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Abstract

Prompt-based methods have been widely used001
in few-shot named entity recognition (NER).002
We first conduct a preliminary experiment and003
observe that what really affects prompt-based004
NER models is the ability to detect entity005
boundaries. However, previous prompt-based006
NER models neglect to enhance the ability of007
entity boundary detection. To solve the issue,008
we propose a novel method, ParaBART, which009
consists of a BART encoder and the Parabi-010
otic1 Decoder we design. Parabiotic Decoder011
includes two BART decoders and a conjoint012
module. The two decoders are responsible for013
entity boundary detection and entity type classi-014
fication respectively and share the well-learned015
knowledge through the conjoint module, which016
replaces unimportant tokens’ embeddings in017
one decoder with the average embedding of018
all tokens in the other decoder. Moreover, we019
propose a novel boundary expansion strategy020
to enhance the ability of entity type classifica-021
tion. Experimental results show that ParaBART022
can achieve significant performance gains over023
previous state-of-the-art methods. For repro-024
ducibility, all datasets and codes are provided025
in the supplementary materials.026

1 Introduction027

Named entity recognition (NER) is a fundamental028

task in Natural Language Processing (NLP), which029

aims to identify and categorize spans of text into030

a set of pre-defined entity types, such as people,031

organization, and location. While a con-032

siderable number of approaches (Li et al., 2020;033

Yadav and Bethard, 2019) based on deep neural034

networks have shown remarkable success in NER,035

they generally require massive labeled data as train-036

ing set. Unfortunately, in some specific domains,037

named entities that need professional knowledge to038

1Parabiotic, a biological term, means combining two living
organisms which are joined together surgically to develop a
single, shared physiological system.

Republicans controlled [the [White House]ORG]O-ORG …

[Mr. [Adel Ibrahim]PER]O-PER has asked …

… by [[John Doe]PER, Jr.]O-PER

[The [Congress]ORG]O-ORG hold that …

Figure 1: Examples of O-entity on CoNLL03
dataset. An O-entity span means the span is not
an entity but it is very similar to a certain entity span.
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Figure 2: Results of the preliminary experiment on
CoNLL03 dataset. (a) More than half of O-entity
spans are predicted incorrectly. (b) High accuracy for
entity type classification when entity boundaries are
known.

understand are difficult to be manually annotated 039

in a large scale. 040

To address the issue, few-shot NER has been 041

proposed, which aims to improve the performance 042

of NER models on the few-shot scenario. Re- 043

cently, prompt-based methods achieve impressive 044

results and show promising prospects for few- 045

shot NER (Cui et al., 2021; Ma et al., 2021; Hou 046

et al., 2022). Instead of adapting Pre-trained Lan- 047

guage Models (PLMs) to downstream tasks di- 048

rectly, prompt-based methods reformulate down- 049

stream tasks to keep pace with those solved dur- 050

ing the original PLMs pre-training by resorting to 051

a textual prompt. For example, when recogniz- 052

ing named entities in the sentence, “ACL will be 053

held in Toronto”, we may continue with a prompt 054

“<candidate_span> is a ____ entity”. Specifi- 055

cally, the <candidate_span> can be replaced 056

by all possible textual spans (e.g. “Toronto”) in 057
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the original sentence. After that, we will ask the058

PLM to fill the blank with an entity type (e.g. “lo-059

cation”).060

NER can be further decomposed into two sub-061

tasks: entity boundary detection and entity type062

classification. We conduct a preliminary exper-063

iment2 in the 10-shot setting on the CoNLL03064

dataset to determine what exactly affects the perfor-065

mance of prompt-based methods on few-shot NER.066

On the one hand, we choose the text spans3 that067

are not entities but very similar to entity spans and068

label the type of spans as O-entity. For exam-069

ple, the type of “The White House” is labeled as070

O-Organization (as shown in Figure 1). Then071

we make predictions for O-entity spans. On072

the other hand, we assume that the entity bound-073

aries are known, and only classify the entity spans.074

The results are shown in Figure 2. The accuracy075

for O-entity spans is very low. We observe that076

most of them are confused into the entity types they077

are similar to. For example, “The White House”,078

which belongs to Other(O) class, is predicted in-079

correctly to Organization. The type of error080

is caused by the model’s insufficient ability to de-081

tect entity boundaries. Conversely, the prompt-082

based model2 has great accuracy for entity type083

classification. The results show that what really084

affects prompt-based models is the ability of en-085

tity boundary detection, rather than entity type086

classification. Although previous prompt-based087

methods have achieved good performance, but all088

of them neglect to enhance the ability of entity089

boundary detection.090

Therefore, in this paper, we propose a BART-091

based model with Parabiotic1 Decoder, namely,092

ParaBART, to enhance the ability of entity bound-093

ary detection. ParaBART consists of a BART en-094

coder and the Parabiotic Decoder we propose. Para-095

biotic Decoder includes two BART decoders and a096

conjoint module. The two decoders are responsible097

for entity boundary detection and entity type clas-098

sification respectively. The conjoint module aims099

to share the well-learned knowledge between the100

two decoders, which replaces unimportant tokens’101

embeddings in one decoder with the average em-102

bedding of all tokens in the other decoder. The two103

decoders are like a parabiotic system so we name104

it Parabiotic Decoder. In addition, inspired by la-105

2The model used in the preliminary experiment is Tem-
plateBART (Cui et al., 2021).

3We construct O-entity spans by adding entity spans to
its previous or subsequent word in practice.

bel smoothing (Szegedy et al., 2016; Müller et al., 106

2019), we propose a novel boundary expansion 107

strategy to improve the ability of entity type classi- 108

fication. We summarize our main contributions in 109

this paper as follows. 110

• We propose a BART-based model with Para- 111

biotic Decoder (ParaBART) to enhance the 112

ability to detect entity boundaries for few-shot 113

NER. 114

• We design a novel boundary expansion strat- 115

egy for improving the ability to classify entity 116

types. 117

• We perform extensive experiments to show 118

the superiority of ParaBART over other com- 119

petitors. 120

2 Related Work 121

2.1 Prompt-based learning 122

Despite the success of Pretrained Language Mod- 123

els (PLMs) (Devlin et al., 2018; Liu et al., 2019; 124

Yang et al., 2019) in massive NLP tasks, most of 125

them are hard to fine-tune in low-resource sce- 126

narios due to the gap between pre-training and 127

downstream tasks. Inspired by GPT-3 (Brown 128

et al., 2020), stimulating model knowledge with 129

a few prompts has recently received much atten- 130

tion. In prompt-based learning, instead of adapt- 131

ing PLMs to downstream tasks via objective en- 132

gineering, downstream tasks are reformulated to 133

keep pace with those solved during the original 134

LM training with the help of a textual prompt. 135

Early attempts (Schick and Schütze, 2021a,b) in- 136

troduce manual prompts to text classification tasks. 137

Building manual prompts requires the knowledge 138

of domain experts, limiting the application of 139

prompt-based methods in real-world scenarios. To 140

solve this problem, automatically searching dis- 141

crete prompts methods are proposed such as AU- 142

TOPROMPT (Shin et al., 2020) and LM-BFF (Gao 143

et al., 2021). Meanwhile, generating continuous 144

prompts through neural networks for both text clas- 145

sification and generation tasks (Han et al., 2021; Li 146

and Liang, 2021) have been proposed. Although 147

prompt-based methods are proved to be useful in 148

sentence-level tasks, they are very complicated for 149

NER task, which will be introduced in Section 2.2. 150

2.2 Few-shot NER 151

Few-shot NER has recently received much atten- 152

tion (Huang et al., 2020; Hou et al., 2020; Das et al., 153
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2021). The current mainstream methods for few-154

shot NER can be grouped into two main categories:155

Meta-learning-based methods Fritzler et al.156

(2019a) combine PROTO (Snell et al., 2017) with157

conditional random field for few-shot NER. In-158

spired by the nearest neighbor inference (Wiseman159

and Stratos, 2019), StructShot (Yang and Katiyar,160

2020) employs structured nearest neighbor learning161

and Viterbi algorithm to further improve PROTO.162

MUCO (Tong et al., 2021) trains a binary classi-163

fier to learn multiple prototype vectors for repre-164

senting miscellaneous semantics of O-class. CON-165

TaiNER (Das et al., 2021) proposes a contrastive166

learning method that optimizes the inter-token dis-167

tribution distance for few-shot NER. ESD (Wang168

et al., 2021) uses various types of attention based169

on PROTO to improve the model performance. Ma170

et al. (2022) addresses few-shot NER by sequen-171

tially tackling few-shot span detection and few-shot172

entity typing using meta-learning. However, most173

of these methods assume a resource-rich source174

domain. In the few-shot setting without a data-rich175

source domain, the performance of these methods176

is limited.177

Prompt-based methods Cui et al. (2021) uses178

BART (Lewis et al., 2020) as the backbone and con-179

structs templates by dividing sentences into spans180

for few-shot NER. EntLM (Ma et al., 2021) pro-181

poses a template-free approach through replacing182

entity spans with verbalizers. LightNER (Chen183

et al., 2021) generates a index of an entity span in184

the input as well as a label word. ProtoVerb (Cui185

et al., 2022) combines PROTO (Snell et al., 2017)186

and prompt-based learning by generating proto-187

type vectors as verbalizers for few-shot NER.188

QaNER (Liu et al., 2022) proposes a refined strat-189

egy for converting NER problem into the Question190

Answering (QA) formulation and generates tem-191

plates for QA models. Hou et al. (2022) improves192

model prediction efficiency by introducing an in-193

verse paradigm. Although previous prompt-based194

methods have achieved good performance, but all195

of them neglect to enhance the ability of entity196

boundary detection.197

3 Problem Definition198

In this work, we focus on few-shot NER task.199

Specifically, a training set Dtrain consists of word200

sequences and their label sequences. Given a201

word sequence X = {x1, ..., xn}, we denote L =202

{l1, ..., ln} as its corresponding label sequence. 203

Here, we assume only K training examples (K- 204

shot) for each of N classes (N-way) in the training 205

set Dtrain. Our goal is to develop a model that 206

learns from these few-shot training samples then 207

makes predictions on the test set Dtest. Different 208

from previous works that assume a resource-rich 209

source domain and available support sets during 210

testing, we follow the few-shot setting of Gao et al. 211

(2021), which supposes that only a small number 212

of examples are used for fine-tuning. Such set- 213

ting makes minimal assumptions about available 214

resources and is more practical. 215

4 Method 216

We propose a prompt-based method with Parabi- 217

otic Decoder (ParaBART) to improve the ability 218

of entity boundary detection. We first give an 219

overview of ParaBART, which is illustrated in Fig- 220

ure 3. ParaBART consists of a BART encoder 221

and the Parabiotic Decoder we propose. Parabi- 222

otic Decoder, includes two BART decoders and a 223

conjoint module. The two decoders solve the tasks 224

of entity boundary detection and entity type clas- 225

sification respectively and share the well-learned 226

knowledge between the two decoders through the 227

conjoint module, which replaces unimportant to- 228

kens’ embeddings in one decoder with the average 229

embedding of all tokens in the other decoder. Addi- 230

tionally, we design a boundary expansion strategy 231

to enhance the ability of entity type classification. 232

Next, we describe main components of ParaBART. 233

4.1 Parabiotic Decoder 234

Parabiotic Decoder includes two BART decoders 235

and a conjoint module. One decoder is responsible 236

for entity boundary detection, called EBD decoder. 237

The other decoder is for entity type classification, 238

named ETC decoder. The conjoint module is used 239

for sharing the well-learned knowledge between 240

the two decoders. 241

Firstly, we manually create the templates for 242

two decoders respectively. For ETC decoder, 243

the template has one slot for candidate_span 244

and the other slot for label words. We set a 245

one to one mapping function to transfer the la- 246

bel set L = {l1, ..., l|L|} (e.g., lk =“LOC”) 247

to a natural word set Y = {y1, ..., y|L|} (e.g. 248

yk =“location”), and use words to define 249

templates Tyk
ETC (e.g. <candidate_span> 250

belongs to location category.) In this way, 251
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Figure 3: The overall architecture of ParaBART.

we can obtain a list of templates TETC =252

[Ty1
ETC , ...,T

y|L|
ETC ]. For EBD decoder, we create253

an entity template T+
EBD for all of the named en-254

tity spans (e.g., <candidate_span> is a named255

entity.) and a non-entity template T−
EBD for non-256

entity spans (e.g., <candidate_span> is not257

a named entity.). We can obtain a list of tem-258

plate TEBD = [T+
EBD,T

−
EBD]. The training pro-259

cedure is detailed in Section 4.3.260

After that, we propose a conjoint module to share261

the well-learned knowledge between the two de-262

coders. Inspired by Caron et al. (2021); Liang et al.263

(2022), we select tokens in one decoder with a pro-264

portion of the smallest attention scores to cls4 to265

filter the less important tokens. After that, the se-266

lected tokens’ embeddings are replaced with the267

average embedding of all tokens in the other de-268

coder. Further, we employ residual connection (He269

et al., 2016) to reduce the information loss caused270

by the replacement. The overall procedure of the271

conjoint module at layer µ is summarized in Algo-272

rithm 1. In particular, inspired by Pu et al. (2022),273

we only add the module on the shallow layers (i.e.274

µ ∈ [1, 2, 3]) of the decoders, to share the general275

perceptions.276

4.2 Boundary Expansion277

Zhu and Li (2022) hold that the annotated spans278

are scarce and assigned with full probability to be279

an entity, whereas all other spans are assigned with280

zero probability. This creates noticeable sharpness281

between the classification targets of adjacent spans,282

4The special token in Transformer that can be used to
derive the sentence-level embedding.

Algorithm 1 Conjoint Procedure

Input: The embedding matrices E1, E2 and the
cls attention vectors A1, A2 of two decoders;
conjoint proportion θ;
# E1,E2 ∈ Rseq_len×emb_dim

# A1,A2 ∈ R1×seq_len

1: Obtain the positions P1, P2, whose attention
scores are smaller than the θ-quantile of A1,
A2, respectively;

2: n← the size of A1;
3: for p ∈ P1 do
4: E1[p]← E1[p] +

1
n

∑n
i=1E2[i];

5: end for
6: for p ∈ P2 do
7: E2[p]← E2[p] +

1
n

∑n
i=1E1[i];

8: end for

and may thus plague the trainability of neural net- 283

works. Inspired by label smoothing (Szegedy et al., 284

2016; Müller et al., 2019), we design a boundary 285

expansion strategy to solve the problem. Specif- 286

ically, given the sentence “ACL will be held in 287

Toronto”, where “Toronto” has a gold label “lo- 288

cation”. For a span (e.g. “in Toronto”) that in- 289

cludes an entity span and its previous or subse- 290

quent token, we change its label from O-class to 291

the entity type corresponding to the entity span. 292

It is noted that we only implement entity bound- 293

ary expansion for ETC decoder. After boundary 294

expansion, TETC = Tyi
ETC (e.g. “in Toronto be- 295

longs to location category”) and TEBD = T−
EBD 296
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(e.g. “in Toronto is not a named entity”). Since297

ETC decoder is only responsible for predicting the298

category of entities, the expansion of entity bound-299

aries to ETC decoder does not affect the model’s300

ability to detect entity boundaries. Meanwhile, the301

strategy effectively improves the performance of302

ETC decoder to classify entity types.303

4.3 Training304

Gold entities are used to create template during305

training. Suppose that the entity type of a text span306

xi is yk. We fill the text span xi and the entity type307

yk into TETC and TEBD to create two target sen-308

tences Tyk,xi

ETC and T+
EBD. If xj is a non-entity span,309

we only need the target sentence T−
EBD. We use all310

gold entities in the training set to construct positive311

samples (X,TETC ,T
+
EBD) and create negative312

samples (X,T−
EBD) by randomly sampling non-313

entity text spans. Through the proposed boundary314

expansion, we can create some expanded samples315

(X,TETC ,T
−
EBD). The ratio of the number of316

positive, negative and expanded samples is 1:1:1.317

Given a positive sample (X,TETC ,T
+
EBD) or318

an expanded sample (X,TETC ,T
−
EBD) , we feed319

the input X to the encoder of the BART, and then320

we obtain hidden representations of the sentence:321

henc = Encoder(X) (1)322

For each decoder5 , at the c-th step, henc and previ-323

ous output tokens t1:c−1 are then as inputs, yield-324

ing a representation using attention (Vaswani et al.,325

2017):326

hdec
c = Decoder(henc, t1:c−1) (2)327

The conditional probability of the word tc is de-328

fined as:329

p(tc|t1:c−1,X)=Softmax(hdec
c Wlm + blm) (3)330

where Wlm ∈ Rdh×|V| and blm ∈ R|V|. |V| rep-331

resents the vocab size of pre-trained BART. The332

cross-entropy between each decoder’s output and333

the corresponding target template is used as the334

loss function:335

L = −
m∑
c=1

logp(tc|t1:c−1,X) (4)336

The ETC and EBD decoders get LETC and LEBD337

respectively by Equation 4. LETC and LEBD up-338

date their corresponding decoder and jointly update339

the encoder.340
5The decoder represents BART decoder with our proposed

conjoint module.

Given a negative sample pair (X,T−
EBD), we 341

only feed the encoder output henc to the EBD de- 342

coder and obtain LEBD to update the encoder and 343

EBD decoder. 344

4.4 Inference 345

We first enumerate all possible spans in the sen- 346

tence {x1, ..., xn} and fill them in the prepared 347

templates. Following Cui et al. (2021), we restrict 348

the number of n-grams for a span from one to eight 349

for efficiency. Then, we use the fine-tuned pre- 350

trained generative language model to assign a score 351

for each template, formulated as 352

f(T) = −
m∑
c=1

logp(tc|t1:c−1,X) (5) 353

We first calculate scores f(T+
EBD) and f(T−

EBD) 354

for each candidate spans through the EBD decoder. 355

If f(T−
EBD) > f(T+

EBD), we predict the text span 356

is not an entity. Otherwise, we calculate scores 357

f(Tyk
ETC) for each entity type through the ETC 358

decoder. Then we assign the entity type with the 359

largest score to the text span. 360

5 Experiments 361

We compare our proposed method with several 362

baselines on two classic few-shot scenarios: (1) 363

few-shot setting, where all training data are only a 364

few labeled data. (2) resource-rich setting, where 365

some additional data-rich source domains are avail- 366

able for pretraining. 367

Implements Following Cui et al. (2021), we 368

use the pre-trained bart-large model for all 369

the datasets. Besides, we set the learning rate 370

as 4e − 5 and batch size as 2 for few-shot 371

training. Following Hou et al. (2022), we fine- 372

tune the model only on few-shot training set for 373

2 epochs (4 on 10/20 shots settings) with the 374

AdamW optimizer and linear decaying scheduler 375

for all our experiments. We use the templates 376

“<candidate_span> is a named entity” and 377

“<candidate_span> is not a named entity” for 378

EBD decoder and “<candidate_span> be- 379

longs to <entity_type> category” for ETC 380

decoder. The impact of different choice of tem- 381

plates are detailed in Appendix B. Since there is no 382

development set, all hyperparameters are roughly 383

set based on experience without tuning. All base- 384

line results except QaNER (Liu et al., 2022) are 385

recorded in Hou et al. (2022). For QaNER, we 386
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Method MIT-Restaurant
10-shot 20-shot 50-shot 100-shot 200-shot 500-shot Average

ExampleNER + PT 27.6 29.5 31.2 33.7 34.5 34.6 31.9
Multi-Proto + PT 46.1 48.2 49.6 50.0 50.1 - -

Sequence Labeling BART + PT 8.8 11.1 42.7 45.3 47.8 58.2 35.7
Sequence Labeling BERT + PT 27.2 40.9 56.3 57.4 58.6 75.3 52.6

Template-based BART + PT 53.1 60.3 64.1 67.3 72.2 75.7 65.5
Sequence Labeling BERT 21.8 39.4 52.7 53.5 57.4 61.3 47.7

Template-based BART 46.0 57.1 58.7 60.1 62.8 65.0 58.3
QaNER 55.3 63.9 67.1 69.8 71.3 73.2 66.8

Inverse Prompt 52.1 61.5 66.8 71.0 74.0 76.4 67.0
ParaBART (ours) 59.71 67.45 71.22 74.58 76.14 78.94 71.34

Method MIT-Movie-Hard
10-shot 20-shot 50-shot 100-shot 200-shot 500-shot Average

ExampleNER + PT 40.1 39.5 40.2 40.0 40.0 39.5 39.9
Multi-Proto + PT 36.4 36.8 38.0 38.2 35.4 38.3 37.2

Sequence Labeling BART + PT 13.6 30.4 47.8 49.1 55.8 66.9 43.9
Sequence Labeling BERT + PT 28.3 45.2 50.0 52.4 60.7 76.8 52.2

Template-based BART + PT 42.4 54.2 59.6 65.3 69.6 80.3 61.9
Sequence Labeling BERT 25.2 42.2 49.6 50.7 59.3 74.4 50.2

Template-based BART 37.3 48.5 52.2 56.3 62.0 74.9 55.2
QaNER 56.5 62.3 66.1 68.7 70.2 72.4 66.0

Inverse Prompt 53.3 60.2 66.1 69.6 72.5 74.8 66.1
ParaBART (ours) 61.34 64.79 70.33 72.81 74.58 76.17 70.00

Method MIT-Movie
10-shot 20-shot 50-shot 100-shot 200-shot 500-shot Average

Sequence Labeling BERT 50.6 59.3 71.3 - - - -
NNShot 50.5 59.0 71.2 - - - -

StructShot 53.2 61.4 72.1 - - - -
Template-based BART 49.3 59.1 65.1 - - - -

EntLM 57.3 62.4 71.9 - - - -
QaNER 62.5 67.0 71.1 75.8 78.3 81.2 72.7

Inverse Prompt 59.7 70.1 77.6 80.6 82.6 84.5 75.9
ParaBART (ours) 70.34 75.28 81.91 83.52 84.35 86.17 80.26

Table 1: F1 scores (%) of 10, 20, 50, 100, 200, 500-shot problems over MIT-Restaurant, MIT-Movie-Hard and
MIT-Movie datasets. +PT denotes the model is pre-trained on additional datasets. We highlight the best results in
bold.

use the original codes released by their authors and387

keep the experimental setup consistent with other388

baselines. We run all the experiments on a single389

NVIDIA v100 GPU.390

5.1 Few-Shot Setting391

Datasets Following Hou et al. (2022), we con-392

duct experiments on three few-shot datasets with393

only in-domain data: MIT-Restaurant Review (Liu394

et al., 2013), MIT-Movie Review (Liu et al., 2013)395

and MIT-Movie-Hard Review6. We conduct exper-396

iments with K ∈ {10, 20, 50, 100, 200, 500} shots397

6MIT-Movie Review has two datasets: a simple one and a
complex one. We denote the simple one as MIT-Movie and
combine both as MIT-Movie-Hard.

settings to fully evaluate the performance of our 398

method in all three datasets. To overcome the ran- 399

domness associated with training set selection, we 400

sample 10 different training sets for each K-shot 401

setting and report averaged results. All baselines 402

are trained and tested with the same data. 403

Baselines In our experiments, we compare with 404

some competitive baselines which can be grouped 405

into three categories: (1) conventional sequence la- 406

beling methods: ExampleNER (Ziyadi et al., 2020), 407

Sequence Labeling BERT (Devlin et al., 2018) and 408

Sequence Labeling BART (Lewis et al., 2020); (2) 409

metric-based methods: Multi-Proto (Huang et al., 410

2020), NNShot and StructShot (Yang and Katiyar, 411
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Method 5-shot SNIPS
We Mu Pl Bo Se Re Cr Average

Bi-LSTM 25.44 39.69 45.36 73.58 55.03 40.30 40.49 45.70
SimBERT 53.46 54.13 42.81 75.54 57.10 55.30 32.38 52.96

TransferBERT 56.01 43.85 50.65 14.19 23.89 36.99 14.29 34.27
MN 38.80 37.98 51.97 70.61 37.24 34.29 72.34 49.03

WPZ+BERT 69.06 57.97 44.44 71.97 74.62 51.01 69.22 62.61
TapNet+CDT 67.83 68.72 73.74 86.94 72.12 69.19 66.54 72.15
L-WPZ+CDT 78.23 62.36 59.74 76.19 83.66 69.69 71.51 71.62

L-TapNet+CDT 69.58 64.09 74.93 85.37 83.76 69.89 73.80 74.49
Inverse Prompt 70.63 71.97 78.73 87.34 81.95 72.07 74.44 76.73

ConVEx* 71.50 77.60 79.00 84.50 84.00 73.80 67.40 76.80
ParaBART (ours) 72.19 74.58 80.41 89.58 84.13 75.62 76.95 79.07

Table 2: F1 scores (%) on 5-shot SNIPS dataset. We highlight the best results in bold.

2020); (3) prompt-based methods: Template-based412

BART (Cui et al., 2021), EntLM (Ma et al., 2021),413

QaNER (Liu et al., 2022) and Inverse Prompt (Hou414

et al., 2022). Among them, Template-based BART415

is a prompt-based method that query BART-(Lewis416

et al., 2020) every possible span in a sentence if it417

belongs to a certain entity type. QaNER proposes418

a refined strategy for converting NER problem into419

the Question Answering (QA) formulation and gen-420

erates templates for QA models. Inverse Prompt421

introduces an inverse paradigm for prompting and422

an iterative prediction strategy to improve the effi-423

ciency of prompt-based methods. For more details424

of other baselines, see Appendix A.1.425

Results The results of few-shot settings on426

MIT-Restaurant, MIT-Movie-Hard and MIT-Movie427

datasets are shown in Table 1. From the table,428

ParaBART consistently outperforms all the base-429

lines by a large margin. For example, compared430

with Inverse Prompt, ParaBART achieves 7.6% im-431

provements in 10-shot setting on MIT-Restaurant432

dataset. When compared against Template-based433

BART, ParaBART leads by 14.8% in the average F1434

score on MIT-Movie-Hard dataset, which clearly435

demonstrates that our model is very effective in im-436

proving BART-based model. All these results show437

that ParaBART can leverage information from lim-438

ited labeled data more efficiently.439

5.2 Resource-Rich Setting440

Datasets We also evaluate the ability of trans-441

ferring from data-rich source domains to unseen442

few-shot domains and conduct experiments on443

SNIPS (Coucke et al., 2018) dataset. We use 5- 444

shot SNIPS datasets provided by Hou et al. (2022). 445

The few-shot SNIPS dataset consists of 7 domains 446

with different label sets: GetWeather (We), Mu- 447

sic (Mu), PlayList (Pl), RateBook (Bo), Search- 448

ScreenEvent (Se), BookRestaurant (Re), and 449

SearchCreativeWork (Cr). Each domain contains 450

100 few-shot episodes, and each episode consists 451

of a support set and a query. 452

Baselines We provide competitive strong base- 453

lines including: (1) traditional finetune-based 454

methods: Bi-LSTM (Schuster and Paliwal, 455

1997), SimBERT (Su, 2020), TransferBERT 456

and ConVEx (Henderson and Vulić, 2020); 457

(2) few-shot learning methods: Matching Net- 458

work (MN) (Vinyals et al., 2016), WPZ (Frit- 459

zler et al., 2019b), TapNet+CDT, L-TapNet+CDT, 460

L-WPZ+CDT (Hou et al., 2020) and Inverse 461

Prompt (Hou et al., 2022). TapNet+CDT, L- 462

TapNet+CDT and L-WPZ+CDT are metric-based 463

few-shot learning methods designed for slot tag- 464

ging, which introduces a CRF-based framework to 465

consider the relation between different slots. Con- 466

VEx is a finetuning-based method that models slot 467

tagging as a cloze task. The method pre-trained on 468

Reddit data and fine-tuned on few-shot slot tagging 469

data. It is noted that the Reddit data is not used 470

by our method and other baselines during the ex- 471

periments. For more details of other baselines, see 472

Appendix A.2. 473

Results The results of cross-domain settings on 474

5-shot SNIPS dataset are shown in Table 2. From 475

the table, we see that our method outperforms all 476
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the baselines on the average F1 score including477

ConVEx which uses extra Reddit data in the cross-478

domain 5-shot setting. Compared with Inverse479

Prompt, ParaBART achieves 2.34% improvements480

on the average F1 score. All these results clearly481

show the generalizability of our model on cross-482

domain few-shot NER task.483

5.3 Ablation Study484

Method MIT-R MIT-MM MIT-M

10-shot
ParaBART 59.71 61.34 70.34

w/o CM 57.32 60.18 68.94
w/o BE 55.47 57.32 68.17

20-shot
ParaBART 67.45 64.79 75.28

w/o CM 65.33 61.87 73.19
w/o BE 62.97 60.13 73.65

50-shot
ParaBART 71.22 70.33 81.91

w/o CM 69.01 68.05 79.23
w/o BE 68.39 66.58 79.88

100-shot
ParaBART 74.58 72.81 83.52

w/o CM 72.78 69.32 81.01
w/o BE 72.11 69.98 81.14

200-shot
ParaBART 76.14 74.58 84.35

w/o CM 74.20 71.19 82.87
w/o BE 74.36 72.32 82.91

500-shot
ParaBART 78.94 76.17 86.17

w/o CM 76.59 74.82 84.18
w/o BE 77.54 74.77 85.12

Table 3: Ablation study: F1 scores (%) of 10, 20, 50,
100, 200, 500-shot problems over MIT-Restaurant (MIT-
R), MIT-Movie-Hard (MIT-MM) and MIT-Movie (MIT-
M) datasets. w/o CM denotes removing conjoint mod-
ule and w/o BE denotes removing boundary expansion.

We conduct an ablation study to understand485

the characteristics of the main components of486

ParaBART. As shown in Table 3, the conjoint mod-487

ule brings consistent improvement across all the488

datasets. This shows that the the conjoint mod-489

ule can effectively improve the model performance.490

When removing boundary expansion, ParaBART491

has a significant decline in all the datasets, es-492

pecially in low-resource settings. For example,493

ParaBART drops 4.24% in 10-shot setting on MIT-494

Restaurant dataset, which demonstrates that our495

proposed boundary expansion strategy is highly496

effective in few-shot settings.497

5.4 Analysis498

To verify the ability of our model to detect entity499

boundaries, we conduct an experiment following500

the experimental setup of the preliminary experi-501

ment in the Section 1. From the Figure 4, we can502

20
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100

O-PER O-LOC O-ORG O-MISC PER LOC ORG MISC
TemplateBART ESDN(ours)

79.7(+17.3)

74.3(+14.9)
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ra
cy

(%
)

Figure 4: Results of the preliminary experiment intro-
duced in Section 1. Our model outperforms Template-
BART (Cui et al., 2021) by a large margin, especially
the prediction of O-entity spans, which illustrates
the superiority of our model in entity boundary detec-
tion.

see that our model achieves a significant improve- 503

ment (about 16.3% on average) on the accuracy for 504

O-entity spans, which clearly demonstrates that 505

our model has a huge advantage in entity boundary 506

detection. Moreover, when entity boundaries are 507

known, the accuracy of our model on entity type 508

classification also increases by 4.6% on average. 509

All the results show that ParaBART can perform 510

reasonably well. 511

6 Conclusion 512

In this paper, we first conducted a preliminary ex- 513

periment and found that what really affects prompt- 514

based NER models is the ability to detect entity 515

boundaries. Based on the observation, we pro- 516

posed ParaBART to improve the performance of 517

prompt-based methods on entity boundary detec- 518

tion. ParaBART consists of a BART encoder and 519

the Parabiotic Decoder we proposed. Parabiotic 520

Decoder includes two BART decoders and a con- 521

joint module. The two decoders are responsible for 522

entity boundary detection and entity type classifica- 523

tion respectively and share the general knowledge 524

through the conjoint module, which replaces unim- 525

portant tokens’ embeddings in one decoder with 526

the average embedding of all tokens in the other 527

decoder. Moreover, we design a novel boundary 528

expansion strategy to enhance the ability of entity 529

type classification. Experimental results show that 530

ParaBART can achieve significant performance 531

gains over other state-of-the-art methods. 532
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Ethics Statement533

The proposed method has no obvious potential534

risks. All the scientific artifacts used/created are535
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Data-efficient and few-shot slot labeling. arXiv 602
preprint arXiv:2010.11791. 603

Yutai Hou, Wanxiang Che, Yongkui Lai, Zhihan Zhou, 604
Yijia Liu, Han Liu, and Ting Liu. 2020. Few-shot 605
slot tagging with collapsed dependency transfer and 606
label-enhanced task-adaptive projection network. In 607
ACL, pages 1381–1393. 608

Yutai Hou, Cheng Chen, Xianzhen Luo, Bohan Li, and 609
Wanxiang Che. 2022. Inverse is better! fast and ac- 610
curate prompt for few-shot slot tagging. In Findings 611
of ACL, pages 637–647. 612

Jiaxin Huang, Chunyuan Li, Krishan Subudhi, Damien 613
Jose, Shobana Balakrishnan, Weizhu Chen, Baolin 614
Peng, Jianfeng Gao, and Jiawei Han. 2020. Few-shot 615
named entity recognition: A comprehensive study. 616
arXiv preprint arXiv:2012.14978. 617

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan 618
Ghazvininejad, Abdelrahman Mohamed, Omer Levy, 619
Veselin Stoyanov, and Luke Zettlemoyer. 2020. 620
BART: denoising sequence-to-sequence pre-training 621
for natural language generation, translation, and com- 622
prehension. In ACL, pages 7871–7880. 623

Jing Li, Aixin Sun, Jianglei Han, and Chenliang Li. 624
2020. A survey on deep learning for named entity 625
recognition. IEEE Transactions on Knowledge and 626
Data Engineering, 34(1):50–70. 627

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: 628
Optimizing continuous prompts for generation. In 629
ACL, pages 4582–4597. 630

Youwei Liang, Chongjian Ge, Zhan Tong, Yibing 631
Song, Jue Wang, and Pengtao Xie. 2022. Not all 632
patches are what you need: Expediting vision trans- 633
formers via token reorganizations. arXiv preprint 634
arXiv:2202.07800. 635

9



Andy T Liu, Wei Xiao, Henghui Zhu, Dejiao Zhang,636
Shang-Wen Li, and Andrew Arnold. 2022. Qaner:637
Prompting question answering models for few-638
shot named entity recognition. arXiv preprint639
arXiv:2203.01543.640

Jingjing Liu, Panupong Pasupat, Yining Wang, Scott641
Cyphers, and Jim Glass. 2013. Query understanding642
enhanced by hierarchical parsing structures. In 2013643
IEEE Workshop on Automatic Speech Recognition644
and Understanding, pages 72–77.645

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-646
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,647
Luke Zettlemoyer, and Veselin Stoyanov. 2019.648
Roberta: A robustly optimized BERT pretraining649
approach. CoRR, abs/1907.11692.650

Ruotian Ma, Xin Zhou, Tao Gui, Yiding Tan,651
Qi Zhang, and Xuanjing Huang. 2021. Template-652
free prompt tuning for few-shot ner. arXiv preprint653
arXiv:2109.13532.654

Tingting Ma, Huiqiang Jiang, Qianhui Wu, Tiejun655
Zhao, and Chin-Yew Lin. 2022. Decomposed meta-656
learning for few-shot named entity recognition. arXiv657
preprint arXiv:2204.05751.658

Rafael Müller, Simon Kornblith, and Geoffrey E Hinton.659
2019. When does label smoothing help? NIPS, 32.660

Jeffrey Pennington, Richard Socher, and Christopher D661
Manning. 2014. Glove: Global vectors for word662
representation. In EMNLP, pages 1532–1543.663

Mengyang Pu, Yaping Huang, Yuming Liu, Qingji664
Guan, and Haibin Ling. 2022. Edter: Edge detection665
with transformer. In Proceedings of the IEEE/CVF666
Conference on Computer Vision and Pattern Recog-667
nition, pages 1402–1412.668

Timo Schick and Hinrich Schütze. 2021a. Exploiting669
cloze-questions for few-shot text classification and670
natural language inference. In EACL, pages 255–269.671

Timo Schick and Hinrich Schütze. 2021b. It’s not just672
size that matters: Small language models are also673
few-shot learners. In NAACL, pages 2339–2352.674

Mike Schuster and Kuldip K Paliwal. 1997. Bidirec-675
tional recurrent neural networks. IEEE transactions676
on Signal Processing, 45(11):2673–2681.677

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV,678
Eric Wallace, and Sameer Singh. 2020. Autoprompt:679
Eliciting knowledge from language models with au-680
tomatically generated prompts. In EMNLP, pages681
4222–4235.682

Jake Snell, Kevin Swersky, and Richard S. Zemel. 2017.683
Prototypical networks for few-shot learning. In NIPS,684
pages 4077–4087.685

Jianlin Su. 2020. Simbert: Integrating retrieval and686
generation into bert. Technical report.687

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, 688
Jon Shlens, and Zbigniew Wojna. 2016. Rethinking 689
the inception architecture for computer vision. In 690
CVPR, pages 2818–2826. 691

Meihan Tong, Shuai Wang, Bin Xu, Yixin Cao, Minghui 692
Liu, Lei Hou, and Juanzi Li. 2021. Learning from 693
miscellaneous other-class words for few-shot named 694
entity recognition. arXiv preprint arXiv:2106.15167. 695

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 696
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 697
Kaiser, and Illia Polosukhin. 2017. Attention is all 698
you need. NIPS, 30. 699

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Ko- 700
ray Kavukcuoglu, and Daan Wierstra. 2016. Match- 701
ing networks for one shot learning. arXiv preprint 702
arXiv:1606.04080. 703

Peiyi Wang, Runxin Xu, Tianyu Liu, Qingyu Zhou, 704
Yunbo Cao, Baobao Chang, and Zhifang Sui. 2021. 705
An enhanced span-based decomposition method for 706
few-shot sequence labeling. CoRR, abs/2109.13023. 707

Sam Wiseman and Karl Stratos. 2019. Label-agnostic 708
sequence labeling by copying nearest neighbors. In 709
ACL, pages 5363–5369. 710

Vikas Yadav and Steven Bethard. 2019. A survey on re- 711
cent advances in named entity recognition from deep 712
learning models. arXiv preprint arXiv:1910.11470. 713

Yi Yang and Arzoo Katiyar. 2020. Simple and effective 714
few-shot named entity recognition with structured 715
nearest neighbor learning. In EMNLP, pages 6365– 716
6375. 717

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Car- 718
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019. 719
Xlnet: Generalized autoregressive pretraining for lan- 720
guage understanding. In NIPS, pages 5754–5764. 721

Enwei Zhu and Jinpeng Li. 2022. Boundary smoothing 722
for named entity recognition. In ACL 2022, pages 723
7096–7108. 724

Morteza Ziyadi, Yuting Sun, Abhishek Goswami, 725
Jade Huang, and Weizhu Chen. 2020. Example- 726
based named entity recognition. arXiv preprint 727
arXiv:2008.10570. 728

10

https://github.com/ZhuiyiTechnology/simbert
https://github.com/ZhuiyiTechnology/simbert
https://github.com/ZhuiyiTechnology/simbert


A Baselines729

In our experiments, we compare with competitive730

baselines including both conventional methods and731

recent prompt-based methods.732

A.1 Few-Shot Setting733

• ExampleNER (Ziyadi et al., 2020) uses large734

open-domain NER datasets to train an entity-735

agnostic model to further capture the correla-736

tion between support examples and a query.737

Meanwhile, ExampleNER applies a sentence-738

level attention to choose the most related ex-739

amples as support examples to identify new740

entities.741

• Multi-Proto (Huang et al., 2020) proposes742

multiple prototypes for each entity type and743

pre-trained the model with the task of ran-744

domly masked token prediction on massive745

corpora.746

• Sequence Labeling BERT (Devlin et al.,747

2018) can be seen as a BERT-based sequence748

labeling baseline which fine-tunes the BERT749

model with a token-level linear classifier.750

• Template-based BART (Cui et al., 2021) is a751

prompt-based method that query BART-based752

LM (Lewis et al., 2020) every possible span753

in sentence if it belongs to a certain category.754

• NNShot and StructShot (Yang and Katiyar,755

2020) are two metric-based few-shot learning756

approaches for slot tagging and NER. NNShot757

is an instance-level nearest neighbor classifier758

for few-shot prediction, and StructShot pro-759

motes NNShot with a Viterbi algorithm during760

decoding.761

• EntLM (Ma et al., 2021) is a prompt-based762

method that leverage substitution between763

words of the same type to achieve one pass764

prediction.765

• QaNER (Liu et al., 2022) proposes a refined766

strategy for converting NER problem into the767

Question Answering (QA) formulation and768

generates templates for QA models.769

• Inverse Prompt (Hou et al., 2022) introduces770

an inverse paradigm for prompting and an it-771

erative prediction strategy to improve the effi-772

ciency of prompt-based methods.773

A.2 Resource-Rich Setting 774

• Bi-LSTM (Schuster and Paliwal, 1997) uses 775

GLoVe (Pennington et al., 2014) embedding 776

for slot tagging and is trained on the support 777

sets. 778

• SimBERT (Su, 2020) is a metric-based 779

method using cosine similarity of BERT-based 780

embedding to label tokens with the most simi- 781

lar token’s label. 782

• Matching Network (MN) (Vinyals et al., 783

2016) is a few-shot sequence labeling model 784

based on the matching network and uses 785

BERT embedding. 786

• TransferBERT is a domain transfer-based 787

conventional NER model using BERT, which 788

is first pre-trained on source domains and then 789

fine-tuned on the target domain support set. 790

• WPZ (Fritzler et al., 2019b) is a metric-based 791

few-shot slot tagging method similar to MN, 792

but is based on the prototypical network (Snell 793

et al., 2017). 794

• TapNet+CDT, L-TapNet+CDT, L- 795

WPZ+CDT (Hou et al., 2020) are metric- 796

based few-shot learning methods designed for 797

slot tagging, which introduces a CRF-based 798

framework to consider the relation between 799

different slots. 800

• ConVEx (Henderson and Vulić, 2020) is a 801

finetuning-based method that models slot tag- 802

ging as a cloze task and is first pre-trained 803

on Reddit data then fine-tuned on few-shot 804

slot tagging data. Note that the Reddit data is 805

not used by our method and other baselines 806

during the experiments. 807

B Template Influence 808

There can be different templates for expressing the 809

same meaning. For instance, “<candidate_span> 810

is a person entity” can also be expressed by “<can- 811

didate_span> belongs to the person category”. 812

We investigate the impact of manual templates 813

using MIT-Movie dataset on 10-shot setting. Ta- 814

ble 4 shows the performance impact of differ- 815

ent choice of templates. We observe: (1) When 816

TEBD is fixed, Different choice of TETC has lit- 817

tle effect on the performance of the model. (2) 818

When TETC is fixed, Different choice of TETC 819
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TEBD TETC F1(%)
<candidate_span> is a <entity_type> entity 69.71

<candidate_span> is a named entity <candidate_span> belongs to <entity_type> category 70.34
<candidate_span> is not a named entity The entity type of <candidate_span> is <entity_type> 72.11

<candidate_span> should be tagged as <entity_type> 70.89
<candidate_span> is a <entity_type> entity 66.11

<candidate_span> belongs to named entity <candidate_span> belongs to <entity_type> category 62.32
<candidate_span> belongs to none entity The entity type of <candidate_span> is <entity_type> 64.51

<candidate_span> should be tagged as <entity_type> 62.29

Table 4: The results of using different templates in 10-shot setting on MIT-Movie dataset.

has a great impact on the model. For instance,820

when TETC is “<candidate_span> belongs821

to <entity_type> category”, the two TEBD822

give 70.34% and 62.32% F1 score respectively,823

which indicates the templates for entity boundary824

detection is a key factor that influences the final825

performance. Since we assume that there is no de-826

velopment set, we randomly choose templates in827

our main experiments.828
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