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ABSTRACT

While hypergraphs encapsulate higher-order interactions among entities and tran-
scend the pairwise connections characteristic of traditional graphs, their prevailing
learning approaches predominantly inherit from graph neural networks, adhering
to the established message passing paradigm. These methods frequently concep-
tualizes hyperedges as special nodes, facilitating the transmission of aggregated
messages through hyperedges instead of direct messages between adjacent nodes.
Such a paradigm is prone to information loss, especially in the context of large
hyperedges that bridge a heterophilic array of nodes. To mitigate this shortcoming
and enhance high-order message passing, we propose the Hypergraph-native Mes-
sage Passing (HMP) framework, which leverages full-rank interactions among
the incidences along the underlying hypergraph and its dual. In contrast to the
conventional node-centric approaches, this incidence-centric perspective adeptly
manages incidence-level tasks, such as hyperedge-dependent labelling, and seam-
lessly integrates virtual incidences for both hyperedge- and node-level tasks. Em-
pirical evaluations demonstrate that HMP achieves a substantial improvement
over state-of-the-art methods on 6 hyperedge-dependent labelling benchmarks,
with an increase in accuracy ranging from 2.3% to 28.9%, while also delivering
competitive results on 13 node classification benchmarks. Code to reproduce all
our experiments is available at https://anonymous.4open.science/r/
HMP-FB14/.

1 INTRODUCTION

Although graphs have emerged as an indispensable instrument for the modelling of complex sys-
tems, in which nodes symbolize entities and edges delineate pairwise relationships (Wu et al., 2020),
numerous real-world systems manifest higher-order interactions that fall beyond the descriptive ca-
pacity of conventional pairwise graph models (Battiston et al., 2020). This deficiency has spurred the
investigation into hypergraphs, a conceptual extension of graphs that provides a more nuanced struc-
tural representation by enabling edges, referred to as hyperedges, to affiliate more than two nodes,
or termed vertices, thereby directly encoding intricate and multipartite relationships (Antelmi et al.,
2023), as exemplified in Figure 1a. Hypergraphs prove particularly efficacious in contexts where
multi-dimensional interactions are widespread, such as co-authorship networks (Bai et al., 2021) or
multi-agent systems (Zhang et al., 2022), while also remaining congruent with scenarios where tra-
ditional graphs hold sway, including social networks (Yu et al., 2021), biological systems (Gopalakr-
ishnan et al., 2022; Zhang et al., 2024; Xu et al., 2022), and knowledge graphs (Liu et al., 2023a).

Despite the capability of hypergraphs to encapsulate complex interactions, the evolution of hyper-
graph neural networks (HNNs) has been substantially guided by the methodologies developed for
their graph-based counterparts (Feng et al., 2019; Yadati et al., 2019; Bai et al., 2021). Contempo-
rary HNNs predominantly adhere to the message passing schema of graph neural networks, where
hyperedges are conceptualized as special nodes through which message aggregation occurs (Dong
et al., 2020; Huang & Yang, 2021; Georgiev et al., 2022), as illustrated in Figure 1b. For instance,
AllSet (Chien et al., 2021) constructs its layers by employing two multiset functions: one for ag-
gregating messages from nodes to hyperedges, and another from hyperedges to nodes. While this
approach is conceptually straightforward, it is not without its drawbacks; a notable limitation is the
potential for information loss, as the messages that nodes collect from their neighbours are effec-
tively squashed through hyperedges (Di Giovanni et al., 2023). This squashing undermines the high-
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Figure 1: Different message passing paradigms. (a) Hypergraph: An example hypergraph com-
prising two hyperedges ea = {v1, v2, v3, v4}, eb = {v3, v4, v5, v6}. Messages passing from nodes
v1, v2 to v5, v6 is along a 2-walk ea, eb. (b) Message Passing on Star Expansion: Contemporary
methodologies predominantly treat hyperedges as special nodes and convert any walk via them into
a 1-walk (e.g. {v1, v2, va}, {va, v3, v4}, {v3, v4, vb}, {vb, v5, v6}), leading to information squashing
when passing messages through the bottled hyperedges (e.g. va, vb). (c) Hypergraph-Native Mes-
sage Passing: Our method preserves the high-order structures of the hypergraph during message
passing, thereby maintaining the richness of interactions.

order structural benefits of hypergraphs, masks the distinctive contributions of individual nodes, and
consequently leads to compromised discriminative representations, especially when dealing with
large hyperedges that bridge a heterophilic collection of nodes (Wang et al., 2023a).

To address the aforementioned limitation, we introduce the Hypergraph-native Message Passing
(HMP) framework, which is architected to harness the higher-order structure of hypergraphs more
efficiently by utilizing full-rank interactions across the incidences (or the hyperedge-node pairs) of
the hypergraph and its dual (Huang et al., 2020), as depicted in Figure 1c. This allows nodes to
engage directly with their immediate neighbours without the information squashing through hyper-
edges that might result in the loss of critical information (Yang et al., 2020) and, likewise, resolves
the squashing of hyperedges’ information through node-level bottlenecks. While being compatible
with conventional node- and hyperedge-centric approaches, HMP’s incidence-centric perspective is
particularly advantageous for incidence-level tasks, such as hyperedge-dependent labelling, where
a node can assume different labels depending on the hyperedge it is associated with (Yoon et al.,
2020; Choe et al., 2023).

In essence, our contributions are (1) a pioneering learning paradigm, HMP, that exploits the high-
order structures of hypergraphs for message propagation, (2) a novel incidence-centric perspec-
tive for incidence-, hyperedge-, and node-level tasks, and (3) state-of-the-art performance on 6
hyperedge-dependent labelling tasks and 13 node classification benchmarks.

2 PRELIMINARIES

Denoting [n] = {1, 2, . . . , n}, we represent a hypergraph as H = (V, E), where V = {vj |j ∈ [|V|]}
denotes the collection of nodes and E = {ei|i ∈ [|E|]} denotes the collection of hyperedges. Each
hyperedge ei within E is a subset of V , indicating the nodes that are interconnected by said hyper-
edge. Given that a hyperedge can connect more than two nodes, the hypergraph is characterized by
an incidence matrix B ∈ {0, 1}|E|×|V|, where Bij = 1 signifies vj ∈ ei, and Bij = 0 otherwise.
Node features are encapsulated in a matrix X ∈ R|V|×dv , with dv denoting the dimensionality of
the node feature space. The i-th row of X , denoted as Xi,:, represents the feature vector associated
with node vi. Hyperedge features, when present, are stored in a matrix E ∈ R|E|×de , where de is the
dimensionality of the hyperedge feature space. The i-th row of E, denoted as Ei,:, corresponds to
the feature vector of hyperedge ei. Incidence attributes are represented by a tensor B ∈ R|E|×|V|×db ,
where db specifies the dimensionality of the incidence attribute space. The sub-tensor Bi,j,: repre-
sents the attribute vector associated with the incidence of hyperedge ei and node vj .

We introduce the concepts of s-walks (Aksoy et al., 2020) and duality (Huang et al., 2020) within
the context of hypergraphs to help understand the message passing paradigms.
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Definition 1 (s-walk). For a positive integer s, an s-walk of length k from hyperedge es to et in
a hypergraph is defined as a sequence of hyperedges ei0 , ei1 , . . . , eik , where i0 = s, ik = t, and
min
j∈[k]

|eij−1
∩ eij | = s.

In this definition, the parameter s governs the extent of hyperedge intersections and can be concep-
tualized as the ‘bandwidth’ through which a message traverses along an s-walk. It is evident that
traditional paths in standard graphs are special cases of s-walks, specifically when s = 1. For in-
stance, Figure 1a illustrates a 2-walk along ea, eb that connects nodes v1, v2 to v5, v6. In the standard
graph (Figure 1b), a path, such as v1, va, v3, vb, v5, is a 1-walk.
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Figure 2: (a) The Original Hypergraph. (b) The Dual Hypergraph. (c) Incidence-Centric
Message Passing: HMP facilitates the message passing (MP) on both duals of a hypergraph. Red
dashed lines indicate MP along the original hypergraph, and black solid lines represent MP along
the dual hypergraph.

Definition 2 (Dual Hypergraph). The dual of a hypergraph H = (V, E) is denoted as H∗ =
(V∗, E∗), where the nodes of the dual hypergraph are given by V∗ = {v∗i = ei|i ∈ [|E|]} and
the hyperedges are defined as E∗ = {e∗j = {v∗i |vj ∈ ei}|j ∈ [|V|]}.

In this duality, if a node vj is contained within a hyperedge ei in the original hypergraph H, then the
corresponding dual hypergraph H∗ will have the node v∗i contained within the hyperedge e∗j . For
instance, Figure 2a depicts a hypergraph comprising four nodes v1, v2, v3, v4 and three hyperedges
ea = {v1, v2, v3}, eb = {v2, v3, v4}, ec = {v1, v2, v4}. In the dual hypergraph (Figure 2b), the
original hyperedges are transformed into nodes, and the original nodes become hyperedges, resulting
in the following mappings: e∗1 = {v∗a, v∗c}, e∗2 = {v∗a, v∗b , v∗c}, e∗3 = {v∗a, v∗b}, e∗4 = {v∗b , v∗c}.

3 METHODOLOGY

3.1 HYPERGRAPH-NATIVE MESSAGE PASSING

Our first innovation is the Hypergraph-native Message Passing (HMP) framework that harnesses
the high-order structural properties of hypergraphs to facilitate unsquashed information exchange.
Unlike traditional message passing (MP) approaches that compute node representations along the
‘node-hyperedge-node’ path, as depicted in Figure 1b, we employ a multiset-to-multiset model f
(referred to as the message exchanger) to compute node representations directly between ‘node-
node’ shortcuts as follows:

{Hi,j,:|vj ∈ ei} = f({Xj,:|vj ∈ ei}),∀ei ∈ E (1)

where the resulting outputs {Hi,j,:|vj ∈ ei} represent hyperedge-dependent node representations
and maintain the same order as the input features {Xj,:|vj ∈ ei}.

It is worth noting that the conventional MP on the star expansion (SE), such as AllSet (Chien et al.,
2021), is a specific instance of (1) when f is implemented as a multiset function. This implementa-
tion squashes any walk of a hypergraph into a 1-walk with its bypassing hyperedges as bottlenecks.
For example, with star expansion in Figure 1b, the representation of node v5 (or v6) is dependent
on the representation of hyperedge eb (or ea) with a fixed number h of dimensions, which is in-
capable of conveying rich information when the hyperedges bridge a massive array of heterophilic
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nodes (Aponte et al., 2022; Zheng & Worring, 2024). On the contrary, implementing f as a multiset-
to-multiset model as in HMP maintains the s-walk structure. In the example of Figure 1c, the repre-
sentation of node v5 is dependent on the combined representation of v3 and v4 with a total of h× s
times dimensions (s = 2), thereby alleviating the hyperedge bottleneck issue.

More formally, we demonstrate that the following enhanced MP on SE is a special case of HMP
when learning node representations:
Theorem 1. HMP is expressive enough to represent MP on SE with adaptive representation size for
hyperedges, defined as

X ′
j,: = fE→V({e′i|vj ∈ ei}), e′i = fV→E({Xj,:|vj ∈ ei}),

where fE→V , fV→E are multiset functions, e′i is an (h× |ei|)-dimensional representation for hyper-
edge ei, and X ′ ∈ R|V|×h is the obtained node representations.

The proof is in Appendix C.1. Thus, HMP alleviates the native structure of hypergraphs to facilitate
adaptive message passing within hyperedges of varying scales, resulting in stronger expressiveness
rather than the fixed-size MP approaches.

3.2 INCIDENCE-CENTRIC LEARNING ON HYPERGRAPH DUALS

Our second innovation is the incidence-centric learning mechanism that leverages the symmetric
attributes of hypergraphs for thorough propagation. Different from existing approaches like AllSet,
which aggregate hyperedge-dependent representations (1) using multiset functions to derive node-
level representations and thus introduce node-level bottlenecks, we enhance HMP by incorporating
an incidence-centric learning paradigm, which involves applying an additional message exchanger
f (e) to node-dependent hyperedges. The message exchanger f (e) applied to hyperedges associated
with node vj , as viewed from the dual hypergraph H∗, is expressed as:

{H(e)
i,j,:|v

∗
i ∈ e∗j} = f (e)({Ei,:|v∗i ∈ e∗j}),∀e∗j ∈ E∗. (2)

The outputs H(e) ∈ R|E|×|V|×h from (2) are added to the outputs of (1) to form the incidence
representations H ∈ R|E|×|V|×h. These incidence representations can be recursively fed into (1)
and (2), by replacing Ei,: and Xj,: with Hi,j,:, to facilitate the propagation of information between
hyperedge-dependent nodes and node-dependent hyperedges, resulting in the incidence-centric mes-
sage passing on hypergraph duals. We formally describe this algorithm in Appendix A and illustrate
it in Figure 2c.

We instantiate the multiset-to-multiset message exchangers in HMP as self-attention mod-
ules (Vaswani et al., 2017) due to their widely validated effectiveness across multiple domains of
deep learning (Kalyan et al., 2021; Han et al., 2020), as

f(X) = softmax(
XWq · (XWk)

T

√
h

) ·XWv, (3)

where Wq,Wk,Wv are trainable parameters. The self-attention modules help facilitate full-rank
interactions within incidences, but with a higher complexity:
Theorem 2. The computation complexity of HMP with (3) is max

e∈E∪E∗
|e| times that of AllSet.

The proof is in Appendix C.2. Fortunately, self-attention has undergone a series of efficient im-
provements (Tay et al., 2023; Choromanski et al., 2021) that can be applied to HMP. Specifically,
we implement the attention modules with linear computation complexity (Tay et al., 2023) (i.e. Per-
former (Choromanski et al., 2021)) when the message exchanging contexts (hyperedges or nodes)
are large, reducing the complexity of HMP to the same as conventional HNNs like AllSet. More-
over, we parallelize the attention module in different hyperedges (or nodes) via the neighbourhood
partitioning technique (Luo et al., 2025) to further enhance HMP’s memory- and time-efficiencies.

3.3 VIRTUAL INCIDENCES FOR HYPEREDGE- AND NODE-LEVEL TASKS

Our third innovation involves virtual incidences that adapt the incidence-centric HMP to hyperedge-
and node-level downstream tasks. Different from existing methods that aggregate incidence repre-
sentations with multiset functions to obtain hyperedge- and node-level representations, we augment
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Figure 3: (a) Extending Hypergraphs (e.g. Figure 2a) With Virtual Nodes and Hyperedges: A
black dashed circle represents a virtual hyperedge encompassing a singular node. A black solid cir-
cle with an enclosed red alphabet denotes a virtual node, with the alphabet signifying the hyperedge
to which it belongs. (b) Extended Interactions Involving Virtual Incidences: The representations
of the introduced virtual incidences within HMP preserve both hyperedge- and node-level informa-
tion, which can be leveraged for subsequent downstream tasks.

the incidence matrix B to B+ =

[
B I|E|
I|V| 0

]
, where In denotes an n× n identity matrix, to make

HMP compatible with hyperedge- and node-level tasks. As exemplified in Figure 3, the presence of
I|E| in the first row of B+ signifies the addition of a virtual node corresponding to each hyperedge,
which we refer to as virtual hyperedge-incidence. Furthermore, the I|V| in the first column indicates
the insertion of a virtual hyperedge for each node, termed virtual node-incidence. Likewise, we aug-
ment the incidence attributes B to B+ ∈ R(|E|+|V|)×(|V|+|E|)×db by adding distinguishable attributes
of virtual incidences. Our strategies of augmenting B and B are flexible for specific downstream
tasks, as detailed in Appendix B.

The advantage of augmenting hypergraphs with virtual incidences is multifaceted: not only does it
enable the utilization of representations of virtual hyperedge-incidences for hyperedge-level tasks
and those of virtual node-incidences for node-level tasks, but it also implicitly provides hyperedge-
and node-level information during the incidence-level learning process of HMP. These implicit infor-
mations have been demonstrated to be advantageous in our empirical investigations in Appendix E.
Besides, with the introduction of virtual hyperedge- and node-incidences, HMP can emulate the
functionality of AllSet (Chien et al., 2021), as demonstrated by the following theorem:

Theorem 3. AllSet is a special case of HMP with virtual incidences.

The proof is in Appendix C.3. With the known fact that AllSet encompasses the propagation rules of
numerous existing Hypergraph Neural Networks (Chien et al., 2021), including HyperGCN (Yadati
et al., 2019), HGNN (Feng et al., 2019), HCHA (Bai et al., 2021), HNHN (Dong et al., 2020), and
HyperSAGE (Arya et al., 2020), HMP is a more generalized case of them.

4 RELATED WORKS

Among the proposed Hypergraph Neural Networks (HNNs) (Kim et al., 2024), many ap-
proaches (Dong et al., 2020; Huang & Yang, 2021; Georgiev et al., 2022) predominantly employ the
star expansion technique, where hyperedges are treated as special nodes as depicted in Figure 1b, ef-
fectively transforming hypergraphs into conventional graphs to apply traditional Graph Neural Net-
works (GNNs) that operate on a node-wise message passing paradigm. For instance, AllSet (Chien
et al., 2021) extends the message passing framework to hypergraphs and encompasses the prop-
agation rules of most existing HNNs, including HyperGCN (Yadati et al., 2019), HGNN (Feng
et al., 2019), HCHA (Bai et al., 2021), HNHN (Dong et al., 2020), and HyperSAGE (Arya et al.,
2020). AllSet constructs its layers using two multiset functions: one aggregates node messages to
form hyperedge representations, and the other aggregates hyperedge messages to update node rep-
resentations. This leads to the derivation of AllDeepSets and AllSetTransformer when the multiset
functions are instantiated as DeepSets (Zaheer et al., 2017) and SetTransformer (Lee et al., 2019),
respectively. In AllSet, a node can only indirectly obtain information from its direct neighbours

5
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through the ‘special hyperedge node’, leading to information bottlenecks. This is because it squashes
diverse messages from multiple nodes into a single hyperedge representation, a phenomenon known
as ‘over-squashing’ (Di Giovanni et al., 2023). In contrast, we propose the Hypergraph-native Mes-
sage Passing (HMP) framework to enable direct message exchanging among nodes within the same
hyperedge and overcome the hyperedge bottleneck issue, as illustrated in Figure 1c. This allows for
a more efficient and effective information flow within the hypergraph structure, potentially leading
to better performance on various hypergraph-based tasks.

Recently, a growing number of hypergraph methods have recognized, to varying degrees, the impor-
tance of the incidence-centric learning paradigm. WHATsNET (Choe et al., 2023) applies self-
attention mechanisms to nodes within the same hyperedge, sharing conceptual similarities with
HMP. Nevertheless, following the application of self-attention, WHATsNET continues to aggre-
gate node information to form hyperedge representations, aligning with the AllSet framework and
thus encountering the same hyperedge bottlenecks as AllSet does. While HyperGT (Liu et al.,
2023b) also recognizes the value of incidence-level interactions, arguing they outperform conven-
tional node-hyperedge-node message passing, its approach transforms the hypergraph into a graph

of original nodes and ‘hyperedge nodes’ with an adjacency matrix as
[

0 B
BT 0

]
, where B is the

incidence matrix of the original hypergraph. Then HyperGT applies GAT (Velickovic et al., 2018)
on this expanded graph, thus maintaining a node- and hyperedge-centric method. Yang et al. (2020)
has criticized the star expansion performed at the hyperedge-/node-level for its information loss
and has proposed an alternative, the line expansion (LE). LE treats each node-hyperedge pair as an
individual node and creates connections between these nodes, once any two of them share either
nodes or hyperedges in the original graph. Then LE applies traditional GNNs to the resulting graphs
to develop its implementations, such as the development of LEGCN by applying GCN (Kipf &
Welling, 2016). While LE’s node-hyperedge pairs are conceptually akin to our paradigm, LE treats
the converted graph as homogeneous, which leads to confusion on connections between incidences
that share nodes versus those that share hyperedges. This limitation is resolved by CoNHD (Zheng
& Worring, 2024), which inherently distinguishes between LE’s two types of relationships and pro-
cesses them separately, maintaining a more nuanced understanding of the hypergraph structure.
However, CoNHD, describing its message passing framework with the diffusion concept, imple-
ments its weighted version of diffusion operators as SetTransformers with a fixed number k of in-
ducing points. This is equivalent to enlarging the dimensions of hyperedge representations k times
in message passing on star expansion, and thus cannot have adaptive dimensions for hyperedges
with different scales. In contrast, HMP utilizes a switchable attention module (Luo et al., 2025) that
reserves the adaptiveness and is a true incidence-centric method.

5 EXPERIMENTS

We present three experimental validations on the effectiveness of HMP for (1) heterophilic s-walks,
(2) incidence-level tasks (i.e. hyperedge-dependent labelling), and (3) node-level tasks (i.e. node
classification). Other studies on HMP, including ablation studies on virtual incidences, hyperparam-
eter sensitivity analysis, and the tuning strategy, are in Appendix E and Appendix F.

5.1 ON THE SYNTHETIC HYPERCHAIN DATASETS

S

S

0 0

0
0

T

T

S

S

T

T

Figure 4: The synthesized 2-walk hyperchains of length 3. Label information is encoded at the
source nodes (denoted as ‘S’) using one-hot vectors. The objective is to propagate and recover
the identical labels at the target nodes (denoted as ‘T’), which are initialized with all-zero feature
vectors. The intermediate nodes along the 2-walks are (left) initialized with all-zero features in the
homophilic setting, or (right) assigned randomized one-hot vectors in the heterophilic setting.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

In this section, we construct the Hyperchains datasets to highlight the benefits of HMP over tradi-
tional Message Passing (MP) methods. As depicted in Figure 4, a hyperchain is structured with k
hyperedges, each comprising 2s nodes. These hyperedges are sequentially overlapped, with each
consecutive pair sharing s nodes. Consequently, the hyperchain is structured to represent an s-walk
of length k. Within a hyperchain, the initial s nodes (referred to as sources) and the final s nodes
(referred to as targets) are assigned the same label. This label is represented as one-hot vectors at
the source nodes. The objective is to predict the labels at the target nodes, which are initialized with
all-zero feature vectors. By initializing the intermediate nodes along the s-walks with either all-zero
features or randomized one-hot vectors, we can simulate both homophilic and heterophilic settings.
In the homophilic setting, nodes within the same hyperedge are similar, while in the heterophilic
setting, they are dissimilar. This setup allows us to evaluate the performance of HMP and other MP
methods under different homophily structures.
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Figure 5: Averaged scores across 10 runs on the Hyperchains datasets with different widths, lengths,
and homophily settings.

We benchmark HMP against several baselines, including AllDeepSets, AllSetTransformer (Chien
et al., 2021), HyperGCN (Yadati et al., 2019), LEGCN (Yang et al., 2020), UniGCNII (Huang &
Yang, 2021), and ED-HNN (Wang et al., 2023a). For AllDeepSets and AllSetTransformer, we in-
troduce a PairNorm-like (Zhao & Akoglu, 2020) normalization technique from Xu et al. (2022) to
tackle the over-smoothing issue and derive AllDeepSets-PN and AllSetTransformer-PN. All models
have hidden dimensions set to 64 and the number of attention heads (if exists) set to 1. For each
setup with varying width s, length k, and degree of homophily, we construct 1,000 hyperchains,
which are then distributed into a training set of 500, a validation set of 250, and a testing set of 250.
Each method is configured with a specific number of layers to precisely convolute information from
source nodes to target nodes. They are trained, with NVIDIA GeForce RTX 3060 (12GB), for 1,000
epochs on the training set, and the accuracy on the testing set is recorded as the performance metric
for the run if it corresponds to the best validation set performance. The average scores from 10 runs
are presented in Figure 5. The results in the first subfigure reveal that HMP is not the most effective
for message passing on homophilic hyperchains. Indeed, both AllSetTransformer and UniGCNII
outperform HMP on nearly all homophilic hyperchains, regardless of the hyperchain length. Hyper-
GCN also exhibits robust performance as the hyperchains become longer. Besides, PairNorm (PN)
shows significant improvements on AllDeepSets and AllSetTransformer, demonstrating its effec-
tiveness in long-range propagations with homophilic settings. However, in the case of heterophilic
hyperchains, all methods, including AllSet with PairNorm, experience a significant decline in per-
formance as the length increases. Among the methods tested, ED-HNN and HMP prove to be the
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most resilient, highlighting their advantage in learning under heterophily. Furthermore, as our anal-
ysis indicates, conventional methods are unable to fully utilize the structural benefits of hypergraphs
as the hyperchain width s increases, due to the hyperedge bottlenecks. In contrast, as shown in the
third and fourth subfigures, HMP demonstrates improved long-range propagation with increasing
width s and is the only method that maintains robustness as the hyperchain lengthens. In summary,
HMP exhibits a more potent learning capability in heterophilic contexts compared to traditional
baselines and is uniquely positioned to harness the structural potential of hypergraphs.

5.2 HYPEREDGE-DEPENDENT LABELLING

Table 1: Averaged Micro-F1 (the upper section) and Macro-F1 (the lower section) scores across five
runs for hyperedge-dependent labelling. The best score for each dataset is bolded, the second best is
underlined, and the third is italic. The ‘8 Baselines’ are HNHN, HGNN, HCHA, HAT, UniGCNII,
HNN, HST, and AllSetTransformer, with their detailed performance and the datasets’ characteristics
summarized in Appendix D.

Coauth Coauth Email Email Stack Stack
DBLP AMiner Enron Eu Biology Physics

8 Baselines 56.4±0.4 59.6±0.7 81.7±0.1 67.1±0.1 69.4±0.2 75.5±1.0
WHATsNET 60.5±0.2 63.0±0.5 82.6±0.1 67.1±0.0 74.2±0.3 77.0±0.3
CoNHD 62.0±0.2 65.0±0.3 91.1±0.1 70.9±0.1 74.9±0.2 77.7±0.1
HMP (100 epochs) 77.6±0.6 72.5±0.2 72.4±0.3 71.4±0.9 77.2±0.2 77.9±0.7
HMP 89.4±0.2 80.4±0.1 93.4±1.51 78.2±0.1 78.8±0.2 82.6±0.2
8 Baselines 54.9±0.3 58.3±0.8 75.3±0.4 64.0±0.2 63.1±0.6 66.6±1.3
WHATsNET 59.5±0.2 62.3±0.7 76.0±0.4 64.6±0.3 68.6±0.4 70.7±0.4
CoNHD 60.4±0.2 64.6±0.4 87.1±0.2 69.0±0.2 69.5±0.4 71.2±0.5
HMP (100 epochs) 77.3±0.6 71.7±0.3 67.1±0.3 71.0±0.7 73.0±0.3 73.7±1.0
HMP 89.3±0.2 79.9±0.1 91.3±2.1 77.8±0.1 76.0±2.0 79.1±0.2

In this section, we evaluate the effectiveness of HMP on the hyperedge-dependent labelling tasks,
which aim to assign different labels to nodes based on the hyperedges to which they belong. The
datasets include Coauth-DBLP, Coauth-AMiner, Email-Enron, Email-Eu, Stack-Biology, and Stack-
Physics (Choe et al., 2023). In Table 1, we present the Micro- and Macro-F1 scores for HMP, trained
with NVIDIA A800 (80GB), and a range of baseline methods, including HNHN (Dong et al., 2020),
HGNN (Feng et al., 2019), HCHA (Bai et al., 2021), HAT (Hwang et al., 2021), UniGCNII (Huang
& Yang, 2021), HNN (Aponte et al., 2022), HypergraphSetTransformer (HST) (Choe et al., 2023),
AllSetTransformer (Chien et al., 2021), WHATsNET (Choe et al., 2023), and CoNHD (Zheng &
Worring, 2024). The experimental setup was consistent with that of Choe et al. (2023), with the
exception that HMP was trained in full-batch for a maximum of 10,000 epochs with a patience of
1,000 epochs for early stopping, whereas the baselines were trained in mini-batch for 100 epochs.
This difference in training epochs does not compromise the fairness of the comparison, because the
baselines have sufficient gradient descent steps for their optimization. For instance, on the Coauth-
AMiner dataset with 1,712,433 nodes, the baselines were trained using node batches of size 512,
allowing for 334,500 gradient descent updates in 100 epochs. Nonetheless, the results of HMP with
only 100 training epochs are also included in the table for reference.

As indicated in Table 1, HMP achieves significant improvements over the current state-of-the-art
methods, WHATsNET and CoNHD, in terms of both Micro-F1 and Macro-F1 scores across vari-
ous datasets. The margins range from 2.3% of Micro-F1 on Email-Enron to an impressive 28.9%
of Macro-F1 on Coauth-DBLP. Even with insufficient training of just 100 epochs, HMP still man-
ages to outperform the baselines on 5 out of the 6 tested benchmarks, with underperformance only
on the Email-Enron dataset. This clearly illustrates the efficacy of the incidence-centric HMP for
hyperedge-dependent labelling tasks.

5.3 NODE CLASSIFICATION

In this section, we extend the application of HMP to node classification tasks by leveraging vir-
tual incidences, and we benchmark it against the state-of-the-art (SotA) hypergraph neural networks
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(HNNs). We have gathered a comprehensive set of baselines, including Multi-Layered Percep-
tron (MLP), HGNN (Feng et al., 2019), UniGCNII (Huang & Yang, 2021), HAN (Wang et al.,
2019) (trained in full-batch and mini-batch), HyperGT (Liu et al., 2023b), AllSet (Chien et al.,
2021) (including AllDeepSets and AllSetTransformer), ED-HNN (Wang et al., 2023a) (with its ED-
HNNII variant), and PhenomNN (Wang et al., 2023b) (with its PhenomNNsimple variant). We use
13 datasets: Cora, Citeseer, Pubmed, Cora-CA, DBLP-CA (Yadati et al., 2019), 20Newsgroups,
ModelNet40 (Wu et al., 2014), NTU2012 (Chen et al., 2003), Yelp, House (Chodrow et al., 2021),
Walmart (Amburg et al., 2019), Senate, and Congress (Wang et al., 2023a). These datasets vary in
numerous ways, with a particular focus on the degree of homophily, which measures the probability
of connected nodes sharing the same labels. We calculate the homophily score (Pei et al., 2020)
based on the clique expansion (CE) of the hypergraphs. A higher CE homophily score indicates that
two connected nodes in the hypergraph are more likely to be similar, reflecting a higher degree of
homophily within the network.

Table 2: Averaged and standard deviation of Micro-F1 scores (%) across ten runs for node classifi-
cation. Scores of HMP are bolded if HMP surpasses the best SotA (from Chien et al. (2021); Wang
et al. (2023a;b); Liu et al. (2023b)), and are underlined if HMP surpasses the second best. More
characteristics of the datasets and detailed performance of the baselines are in Appendix D.

CE
Homo.

State of the Art (SotA)
Dataset Rank-1 Rank-2 HMP

Method Micro-F1 Method Micro-F1
Pubmed 0.952 ED-HNN 89.56±0.62 AllSet 88.75±0.33 88.45±0.38
Cora 0.897 PhenomNN 82.29±1.42 ED-HNN 80.31±1.35 80.35±1.32
Citeseer 0.893 PhenomNN 75.10±1.59 HAN 74.12±1.52 73.82±1.21
DBLP-CA 0.869 ED-HNN 91.93±0.29 PhenomNN 91.91±0.21 91.87±0.20
ModelNet40 0.853 PhenomNN 98.66±0.20 AllSet 98.20±0.20 98.54±0.26
Cora-CA 0.803 PhenomNN 85.81±0.90 HAN 84.04±1.02 84.61±1.35
NTU2012 0.752 PhenomNN 91.03±1.04 UniGCNII 89.30±1.33 90.70±1.06
Congress 0.555 HyperGT 95.23±0.73 ED-HNN 95.19±1.34 95.77±1.15
Walmart 0.530 HyperGT 69.83±0.39 ED-HNN 67.24±0.45 72.42±0.46
House 0.509 HyperGT 74.55±1.99 ED-HNN 73.95±1.97 74.09±1.95
Senate 0.498 HyperGT 65.49±5.11 ED-HNN 64.79±5.14 68.31±5.32
20Newsgroups 0.461 PhenomNN 81.74±0.52 MLP 81.42±0.49 81.64±0.44
Yelp 0.226 AllSet 36.89±0.51 HGNN 33.04±0.62 36.48±0.44

With the experimental settings identical to Wang et al. (2023a), we evaluate the Micro-F1 scores
of HMP for the node classification tasks and report them in Table 2. As can be seen in the ta-
ble, while HMP with virtual incidences lags behind the best SotA methods, namely ED-HNN and
PhenomNN, with noticeable margins on the three most homophilic datasets, Cora, Citeseer, and
Pubmed, it significantly outperforms SotA HNNs on Congress, Walmart, and Senate, and surpasses
the second-best baselines on other datasets as the CE homophily scores decrease. This is because
the propagation rules of ED-HNN and PhenomNN are diffusion-based, with the inductive bias effec-
tive for homophilic graphs. On the contrary, HMP adapts to wider scenarios without the limitation
of such homophilic assumptions, instead with competitive advantages in tackling node-level tasks
characterized by heterophily.

6 CONCLUSIONS

We introduce Hypergraph-native Message Passing (HMP), a learning paradigm that harnesses the
high-order structural properties of hypergraphs to effectively alleviate information bottlenecks and
facilitate information propagation. Its incidence-centric perspective and the augmented virtual in-
cidences position HMP as a competitive solution for incidence-, hyperedge-, and node-level repre-
sentation learning tasks, demonstrating remarkable efficacy across 6 hyperedge-dependent labelling
benchmarks and 13 node classification datasets.
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A THE ALGORITHM OF HMP

We delineate the incidence-centric algorithm of Hypergraph-native Message Passing (HMP) in Al-
gorithm 1. In line 1, we initialize the incidence representations based on the incidence attributes.
Lines 2 through 4 entail the application of a message exchanger f (v)

0 to hyperedge-dependent nodes,
which converts node features into incidence representations. Lines 5 to 7 involve the application of
an additional message exchanger to node-dependent hyperedges, aimed at transforming hyperedge
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Algorithm 1 Hypergraph-Native Message Passing

Input: the hypergraph H = (V, E), the number of layers l, node features X , hyperedge features
E, incidence attributes B, message exchangers f (v)

0 , f
(e)
0 , f

(v)
1 , f

(e)
1 , . . . , f

(v)
l , f

(e)
l .

Output: incidence representations H.
1: H = B
2: for parallel i = 1, 2, . . . , |E| do
3: {Hi,j,:|vj ∈ ei}+=f (v)

0 ({Xj,:|vj ∈ ei})
4: end for
5: for parallel j = 1, 2, . . . , |V| do
6: {Hi,j,:|v∗i ∈ e∗j}+=f

(e)
0 ({Ei,:|v∗i ∈ e∗j})

7: end for
8: for k = 1, 2, . . . , l do
9: H(v) = 0

10: for parallel i = 1, 2, . . . , |E| do
11: {H(v)

i,j,:|vj ∈ ei} = f
(v)
k ({Hi,j,:|vj ∈ ei})

12: end for
13: H(e) = 0
14: for parallel j = 1, 2, . . . , |V| do
15: {H(e)

i,j,:|v∗i ∈ e∗j} = f
(e)
k ({Hi,j,:|v∗i ∈ e∗j})

16: end for
17: H += H(v) + H(e)

18: end for
19: return H

features into incidence representations. From lines 8 to 18, we alternately apply message exchang-
ers to hyperedge-dependent nodes and node-dependent hyperedges, thereby enabling information
propagation across the hypergraph duals. This approach circumvents the node and hyperedge bot-
tlenecks, ensuring a more effective and efficient traversal of the hypergraph’s complex interactions.

B DETAILS OF VIRTUAL INCIDENCES

While HMP can augment the incidence matrix B to B+ =

[
B I|E|
I|V| 0

]
for downstream tasks, it

has the flexibility to augment the incidence matrix with only virtual hyperedge-incidences or virtual
node-incidences, rather than both, depending on the requirements of the tasks. Furthermore, the
augmentation of the incidence attributes B to B+ ∈ R(|E|+|V|)×(|V|+|E|)×db can also be flexible,
provided that it effectively differentiates among the original attributes and the added different types
of virtual incidences. For instance, in the case (e.g. our node classification tasks) where incidence
attributes B = 0, we assign fixed 2-dimensional encodings (1, 0) to virtual hyperedge-incidences,
(0, 1) to virtual node-incidences, and (0, 0) to original incidences to construct B+. When incidence
attributes exist (B ̸= 0), such as in our hyperedge-dependent labelling tasks, we concatenate the

aforementioned 2-dimensional encodings to
[
B 0
0 0

]
to augment the original incidence attributes.

These encodings are fixed but will be transformed into learned embeddings after an encoding layer.

C THEORETICAL ANALYSIS

C.1 THE PROOF OF THEOREM 1

Proof. The idea is to store hyperedge representations of MP on SE into the involved incidence rep-
resentations of HMP. Assume that ϕ is a rearranging function which receives an (h×s)-dimensional
vector, with s being a variable, and outputs an ordered multiset of s elements, where each element is
an exclusive h-dimensional slice of the input. We construct a multiset-to-multiset model f in HMP
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as the composite function of ϕ ◦ fV→E and get hyperedge-dependent node representations as

{Hi,j,:|vj ∈ ei} = ϕ(fV→E({Xj,:|vj ∈ ei})) = ϕ(e′i),∀ei ∈ E .

Aggregating them by nodes with the multiset function: vj → fE→V(ϕ
−1({Hi,k,:|vk ∈ ei})|vj ∈

ei),∀vj ∈ V obtains the same node representations X ′ produced by the previously defined MP on
SE.

C.2 THE PROOF OF THEOREM 2

Proof. Since HMP facilitates full message exchanging among incidences within the same hyper-
edges and nodes, with self-attention’s quadratic computation complexity, it has a total complexity
proportional to ∑

e∈E
|e|2 +

∑
e∗∈E∗

|e∗|2

≤
∑
e∈E

|e| ·max
e′∈E

|e′|+
∑

e∗∈E∗

|e∗| · max
e′∈E∗

|e′|

≤2b · max
e∈E∪E∗

|e|,

where b =
∑
e∈E

|e| =
∑

e∗∈E∗
|e∗| is the number of incidences.

Since AllSet only passes messages between nodes and their belonging hyperedges, its complexity is
O(b). Thus, the complexity of HMP self-attention is max

e∈E∪E∗
|e| times that of AllSet.

C.3 THE PROOF OF THEOREM 3

Proof. Define the update rule of AllSet as

E′
i,: = fV→E({Xj,:|vj ∈ ei},Ei,:),∀i ∈ [|E|],

X ′
j,: = fE→V({E′

i,:|vj ∈ ei},Xj,:),∀j ∈ [|V|],

where fE→V , fV→E are multiset functions with respect to their first inputs and E′,X ′ are rep-
resentations for hyperedges and nodes. We extend the hypergraph by creating virtual hyper-
edges {e+|E|+1, e

+
|E|+2, . . . , e

+
|E|+|V|}, where e+|E|+j = {vj},∀j ∈ [|V|], and inserting virtual nodes

{v|V|+1, v|V|+2, . . . , v|V|+|E|} into existing hyperedges to get e+i = ei ∪ {v|V|+i},∀i ∈ [|E|], where
each virtual node v|V|+i is attached with the hyperedge features Ei,:.

Then we construct the first message exchanger f (v)
0 as

{Hi,j,:|vj ∈ e+i } = f
(v)
0 ({Xj,:|vj ∈ e+i }),∀i ∈ [|E|+ |V|],

satisfying that Hi,j,: equals to
fV→E({Xk,:|vk ∈ ei},Ei,:), i ∈ [|E|], vj ∈ e+i ,

Xj,:, j ∈ [|V|], i = |E|+ j,

0, otherwise.

With the intermediate f
(e)
0 and f

(v)
1 omitted, we construct the last message exchanger f (e)

1 as

{H ′
i,j,:|vj ∈ e+i } = f

(e)
1 ({Hi,j,:|vj ∈ e+i }),∀j ∈ [|E|+ |V|]

satisfying that H ′
i,j,: equals to

fE→V({Hk,j,:|vj ∈ ek},Hi,j,:), j ∈ [|V|], i = |E|+ j,

Hi,j,:, i ∈ [|E|], j = |V|+ i,

0, otherwise.
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Table 3: Datasets for the hyperedge-dependent labelling tasks (the upper part) and the averaged
Micro-F1 (the middle part) and Macro-F1 (the lower part) scores of the 8 baselines (Choe et al.,
2023). The best score for each dataset is bolded.

Dataset Coauth Coauth Email Email Stack Stack
DBLP AMiner Enron Eu Biology Physics

#nodes 108,484 1,712,433 21,251 986 15,490 80,936
#hyperedges 91,266 2,037,605 101,124 209,508 26,823 200,811
#incidences 321,011 5,129,998 1,186,521 541,842 56,257 479,809
#classes 3 3 3 2 3 3
HNHN 48.6±0.4 52.0±0.2 73.8±2.8 64.3±0.4 64.0±0.5 50.6±5.3
HGNN 54.0±0.4 56.6±0.2 72.5±0.4 63.3±0.1 68.9±0.2 68.6±0.4
HCHA 45.1±0.7 46.8±2.0 66.6±1.0 62.0±0.0 58.9±0.7 62.2±0.3
HAT 50.3±0.4 54.3±0.2 81.7±0.1 66.9±0.1 66.1±0.5 70.8±0.5
UniGCNII 49.7±0.3 52.0±0.1 73.4±1.0 63.0±0.5 61.0±0.4 67.1±2.2
HNN 48.8±0.6 54.3±0.2 76.3±0.3 — 61.8±1.5 68.3±0.5
HST 56.4±0.4 59.6±0.7 77.9±6.7 67.1±0.1 69.4±0.2 75.5±1.0
AllSetTransformer 49.5±3.8 57.7±0.5 79.6±1.4 66.6±0.5 57.1±5.4 72.8±3.9
HNHN 47.8±0.8 51.4±0.2 63.7±2.3 55.2±1.4 59.2±0.6 42.2±4.3
HGNN 51.9±0.2 55.1±0.4 67.4±0.3 53.3±0.8 62.4±0.7 63.0±0.2
HCHA 33.4±4.8 44.7±4.0 46.4±0.2 49.7±0.1 46.5±6.0 48.1±0.7
HAT 48.3±0.6 53.3±0.3 75.3±0.4 63.8±0.2 60.6±0.5 64.3±0.9
UniGCNII 47.6±0.2 50.7±0.1 65.6±1.0 56.5±1.3 43.3±0.7 49.2±1.6
HNN 48.2±0.6 53.3±0.2 67.9±0.7 — 56.8±1.3 61.7±0.5
HST 54.9±0.3 58.3±0.8 68.1±12.3 64.0±0.2 63.1±0.6 66.6±1.3
AllSetTransformer 48.7±4.0 57.0±0.2 71.9±2.0 62.4±2.1 44.6±8.1 64.6±4.6

Thus, representations of virtual hyperedge-incidences are

H ′
i,|V|+i,: = Hi,|V|+i,:

= fV→E({Xk,:|vk ∈ ei},Ei,:)

= E′
i,:,∀i ∈ [|E|].

Representations of virtual node-incidences are

H ′
|E|+j,j,: = fE→V({Hk,j,:|vj ∈ ek},H|E|+j,j,:)

= fE→V({E′
i,:|vj ∈ ei},Xj,:)

= X ′
j,:,∀j ∈ [|V|].

D DATASET AND BASELINES

The six datasets in the hyperedge-dependent labelling tasks, including Coauth-DBLP, Coauth-
AMiner, Email-Enron, Email-Eu, Stack-Biology, and Stack-Physics, are retrieved from Choe et al.
(2023). The two Coauth datasets are authors connected by their co-authored publications, where the
hyperedge-dependent node labels indicate whether an author is the first author, the last author, or an
author in another position within the publication. The two Email datasets are people connected by
their exchanged emails, where the hyperedge-dependent node labels specify whether a person is the
sender, the receiver, or neither, in the context of the email. In the Stack-Biology and Stack-Physics
datasets, the hyperedges denote posts on the stackoverflow.com question-answer platform, with the
nodes representing the users who contribute to these posts. The hyperedge-dependent labels indi-
cate whether a user is the one who asked the question, the user whose answer was accepted by the
questioner, or another type of contributor. For each dataset, we follow the settings of Choe et al.
(2023) to generate 44-dimensional node features X , initialized with 2nd-order random walks, and
4-dimensional incidence attributes B of positional encodings (i.e. the WithinOrderPE). We summa-
rize their characteristics in the upper part of Table 3. In the lower part of this table, we report the
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Table 4: Averaged and standard deviation of Micro-F1 scores (%) across ten runs for node classifica-
tion on homophilic graphs. The best score for each dataset is bolded, the second best is underlined,
and the third is italic.

Pubmed Cora Citeseer DBLP-CA ModelNet40 Cora-CA NTU2012
#nodes 19,717 2,708 3,312 41,302 12,311 2,708 2,012
#hyperedges 7,963 1,579 1,079 22,363 12,311 1,072 2,012
#incidences 34,629 4,786 3,453 99,561 61,555 4,585 10,060
#features 500 1,433 3,703 1,425 100 1,433 100
#classes 3 7 6 6 40 7 67
MLP 87.47±0.51 75.17±1.21 72.67±1.56 84.83±0.22 96.14±0.36 74.31±1.89 85.52±1.49
CEGCN 86.45±0.43 76.17±1.39 70.16±1.31 88.00±0.26 89.92±0.46 77.05±1.26 81.52±1.43
CEGAT 86.81±0.42 76.41±1.53 70.63±1.30 88.59±0.29 92.52±0.39 76.16±1.19 82.21±1.23
HNHN 86.90±0.30 76.36±1.92 72.64±1.57 86.78±0.29 97.84±0.25 77.19±1.49 89.11±1.44
HGNN 86.44±0.44 79.39±1.36 72.45±1.16 91.03±0.20 95.44±0.33 82.64±1.65 87.72±1.35
HCHA 86.41±0.36 79.14±1.02 72.42±1.42 90.92±0.22 94.48±0.28 82.55±0.97 87.48±1.87
HyperGCN 82.84±8.67 78.45±1.26 71.28±0.82 89.38±0.25 75.89±5.26 79.48±2.08 56.36±4.86
UniGCNII 88.25±0.40 78.81±1.05 73.05±2.21 91.69±0.19 98.07±0.23 83.60±1.14 89.30±1.33
HAN 86.21±0.48 80.18±1.15 74.12±1.52 90.89±0.23 94.04±0.41 84.04±1.02 83.58±1.46
AllSet 88.75±0.33 78.59±1.47 73.08±1.20 91.53±0.23 98.20±0.20 83.63±1.47 88.69±1.24
HyperND 86.68±0.43 79.20±1.14 72.62±1.49 90.35±0.26 — 80.62±1.32 —
ED-HNN 89.56±0.62 80.31±1.35 73.70±1.38 91.93±0.29 — 83.97±1.55 —
PhenomNN 88.25±0.42 82.29±1.42 75.10±1.59 91.91±0.21 98.66±0.20 85.81±0.90 91.03±1.04
HMP 88.45±0.38 80.35±1.32 73.82±1.21 91.87±0.20 98.54±0.26 84.61±1.35 90.70±1.06

Table 5: Averaged and standard deviation of Micro-F1 scores (%) across ten runs for node classifica-
tion on heterophilic graphs. The best score for each dataset is bolded, the second best is underlined,
and the third is italic.

Congress Walmart House Senate 20Newsgroups Yelp
#nodes 1,718 88,860 1,290 282 16,242 50,758
#hyperedges 83,105 6,990 341 315 100 679,302
#incidences 733,994 460,630 11,843 5,408 65,451 4,523,594
#features 100 100 100 100 100 1,862
#classes 2 11 2 2 4 9
MLP — 45.51±0.24 67.93±2.33 — 81.42±0.49 31.96±0.44
CEGCN — 54.44±0.24 62.80±2.61 — — —
CEGAT — 51.14±0.56 69.09±3.00 — — —
HNHN 53.35±1.45 47.18±0.35 67.80±2.59 50.93±6.33 81.35±0.61 31.65±0.44
HGNN 91.26±1.15 62.00±0.24 61.39±2.96 48.59±4.52 80.33±0.42 33.04±0.62
HCHA 90.43±1.20 62.45±0.26 61.36±2.53 48.62±4.41 80.33±0.80 30.99±0.72
HyperGCN 55.12±1.96 44.74±2.81 48.31±2.93 42.45±3.67 81.05±0.59 29.42±1.54
UniGCNII 94.81±0.81 54.45±0.37 67.25±2.57 49.30±4.25 81.12±0.67 31.70±0.52
HAN — 48.57±1.04 71.05±2.26 — 79.72±0.62 26.05±1.37
HyperGT 95.23±0.73 69.83±0.39 74.55±1.99 65.49±5.11 — —
AllSet 92.16±1.05 65.46±0.25 69.33±2.20 51.83±5.22 81.38±0.58 36.89±0.51
HyperND 74.63±3.62 38.10±3.86 51.70±3.37 52.82±3.20 — —
ED-HNN 95.19±1.34 67.24±0.45 73.95±1.97 64.79±5.14 — —
PhenomNN — 64.11±0.49 71.77±1.68 — 81.74±0.52 32.26±0.40
HMP 95.77±1.15 72.42±0.46 74.09±1.95 68.31±5.32 81.64±0.44 36.48±0.44

detailed scores, also retrieved from Choe et al. (2023), of HNHN, HGNN, HCHA, HAT, UniGCNII,
HNN, HST, and AllSetTransformer, which construct the ‘8 Baselines’ in Table 1.

For node classification, we summarize the datasets and baselines in Table 4 and Table 5. Baselines
are from recent literature (Chien et al., 2021; Wang et al., 2023a;b; Liu et al., 2023b), including GCN
and GAT on the clique expansion (CEGCN and CEGAT), HNHN (Dong et al., 2020), HCHA (Bai
et al., 2021), HyperGCN (Yadati et al., 2019), HyperND (Tudisco et al., 2021), and those we men-
tioned in Table 2.
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Figure 6: Box plots of Macro-F1 scores across 5 runs for the hyperedge-dependent labelling tasks
with/without virtual hyperedge-/node-incidences.

This section illustrates the impact of virtual incidences in HMP using the Macro-F1 scores of HMP
with 100 epochs of training in the hyperedge-dependent labelling experiments. Figure 6 depicts
HMP’s performance when different types of virtual incidences are involved. As it reveals, the use of
virtual hyperedge-incidences proves advantageous for tasks involving the Email-Enron and Stack-
Physics datasets. Conversely, virtual node-incidences yield better results on the Coauth-DBLP and
Stack-Biology datasets. These findings suggest that, even on incidence-level tasks where hyperedge-
or node-level representations are not explicitly required, the choice of virtual incidences still has a
pronounced effect on performance across different datasets.

F HMP HYPERPARAMETERS

F.1 SENSITIVITY ANALYSIS
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Figure 7: The Macro-F1 score (%) of HMP (100 epochs) with different hyperparameters.

Figure 7 shows the impacts of hyperparameters (i.e., the number of layers, hidden dimensions, and
attention heads) on the performance of HMP. As it illustrates, although residual connections are de-
signed in the HMP algorithm, its performance is still sensitive to the number of layers. For different
datasets, the optimal performance has to be achieved by tuning the number of layers to an appropri-
ate value. The model performance is less sensitive to the hidden dimensions of the representation,
but a sufficient number of hidden dimensions is required to ensure an adequate amount of learnable
parameters. Within the hyperparameter range of the experiments, the model generally performs bet-
ter with a larger number of attention heads, which helps capture complex high-order information in
hypergraphs.
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F.2 FINE TUNING

The hyperparameters for HMP in hyperedge-dependent labelling and node classification are opti-
mized using Optuna (Akiba et al., 2019), with the following search space: the number of layers
ranging from 1 to 10, the number of attention heads ranging from 1 to 8, and the hidden dimensions
for each head ranging from 8 to 64. For hyperedge-dependent labelling, the dropout rate is searched
within the range from 0 to 0.2. For node classification, the dropout rate is searched within the range
from 0 to 0.8.

G EFFICIENCY ANALYSIS

Table 6: The ‘script time (in seconds) / peak GPU memory (in MB)’ on the Hyperchains datasets.

Method #Params width=2 width=4 width=6 width=8 width=10
AllSet 49028 222 / 542 389 / 946 535 / 1363 693 / 1760 856 / 2169
HMP 50885 333 / 855 482 / 1710 667 / 2565 826 / 3392 1076 / 4289
ED-HNN 50055 302 / 1716 584 / 3392 863 / 5120 1134 / 6776 1424 / 8481

HMP uses self-attention as its message exchanger and leverages existing advancements in attention
mechanisms (Choromanski et al., 2021; Luo et al., 2025) to improve efficiency. To analyze the
runtime and memory usage of HMP on hypergraphs with varying hyperedge sizes, we train AllSet
(AllDeepSets), ED-HNN, and HMP (with one attention head) for 1000 epochs on the Hyperchains
datasets of 5 classes with a fixed length of 10 and varying widths (and thus varying hyperedge sizes).
All models have 10 layers and adaptive hidden dimensions, resulting in approximately 50k learnable
parameters. The time and memory consumptions with a NVIDIA GeForce RTX 3060 GPU are
reported in Table 6. Specifically, except for the highest time consumption on 2-walk hyperchains,
HMP’s time and space usage fall between AllSet and ED-HNN as the width increases, demonstrating
moderate practical efficiency. Overall, the ratio of time and space consumption between HMP and
AllSet remains stable within 2 as the hyperedge size (width) increases, validating our complexity
analysis that HMP, after efficiency improvements, has the same complexity as AllSet.
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