
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

SAMGPT: Text-free Graph Foundation Model for Multi-domain
Pre-training and Cross-domain Adaptation

Anonymous Author(s)∗

Abstract

Graphs are able to model interconnected entities in many online
services, supporting a wide range of applications on the Web. This
raises an important question: How can we train a graph founda-
tional model on multiple source domains and adapt to an unseen
target domain? A major obstacle is that graphs from different do-
mains often exhibit divergent characteristics. Some studies leverage
large language models to align multiple domains based on textual
descriptions associated with the graphs, limiting their applicabil-
ity to text-attributed graphs. For text-free graphs, very few recent
works attempt to align different feature distributions across do-
mains, while generally neglecting structural differences. In this
work, we propose a novel Structure Alignment framework for text-
freeMulti-domain Graph Pre-Training and cross-domain adaptation
(SAMGPT). It is designed to learn multi-domain knowledge from
graphs originating in multiple source domains, which can then be
adapted to address applications in an unseen target domain. Specif-
ically, we introduce a set of structure tokens to harmonize structure-
based aggregation across source domains during the pre-training
phase. Next, for cross-domain adaptation, we design dual prompts,
namely, holistic prompts and specific prompts, which adapt uni-
fied multi-domain structural knowledge and fine-grained, domain-
specific information, respectively, to a target domain. Finally, we
conduct comprehensive experiments on seven public datasets to
evaluate and analyze the effectiveness of SAMGPT. (Codes and
data are available at https://anonymous.4open.science/r/SAMGPT
for anonymous review.)

CCS Concepts

• Information systems→Web mining; Data mining; • Com-

puting methodologies→ Learning latent representations.
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1 Introduction

How to build foundation models has emerged as an important ques-
tion, paving a plausible path toward artificial general intelligence.
In natural language processing, recent works [1, 39] have demon-
strated the capabilities of universal foundation models. They are
trained on a wide variety of data from multiple domains, and can
be further adapted to solve a diverse range of tasks. Other than
natural languages, the World Wide Web has become a vast knowl-
edge repository, connecting an enormous amount of entities to
form extensive and complex graphs. These graphs enable diverse
Web applications, including social network analysis [23, 27], Web
mining [2, 52], and recommendation systems [19, 24]. Given the
rich graph data on the Web, can we build a universal graph model
based on multi-domain graphs, to address various downstream
graph-centric applications [15]?

Traditional supervised graph learning struggles to build uni-
versal models. These approaches require retraining a new graph
neural network (GNN) [7, 12, 40] or graph transformer [29, 54, 62]
for each new task, relying on abundant task-specific labeled data.
In contrast, more recent graph pre-training methods [10, 26, 41]
attempt to learn universal properties from unlabeled graphs in a
self-supervised manner, which can be subsequently adapted to a
downstream task with some task-specific labels through fine-tuning
[11, 26, 41] or prompt learning [17, 37]. However, in most existing
graph pre-training approaches, the pre-training and downstream
graphs originate from the same dataset [17, 37, 41, 55], a practice
we refer to as single-domain methods, which fall short of building a
universal, multi-domain graph model from diverse graph datasets.
Research problem. Thus, it is crucial to pre-train a graph model
on a wide range of multi-domain (i.e., multi-dataset) graphs and
achieve cross-domain adaptation. However, graph structures from
different datasets often exhibit markedly distinct characteristics.
For instance, the structural patterns in a social network might not
be directly applicable to a citation or e-commerce graph. Such diver-
sity poses significant challenges in integrating graphs frommultiple
domains and adapting prior knowledge to different domains. Al-
though some studies have explored cross-domain adaptation from a
single source domain [4, 8, 42, 44, 53], they do not exploit multiple
source domains. Another line of work [14, 38, 50] employs large
language models to extract and utilize multi-domain knowledge
based on textual descriptions associated with the graphs, using text
as an universal medium to bridge different domains. However, this
limits their applicability to text-attributed graphs [46, 66] and can-
not be extended to general graphs without textual descriptions. Few
recent studies [61, 65] have explored multi-domain pre-training on
text-free graphs, but they focus on aligning the divergent feature
spaces and homophily patterns across multi-domain graphs, while
overlooking the structural differences across domains.
Challenges and insights. In this paper, we propose SAMGPT, a
graph foundation model with Structural Alignment for text-free
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Figure 1: Motivation of SAMGPT.

Multi-domain Graph Pre-Training, to facilitate cross-domain adap-
tation. This is non-trivial due to two key challenges.

First, how do we harmonize structural variance across multiple
domains during pre-training? Graphs from different domains often
exhibit distinct structural and topological characteristics, as de-
picted in Appendix C. Consequently, merging multi-domain graphs
without proper structure alignment during pre-training can lead to
interference rather than synergistic benefits, resulting in subopti-
mal performance. In SAMGPT, we propose the notion of structure
tokens to align structural distributions across multiple domains, as
shown in Fig. 1(a). Specifically, each domain is equipped with a
series of structure tokens, which modify the structure-based aggre-
gation in each layer of the graph encoder. These tokens are learnable
vectors that capture domain-specific structural patterns, enabling
the model to accommodate the unique structural characteristics of
each domain during pre-training.

Second, how do we adapt multi-domain structural prior knowledge
to cross-domain downstream tasks? Multi-domain prior knowledge
includes not only holistic knowledge across source domains, but
also domain-specific knowledge from each domain. Therefore, in
SAMGPT, we propose dual structural prompts, comprising a set
of holistic prompts and a set of specific prompts, thus facilitating
the adaptation of both holistic and domain-specific knowledge to
downstream tasks, as illustrated in Fig. 1(b). On one hand, the
holistic prompts consist of learnable vectors that holistically align
the target domain’s structural characteristics with the unified pre-
trained knowledge from all source domains. On the other hand,
specific prompts integrate multi-domain structure tokens in a learn-
able mixture to align the target domain with knowledge from each
source domain, capturing domain-specific structural information
for finer-grained adaptation.
Contributions. In summary, we make the following contributions
in this work. (1) We propose SAMGPT, a text-free graph foun-
dation model with structure alignment for multi-domain graph
pre-training and cross-domain adaptation. (2) For pre-training, we
propose structure tokens to align structural distributions across
domains, training a universal foundation model with multi-domain
graphs. (3) For downstream adaptation, we propose a dual-prompt

strategy, using holistic prompts to leverage holistic prior struc-
tural knowledge and specific prompts to facilitate finer-grained,
domain-specific structural adaptation. (4) We conduct extensive
experiments on seven benchmark datasets. The results demonstrate
that SAMGPT achieves superior performance compared to state-of-
the-art methods.

2 Related Work

We review related literature on pre-training, cross-domain transfer
learning, and multi-domain pre-training for graph data.
Graph pre-training.Graph pre-training methods aim to extract in-
herent properties of graphs, often utilizing self-supervised learning
approaches, which can be either generative [9, 10, 13] or contrastive
[41, 49, 51]. The pre-trained model is then employed to address
downstream tasks through fine-tuning [26, 41, 55] or parameter-
efficient adaptation methods, notably prompt-based learning [5,
17, 36, 57]. However, these methods typically assume that the pre-
training and downstream graphs originate from the same domain,
such as different subgraphs of a large graph [55, 58] or collections
of similar graphs within the same dataset [10, 26], failing to account
for multiple domains in either pre-training or downstream graphs.
Graph cross-domain transfer. This line of work aims to transfer
single-source domain knowledge to a different target domain by
leveraging domain-invariant properties across domains [4, 8, 42, 44].
However, they rely exclusively on a single source domain, failing to
harness the extensive knowledge available across multiple domains.
Additionally, these approaches are often tailored to specific tasks
or domains [4, 8, 42, 44], limiting their generalization.
Multi-domain graphpre-training. In the context ofmulti-domain
pre-training and cross-domain adaptation, recent works [14, 38, 50]
utilize large language models to align node features from different
domains through textual descriptions, thereby limiting their appli-
cability to text-attributed graphs [47, 63, 66]. For graphs without
textual attributes, GraphControl [68] applies ControlNet [64] to in-
corporate target domain node features with the pre-trained model,
while neglecting the alignment among multiple source domains.
Another recent study proposes GCOPE [65], which employ domain-
specific virtual nodes connected to nodes within each domain, facili-
tating the alignment of feature distribution and homophily patterns.
Meanwhile, MDGPT [61] pre-trains domain-specific tokens to align
feature semantics across various domains. However, these studies
do not account for structural variance across different domains,
hindering their effectiveness in integrating multi-domain knowl-
edge. On a related front, multi-task pre-training techniques [45, 60]
employ pretext tokens for each pre-training task. It is important
to note that they address a distinct problem, aiming to overcome
potential interference among multiple tasks within a single domain,
rather than interference across multiple domains.

3 Preliminaries

In this section, we provide technical background, and outline the
scope of our work.
Graph encoder. A graph is defined as 𝐺 = (𝑉 , 𝐸,X), where 𝑉 is
the set of nodes, 𝐸 is the set of edges, and X ∈ R |𝑉 |×𝑑 is the node

2
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feature matrix with each row x𝑖 representing the feature vector of
node 𝑣𝑖 ∈ 𝑉 . A collection of graphs is denoted as G.

Message-passing GNNs are a common choice for encoding graph
representations [48]. Specifically, each node updates its embedding
by receiving and aggregating features or embeddings from its neigh-
bors. By stacking such message-passing layers, information can
propagate recursively throughout the graph. Therefore, the node
embeddings are encoded based on both input features and graph
structure. Let us denote the embedding of node 𝑣 at the 𝑙-th layer
as h𝑙𝑣 , which is derived from the features or embeddings in the
preceding layer as follows.

h𝑙𝑣 = Aggr(h𝑙−1𝑣 , {h𝑙−1𝑢 : 𝑢 ∈ N𝑣};𝜃𝑙 ), (1)

where N𝑣 denotes the set of neighboring nodes of 𝑣 , 𝜃𝑙 represents
the learnable parameters in layer 𝑙 , and Aggr(·) stands for the
neighborhood aggregation function. In the first layer, the node
embedding h0𝑣 is initialized as the input feature vector x𝑣 . We denote
the output node embedding after the last layer as h𝑣 , which is a row
in the node embedding matrix H. Overall, the multi-layer message-
passing process can be abstracted as a graph encoder, as follows.

H = GE(𝐺,X;Θ), (2)

where GE denotes a graph encoder, Θ = {𝜃1, 𝜃2, . . .} is the full set
of trainable parameters for the graph encoder.
Multi-domain pre-training with feature alignment. Consider
a set of unlabeled graphs G𝑆 = {𝐺1,𝐺2, . . . ,𝐺𝐾 } for pre-training,
where each graph𝐺𝑖 belongs to a specific source domain 𝐷𝑆𝑖 ∈ D𝑆 .
Thus, we have graph-domain pairs {(𝐺𝑖 , 𝐷𝑆𝑖 ) : 𝑖 ∈ {1, 2, . . . , 𝐾}}.

As different domains exhibit distinct feature distributions, pre-
vious works [56, 65] have proposed solutions to align feature di-
mensions and semantics, which can be directly employed in our
work. Given a graph 𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖 ,X𝑖 ) from the source domain 𝐷𝑆𝑖 ,
we first align the dimensions of its feature matrix:

X̃𝑖 = DAL𝑆𝑖 (X𝑖 ), (3)

where DAL𝑆𝑖 : R
|𝑉 |×𝑑𝑆𝑖 → R |𝑉 |×𝑑 is the dimension alignment func-

tion for domain 𝐷𝑆𝑖 , transforming the original dimension 𝑑𝑆𝑖 to a
common dimension 𝑑 across domains. We implement DAL as sin-
gular value decomposition [34] following prior art [56, 65]. Next,
given the source-domain graphs G𝑆 with their dimension-aligned
features X̃𝑆 = {X̃𝑖 : 𝐺𝑖 ∈ G𝑆 }, we further align the features to unify
their semantic space across various domains. Letting FAL denote
the feature alignment procedure, we pre-train a graph encoder with
feature alignment:

HFAL = GE(FAL(G𝑆 , X̃𝑆 ;Ψ);Θ), (4)

whereΨ denotes learnable parameters in FAL, andHFAL is the output
node embedding matrix with feature alignment. While any feature
alignment model can be employed [56, 65], we follow the work of
Yu et al. [56] due to its superior performance.
Cross-domain task with feature adaptation. For each down-
stream task, consider a set of graphs G𝑇 belonging to a target
domain 𝐷𝑇 . The task is cross-domain if the target domain is unseen
during pre-training, i.e., ∀𝑖 𝐷𝑇 ≠ 𝐷𝑆𝑖 . Again, since the target do-
main may exhibit different feature characteristics from the source
domains, previous works [61, 65] have proposed feature adaptation

strategies to transfer prior multi-domain knowledge to the target
domain, which can be directly integrated into our work. Specifi-
cally, we first employ the same dimension alignment method used
in the pre-training phase, transforming the feature matrix of a
downstream graph 𝐺 = (𝑉 , 𝐸,X) ∈ G𝑇 to X̃ = DAL𝑇 (X). We then
employ a feature adaptation technique FAD to adapt the pre-trained
model to the target domain, as follow.

HFAD = GE(FAD(G, X̃; Γ);Θpre), (5)

where Γ denotes the learnable parameters in FAD, and Θpre is the
pre-trained weights in graph encoder GE. Here we implement FAD
following Yu et al. [56], which is paired with the feature alignment
method in pre-training.
Our scope: Few-shot classification. For the downstream applica-
tions, we aim to solve few-shot node and graph classification tasks.
For node classification, given a graph 𝐺 = (𝑉 , 𝐸,X) ∈ G𝑇 , each
node 𝑣 ∈ 𝑉 is associated with a label 𝑦 ∈ 𝑌 , where 𝑌 denotes the
set of node classes. For graph classification over a set of graphs
G𝑇 , each graph 𝐺 ∈ G𝑇 is associated with a label 𝑦 ∈ 𝑌 , where 𝑌
denotes the set of graph classes. An𝑚-shot classification task con-
sists of only𝑚 labeled examples per class, along with an arbitrary
number of unlabeled examples for testing.

In particular, we focus on low-shot settings, where𝑚 is a small
number (e.g.,𝑚 ≤ 5), reflecting real-world applications where la-
beled data are expensive or difficult to obtain. Due to the parameter-
efficient nature of prompt learning, many previous methods for
prompt learning on graphs [17, 37, 57, 61, 65] also emphasize this
setting. It is expected that, as more task-specific labeled data be-
come available, conventional fine-tuning or supervised approaches
may become sufficient.

4 Proposed Approach: SAMGPT

In this section, we present SAMGPT, beginning with an overview
and then delving into the details of multi-domain pre-training and
cross-domain adaptation.

4.1 Overall Framework

SAMGPT consists of two phases: multi-domain pre-training, and
cross-domain adaptation, as shown in Fig. 2.

In the pre-training phase, as depicted in Fig. 2(a), we first align
the feature distributions from multiple source domains following
previous work [61, 65]. Next, we introduce a set of structure tokens
designed to align the structural distributions across diverse domains.
These tokens are domain-specific and are integrated into each layer
of the graph encoder, modifying the structure-based aggregation at
each layer. Finally, the structure token-enhanced graph encoder is
pre-trained using a self-supervised loss based on a universal task
template [17].

In the adaptation phase, as shown in Fig. 2(b), we first align the
feature dimension of the target domain with that of the source
domains. Then, we introduce dual prompts. The first type, holis-
tic prompts, are learnable vectors that integrate the target domain
with the holistic structural knowledge from all source domains.
The second type, specific prompts, comprise learnable mixtures of
pre-trained structure tokens that incorporate domain-specific topo-
logical information tailored to the target domain. These prompts are

3
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Figure 2: Overall framework of SAMGPT.

applied to each layer of the graph encoder to adjust the structure-
based aggregation, while keeping the pre-trained weights of the
graph encoder frozen.

4.2 Multi-domain Graph Pre-training with

Structure Alignment

As defined in Sect. 3, we are given a set of pre-training graphs from
multiple source domains, G𝑆 . As both the features and structures of
these domains can exhibit divergent distributions, effective integra-
tion of these multi-domain graphs requires aligning both. As our
work focuses on structure alignment, we follow previous feature
alignment methods [56, 65], as outlined in the preliminaries.
Structure alignment. Recall that in the graph encoder, node repre-
sentations are updated layer-wise through a structure-based aggre-
gation. Each layer captures different levels of structural information.
For example, the first layer aggregates one-hop neighborhood in-
formation, while the second layer incorporates a broader two-hop
neighborhoods. These layer-wise structural patterns may vary sig-
nificantly across domains.

Therefore, to unify the structural characteristics in multiple
source domains, we introduce learnable structure tokens. For each
domain 𝐷𝑆𝑖 , we inject a series of structure tokens T𝑆𝑖 = {t𝑙𝑆𝑖 : 𝑙 ∈
{1, . . . , 𝐿}} into the graph encoder, where 𝐿 denotes the number
of layers. Specifically, when encoding the graph 𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖 , X̃𝑖 )
in 𝐷𝑆𝑖 , we assign structure token t𝑙

𝑆𝑖
to the 𝑙-th layer, guiding

structure-based aggregation:

h𝑙𝑣 = Aggr(h𝑙−1𝑣 , {t𝑙𝑆𝑖 ⊙ h𝑙−1𝑢 : 𝑢 ∈ N𝑣};𝜃𝑙 ), ∀𝑣 ∈ 𝑉𝑖 , (6)

where ⊙ represents element-wise multiplication. Note that the
graph encoders for feature alignment and structure alignment on all
graphs share the same parameters Θ. Let HSAL

𝑖
denote the structure-

aligned output node embedding matrix for𝐺𝑖 in 𝐷𝑆𝑖 , following the
aggregation in Eq. (6). In general, each source domain is attached
with its own set of structure tokens, which are applied to modify

the aggregation on the graph in the corresponding domain. By
stacking the structure-aligned output matrix across graphs in all
domains, we obtain the overall structure-aligned embedding matrix,
HSAL = Stack(HSAL

1 , . . . ,HSAL
𝐾
).

Finally, we fuse HSAL with HFAL in Eq. (4) to obtain the multi-
domain node embedding matrix H, incorporating both feature and
structure alignment, as shown below.

HAL = HFAL + 𝛼HSAL, (7)

where 𝛼 > 0 is a hyperparameter.
Pre-training loss. We leverage a universal task template based
on subgraph similarity calculation [17, 57], which ensures compati-
bility across different tasks such as node classification and graph
classification. As demonstrated in GraphPrompt+ [57], prevailing
contrastive pre-training objectives can be unified under this tem-
plate, making them suitable choices for the pre-training loss in
SAMGPT. In general, we can adopt the following form of con-
trastive loss in pre-training.

Lpre (O;Θ,T ,Ψ) = −
∑
𝑜∈O ln

∑
𝑎∈Pos𝑜 exp(sim(h𝑎,h𝑜 )/𝜏 )∑
𝑏∈Neg𝑜 exp(sim(h𝑏 ,h𝑜 )/𝜏 ) , (8)

where O denotes the set of observed graph element in pre-training,
𝑎 ∈ pos𝑜 , 𝑏 ∈ neg𝑜 represent the positive or negative instance
of 𝑜 , respectively, and h𝑜 , h𝑎, h𝑏 are their corresponding embed-
dings. Furthermore, sim(·, ·) is a similarity function, such as cosine
similarity [28] in our implementation, and 𝜏 > 0 is a temperature hy-
perparameter. Note that SAMGPT is flexible in the materialization
of 𝑜, 𝑎, 𝑏 to realize different contrastive losses [57]. Our experiments
adopt GraphCL [55], where 𝑎 is the original graph 𝐺 , and 𝑜, 𝑏 rep-
resent two different augmentations of𝐺 . Hence, h𝑜 , h𝑎, h𝑏 are the
corresponding graph embeddings, which can be obtained through
a readout operation [17] on the aligned node embeddings in HAL.

The pre-training loss is optimized by updating the weights of
graph encoder Θ, structure tokens across all source domains T =

{T𝑆1 , . . . ,T𝑆𝐾 }, and feature alignment parameters Ψ.
4
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4.3 Cross-domain Structure Adaptation

Beyond multi-domain pre-training, another challenge lies in cross-
domain adaptation. Given a model pre-trained on graphs G𝑆 from
source domains D𝑆 , we aim to adapt it to a downstream task on
graphs G𝑇 from a target domain 𝐷𝑇 ∉ D𝑆 . As this work focuses
on structure adaptation, we directly apply previous work [56] for
feature adaptation, as outlined in Sect. 3.

For structure adaptation, we propose dual prompts, consisting
of holistic prompts and specific prompts. On one hand, the holistic
prompts are designed to holistically utilize the pre-trained struc-
tural knowledge from all source domains. On the other hand, the
specific prompts combine multi-domain structure tokens through a
learnable mixture, adapting fine-grained, domain-specific structural
knowledge to the target domain.
Holistic prompts. To transfer the holistic multi-domain struc-
tural knowledge to a downstream task, we propose a set of holistic
prompts designed to align the target domain 𝐷𝑇 with the model
pre-trained on the source domainsD𝑆 . Like any pre-training frame-
work, we encode a downstream graph 𝐺 = (𝑉 , 𝐸, X̃) using the
pre-trained graph encoder with frozen layer-wise weights Θpre =

{𝜃1pre, . . . , 𝜃𝐿pre}. However, the key difference is we inject a series of
learnable vectors Phol = {p1hol, . . . , p

𝐿
hol} as holistic prompts into

the downstream structure-based aggregation:

h𝑙𝑣 = Aggr(h𝑙−1𝑣 , {p𝑙hol ⊙ h𝑙−1𝑢 : 𝑢 ∈ N𝑣};𝜃𝑙pre), ∀𝑣 ∈ 𝑉 . (9)

The final layer outputs a holistic node embedding matrix for the
downstream graph 𝐺 , denoted as Hhol.
Specific prompts. In contrast to the holistic prompts, specific
prompts are designed to adapt structural knowledge specific to each
source domain. Since knowledge from related source domains is
likely to be more applicable, it is essential to align the target domain
with different source domains to varying extents, prioritizing the
most relevant ones. Consequently, we define specific prompts as
Pspe = {p1spe, . . . , p𝐿spe}, which will also be injected into different
layers of the pre-trained graph encoder. Specifically, in the 𝑙-th layer,
p𝑙spe is a combination of {t𝑙

𝑆1
, . . . , t𝑙

𝑆𝐾
}, the pre-trained structure

tokens in the corresponding layer across all source domains 𝐷𝑆𝑖 ∈
D𝑆 . Formally, we define

p𝑙spe =
∑𝐾
𝑖=1 𝜆

𝑙
𝑖
t𝑙
𝑆𝑖
, (10)

whereΛ𝑙 = {𝜆𝑙1, . . . , 𝜆
𝑙
𝐾
} are learnable coefficients. Thus, the full set

of learnable parameters for the specific prompts isΛ = {Λ1, . . . ,Λ𝐿}.
Subsequently, specific prompts modify the structure-based aggre-
gation in the same way as in Eq. (9), while freezing the pre-trained
weights of the graph encoder. Similarly, we denote the output node
embedding matrix based on the specific prompts as Hspe.
Prompt tuning.To leverage both holisticmulti-domain and domain-
specific structural knowledge from the pre-trained model, we fuse
the output embedding matrices obtained via holistic prompts and
specific prompts as follows.

HSAD = Hhol + 𝛽Hspe, (11)

where 𝛽 > 0 is a hyperparameter. Further incorporating feature
adaptation in Eq. (5), we obtain the overall node embedding matrix

with both feature and structure adaptations, given by

HAD = HFAD + 𝛼HSAD . (12)

Here, 𝛼 is the same hyperparameter used in Eq. (7), as both share
the objective of integrating the feature and structure counterparts.

For downstream node and graph classification tasks, the loss
function Ldown is formulated based on the same task template
centered on subgraph similarity [17], akin to the pre-training loss
Lpre. Let Ω = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), . . .} represent the labeled training
set, where each 𝑥𝑖 is either a node or graph instance, and 𝑦𝑖 ∈ 𝑌 is
its respective class from the set 𝑌 . Subsequently, we optimize the
following cross-domain adaptation loss:

Ldown (Ω;Phol,Λ, Γ) = −
∑
(𝑥𝑖 ,𝑦𝑖 ) ∈Ω ln exp(sim(h𝑥𝑖 ,h𝑦𝑖 )/𝜏 )∑

𝑦∈𝑌 exp(sim(h𝑥𝑖 ,h𝑦 )/𝜏 )
.

(13)

Here, h𝑥𝑖 represents the adapted embedding of the node or graph
𝑥𝑖 based on HAD, where a readout operation on HAD is required if
𝑥𝑖 is a graph. Additionally, h𝑦 denotes the prototype embedding
for class 𝑦, which is calculated as the average embeddings of all
training instances of class 𝑦.

We outline the key steps for prompt tuning in Algorithm 1,
Appendix A and assess its complexity in Appendix B.

5 Experiments

In this section, we conduct experiments to assess the performance
of SAMGPT and analyze its empirical results.

5.1 Experimental Setup

Datasets.We conduct experiments on seven benchmark datasets.
(1) Cora [22], (2) Citeseer [32] and (3) Pubmed [32] are scientific
paper citation networks from different fields, such as computer
science and biomedical research. Nodes represent academic publi-
cations and edges denote citation relationships. (4) Photo [33] and
(5) Computers [21] are both e-commerce networks from Amazon
in different categories, namely, photography and computer related
products. Nodes represent products and edges signify frequent
co-purchases between products. (6) Facebook [30] is a Web graph,
where nodes represent official Facebook pages while the links are
mutual likes between these pages. (7) LastFM [31] is a social net-
work, where nodes denote users and edges represent interactions
such as follower relationships. Note that each domain comprises
a single graph. We present additional details of these datasets in
Appendix C.
Setup of pre-training and downstream tasks. Following pre-
vious work [61, 65], we treat each dataset as a distinct domain.
Among the seven datasets (or domains), we use each of them as the
target domain while using the remaining six as source domains. We
conduct𝑚-shot node classification and graph classification, where𝑚
labeled nodes or graphs per class are randomly selected for down-
stream prompt tuning. Given that each dataset comprises a single
graph, performing graph classification on whole graphs is not fea-
sible. Therefore, following previous works [18, 58, 59], we generate
a series of graphs by constructing ego-networks centered on the
labeled nodes within each dataset, and set up graph classification
on these ego-networks, with each network labeled according to its
central node. Note that the graph encoder is pre-trained only once

5
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Table 1: Accuracy (%) of one-shot node classification with standard deviations. Each column represents a target domain, using

other columns as source domains. The best method in each column is bolded, and the runner-up is underlined.

Method\Target domain Cora Citeseer Pubmed Photo Computers Facebook LastFM

GCN 29.53 ± 7.56 26.29 ± 6.50 23.32 ± 11.56 26.96 ± 12.94 24.40 ± 5.62 20.45 ± 5.62 9.21 ± 3.11
GAT 24.27 ± 9.26 21.56 ± 8.09 22.28 ± 9.76 17.85 ± 10.22 23.03 ± 12.12 29.27 ± 6.47 9.01 ± 2.61

DGI 33.40 ± 10.48 25.80 ± 8.27 47.22 ± 9.50 30.89 ± 10.54 25.75 ± 12.45 34.36 ± 9.57 14.14 ± 6.31
GraphCL 27.72 ± 9.37 35.02 ± 8.46 48.89 ± 9.03 34.78 ± 11.56 23.79 ± 12.28 34.85 ± 7.07 18.93 ± 7.32
GPPT 27.18 ± 4.88 25.90 ± 4.68 39.82 ± 8.79 31.58 ± 10.27 19.94 ± 9.61 34.73 ± 3.99 20.98 ± 3.98

GraphPrompt 28.26 ± 12.68 32.51 ± 8.73 47.47 ± 9.15 48.11 ± 9.89 42.82 ± 11.67 40.44 ± 9.68 19.84 ± 7.23
GPF 32.17 ± 6.56 36.79 ± 7.70 41.28 ± 8.14 47.47 ± 8.19 35.75 ± 7.12 40.45 ± 6.34 27.26 ± 5.50

Hassani 33.35 ± 6.93 33.66 ± 7.24 39.87 ± 8.16 48.48 ± 7.07 39.99 ± 7.91 37.70 ± 5.79 27.16 ± 4.94

GCOPE 35.62 ± 11.93 38.33 ± 9.28 45.38 ± 9.87 52.87 ± 9.19 45.65 ± 10.69 40.63 ± 8.50 28.84 ± 7.59
SAMGPT 47.80 ± 11.88 36.38 ± 9.10 50.25 ± 10.43 58.71 ± 8.69 48.22 ± 8.17 42.70 ± 8.73 33.36 ± 8.11

Table 2: Accuracy (%) of one-shot graph classification with standard deviations. Each column represents a target domain, using

other columns as source domains. The best method in each column is bolded, and the runner-up is underlined.

Method\Target domain Cora Citeseer Pubmed Photo Computers Facebook LastFM

GCN 30.64 ± 10.31 26.90 ± 7.15 38.84 ± 11.82 15.60 ± 8.77 21.94 ± 14.51 31.33 ± 9.47 28.83 ± 9.60
GAT 27.80 ± 7.85 27.50 ± 7.13 21.66 ± 8.70 15.74 ± 7.62 16.02 ± 13.46 21.20 ± 7.31 27.80 ± 7.85

InfoGraph 34.98 ± 10.15 35.87 ± 9.84 48.67 ± 12.29 25.70 ± 11.73 19.02 ± 14.09 31.26 ± 9.65 23.29 ± 7.99
GraphCL 42.70 ± 10.64 36.66 ± 8.67 47.53 ± 11.52 33.07 ± 12.31 16.02 ± 13.47 21.99 ± 13.00 21.30 ± 10.45

GraphPrompt 37.38 ± 14.03 36.66 ± 9.19 49.55 ± 10.25 50.79 ± 12.31 43.09 ± 11.45 41.71 ± 10.61 32.62 ± 8.54
GPF 39.62 ± 8.52 36.73 ± 7.66 45.08 ± 10.36 47.57 ± 10.16 35.70 ± 8.71 34.84 ± 5.14 34.31 ± 7.05

Hassani 36.86 ± 10.74 35.78 ± 8.80 43.97 ± 13.27 41.55 ± 13.08 29.49 ± 13.86 35.57 ± 9.00 25.39 ± 8.14

GCOPE 38.85 ± 10.99 39.93 ± 9.82 47.05 ± 11.74 53.93 ± 9.74 45.60 ± 10.96 40.26 ± 9.53 34.68 ± 7.70
SAMGPT 55.35 ± 13.62 38.75 ± 9.40 48.69 ± 10.16 58.75 ± 11.67 48.72 ± 11.18 43.71 ± 9.54 48.28 ± 9.72

for each set of source domains, and subsequently utilized across
all downstream tasks. We generate 100𝑚-shot tasks for both node
classification and graph classification by repeatedly sampling 𝑚
labeled nodes/graphs per class for 100 times. Each task is executed
with five different random seeds, leading to a total of 500 outcomes
for each classification type. We use accuracy as the evaluation met-
ric, as each task is class-balanced [16, 17, 43, 57], and report the
average accuracy and standard deviation over these 500 outcomes.
Baselines.We compare the performance of SAMGPT against state-
of-the-art methods in four broad groups, as follow. (1) End-to-end
graph neural networks: GCN [12] and GAT [40] aggregate informa-
tion from neighboring nodes to update node representations. For
each task, they are trained from scratch in a supervised fashion
without pre-training. (2) Graph pre-training models: DGI [41], Info-
Graph [35]1 and GraphCL [55] first pre-train a graph encoder to
capture the inherent properties of the graphs, and then fine-tune
a classifier on the downstream task while freezing the pre-trained
model. GPPT2 [36], GPF[5] and GraphPrompt [17] employ a univer-
sal task template to unify self-supervised pre-training and down-
stream tasks, and tune a single prompt on downstream tasks. (3)
Graph cross-domain model: Hassani [8] pre-trains a GNN on a single

1Original DGI only operates at the node level, while InfoGraph extends it to the graph
level. We apply DGI to node classification, and InfoGraph to graph classification.
2GPPT is tailored for node classification task and is not applicable to graph classifica-
tion. Thus, in our experiments, we only use GPPT for node classification.

source domain by incorporating both contextual and topological
views, facilitating cross-domain adaptation for downstream tasks.
(4) Multi-domain pre-training model: GCOPE [65] performs multi-
domain pre-training via self-supervised learning, and subsequently
adapts to cross-domain tasks through either fine-tuning a classifi-
cation head or prompt tuning. We opt for fine-tuning as it yields
superior performance.

Note that the above graph pre-training and cross-domain ap-
proaches are originally designed for pre-training on a single source
domain. For a fair comparison, we directly merge the multi-domain
graphs and apply dimension alignment for them, as in SAMGPT.
Further descriptions of the baselines are provided in Appendix D,
along with implementation and configuration details for baselines
and SAMGPT in Appendix E.

5.2 Few-shot performance evaluation

We first compare SAMGPT and baseline methods on one-shot node
and graph classification tasks, and then explore the effect of increas-
ing the number of shots.
One-shot performance. Tables 1 and 2 show the results of one-
shot node and graph classification tasks. Our observations are as
follows. First, SAMGPT achieves outstanding performance in both
node and graph classification across various target domains, demon-
strating the effectiveness of our proposed structure tokens in multi-
domain pre-training and dual prompts in cross-domain adaptation.
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Figure 3: Impact of number of shots on node and graph clas-

sification on four target domains.

Refer to the ablation studies in Sect. 5.3 for the quantitative contribu-
tions of these components. Second, another text-free multi-domain
pre-training method, GCOPE, significantly lags behind SAMGPT
because it only performs alignment and adaptation on feature and
homophily patterns, without accounting for structural differences
across domains. This further emphasizes the importance of our
structure tokens and dual prompts. Third, graph pre-training meth-
ods generally outperform the end-to-end GCN and GAT, showcas-
ing the benefits of pre-training on unlabeled graphs.

Table 3: Data ablation study with an increasing number of

source domains.

Method Number of source domains
1 2 3 4

GraphPrompt 35.53±12.06 37.13±11.79 36.90±11.23 38.54±11.84
GCOPE 39.47±12.14 36.63± 9.46 35.28±11.99 38.61±12.74
SAMGPT 40.43±11.00 41.97±11.01 42.30±11.56 45.95±12.96

Few-shot performance. To evaluate the performance of SAMGPT
with more labeled data, we vary the number of shots,𝑚, in both
node and graph classification tasks. We compare SAMGPT to two
competitive baselines, GraphPrompt and GCOPE, with results
reported in Fig. 3, where error bars represent the standard deviation.
We observe that SAMGPT consistently outperforms the baselines in
low-shot settings (e.g.,𝑚 ≤ 5). When further increasing the number
of shots, SAMGPT still performs best in general, although it may
be on par with GCOPE in some cases when𝑚 approaches 10. This
is not surprising, since the advantage of models may diminish as
more supervision becomes available.

5.3 Ablation Studies

To gain deeper insight into the impact of each component in SAMGPT,
we conduct two ablation studies.
Data ablation. We evaluate the impact of incorporating more
source domains by incrementally adding Citeseer, LastFM, Photo,
and Facebook, in this order, to the pre-training, while fixing Cora as
the target domain. We present 1-shot node classification results of
SAMGPT and two competitive baselines, namely, GraphPrompt
and GCOPE, in Table 3. On the 𝑥-axis, 1 represents using Citeseer
as the single source domain, while 2 represents using Citeseer and
LastFM as source domains, etc.

We make the following observations. First, SAMGPT is supe-
rior across different numbers of source domains, demonstrating its
robustness to varying configurations of the source domains. Sec-
ond, both GraphPrompt and GCOPE often perform worse as more
datasets are added due to the negligence of structural discrepancies
in various domains. In contrast, SAMGPT exhibits consistent im-
provement with the addition of more source domains, validating
the effectiveness of our structure alignment and adaptation.
Model ablation. We analyze several variants of SAMGPT by
removing key components, including structure tokens, holistic
prompts and specific prompts. We report the results of these vari-
ants and SAMGPT in Table 4. Note that Variant 1, which lacks our
structural alignment design, is equivalent to the feature alignment
method MDGPT [61].

The results confirm that each component plays a critical role,
as discussed below. First, the use of structure tokens is essential.
Notably, Variant 3 consistently outperforms Variant 1 and 2, both
of which do not employ structure tokens, demonstrating the effec-
tiveness of structure tokens in aligning multi-domain structural
knowledge. Second, removing holistic prompts leads to a drop in
performance, evident from the superior accuracy of Variants 2
over Variant 1, and SAMGPT over Variant 3. This highlights the
significance of incorporating holistic multi-domain topological in-
formation via holistic prompts. Third, specific prompts proves to
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Table 4: Model ablation study on key components of SAMGPT.

Methods Structure Holistic Specific Target domain for node classification Target domain for graph classification
tokens prompts prompts Cora Photo Facebook Cora Photo Facebook

Variant 1 × × × 36.36 ± 12.71 49.10 ± 9.94 35.36 ± 9.06 45.44 ± 13.47 52.45 ± 12.37 38.74 ± 10.26
Variant 2 × × ✓ 40.62 ± 11.79 56.23 ± 9.04 39.80 ± 10.39 45.63 ± 13.52 57.78 ± 11.64 42.22 ± 10.95
Variant 3 ✓ × × 44.26 ± 10.92 56.61 ± 10.14 41.11 ± 8.34 52.88 ± 12.25 58.14 ± 12.01 43.12 ± 9.76
Variant 4 ✓ ✓ × 46.10 ± 12.02 57.76 ± 10.00 40.46 ± 8.89 54.52 ± 14.32 58.12 ± 12.30 43.15 ± 10.12
SAMGPT ✓ ✓ ✓ 47.80 ± 11.88 58.71 ± 8.69 42.70 ± 8.73 55.35 ± 13.62 58.75 ± 11.67 43.71 ± 9.54

Table 5: Analysis on homophilic and heterophilic graphs.

Target Source domains Accuracy (%)
domain GraphPrompt GCOPE SAMGPT

Squi* Cham + Corn + Cora 18.98±4.89 18.98±4.75 20.43±4.75

Corn* Squi + Cham + Cora 29.67±8.36 27.19±8.51 32.57±8.68

Cham* Squi + Corn + Cora 23.28±4.63 23.24±4.50 23.89±4.91

Facebook Squi + Cora + Photo 32.22±6.91 35.81±7.89 41.10±9.38

Squi*, Cham*, Corn* are short for Squirrel, Chameleon, and Cornell, respectively.

be essential, as demonstrated by Variant 4 outperforming Variant 3.
This indicates the significance of source domain-specific structural
knowledge for effective cross-domain adaptation. Finally, the key
components, including structure tokens, holistic prompts and spe-
cific prompts are instrumental in enabling SAMGPT to achieve the
best overall performance.

5.4 Homophily Sensitivity

Apart from feature and structural differences, graphs also exhibit
varying homophily and heterophily patterns based on whether
linked nodes share the same attribute [20, 59, 67]. To further assess
the robustness of SAMGPT across domains with varying homophily
ratios, we conduct 1-shot node classification on homophilic (Cora,
Photo, Facebook) and heterophilic (Chameleon, Cornell and Squir-
rel) graphs3. We present the results in Table 5 and observe that
SAMGPT consistently surpasses GraphPrompt and GCOPE, re-
gardless of whether the source or target domains are homophilic or
heterophilic. These results further validate the efficacy of SAMGPT,
demonstrating its ability to leveragemulti-domain knowledge across
a wide variety of graph domains. Note that we focus on the node
classification task here, as homophily ratio is defined based on node
attributes, which directly impacts node-level tasks.

5.5 Hyperparameter Sensitivity

We investigate the impact of hyperparameters, 𝛼 and 𝛽 , in SAMGPT.
𝛼 governs the fusion of feature and structure alignment, as well as
their adaptation, in Eqs. (7) and (12), whereas 𝛽 controls the aggrega-
tion of holistic and domain-specific adaptation in Eq. (11). We vary
𝛼 and 𝛽 and present 1-shot node and graph classification results on
three target domain, Cora, Photo and Facebook, in Fig. 4, with error
bars denoting the standard deviation. We observe that increasing
𝛼 from lower values initially enhances performance as structure
alignment and adaptation are emphasized. However, after reach-
ing a peak (𝛼 = 1), accuracy begins to decline as 𝛼 grows further,

3We present details about heterophilic datasets in Appendix F.
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Figure 4: Sensitivity study of 𝛼 and 𝛽 .

implying that both feature and structure alignment are essential.
Moreover, 𝛽 exhibit a trend similar to that of 𝛼 , demonstrating that
incorporating both holistic and domain-specific knowledge is vital
for cross-domain adaptation. Based on the above observations, we
set 𝛼 = 1 in our experiments, indicating a balance between the
feature and structure counterparts, and 𝛽 = 1, indicating a balance
between holistic and specific prompts, both of which show robust
empirical performance.

6 Conclusions

In this paper, we propose SAMGPT, a graph foundation model with
structure alignment for text-free multi-domain graph pre-training
and cross-domain adaptation. In the pre-training phase, SAMGPT
utilizes a series of structure tokens to harmonize the structural
distributions across multiple source domains and to extract multi-
domain topological information. For downstream cross-domain
adaptation, SAMGPT employs dual prompts, holistic prompts and
specific prompts, to tailor pre-trained holistic and domain-specific
topological knowledge, respectively, to the target domain. We con-
duct extensive experiments on seven public benchmark datasets,
demonstrating that SAMGPT significantly outperforms a variety
of state-of-the-art baseline methods.
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Appendices

A Algorithm

In multi-domain pre-training phase, we first apply dimension align-
ment method𝐷𝐴𝐿 to align feature dimensions from different source
domains by Eq. (3). Then, we use a feature alignment method to
unify feature semantic spaces by Eq. (4). For structure alignment, we
inject source domain-specific structure tokens into each layer of the
graph encoder by Eq. (6)n. Finally, we fuse the feature aligned em-
bedding and structure aligned embedding by Eq. (7), and optimize
pre-training loss by Eq. (8).

We further present the key steps for cross-domain adaptation in
Algorithm 1. In lines 3–4, we align target domain feature dimensions
with source domains. In lines 6–7, we integrate feature adaptation
method to generate feature-level adapted embeddings. In lines 8–22,
we employ dual prompts to adapt structural prior knowledge to tar-
get domain. Specifically, we first inject holistic prompts to modify
the structure-based aggregation in each layer of the graph encoder
for holistic knowledge adaptation (lines 9–13). Then, we generate
specific prompts by fusing the pre-trained structure tokens (lines
14–16), and utilize specific prompts for domain-specific knowledge
adaptation (lines 18–20). We obtain structure-level adapted em-
beddings by fusing holistic and domain-specific embeddings (lines
21–22), and generate final embeddings by aggregating feature- and
structure-level adapted embeddings (lines 23–24). Finally, we update
the embeddings for the prototypical instances based on the labeled
samples in the task (lines 25–27) and optimize holistic prompts,
Λ and Γ (lines 28-29). Note that updating prototypical is required
exclusively for classification tasks.

B Complexity Analysis

For a downstream graph 𝐺𝑇 = (𝑉𝑇 , 𝐸𝑇 ,X𝑇 ) from the target do-
main 𝐷𝑇 , the computational process of structure adaptation are
constructed by injecting holistic prompts and specific prompts to
the process of encoding nodes via a pre-trained GNN. In a stan-
dard GNN, each node aggregates messages from up to 𝑛 neighbors
per layer. Assuming the aggregation involves at most 𝑛 neighbors,
the complexity of calculating node embeddings over 𝐿 layers per
batch time is 𝑂 (𝑛𝐿 · |𝑉𝑇 |). holistic prompts are directly injected
to each layer of the GNN, leading to a complexity of 𝑂 (𝐿 · |𝑉𝑇 |).
specific prompts are first generated by pre-trained structure tokens,
with a complexity of 0(𝐿 · 𝐾). Then specific prompts modify the
structure-base aggregation with a complexity of 𝑂 (𝐿 · |𝑉𝑇 |). Since
holistic prompts and specific prompts modifies the node encoding
phase separately, the overall complexity is (2(𝐿 +𝑛𝐿) · |𝑉𝑇 | + 𝐿 ·𝐾).
Thus, the encoding phase by pre-trained GNN dominates the overall
complexity, as 𝑂 (2𝑛𝐿 · |𝑉𝑇 |) far exceeds 𝑂 (2𝐿 · ( |𝑉𝑇 | + 𝐾)).

C Further Descriptions of Datasets

In this section, we provide a summary of these datasets in Table 6
and a further comprehensive descriptions of these datasets. Specifi-
cally, average node degree, average shortest path length [3], and
average clustering coefficient [6] reflect the structural properties
of various datasets/domains, from which we observe that differ-
ent domains exhibit unique structural characteristics, highlighting

Algorithm 1 Cross-domain Adaptation for SAMGPT
Input: Pre-trained graph encoder𝐺𝐸 with parameters Θpre, pre-trained

structure tokens Tpre, target domain dimension alignment method
DA𝑇 ( ·) and feature adaptation methods FAD( ·)

Output: Optimized holistic prompts Phol, coefficient Λ, and Γ
1: while not converged do

2: for each graph𝐺𝑇 = (𝑉𝑇 , 𝐸𝑇 ,X𝑇 ) in target domain 𝐷𝑇 do

3: /* Target domain feature dimensions alignment by Eq. (3) */
4: X̃← DAL𝑇 (X)
5: Phol, Λ, Γ ← initialization
6: /* Feature adaptation by Eq. (5) */
7: HFAD ← GE(FAD(G, X̃; Γ) ;Θpre )
8: /* Structure alignment by dual prompts */
9: /* Adaptation of holistic structural prior knowledge */
10: for each layer in GE do

11: /* Modification to GE via holistic prompts by Eq. (9) */
12: h𝑙𝑣 ← Aggr(h𝑙−1𝑣 , {p𝑙hol ⊙ h𝑙−1𝑢 : 𝑢 ∈ N𝑣 };𝜃𝑙pre ), ∀𝑣 ∈ 𝐺𝑇
13: Hhol ← STACK(h𝑣 : ∀𝑣 ∈ 𝐺𝑇 )
14: /* Generation of specific prompts by Eq. (10) */
15: for p𝑙spe in Pspe do
16: p𝑙spe ←

∑𝐾
𝑖=1 𝜆

𝑙
𝑖
t𝑙
𝑆𝑖

17: /* Modification to GE via specific prompts*/
18: for Each layer in GE do

19: h̃𝑙𝑣 ← Aggr(h̃𝑙−1𝑣 , {p𝑙spe ⊙ h̃𝑙−1𝑢 : 𝑢 ∈ N𝑣 };𝜃𝑙pre ), ∀𝑣 ∈ 𝐺𝑇
20: Hspe ← STACK(h̃𝑣 : ∀𝑣 ∈ 𝐺𝑇 )
21: /* Fusion of dual prompts tuned embeddings by Eq. (11) */
22: HSAD ← Hhol + 𝛽Hspe

23: /* Fusion of adapted embeddings by Eq. (12) */
24: HAD ← HFAD + 𝛼HSAD

25: /* Update prototypical nodes */
26: for each class 𝑦 do

27: h𝑦 ← Average(h𝑥 : instance 𝑥 belongs to class 𝑦)
28: /* Optimizing Phol, Λ, and Γ */
29: Calculate Ldown (Ω; Phol,Λ, Γ) by Eq. (13)
30: return Phol, Λ, and Γ

the importance of structural alignment in both multi-domain pre-
training and cross-domain adaptation.

• Cora [22] consists of 2,708 publications in the computing
field, each categorized into one of seven classes. The cita-
tion network comprises 5,429 edges. Each publication is
represented by a binary word vector indicating the pres-
ence or absence of words from a dictionary containing 1,433
unique words.

• Citeseer[32] contains 3,312 computer science publications,
each belonging to one of six categories, distinct from those
in Cora. The citation network consists of 4,732 edges. Each
publication is represented by a binary word vector, reflect-
ing the presence or absence of words from a dictionary of
3,703 unique words.

• PubMed [32] consists of 19,717 biomedical publications re-
lated to diabetes, each classified into one of three categories.
The citation network includes 44,338 edges. Each publi-
cation is represented by a TF/IDF-weighted word vector,
indicating the presence of 500 unique words from the dic-
tionary.
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Table 6: Summary of datasets.

Nodes Edges Feature
dimension

Node
classes

Avg
nd

Avg
spl

Avg
cc

Cora 2,708 10,556 1,433 7 3.89 6.30 0.24
Citeseer 3,327 9,104 3,703 6 2.73 9.31 0.14
Pubmed 19,717 88,648 500 3 4.49 6.33 0.06
Photo 7,650 238,162 745 8 31.13 4.05 0.40

Computers 13,752 491,722 767 10 35.75 3.38 0.34
Facebook 22,470 342,004 128 4 15.22 4.97 0.35
LastFM 7,624 55,612 128 18 7.29 5.23 0.21

Avg is short for average. nd stands for node degree. spl denotes
shortest path length. cc represents clustering coefficient.

• Photo [33] contains 7,487 products related to photography,
each assigned to one of eight categories. The co-purchase
network comprises 119,043 edges, representing products
frequently bought together. Each product is described by a
feature vector derived from its metadata and reviews, and
is labeled according to its category.

• Computers [33] includes 13,752 computer-related products,
divided into ten categories. The co-purchase network con-
sists of 245,861 edges, representing products that are fre-
quently bought together. Each product is characterized by
a feature vector generated from its metadata and reviews
and is labeled according to its respective category.

• Facebook [30] represents a page-to-page graph of verified
Facebook sites. The nodes correspond to official Facebook
pages, and the edges indicate mutual "likes" between these
pages. Node features are derived from the descriptions pro-
vided by the page owners to outline the purpose of their
sites.

• LastFM [31] represents a social network of LastFM users,
collected via the public API in March 2020. The nodes cor-
respond to LastFM users from various Asian countries, and
the edges represent mutual follower relationships. The node
features are extracted based on the artists that users have
liked. The associated task for this graph is multinomial node
classification, where the objective is to predict each user’s
location, derived from the country field in their profile.

D Further Descriptions of Baselines

In this section, we provide additional details about the baselines
used in our experiments.
(1) End-to-end GNNs

• GCN [12]: GCN employs a mean-pooling approach for
neighborhood aggregation, enabling the integration of in-
formation from adjacent nodes.

• GAT [40]: GAT relies on neighborhood aggregation for
node representation learning, but distinguishes itself by
assigning varying attention weights to neighbors, thus ad-
justing their influence on the aggregation process.

(2) Graph Pre-training Models

• DGI [40]: DGI is a self-supervised pre-training approach. It
is based maximizing mutual information (MI), with the goal

of strengthening the MI between local node representations
and their global context.

• InfoGraph [35]: Building on DGI, InfoGraph focuses on
graph-level tasks, aiming to align node and graph embed-
dings by maximizing the similarity between them.

• GraphCL [55]: GraphCL applies various graph augmen-
tations for self-supervised learning, leveraging structural
patterns within graphs. Its main objective is to improve
the similarity across different augmentations during pre-
training.

• GPPT [36]: GPPT pre-trains a GNN model via link pre-
diction task. Its downstream prompt module is specifically
designed for node classification, unifying it with the pre-
training link prediction task.

• GPF [5]: GPF serves as a universal prompt-based tuning
approach for pre-trained graph models. It adapts the input
graph’s feature space to simulate the behavior of various
prompting functions.

• GraphPrompt [17]: GraphPrompt utilizes subgraph simi-
larity calculations as a unified framework to bridge the gap
between pre-training and downstream tasks, supporting
both node and graph classification. During downstream
adaptation, a learnable prompt is tuned to incorporate task-
specific knowledge.

(3) Graph Cross-domain Models

• Hassani [8]: Hassani proposes an attention-based graph en-
coder that leverages both contextual and topological views
to capture task-specific information for quick adaptation,
as well as task-independent knowledge for efficient transfer
across domains.

(4) Multi-Domain Graph Pre-Training Model

• GCOPE [65]: GCOPE propose a multi-domain pre-training
strategy that integrates graph datasets from various do-
mains using domain-specific interconnecting virtual nodes,
which link nodes within the same domain. The main objec-
tive is to enhance downstream performance by harnessing
knowledge from multiple source domains.

E Implementation Details

General settings Optimizer: For all experiments, we use the
Adam optimizer.

Environment: The environment in which we run experiments
is:

• Operating system: Ubuntu 22.04.2
• CPU information: AMD EPYC 7742 64-Core Processor
• GPU information: NVIDIA GeForce RTX 3090 (24 GB)

Details of baselines. We utilize the officially provided code for
all open-source baselines. Each model is tuned based on the set-
tings recommended in their respective literature to achieve optimal
performance.

For the baseline GCN [12], we employ a 3-layer architecture, and
set the hidden dimensions to 256. For GAT [40], we employ a 2-layer
architecture and set the hidden dimension to 64. Additionally, we
apply 8 attention heads in the first GAT layer.
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For DGI [40], we utilize a 1-layer GCN as the backbone and set
the hidden dimensions to 256. Additionally, we employ prelu as the
activation function. For InfoGraph [35], a 3-layer GCN is used as the
backbone, with its hidden dimensions set to 256. For GraphCL [55],
a 1-layer GCN is also employed as its backbone, with the hidden
dimensions set to 256. Specifically, we select edge dropping as the
augmentations, with a default augmentation ratio of 0.2. For GPPT
[36], we utilize a 2-layer GraphSAGE as its backbone, setting the
hidden dimensions to 256. We employ a mean aggregator for the
aggregation in the backbone. For GraphPrompt [17], a 3-layer GCN
is used as the backbone for all datasets, with the hidden dimensions
set to 256. For GPF [5], employs a 5-layer GCN as the backbone
for all datasets, following the recommended settings. The hidden
dimensions are set to 256.

For Hassani [8],We employ a 3-layer GCN is used as the backbone
for all datasets, with the hidden dimensions set to 256.

For GCOPE [65], we employ a 2-layer GCN as the backbone
and set the hidden dimensions to 100. Downstream adaptation is
achieved through fine-tuning, as it is reported to yield the best
performance in their literature.

For all baselines except for GCOPE, we set the unified feature
dimensions to 50, the same as our SAMGPT. For GCOPE, we adhere
to the recommended settings and set the unified feature dimensions
to 100.
Details of SAMGPT. For our proposed SAMGPT, we utilize a
3-layer GCN as the backbone for all datasets, with the hidden di-
mensions set to 256. We set the unified feature dimensions to 50.

F Details about Heterophilic Datasets

To evaluate the robustness of SAMGPT across graphs with varying
homophily ratios, we conduct experiments on both homophilic
and heterophilic datasets as in Sect. 5.4. Details of the heterophilic
datasets are introduced as follows. (1)Chameleon [30] is aWikipedia-
based network containing 2,277 pages, categorized into five groups
based on their average monthly traffic. This dataset forms a net-
work with 36,101 edges, and the node features are derived from key
nouns extracted from the Wikipedia content. The homophily ratio
is 0.23. (2) Cornell [25] is another webpage network consisting of
183 nodes, where each node represents a webpage, and 295 edges
denoting hyperlinks between them. The node features are derived
from a bag-of-words representation of the webpages. These pages
are manually classified into five categories: student, project, course,
staff, and faculty. The homophily ratio is 0.22. (3) Squirrel [30] con-
sists of 5,201 Wikipedia pages discussing specific topics. The pages
are divided into five categories based on their average monthly
traffic. This dataset forms a page-to-page network with 217,073
edges, and the node features are derived from various informative
nouns present in the Wikipedia content. The homophily ratio is
0.30.

G Data Ethics Statement

To evaluate the efficacy of SAMGPT, we conducted experiments
which only use publicly available datasets, namely, Cora4, Cite-
seer5, Pubmed6, Photo7, and Computers8, Facebook9, LastFM10,
Chameleon11, Cornell12 and Squirrel13 in accordance to their usage
terms and conditions if any. We also confirm that no personally
identifiable information was utilized, and this research did not in-
volve any human or animal subjects.

4https://github.com/shchur/gnn-benchmark/raw/master/data/npz/cora.npz
5https://github.com/shchur/gnn-benchmark/raw/master/data/npz/citeseer.npz
6https://github.com/shchur/gnn-benchmark/raw/master/data/npz/pubmed.npz
7https://github.com/shchur/gnn-benchmark/raw/master/data/npz/amazon_
electronics_photo.npz
8https://github.com/shchur/gnn-benchmark/raw/master/data/npz/amazon_
electronics_computers.npz
9https://graphmining.ai/datasets/ptg/facebook.npz
10https://graphmining.ai/datasets/ptg/lastfm_asia.npz
11https://github.com/SitaoLuan/ACM-GNN/tree/main/new_data/chameleon
12https://github.com/bingzhewei/geom-gcn/tree/master/new_data/cornell
13https://github.com/SitaoLuan/ACM-GNN/tree/main/new_data/squirrel
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