. Through this iterative
mechanism, our framework systematically enhances the
robustness and efficiency of the workflows, ensuring contin-
uous improvement and adaptation to diverse challenges.

5. Experiments
5.1. Experiment Setup

Tasks and Benchmarks. We conduct experiments on
six representative tasks covering four domains:(1)reading
comprehension, HotpotQA(Yang et al., 2018), DROP(Dua
et al., 2019); (2)math reasoning, MATH(Hendrycks et al.,
2021); (3)code generation, HumanEval(Chen et al., 2021)
and MBPP(Austin et al., 2021); (4)embodied, ALF-
World(Shridhar et al., 2020). Following prior studies such
as (Hu et al., 2024a) and (Shinn et al., 2023), we extracted
1,000 random samples each from the HotpotQA and DROP
datasets. We also examined 617 problems from the MATH
dataset, specifically choosing difficulty level 5 questions
across four categories: Combinatorics & Probability, Num-
ber Theory, Pre-algebra, and Pre-calculus, consistent with
the approach taken by (Hong et al., 2024a).

Baselines. We compare DebFlow with two series of agentic
baselines:(1) manually designed workflows, IO (direct LLM
invocation), Chain-of-Thought(Wei et al., 2022b), Self-
Consistency (SC)(Wang et al., 2022b), MultiPersona(Wang
et al., 2024b); (2) autonomous workflows, ADAS(Hu et al.,
2024a), AFlow(Zhang et al., 2024a).

LLM Backbones. In our experimental framework,
DebFlow utilizes different models for optimization and exe-
cution. We employ GPT-4o-mini as the optimizer and use
models: GPT-4o-mini-0718, Claude-3.5-sonnet-0620, GPT-
4o-0513 as executors. All models are accessed via APIs.
We set the temperature to 0 for all models. We set iteration
rounds to 20 for AFLOW and 10 for DebFlow. For ADAS,
we use Claude-3.5-sonnet as the optimizer and GPT-4o-mini
as the executor, with the iteration rounds set to 30.

Evaluation Metrics. For quantitative assessment of model
performance, we employ task-specific evaluation criteria
across our experimental datasets. In mathematical reason-
ing tasks (GSM8K and MATHlv5*), solution accuracy is
measured via the Solve Rate percentage metric. For pro-
gramming proficiency evaluation (HumanEval and MBPP),
we utilize the pass@1 metric, following the methodology
established by (Chen et al., 2021). Question-answering per-
formance (HotpotQA and DROP) is assessed through F1
Score computation. To comprehensively evaluate method-
ological efficiency, we conduct token consumption analysis

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Submission and Formatting Instructions for ICML 2025

Method MATH HotpotQA HumanEval MBPP ALFWorld DROP Avg.
IO (GPT-4o-mini) 47.8 68.1 87.0 71.8 38.7 68.3 63.6
CoT (Wei et al., 2022c) 48.8 67.9 88.6 71.8 39.9 78.5 65.9
CoT SC (Wang et al., 2022a) 47.9 68.9 88.6 73.6 40.5 78.8 66.4
MultiPersona (Wang et al., 2023c) 50.8 69.2 88.3 73.1 39.1 74.4 68.8
Self Refine (Madaan et al., 2023b) 46.1 60.8 87.8 69.8 40.0 70.2 62.5
ADAS (Hu et al., 2024b) 43.1 64.5 82.4 53.4 47.7 76.6 61.3
AFlow (Zhang et al., 2024b) 53.8 73.5 90.9 81.4 59.2 80.3 73.2
DebFlow(Ours) 55.5 75.4 91.5 82.4 62.3 80.7 74.6

Table 1. Comparison of performance between manually designed methods and workflow generated by automated workflow optimization
methods. All methods are executed with GPT-4o-mini on divided test set, and we tested it three times and reported it on the average.

Method MATH HotpotQA HumanEval MBPP DROP Avg.
AFlowgpt-4o-mini (Zhang et al., 2024b) 4.76 5.12 0.84 5.56 3.36 3.93
DebFlowgpt-4o-mini 4.23 3.34 0.61 1.78 1.24 2.24
AFlowdeepseek (Zhang et al., 2024b) 2.76 3.42 0.54 0.88 2.02 1.93
DebFlowdeepseek 2.10 2.56 0.34 0.62 1.21 1.43

Table 2. Training API costs. All the baselines employ GPT-4o-mini as the optimizer and the executor.

across all datasets, constructing Pareto-optimal frontiers to
elucidate the performance-cost equilibrium among diverse
approaches.

5.2. EXPERIMENTAL RESULTS AND ANALYSIS

Main Results. Table 1 demonstrates that DebFlow out-
performs existing hand-crafted or automated agentic work-
flows across six benchmarks. Specifically, On the embod-
ied benchmark ALFWorld, DebFlow achieves the optimal
62.3%, outperforming the secondbest AFLOW by 3.1%.
On the MATH benchmark, it exceeds IO(gpt-4o-mini) by
7.7% and surpasses the SOTA baseline AFlow by 1.7%.
Across six datasets in QA, Code, Embodied and Math do-
mains, Debflow surpasses all manually crafted workflows
and demonstrates marginal improvements compared to au-
tomatically generated workflows.

Cost Analysis. We demonstrate the resource-friendly na-
ture of DebFlow’s agentic automation system in training
API costs. During the search process, we conducted three
trials and averaged the results across various benchmarks,
employing GPT-4o-mini as the optimizer and the executor.
As shown in Table 2, Across various benchmarks, Debflow
consistently demonstrates lower training costs compared
to Aflow. Notably, in the MBPP benchmark, DebFlow
incurred a cost of 1.78$, while AFlow required 5.56$, repre-
senting a 68% reduction in expenditure. Overall, Debflow
demonstrates an average reduction in consumption of 43%
compared to AFlow.

Debate Study. Next, we analyze the impact of the number
of debating agents in the debate. In Figure 3, we increase
the number of debating agents, while maintaining a fixed de-

Figure 3. Effect of Number of agent debate

bate length of two rounds. It seems intuitive that increasing
the number of debaters would enhance diversity of thought
and subsequently improve performance. However, our ex-
periments show an increase in the number of debaters has
resulted in varying degrees of performance reduction. As
the number of debating agents increases, the mathematical
performance demonstrates a non-monotonic trend, initially
improving before subsequently declining. This phenomenon
can be attributed to the fact that an expansion in the num-
ber of participants corresponds to increased textual length
and complexity. Language model-based debaters exhibit a
propensity to lose track of perspectives articulated by other
agents during extended multi-party discussions, compro-
mising their ability to effectively incorporate all relevant
viewpoints.

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Submission and Formatting Instructions for ICML 2025

Figure 4. The ablation study of DebFlow

Ablation Study. To evaluate the contribution of each com-
ponent in our proposed method, we conducted a series of
ablation studies. We perform an ablation study on two
variants of DebFlow: w/o Debate, where agent debate is
removed and replaced with an LLM as an optimizer to
create new workflows while randomly selecting candidate
workflows; w/o reflexion, where self-reflection is removed.
Figure 4 presents the results of our experiments. The com-
plete framework achieved strong performance across both
datasets, obtaining 55.5% accuracy on MATH and 75.4%
on HotpotQA. When the debate component was removed
(w/o debate), performance decreased notably to 51.4% on
MATH and 71.5% on HotpotQA, demonstrating the criti-
cal role of multi-agent deliberation in enhancing reasoning
capabilities. Similarly, ablating the reflection mechanism
(w/o reflection) resulted in performance drops to 53.7% on
MATH and 72.8% on HotpotQA. These results confirm
that both components contribute substantially to the overall
effectiveness of our approach, with the debate component
showing a slightly larger impact on performance across both
datasets.

Case Study. As shown in Figure 5, beginning with a single
node (Node 1, score 0.4789), each iteration involved pre-
cisely one targeted modification or addition. First, in Node
2 (score 0.4846), an additional review step was introduced
to verify solutions before returning results, slightly improv-
ing accuracy. Next, Node 3 (score 0.4854) incorporated a
”Programmer” operator that automatically writes and exe-
cutes Python code to solve problems, further optimizing the
resolution process. Subsequently, Node 4 (score 0.4922)
added a self-ensemble step to generate multiple solutions
and select the best one, ensuring its robustness and accuracy.
In parallel, certain exploratory branches (such as Nodes 5
and 7) attempted direct modifications to already generated
complex solutions, but failed to improve accuracy due to in-
sufficient further reasoning. Finally, Node 8 (score 0.5546)

Figure 5. Tree-structured iteration process of DebFlow and AFlow
on MATH

implemented custom formatting operations, making the out-
put more consistent with expected formats and achieving
the highest accuracy to date. Similarly, Figure 5 demon-
strates the tree structure iteration process of aflow on math.
Node 3 introduces the ”review” operation, which is already
present in Node 2. This redundancy leads to suboptimal
performance. Similarly, Node 6 adds the ”self-consistency”
effect, aligning with Node 14. However, instead of im-
proving performance, this change results in a performance
decline, forcing AFlow to re-optimize Node 2 to achieve
the outcome of Node 14. This example demonstrates that
AFlow makes numerous erroneous attempts during the op-
timization process. These errors arise from the incorrect
selection of the node to optimize and misguided judgments
about the optimization direction, leading to an increase in
cost. In contrast, our DebFlow can achieve precise optimiza-
tion. Detailed comparison of the workflow structures can be
found in Appendix B

6. CONCLUSION
In conclusion, we introduced DebFlow, a novel framework
that optimizes workflows using agent debate and reflection
mechanisms. This approach offers a significant improve-
ment in both performance and efficiency over existing meth-
ods. Future work will explore extending DebFlow to handle
more complex, multi-domain tasks and further reduce its
computational cost. By utilizing LLM agent call nodes
as basic building blocks and driven by structured multi-
agent debates, DebFlow efficiently searches and optimizes

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Submission and Formatting Instructions for ICML 2025

workflows based on task specifications and historical ex-
ecution feedback. Experimental results demonstrate that
DebFlow achieves an average performance improvement
of approximately 3% across six different datasets, outper-
forming existing manual design and automated methods in
mathematical reasoning, question answering, code gener-
ation, and entity tasks. Meanwhile, cost analysis reveals
that DebFlow reduces resource consumption by 37% during
the training process compared to state-of-the-art baselines,
further validating its cost-effectiveness in practical appli-
cations. Ablation studies also confirm the critical role of
the debate mechanism in enhancing overall performance,
with the removal of the debate module resulting in more
significant performance degradation compared to relying
solely on reflection. Overall, DebFlow provides a more
efficient, energy-saving, and adaptive solution for automatic
agent generation, with future work potentially exploring
more complex reasoning strategies and extensions to cross-
domain applications.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski,

H., Dohan, D., Jiang, E., Cai, C. J., Terry, M.,
Le, Q. V., and Sutton, C. Program synthesis
with large language models. ArXiv, abs/2108.07732,
2021. URL https://api.semanticscholar.
org/CorpusID:237142385.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pondé, H., Kaplan,
J., Edwards, H., Burda, Y., Joseph, N., Brockman, G.,
Ray, A., Puri, R., Krueger, G., Petrov, M., Khlaaf, H.,
Sastry, G., Mishkin, P., Chan, B., Gray, S., Ryder, N.,
Pavlov, M., Power, A., Kaiser, L., Bavarian, M., Winter,
C., Tillet, P., Such, F. P., Cummings, D. W., Plappert, M.,
Chantzis, F., Barnes, E., Herbert-Voss, A., Guss, W. H.,
Nichol, A., Babuschkin, I., Balaji, S., Jain, S., Carr, A.,
Leike, J., Achiam, J., Misra, V., Morikawa, E., Radford,
A., Knight, M. M., Brundage, M., Murati, M., Mayer,
K., Welinder, P., McGrew, B., Amodei, D., McCandlish,
S., Sutskever, I., and Zaremba, W. Evaluating large lan-
guage models trained on code. ArXiv, abs/2107.03374,
2021. URL https://api.semanticscholar.
org/CorpusID:235755472.

Du, Y., Li, S., Torralba, A., Tenenbaum, J. B., and Mordatch,
I. Improving factuality and reasoning in language mod-
els through multiagent debate. ArXiv, abs/2305.14325,

2023. URL https://api.semanticscholar.
org/CorpusID:258841118.

Dua, D., Wang, Y., Dasigi, P., Stanovsky, G., Singh, S.,
and Gardner, M. DROP: A reading comprehension
benchmark requiring discrete reasoning over paragraphs.
In Burstein, J., Doran, C., and Solorio, T. (eds.), Pro-
ceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1 (Long
and Short Papers), pp. 2368–2378, Minneapolis, Min-
nesota, June 2019. Association for Computational Lin-
guistics. doi: 10.18653/v1/N19-1246. URL https:
//aclanthology.org/N19-1246/.

Fernando, C., Banarse, D. S., Michalewski, H., Osindero,
S., and Rocktäschel, T. Promptbreeder: Self-referential
self-improvement via prompt evolution. In Forty-
first International Conference on Machine Learning,
2024. URL https://openreview.net/forum?
id=9ZxnPZGmPU.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A.,
Basart, S., Tang, E., Song, D. X., and Stein-
hardt, J. Measuring mathematical problem solv-
ing with the math dataset. ArXiv, abs/2103.03874,
2021. URL https://api.semanticscholar.
org/CorpusID:232134851.

Hong, S., Lin, Y., Liu, B., Wu, B., Li, D., Chen, J., Zhang,
J., Wang, J., Zhang, L., Zhuge, M., Guo, T., Zhou, T.,
Tao, W., Wang, W., Tang, X., Lu, X., Liang, X., Fei, Y.,
Cheng, Y., Gou, Z., Xu, Z., Wu, C., Zhang, L., Yang, M.,
and Zheng, X. Data interpreter: An llm agent for data
science. arXiv preprint, 2024a.

Hong, S., Zhuge, M., Chen, J., Zheng, X., Cheng, Y., Wang,
J., Zhang, C., Wang, Z., Yau, S. K. S., Lin, Z., Zhou, L.,
Ran, C., Xiao, L., Wu, C., and Schmidhuber, J. MetaGPT:
Meta programming for a multi-agent collaborative frame-
work. In The Twelfth International Conference on Learn-
ing Representations, 2024b.

Hu, S., Lu, C., and Clune, J. Automated de-
sign of agentic systems. ArXiv, abs/2408.08435,
2024a. URL https://api.semanticscholar.
org/CorpusID:271892234.

Hu, S., Lu, C., and Clune, J. Automated design of agentic
systems. arXiv preprint arXiv:2408.08435, 2024b.

Jin, Y., Yang, R., Yi, Z., Shen, X., Peng, H., Liu, X.,
Qin, J., Li, J., Xie, J., Gao, P., Zhou, G., and Gong,
J. Surrealdriver: Designing llm-powered generative
driver agent framework based on human drivers’ driving-
thinking data. 2024 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 966–971,

7

https://api.semanticscholar.org/CorpusID:237142385
https://api.semanticscholar.org/CorpusID:237142385
https://api.semanticscholar.org/CorpusID:235755472
https://api.semanticscholar.org/CorpusID:235755472
https://api.semanticscholar.org/CorpusID:258841118
https://api.semanticscholar.org/CorpusID:258841118
https://aclanthology.org/N19-1246/
https://aclanthology.org/N19-1246/
https://openreview.net/forum?id=9ZxnPZGmPU
https://openreview.net/forum?id=9ZxnPZGmPU
https://api.semanticscholar.org/CorpusID:232134851
https://api.semanticscholar.org/CorpusID:232134851
https://api.semanticscholar.org/CorpusID:271892234
https://api.semanticscholar.org/CorpusID:271892234

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Submission and Formatting Instructions for ICML 2025

2023. URL https://api.semanticscholar.
org/CorpusID:271329438.

Li, Z., Xu, S., Mei, K., Hua, W., Rama, B., Ra-
heja, O., Wang, H., Zhu, H., and Zhang, Y. Aut-
oflow: Automated workflow generation for large
language model agents. ArXiv, abs/2407.12821,
2024. URL https://api.semanticscholar.
org/CorpusID:271270428.

Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao, L.,
Wiegreffe, S., Alon, U., Dziri, N., Prabhumoye, S., Yang,
Y., Gupta, S., Majumder, B. P., Hermann, K., Welleck,
S., Yazdanbakhsh, A., and Clark, P. Self-refine: Iterative
refinement with self-feedback. In Oh, A., Naumann, T.,
Globerson, A., Saenko, K., Hardt, M., and Levine, S.
(eds.), Advances in Neural Information Processing Sys-
tems, volume 36, pp. 46534–46594. Curran Associates,
Inc., 2023a.

Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao,
L., Wiegreffe, S., Alon, U., Dziri, N., Prabhumoye, S.,
Yang, Y., Welleck, S., Majumder, B. P., Gupta, S., Yaz-
danbakhsh, A., and Clark, P. Self-refine: Iterative re-
finement with self-feedback. ArXiv, abs/2303.17651,
2023b. URL https://api.semanticscholar.
org/CorpusID:257900871.

Saad-Falcon, J., Lafuente, A. G., Natarajan, S., Maru,
N., Todorov, H., Guha, E. K., Buchanan, E. K.,
Chen, M., Guha, N., Ré, C., and Mirhoseini,
A. Archon: An architecture search framework for
inference-time techniques. ArXiv, abs/2409.15254,
2024. URL https://api.semanticscholar.
org/CorpusID:272827424.

Shinn, N., Cassano, F., Labash, B., Gopinath, A.,
Narasimhan, K., and Yao, S. Reflexion: language
agents with verbal reinforcement learning. In Neural
Information Processing Systems, 2023. URL https:
//api.semanticscholar.org/CorpusID:
258833055.

Shridhar, M., Yuan, X., Côté, M.-A., Bisk, Y., Trischler,
A., and Hausknecht, M. J. Alfworld: Aligning text
and embodied environments for interactive learn-
ing. ArXiv, abs/2010.03768, 2020. URL https:
//api.semanticscholar.org/CorpusID:
222208810.

Song, C. H., Sadler, B. M., Wu, J., Chao, W.-L., Washington,
C., and Su, Y. Llm-planner: Few-shot grounded planning
for embodied agents with large language models. In 2023
IEEE/CVF International Conference on Computer Vision
(ICCV), pp. 2986–2997, 2023. doi: 10.1109/ICCV51070.
2023.00280.

Tang, N., Yang, C., Fan, J., and Cao, L. Veri-
fai: Verified generative ai. ArXiv, abs/2307.02796,
2023. URL https://api.semanticscholar.
org/CorpusID:259360404.

Wang, G., Xie, Y., Jiang, Y., Mandlekar, A., Xiao, C., Zhu,
Y., Fan, L., and Anandkumar, A. Voyager: An open-ended
embodied agent with large language models. Transac-
tions on Machine Learning Research, 2024a. ISSN 2835-
8856.

Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang,
S., Chowdhery, A., and Zhou, D. Self-consistency im-
proves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022a.

Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E. H., and
Zhou, D. Self-consistency improves chain of thought
reasoning in language models. ArXiv, abs/2203.11171,
2022b. URL https://api.semanticscholar.
org/CorpusID:247595263.

Wang, X., Wei, J., Schuurmans, D., Le, Q. V., Chi,
E. H., Narang, S., Chowdhery, A., and Zhou, D. Self-
consistency improves chain of thought reasoning in lan-
guage models. In The Eleventh International Confer-
ence on Learning Representations, 2023a. URL https:
//openreview.net/forum?id=1PL1NIMMrw.

Wang, Z., Mao, S., Wu, W., Ge, T., Wei, F., and Ji,
H. Unleashing the emergent cognitive synergy in large
language models: A task-solving agent through multi-
persona self-collaboration. In North American Chap-
ter of the Association for Computational Linguistics,
2023b. URL https://api.semanticscholar.
org/CorpusID:259765919.

Wang, Z., Mao, S., Wu, W., Ge, T., Wei, F., and Ji, H. Un-
leashing the emergent cognitive synergy in large language
models: A task-solving agent through multi-persona self-
collaboration. arXiv preprint arXiv:2307.05300, 2023c.

Wang, Z., Mao, S., Wu, W., Ge, T., Wei, F., and Ji, H. Un-
leashing the emergent cognitive synergy in large language
models: A task-solving agent through multi-persona self-
collaboration. In Duh, K., Gomez, H., and Bethard, S.
(eds.), Proceedings of the 2024 Conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies (Volume
1: Long Papers), pp. 257–279, Mexico City, Mexico,
June 2024b. Association for Computational Linguistics.
doi: 10.18653/v1/2024.naacl-long.15. URL https://
aclanthology.org/2024.naacl-long.15/.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., ichter,
b., Xia, F., Chi, E., Le, Q. V., and Zhou, D. Chain-of-
thought prompting elicits reasoning in large language

8

https://api.semanticscholar.org/CorpusID:271329438
https://api.semanticscholar.org/CorpusID:271329438
https://api.semanticscholar.org/CorpusID:271270428
https://api.semanticscholar.org/CorpusID:271270428
https://api.semanticscholar.org/CorpusID:257900871
https://api.semanticscholar.org/CorpusID:257900871
https://api.semanticscholar.org/CorpusID:272827424
https://api.semanticscholar.org/CorpusID:272827424
https://api.semanticscholar.org/CorpusID:258833055
https://api.semanticscholar.org/CorpusID:258833055
https://api.semanticscholar.org/CorpusID:258833055
https://api.semanticscholar.org/CorpusID:222208810
https://api.semanticscholar.org/CorpusID:222208810
https://api.semanticscholar.org/CorpusID:222208810
https://api.semanticscholar.org/CorpusID:259360404
https://api.semanticscholar.org/CorpusID:259360404
https://api.semanticscholar.org/CorpusID:247595263
https://api.semanticscholar.org/CorpusID:247595263
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://api.semanticscholar.org/CorpusID:259765919
https://api.semanticscholar.org/CorpusID:259765919
https://aclanthology.org/2024.naacl-long.15/
https://aclanthology.org/2024.naacl-long.15/

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Submission and Formatting Instructions for ICML 2025

models. In Koyejo, S., Mohamed, S., Agarwal,
A., Belgrave, D., Cho, K., and Oh, A. (eds.), Ad-
vances in Neural Information Processing Systems,
volume 35, pp. 24824–24837. Curran Associates, Inc.,
2022a. URL https://proceedings.neurips.
cc/paper_files/paper/2022/file/
9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.
pdf.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B.,
Xia, F., Chi, E. H., Le, Q. V., and Zhou, D. Chain-of-
thought prompting elicits reasoning in large language
models. In Proceedings of the 36th International Confer-
ence on Neural Information Processing Systems, NIPS
’22, Red Hook, NY, USA, 2022b. Curran Associates Inc.
ISBN 9781713871088.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E., Le, Q. V., Zhou, D., et al. Chain-of-thought prompting
elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837,
2022c.

Xie, Y., Luo, Y., Li, G., and Tang, N. Haichart: Human and
ai paired visualization system. ArXiv, abs/2406.11033,
2024.

Yang, C., Wang, X., Lu, Y., Liu, H., Le, Q. V., Zhou, D., and
Chen, X. Large language models as optimizers. In The
Twelfth International Conference on Learning Represen-
tations, 2024. URL https://openreview.net/
forum?id=Bb4VGOWELI.

Yang, Z., Qi, P., Zhang, S., Bengio, Y., Cohen, W.,
Salakhutdinov, R., and Manning, C. D. HotpotQA: A
dataset for diverse, explainable multi-hop question an-
swering. In Riloff, E., Chiang, D., Hockenmaier, J.,
and Tsujii, J. (eds.), Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pp. 2369–2380, Brussels, Belgium, October-
November 2018. Association for Computational Lin-
guistics. doi: 10.18653/v1/D18-1259. URL https:
//aclanthology.org/D18-1259/.

Zhang, J., Xiang, J., Yu, Z., Teng, F., Chen, X., Chen,
J., Zhuge, M., Cheng, X., Hong, S., Wang, J., Zheng,
B., Liu, B., Luo, Y., and Wu, C. Aflow: Automating
agentic workflow generation. ArXiv, abs/2410.10762,
2024a. URL https://api.semanticscholar.
org/CorpusID:273345847.

Zhang, J., Xiang, J., Yu, Z., Teng, F., Chen, X., Chen, J.,
Zhuge, M., Cheng, X., Hong, S., Wang, J., et al. Aflow:
Automating agentic workflow generation. arXiv preprint
arXiv:2410.10762, 2024b.

Zhang, J., Zhao, C., Zhao, Y., Yu, Z., He, M., and Fan, J.
Mobileexperts: A dynamic tool-enabled agent team in
mobile devices. ArXiv, abs/2407.03913, 2024c.

Zhong, Q., Wang, K., Xu, Z., Liu, J., Ding, L., Du, B., and
Tao, D. Achieving ¿97arXiv preprint arXiv:2404.14963,
2024.

Zhou, A., Yan, K., Shlapentokh-Rothman, M., Wang, H.,
and Wang, Y.-X. Language agent tree search unifies rea-
soning, acting, and planning in language models. In Forty-
first International Conference on Machine Learning,
2024a. URL https://openreview.net/forum?
id=njwv9BsGHF.

Zhou, W., Ou, Y., Ding, S., Li, L., Wu, J., Wang,
T., Chen, J., Wang, S., Xu, X., Zhang, N., Chen,
H., and Jiang, Y. E. Symbolic learning en-
ables self-evolving agents. ArXiv, abs/2406.18532,
2024b. URL https://api.semanticscholar.
org/CorpusID:270737580.

Zhu, J.-P., Cai, P., Xu, K., Li, L., Sun, Y., Zhou, S.,
Su, H., Tang, L., and Liu, Q. Autotqa: Towards au-
tonomous tabular question answering through multi-agent
large language models. Proc. VLDB Endow., 17(12):
3920–3933, August 2024. ISSN 2150-8097. doi: 10.
14778/3685800.3685816. URL https://doi.org/
10.14778/3685800.3685816.

Zhuge, M., Wang, W., Kirsch, L., Faccio, F., Khizbullin, D.,
and Schmidhuber, J. GPTSwarm: Language agents as op-
timizable graphs. In Forty-first International Conference
on Machine Learning, 2024.

9

https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://openreview.net/forum?id=Bb4VGOWELI
https://openreview.net/forum?id=Bb4VGOWELI
https://aclanthology.org/D18-1259/
https://aclanthology.org/D18-1259/
https://api.semanticscholar.org/CorpusID:273345847
https://api.semanticscholar.org/CorpusID:273345847
https://openreview.net/forum?id=njwv9BsGHF
https://openreview.net/forum?id=njwv9BsGHF
https://api.semanticscholar.org/CorpusID:270737580
https://api.semanticscholar.org/CorpusID:270737580
https://doi.org/10.14778/3685800.3685816
https://doi.org/10.14778/3685800.3685816

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

Submission and Formatting Instructions for ICML 2025

A. Appendix
A.1. BASIC NODE

class ActionNode:
async def fill(

self,
context, #:param context: Everything we should know when filling node.
llm, #:param llm: Large Language Model with pre-defined system message.
...)
return self

A.2. INITIAL WORKFLOW STRUCTURE

class Workflow:
def __init__(

self,
name: str,
llm_config,
dataset: DatasetType,

) -> None:
self.name = name
self.dataset = dataset
self.llm = create_llm_instance(llm_config)
self.llm.cost_manager = CostManager()
self.custom = operator.Custom(self.llm)

async def __call__(self, problem: str):
"""
Implementation of the workflow
"""
solution = await self.custom(input=problem, instruction="")
return solution[’response’], self.llm.cost_manager.total_cost

A.3. WORKFLOW OPTIMIZE PROMPT

workflow_optimize_prompt = """
First, provide optimization ideas. Only one detail point can be modified at a time, and

no more than 5 lines of code may be changed per modification--extensive modifications
are strictly prohibited to maintain project focus!

When introducing new functionalities in the graph, please make sure to import the
necessary libraries or modules yourself, except for operator, prompt_custom,
create_llm_instance, and CostManage, which have already been automatically imported.

Under no circumstances should Graph output None for any field.
Use custom methods to restrict your output format, rather than using code (outside of the

code, the system will extract answers based on certain rules and score them).
It is very important to format the Graph output answers, you can refer to the standard

answer format in the log.

Here’s an example of using the ‘custom‘ method in graph:
‘‘‘
You can write your own prompt in <prompt>prompt_custom</prompt> and then use it in the

Custom method in the graph
response = await self.custom(input=problem, instruction=prompt_custom.XXX_PROMPT)
You can also concatenate previously generated string results in the input to provide

more comprehensive contextual information.
response = await self.custom(input=problem+f"xxx:{xxx}, xxx:{xxx}",

instruction=prompt_custom.XXX_PROMPT)
The output from the Custom method can be placed anywhere you need it, as shown in the

example below
solution = await self.generate(problem=f"question:{problem}, xxx:{response[’response’]}")
‘‘‘

10

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

Submission and Formatting Instructions for ICML 2025

Note: In custom, the input and instruction are directly concatenated(instruction+input),
and placeholders are not supported. Please ensure to add comments and handle the
concatenation externally.\n

**Introducing multiple operators at appropriate points can enhance performance. If you
find that some provided operators are not yet used in the graph, try incorporating
them. Be careful not to import operators that are not included in the operator,
otherwise the program will fail.**

please reconstruct and optimize them. You can add, modify, or delete nodes, parameters,
or prompts. Include your single modification in XML tags in your reply. Ensure they
are complete and correct to avoid runtime failures.

When optimizing, you can incorporate critical thinking methods like review, revise,
ensemble (generating multiple answers through different/similar prompts, then
voting/integrating/checking the majority to obtain a final answer), selfAsk, etc.
Consider

Python’s loops (for, while, list comprehensions), conditional statements (if-elif-else,
ternary operators),

or machine learning techniques (e.g., linear regression, decision trees, neural networks,
clustering). The graph

complexity should not exceed 10. Use logical and control flow (IF-ELSE, loops) for a more
enhanced graphical

representation.Ensure that all the prompts required by the current graph from
prompt_custom are included.Exclude any other prompts.

Output the modified graph and all the necessary Prompts in prompt_custom (if needed).
The prompt you need to generate is only the one used in ‘prompt_custom.XXX‘ within

Custom. Other methods already have built-in prompts and are prohibited from being
generated. Only generate those needed for use in ‘prompt_custom‘; please remove any
unused prompts in prompt_custom.

the generated prompt must not contain any placeholders.
Considering information loss, complex graphs may yield better results, but insufficient

information transmission can omit the solution. It’s crucial to include necessary
context during the process.

"""

A.4. AGENT DEBATE

debate_prompt_meta_1 = """You are a debater. Hello and welcome to the debate. It’s not
necessary to fully agree with each other’s perspectives, as our objective is to find
the correct answer.

The debate topic is how to optimize the Graph and corresponding Prompt. You should
analyze log data and come up with an optimization plan.

Below are the logs of some results with the aforementioned Graph that performed well but
encountered errors, which can be used as references for optimization:

{log}

It is very important to format the Graph output answers, you can refer to the standard
answer format in the log.

"""

debate_prompt_meta_2 ="""
Below is my answer based on the initial graph and prompt. Do you agree with my

perspective? You have to consider whether my answer can solve the problems in the
logs.

You must make further optimizations and improvements based on this graph. The modified
graph must differ from the provided example, and the specific differences should be
noted within the <modification>xxx</modification> section.

<sample>
<modification>{modification}</modification>
<graph>{graph}</graph>
<prompt>{prompt}</prompt>(only prompt_custom)

</sample>
"""

11

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

Submission and Formatting Instructions for ICML 2025

Debate_prompt = debate_prompt_meta_1 + debate_prompt_meta_2

moderator_prompt_meta_1 = """
You are a moderator. There will be two debaters involved in a debate.
They will present their answers and discuss their perspectives on the following topic:
The debate topic is how to optimize the Graph and corresponding Prompt.
<initial>

<graph>{graph}</graph>
<prompt>{prompt}</prompt>

</initial>

At the end of each round, you will evaluate answers and decide which is correct.
"""

moderator_prompt_meta_2 = """
Now the round of debate for both sides has ended.
You have to consider which side of the workflow will not have problems in the logs after

execution.

Affirmative side arguing:
<aff_ans>

<modification>{aff_modification}</modification>
<graph>{aff_graph}</graph>
<prompt>{aff_prompt}</prompt>

</aff_ans>

Negative side arguing:
<neg_ans>

<modification>{neg_modification}</modification>
<graph>{neg_graph}</graph>
<prompt>{neg_prompt}</prompt>

</neg_ans>

You, as the moderator, will evaluate both sides’ answers and determine if there is a
clear preference for an answer candidate. If so, please output your supporting
’affirmative’ or ’negative’ side and give the final answer that you think is correct,
and the debate will conclude. If not, just output ’No’, the debate will continue to
the next round.

for examples: ’affirmative’ , ’negative’, ’No’
"""

moderator_prompt = moderator_prompt_meta_1 + moderator_prompt_meta_2

judge = """
Now the round of debate for both sides has ended.
You have to consider which side of the workflow will not have problems in the logs after

execution.
Affirmative side arguing:
<aff_ans>

<modification>{aff_modification}</modification>
<graph>{aff_graph}</graph>
<prompt>{aff_prompt}</prompt>

</aff_ans>

Negative side arguing:
<neg_ans>

<modification>{neg_modification}</modification>
<graph>{neg_graph}</graph>
<prompt>{neg_prompt}</prompt>

</neg_ans>

As a judge, the current round has ended. You must choose one of the affirmative and
negative as your final choice. Please base your judgment on the original graph and
the revisions of both affirmative and negative.

12

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

Submission and Formatting Instructions for ICML 2025

If you choose affirmative, please output ’affirmative’. If you choose negative, please
output ’negative’.

for examples: ’affirmative’ , ’negative’

Please strictly output format, do not output irrelevant content.
"""

A.5. OPERATORS

class Programmer(Operator):
async def exec_code(self, code, timeout=30):

loop = asyncio.get_running_loop()
with concurrent.futures.ProcessPoolExecutor(max_workers=1) as executor:

try:
Submit run_code task to the process pool
future = loop.run_in_executor(executor, run_code, code)
Wait for the task to complete or timeout
result = await asyncio.wait_for(future, timeout=timeout)
return result

except asyncio.TimeoutError:
Timeout, attempt to shut down the process pool
executor.shutdown(wait=False, cancel_futures=True)
return "Error", "Code execution timed out"

except Exception as e:
return "Error", f"Unknown error: {str(e)}"

async def code_generate(self, problem, analysis, feedback, mode):
prompt = PYTHON_CODE_VERIFIER_PROMPT.format(

problem=problem,
analysis=analysis,
feedback=feedback

)
response = await self._fill_node(CodeGenerateOp, prompt, mode,

function_name="solve")
return response

@retry(stop=stop_after_attempt(3), wait=wait_fixed(2))
async def __call__(self, problem: str, analysis: str = "None"):

code = None
output = None
feedback = ""
for i in range(3):

code_response = await self.code_generate(problem, analysis, feedback,
mode="code_fill")

code = code_response.get("code")
if not code:

return {"code": code, "output": "No code generated"}
status, output = await self.exec_code(code)
if status == "Success":

return {"code": code, "output": output}
else:

print(f"Execution error on attempt {i + 1}, error message: {output}")
feedback = (

f"\nThe result of the error from the code you wrote in the previous
round:\n"

f"Code: {code}\n\nStatus: {status}, {output}"
)

return {"code": code, "output": output}

class ScEnsemble(Operator):
async def __call__(self, solutions: List[str], problem: str):

answer_mapping = {}
solution_text = ""

13

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

Submission and Formatting Instructions for ICML 2025

for index, solution in enumerate(solutions):
answer_mapping[chr(65 + index)] = index
solution_text += f"{chr(65 + index)}: \n{str(solution)}\n\n\n"

prompt = SC_ENSEMBLE_PROMPT.format(problem=problem, solutions=solution_text)
response = await self._fill_node(ScEnsembleOp, prompt, mode="xml_fill")

answer = response.get("solution_letter", "")
answer = answer.strip().upper()

return {"response": solutions[answer_mapping[answer]]}

class CustomCodeGenerate(Operator):
async def __call__(self, problem, entry_point, instruction):

prompt = instruction + problem
response = await self._fill_node(GenerateOp, prompt, mode="code_fill",

function_name=entry_point)
return response

class Test(Operator):
def exec_code(self, solution, entry_point):

test_cases = extract_test_cases_from_jsonl(entry_point, dataset="MBPP")

fail_cases = []
for test_case in test_cases:

test_code = test_case_2_test_function(solution, test_case, entry_point)
try:

exec(test_code, globals())
except AssertionError as e:

exc_type, exc_value, exc_traceback = sys.exc_info()
tb_str = traceback.format_exception(exc_type, exc_value, exc_traceback)
with open("tester.txt", "a") as f:

f.write("test_error of " + entry_point + "\n")
error_infomation = {

"test_fail_case": {
"test_case": test_case,
"error_type": "AssertionError",
"error_message": str(e),
"traceback": tb_str,

}
}
fail_cases.append(error_infomation)

except Exception as e:
with open("tester.txt", "a") as f:

f.write(entry_point + " " + str(e) + "\n")
return {"exec_fail_case": str(e)}

if fail_cases != []:
return fail_cases

else:
return "no error"

async def __call__(
self, problem, solution, entry_point, test_loop: int = 3

):
for _ in range(test_loop):

result = self.exec_code(solution, entry_point)
if result == "no error":

return {"result": True, "solution": solution}
elif "exec_fail_case" in result:

result = result["exec_fail_case"]
prompt = REFLECTION_ON_PUBLIC_TEST_PROMPT.format(

problem=problem,
solution=solution,
exec_pass=f"executed unsuccessfully, error: \n {result}",

14

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

Submission and Formatting Instructions for ICML 2025

test_fail="executed unsucessfully",
)
response = await self._fill_node(ReflectionTestOp, prompt,

mode="code_fill")
solution = response["reflection_and_solution"]

else:
prompt = REFLECTION_ON_PUBLIC_TEST_PROMPT.format(

problem=problem,
solution=solution,
exec_pass="executed successfully",
test_fail=result,

)
response = await self._fill_node(ReflectionTestOp, prompt,

mode="code_fill")
solution = response["reflection_and_solution"]

result = self.exec_code(solution, entry_point)
if result == "no error":

return {"result": True, "solution": solution}
else:

return {"result": False, "solution": solution}

class AnswerGenerate(Operator):
async def __call__(self, input: str, mode: str = None) -> Tuple[str, str]:

prompt = ANSWER_GENERATION_PROMPT.format(input=input)
response = await self._fill_node(AnswerGenerateOp, prompt, mode="xml_fill")
return response

class Review(Operator):
async def __call__(self, problem, solution, mode: str = None):

prompt = REVIEW_PROMPT.format(problem_description=problem, solution=solution, ,
criteria=self.criteria)

fill_kwargs = {"context": prompt, "llm": self.llm}
if mode: fill_kwargs["mode"] = mode
node = await ActionNode.from_pydantic(ReviewOp).fill(**fill_kwargs)
response = node.instruct_content.model_dump()
return response

class Revise(Operator):
async def __call__(self, problem, solution, feedback, mode: str = None):

prompt = REVISE_PROMPT.format(problem_description=problem, solution=solution, ,
feedback=feedback)

fill_kwargs = {"context": prompt, "llm": self.llm}
if mode: fill_kwargs["mode"] = mode
node = await ActionNode.from_pydantic(ReviseOp).fill(**fill_kwargs)
response = node.instruct_content.model_dump()
return response

B. Case Study
B.1. Case Study of DebFlow

SOLVE_PROMPT = """
Solve the given mathematical problem step by step. Show your work and explain each step

clearly. If the problem involves geometry, include a description of the relevant
geometric properties and relationships. If the problem is multiple choice, explain
why the chosen answer is correct and why the others are incorrect.

Problem:
{input}

Provide a detailed solution:
"""

15

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

Submission and Formatting Instructions for ICML 2025

FORMAT_PROMPT = """
Format the given solution to match the following guidelines:
1. If there’s a final numerical answer, enclose it in \boxed{}.
2. For multiple-choice questions, state the correct answer as a single letter (A, B, C,

D, or E) without additional explanation.
3. If the answer is in radical form, leave it as is without simplifying to a decimal.
4. Ensure that all mathematical expressions are properly formatted using LaTeX notation

where appropriate.

Given problem and solution:
{input}

Formatted answer:
"""

async def __call__(self, problem: str):
"""
Implementation of the workflow
"""
Generate multiple solutions
solutions = []
for _ in range(3): # Generate 3 solutions

response = await self.custom(input=problem, instruction="")
solutions.append(response[’response’])

Review the generated solution
reviewed_solution = await self.sc_ensemble(solutions=[solution], problem=problem)

Use the programmer to analyze and generate code for the reviewed solution
code_solution = await self.programmer(problem=problem,

analysis=reviewed_solution[’response’])

Format the final answer
formatted_answer = await self.custom(input=f"Problem: {problem}\nSolution:

{code_solution[’output’]}", instruction=prompt_custom.FORMAT_PROMPT)

return formatted_answer[’response’], self.llm.cost_manager.total_cost

This optimal workflow generated for the MATH task showcases the model’s ability to generate complex, task-specific
solutions from task-agnostic initial settings. It combines programmatic solutions with various reasoning strategies, culmi-
nating in an ensemble selection process, and spontaneously formats the answer into the required form. This adaptation
demonstrates the model’s flexibility in tailoring workflows to different problem domains, while maintaining sophisticated
problem-solving structures.

B.2. Case Study of AFlow

async def __call__(self, problem: str):
"""
Implementation of the workflow
"""
Generate multiple solutions
solutions = []
for _ in range(3): # Generate 3 solutions

response = await self.custom(input=problem, instruction="")
solutions.append(response[’response’])

Review each generated solution for correctness
reviewed_solutions = []
for solution in solutions:

review = await self.custom(input=solution, instruction="Review this solution for
correctness.")

reviewed_solutions.append(review[’response’])

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Submission and Formatting Instructions for ICML 2025

Use self-ensemble to select the best solution from reviewed solutions
ensemble_response = await self.ensemble(solutions=reviewed_solutions, problem=problem)

return ensemble_response[’response’], self.llm.cost_manager.total_cost

When designing workflows, Aflow also generates multiple solutions. However, in the subsequent steps, it reviews each
solution individually before integrating them, lacking a comprehensive analysis of how different solutions complement or
contradict each other. In contrast, Debflow conducts an overall analysis before invoking sc ensemble(), which enhances
the consideration of the strengths and weaknesses of different solutions. This process enables self.programmer() to
generate more reasonable code, whereas Aflow performs ensemble() only on the reviewed textual solutions, which may
lead to information loss and a lack of validation at the code level. Additionally, Debflow further optimizes the final output
using self.custom() in combination with prompt custom.FORMAT PROMPT, ensuring a clear and well-structured
output. In contrast, Aflow lacks similar formatting mechanisms, making its final answer potentially less readable and
structured.

17

