
000 HYPERGRAPH-NATIVE MESSAGE PASSING: 001 002 AN INCIDENCE-CENTRIC PERSPECTIVE 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010 While hypergraphs encapsulate higher-order interactions among entities and tran-
011 scend the pairwise connections characteristic of traditional graphs, their prevailing
012 learning approaches predominantly inherit from graph neural networks, adhering
013 to the established message passing paradigm. These methods frequently concep-
014 tualizes hyperedges as special nodes, facilitating the transmission of aggregated
015 messages through hyperedges instead of direct messages between adjacent nodes.
016 Such a paradigm is prone to information loss, especially in the context of large
017 hyperedges that bridge a heterophilic array of nodes. To mitigate this shortcoming
018 and enhance high-order message passing, we propose the Hypergraph-native Mes-
019 sage Passing (HMP) framework, which leverages full-rank interactions among
020 the incidences along the underlying hypergraph and its dual. In contrast to the
021 conventional node-centric approaches, this incidence-centric perspective adeptly
022 manages incidence-level tasks, such as hyperedge-dependent labelling, and seam-
023 lessly integrates virtual incidences for both hyperedge- and node-level tasks. Em-
024 pirical evaluations demonstrate that HMP achieves a substantial improvement
025 over state-of-the-art methods on 6 hyperedge-dependent labelling benchmarks,
026 with an increase in accuracy ranging from 2.3% to 28.9%, while also delivering
027 competitive results on 13 node classification benchmarks. Code to reproduce all
028 our experiments is available at <https://anonymous.4open.science/r/HMP-FB14/>.

030 031 1 INTRODUCTION

032 Although graphs have emerged as an indispensable instrument for the modelling of complex sys-
033 tems, in which nodes symbolize entities and edges delineate pairwise relationships (Wu et al., 2020),
034 numerous real-world systems manifest higher-order interactions that fall beyond the descriptive ca-
035 pacity of conventional pairwise graph models (Battiston et al., 2020). This deficiency has spurred the
036 investigation into hypergraphs, a conceptual extension of graphs that provides a more nuanced struc-
037 tural representation by enabling edges, referred to as hyperedges, to affiliate more than two nodes,
038 or termed vertices, thereby directly encoding intricate and multipartite relationships (Antelmi et al.,
039 2023), as exemplified in Figure 1a. Hypergraphs prove particularly efficacious in contexts where
040 multi-dimensional interactions are widespread, such as co-authorship networks (Bai et al., 2021) or
041 multi-agent systems (Zhang et al., 2022), while also remaining congruent with scenarios where tra-
042 tional graphs hold sway, including social networks (Yu et al., 2021), biological systems (Gopalakrishnan
043 et al., 2022; Zhang et al., 2024; Xu et al., 2022), and knowledge graphs (Liu et al., 2023a).

044 Despite the capability of hypergraphs to encapsulate complex interactions, the evolution of hyper-
045 graph neural networks (HNNs) has been substantially guided by the methodologies developed for
046 their graph-based counterparts (Feng et al., 2019; Yadati et al., 2019; Bai et al., 2021). Contempo-
047 rary HNNs predominantly adhere to the message passing schema of graph neural networks, where
048 hyperedges are conceptualized as special nodes through which message aggregation occurs (Dong
049 et al., 2020; Huang & Yang, 2021; Georgiev et al., 2022), as illustrated in Figure 1b. For instance,
050 AllSet (Chien et al., 2021) constructs its layers by employing two multiset functions: one for ag-
051 ggregating messages from nodes to hyperedges, and another from hyperedges to nodes. While this
052 approach is conceptually straightforward, it is not without its drawbacks; a notable limitation is the
053 potential for information loss, as the messages that nodes collect from their neighbours are effec-
054 tively squashed through hyperedges (Di Giovanni et al., 2023). This squashing undermines the high-

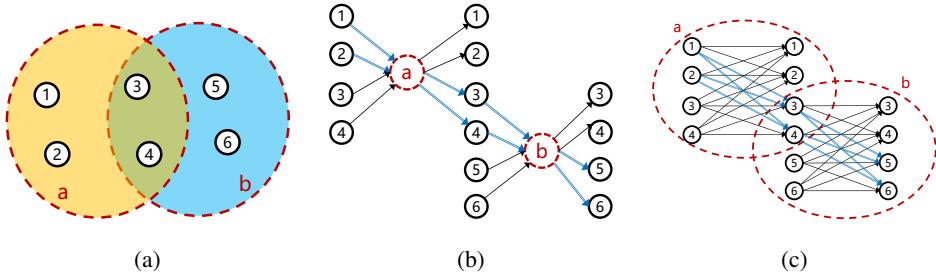


Figure 1: Different message passing paradigms. **(a) Hypergraph:** An example hypergraph comprising two hyperedges $e_a = \{v_1, v_2, v_3, v_4\}$, $e_b = \{v_3, v_4, v_5, v_6\}$. Messages passing from nodes v_1, v_2 to v_5, v_6 is along a 2-walk e_a, e_b . **(b) Message Passing on Star Expansion:** Contemporary methodologies predominantly treat hyperedges as special nodes and convert any walk via them into a 1-walk (e.g. $\{v_1, v_2, v_a\}$, $\{v_a, v_3, v_4\}$, $\{v_3, v_4, v_b\}$, $\{v_b, v_5, v_6\}$), leading to information squashing when passing messages through the bottled hyperedges (e.g. v_a, v_b). **(c) Hypergraph-Native Message Passing:** Our method preserves the high-order structures of the hypergraph during message passing, thereby maintaining the richness of interactions.

order structural benefits of hypergraphs, masks the distinctive contributions of individual nodes, and consequently leads to compromised discriminative representations, especially when dealing with large hyperedges that bridge a heterophilic collection of nodes (Wang et al., 2023a).

To address the aforementioned limitation, we introduce the Hypergraph-native Message Passing (HMP) framework, which is architected to harness the higher-order structure of hypergraphs more efficiently by utilizing full-rank interactions across the incidences (or the hyperedge-node pairs) of the hypergraph and its dual (Huang et al., 2020), as depicted in Figure 1c. This allows nodes to engage directly with their immediate neighbours without the information squashing through hyperedges that might result in the loss of critical information (Yang et al., 2020) and, likewise, resolves the squashing of hyperedges’ information through node-level bottlenecks. While being compatible with conventional node- and hyperedge-centric approaches, HMP’s incidence-centric perspective is particularly advantageous for incidence-level tasks, such as hyperedge-dependent labelling, where a node can assume different labels depending on the hyperedge it is associated with (Yoon et al., 2020; Choe et al., 2023).

In essence, our contributions are **(1)** a pioneering learning paradigm, HMP, that exploits the high-order structures of hypergraphs for message propagation, **(2)** a novel incidence-centric perspective for incidence-, hyperedge-, and node-level tasks, and **(3)** state-of-the-art performance on 6 hyperedge-dependent labelling tasks and 13 node classification benchmarks.

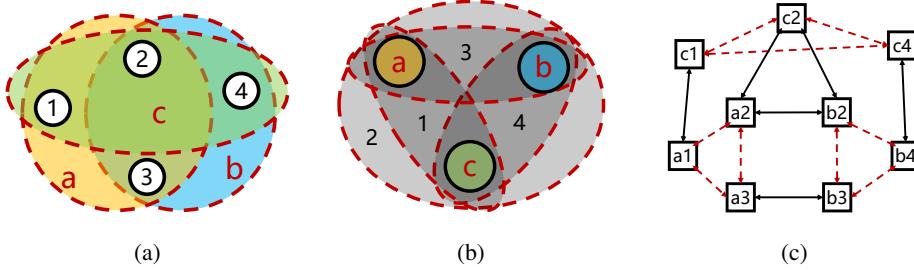
2 PRELIMINARIES

Denoting $[n] = \{1, 2, \dots, n\}$, we represent a hypergraph as $\mathcal{H} = (\mathcal{V}, \mathcal{E})$, where $\mathcal{V} = \{v_j | j \in [|V|\}\}$ denotes the collection of nodes and $\mathcal{E} = \{e_i | i \in |\mathcal{E}|\}$ denotes the collection of hyperedges. Each hyperedge e_i within \mathcal{E} is a subset of \mathcal{V} , indicating the nodes that are interconnected by said hyperedge. Given that a hyperedge can connect more than two nodes, the hypergraph is characterized by an incidence matrix $\mathbf{B} \in \{0, 1\}^{|\mathcal{E}| \times |\mathcal{V}|}$, where $B_{ij} = 1$ signifies $v_j \in e_i$, and $B_{ij} = 0$ otherwise. Node features are encapsulated in a matrix $\mathbf{X} \in \mathbb{R}^{|\mathcal{V}| \times d_v}$, with d_v denoting the dimensionality of the node feature space. The i -th row of \mathbf{X} , denoted as $\mathbf{X}_{i,:}$, represents the feature vector associated with node v_i . Hyperedge features, when present, are stored in a matrix $\mathbf{E} \in \mathbb{R}^{|\mathcal{E}| \times d_e}$, where d_e is the dimensionality of the hyperedge feature space. The i -th row of \mathbf{E} , denoted as $\mathbf{E}_{i,:}$, corresponds to the feature vector of hyperedge e_i . Incidence attributes are represented by a tensor $\mathbf{B} \in \mathbb{R}^{|\mathcal{E}| \times |\mathcal{V}| \times d_b}$, where d_b specifies the dimensionality of the incidence attribute space. The sub-tensor $\mathbf{B}_{i,j,:}$ represents the attribute vector associated with the incidence of hyperedge e_i and node v_j .

We introduce the concepts of s -walks (Aksoy et al., 2020) and duality (Huang et al., 2020) within the context of hypergraphs to help understand the message passing paradigms.

108 **Definition 1** (*s*-walk). For a positive integer *s*, an *s*-walk of length *k* from hyperedge e_s to e_t in
109 a hypergraph is defined as a sequence of hyperedges $e_{i_0}, e_{i_1}, \dots, e_{i_k}$, where $i_0 = s, i_k = t$, and
110 $\min_{j \in [k]} |e_{i_{j-1}} \cap e_{i_j}| = s$.
111

112 In this definition, the parameter *s* governs the extent of hyperedge intersections and can be conceptualized as the ‘bandwidth’ through which a message traverses along an *s*-walk. It is evident that
113 traditional paths in standard graphs are special cases of *s*-walks, specifically when *s* = 1. For in-
114 stance, Figure 1a illustrates a 2-walk along e_a, e_b that connects nodes v_1, v_2 to v_5, v_6 . In the standard
115 graph (Figure 1b), a path, such as v_1, v_a, v_3, v_b, v_5 , is a 1-walk.
116



118 **Figure 2: (a) The Original Hypergraph. (b) The Dual Hypergraph. (c) Incidence-Centric**
119 **Message Passing:** HMP facilitates the message passing (MP) on both duals of a hypergraph. Red
120 dashed lines indicate MP along the original hypergraph, and black solid lines represent MP along
121 the dual hypergraph.
122

123 **Definition 2** (Dual Hypergraph). The dual of a hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$ is denoted as $\mathcal{H}^* =$
124 $(\mathcal{V}^*, \mathcal{E}^*)$, where the nodes of the dual hypergraph are given by $\mathcal{V}^* = \{v_i^* = e_i | i \in [\mathcal{E}]\}$ and
125 the hyperedges are defined as $\mathcal{E}^* = \{e_j^* = \{v_i^* | v_j \in e_i\} | j \in [\mathcal{V}]\}$.
126

127 In this duality, if a node v_j is contained within a hyperedge e_i in the original hypergraph \mathcal{H} , then the
128 corresponding dual hypergraph \mathcal{H}^* will have the node v_i^* contained within the hyperedge e_j^* . For
129 instance, Figure 2a depicts a hypergraph comprising four nodes v_1, v_2, v_3, v_4 and three hyperedges
130 $e_a = \{v_1, v_2, v_3\}, e_b = \{v_2, v_3, v_4\}, e_c = \{v_1, v_2, v_4\}$. In the dual hypergraph (Figure 2b), the
131 original hyperedges are transformed into nodes, and the original nodes become hyperedges, resulting
132 in the following mappings: $e_1^* = \{v_a^*, v_c^*\}, e_2^* = \{v_a^*, v_b^*, v_c^*\}, e_3^* = \{v_a^*, v_b^*\}, e_4^* = \{v_b^*, v_c^*\}$.
133

3 METHODOLOGY

3.1 HYPERGRAPH-NATIVE MESSAGE PASSING

144 Our first innovation is the Hypergraph-native Message Passing (HMP) framework that harnesses
145 the high-order structural properties of hypergraphs to facilitate unsquashed information exchange.
146 Unlike traditional message passing (MP) approaches that compute node representations along the
147 ‘node-hyperedge-node’ path, as depicted in Figure 1b, we employ a multiset-to-multiset model f
148 (referred to as the message exchanger) to compute node representations directly between ‘node-
149 node’ shortcuts as follows:
150

$$\{\mathbf{H}_{i,j,:} | v_j \in e_i\} = f(\{\mathbf{X}_{j,:} | v_j \in e_i\}), \forall e_i \in \mathcal{E} \quad (1)$$

151 where the resulting outputs $\{\mathbf{H}_{i,j,:} | v_j \in e_i\}$ represent hyperedge-dependent node representations
152 and maintain the same order as the input features $\{\mathbf{X}_{j,:} | v_j \in e_i\}$.
153

154 It is worth noting that the conventional MP on the star expansion (SE), such as AllSet (Chien et al.,
155 2021), is a specific instance of (1) when f is implemented as a multiset function. This implementa-
156 tion squashes any walk of a hypergraph into a 1-walk with its bypassing hyperedges as bottlenecks.
157 For example, with star expansion in Figure 1b, the representation of node v_5 (or v_6) is dependent
158 on the representation of hyperedge e_b (or e_a) with a fixed number *h* of dimensions, which is in-
159 capable of conveying rich information when the hyperedges bridge a massive array of heterophilic
160 161

nodes (Aponte et al., 2022; Zheng & Worring, 2024). On the contrary, implementing f as a multiset-to-multiset model as in HMP maintains the s -walk structure. In the example of Figure 1c, the representation of node v_5 is dependent on the combined representation of v_3 and v_4 with a total of $h \times s$ times dimensions ($s = 2$), thereby alleviating the hyperedge bottleneck issue.

More formally, we demonstrate that the following enhanced MP on SE is a special case of HMP when learning node representations:

Theorem 1. *HMP is expressive enough to represent MP on SE with adaptive representation size for hyperedges, defined as*

$$\mathbf{X}'_{j,:} = f_{\mathcal{E} \rightarrow \mathcal{V}}(\{e'_i | v_j \in e_i\}), \quad e'_i = f_{\mathcal{V} \rightarrow \mathcal{E}}(\{\mathbf{X}_{j,:} | v_j \in e_i\}),$$

where $f_{\mathcal{E} \rightarrow \mathcal{V}}$, $f_{\mathcal{V} \rightarrow \mathcal{E}}$ are multiset functions, e'_i is an $(h \times |e_i|)$ -dimensional representation for hyperedge e_i , and $\mathbf{X}' \in \mathbb{R}^{|\mathcal{V}| \times h}$ is the obtained node representations.

The proof is in Appendix C.1. Thus, HMP alleviates the native structure of hypergraphs to facilitate adaptive message passing within hyperedges of varying scales, resulting in stronger expressiveness rather than the fixed-size MP approaches.

3.2 INCIDENCE-CENTRIC LEARNING ON HYPERGRAPH DUALS

Our second innovation is the incidence-centric learning mechanism that leverages the symmetric attributes of hypergraphs for thorough propagation. Different from existing approaches like AllSet, which aggregate hyperedge-dependent representations (1) using multiset functions to derive node-level representations and thus introduce node-level bottlenecks, we enhance HMP by incorporating an incidence-centric learning paradigm, which involves applying an additional message exchanger $f^{(e)}$ to node-dependent hyperedges. The message exchanger $f^{(e)}$ applied to hyperedges associated with node v_j , as viewed from the dual hypergraph \mathcal{H}^* , is expressed as:

$$\{\mathbf{H}_{i,j,:}^{(e)} | v_i^* \in e_j^*\} = f^{(e)}(\{\mathbf{E}_{i,:} | v_i^* \in e_j^*\}), \forall e_j^* \in \mathcal{E}^*. \quad (2)$$

The outputs $\mathbf{H}^{(e)} \in \mathbb{R}^{|\mathcal{E}| \times |\mathcal{V}| \times h}$ from (2) are added to the outputs of (1) to form the incidence representations $\mathbf{H} \in \mathbb{R}^{|\mathcal{E}| \times |\mathcal{V}| \times h}$. These incidence representations can be recursively fed into (1) and (2), by replacing $\mathbf{E}_{i,:}$ and $\mathbf{X}_{j,:}$ with $\mathbf{H}_{i,j,:}$, to facilitate the propagation of information between hyperedge-dependent nodes and node-dependent hyperedges, resulting in the incidence-centric message passing on hypergraph duals. We formally describe this algorithm in Appendix A and illustrate it in Figure 2c.

We instantiate the multiset-to-multiset message exchangers in HMP as self-attention modules (Vaswani et al., 2017) due to their widely validated effectiveness across multiple domains of deep learning (Kalyan et al., 2021; Han et al., 2020), as

$$f(\mathbf{X}) = \text{softmax}\left(\frac{\mathbf{X}\mathbf{W}_q \cdot (\mathbf{X}\mathbf{W}_k)^T}{\sqrt{h}}\right) \cdot \mathbf{X}\mathbf{W}_v, \quad (3)$$

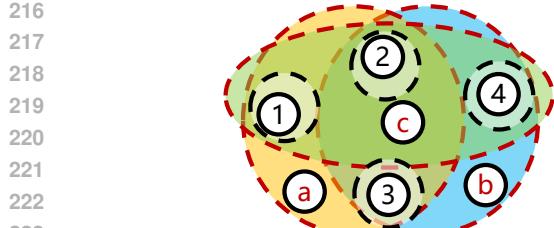
where \mathbf{W}_q , \mathbf{W}_k , \mathbf{W}_v are trainable parameters. The self-attention modules help facilitate full-rank interactions within incidences, but with a higher complexity:

Theorem 2. *The computation complexity of HMP with (3) is $\max_{e \in \mathcal{E} \cup \mathcal{E}^*} |e|$ times that of AllSet.*

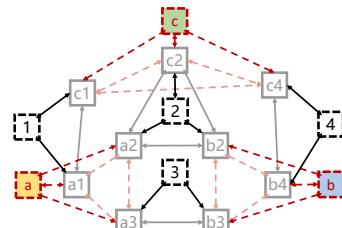
The proof is in Appendix C.2. Fortunately, self-attention has undergone a series of efficient improvements (Tay et al., 2023; Choromanski et al., 2021) that can be applied to HMP. Specifically, we implement the attention modules with linear computation complexity (Tay et al., 2023) (i.e. Performer (Choromanski et al., 2021)) when the message exchanging contexts (hyperedges or nodes) are large, reducing the complexity of HMP to the same as conventional HNNs like AllSet. Moreover, we parallelize the attention module in different hyperedges (or nodes) via the neighbourhood partitioning technique (Luo et al., 2025) to further enhance HMP’s memory- and time-efficiencies.

3.3 VIRTUAL INCIDENCES FOR HYPEREDGE- AND NODE-LEVEL TASKS

Our third innovation involves virtual incidences that adapt the incidence-centric HMP to hyperedge- and node-level downstream tasks. Different from existing methods that aggregate incidence representations with multiset functions to obtain hyperedge- and node-level representations, we augment



(a)



(b)

Figure 3: (a) Extending Hypergraphs (e.g. Figure 2a) With Virtual Nodes and Hyperedges: A black dashed circle represents a virtual hyperedge encompassing a singular node. A black solid circle with an enclosed red alphabet denotes a virtual node, with the alphabet signifying the hyperedge to which it belongs. (b) Extended Interactions Involving Virtual Incidences: The representations of the introduced virtual incidences within HMP preserve both hyperedge- and node-level information, which can be leveraged for subsequent downstream tasks.

the incidence matrix \mathbf{B} to $\mathbf{B}^+ = \begin{bmatrix} \mathbf{B} & \mathbf{I}_{|\mathcal{E}|} \\ \mathbf{I}_{|\mathcal{V}|} & \mathbf{0} \end{bmatrix}$, where \mathbf{I}_n denotes an $n \times n$ identity matrix, to make HMP compatible with hyperedge- and node-level tasks. As exemplified in Figure 3, the presence of $\mathbf{I}_{|\mathcal{E}|}$ in the first row of \mathbf{B}^+ signifies the addition of a virtual node corresponding to each hyperedge, which we refer to as virtual hyperedge-incidence. Furthermore, the $\mathbf{I}_{|\mathcal{V}|}$ in the first column indicates the insertion of a virtual hyperedge for each node, termed virtual node-incidence. Likewise, we augment the incidence attributes \mathbf{B} to $\mathbf{B}^+ \in \mathbb{R}^{(|\mathcal{E}|+|\mathcal{V}|) \times (|\mathcal{V}|+|\mathcal{E}|) \times d_b}$ by adding distinguishable attributes of virtual incidences. Our strategies of augmenting \mathbf{B} and \mathbf{B} are flexible for specific downstream tasks, as detailed in Appendix B.

The advantage of augmenting hypergraphs with virtual incidences is multifaceted: not only does it enable the utilization of representations of virtual hyperedge-incidences for hyperedge-level tasks and those of virtual node-incidences for node-level tasks, but it also implicitly provides hyperedge- and node-level information during the incidence-level learning process of HMP. These implicit informations have been demonstrated to be advantageous in our empirical investigations in Appendix E. Besides, with the introduction of virtual hyperedge- and node-incidences, HMP can emulate the functionality of AllSet (Chien et al., 2021), as demonstrated by the following theorem:

Theorem 3. AllSet is a special case of HMP with virtual incidences.

The proof is in Appendix C.3. With the known fact that AllSet encompasses the propagation rules of numerous existing Hypergraph Neural Networks (Chien et al., 2021), including HyperGCN (Yadati et al., 2019), HGNN (Feng et al., 2019), HCHA (Bai et al., 2021), HNHN (Dong et al., 2020), and HyperSAGE (Arya et al., 2020), HMP is a more generalized case of them.

4 RELATED WORKS

Among the proposed Hypergraph Neural Networks (HNNs) (Kim et al., 2024), many approaches (Dong et al., 2020; Huang & Yang, 2021; Georgiev et al., 2022) predominantly employ the star expansion technique, where hyperedges are treated as special nodes as depicted in Figure 1b, effectively transforming hypergraphs into conventional graphs to apply traditional Graph Neural Networks (GNNs) that operate on a node-wise message passing paradigm. For instance, AllSet (Chien et al., 2021) extends the message passing framework to hypergraphs and encompasses the propagation rules of most existing HNNs, including HyperGCN (Yadati et al., 2019), HGNN (Feng et al., 2019), HCHA (Bai et al., 2021), HNHN (Dong et al., 2020), and HyperSAGE (Arya et al., 2020). AllSet constructs its layers using two multiset functions: one aggregates node messages to form hyperedge representations, and the other aggregates hyperedge messages to update node representations. This leads to the derivation of AllDeepSets and AllSetTransformer when the multiset functions are instantiated as DeepSets (Zaheer et al., 2017) and SetTransformer (Lee et al., 2019), respectively. In AllSet, a node can only indirectly obtain information from its direct neighbours

through the ‘special hyperedge node’, leading to information bottlenecks. This is because it squashes diverse messages from multiple nodes into a single hyperedge representation, a phenomenon known as ‘over-squashing’ (Di Giovanni et al., 2023). In contrast, we propose the Hypergraph-native Message Passing (HMP) framework to enable direct message exchanging among nodes within the same hyperedge and overcome the hyperedge bottleneck issue, as illustrated in Figure 1c. This allows for a more efficient and effective information flow within the hypergraph structure, potentially leading to better performance on various hypergraph-based tasks.

Recently, a growing number of hypergraph methods have recognized, to varying degrees, the importance of the incidence-centric learning paradigm. WHATsNET (Choe et al., 2023) applies self-attention mechanisms to nodes within the same hyperedge, sharing conceptual similarities with HMP. Nevertheless, following the application of self-attention, WHATsNET continues to aggregate node information to form hyperedge representations, aligning with the AllSet framework and thus encountering the same hyperedge bottlenecks as AllSet does. While HyperGT (Liu et al., 2023b) also recognizes the value of incidence-level interactions, arguing they outperform conventional node-hyperedge-node message passing, its approach transforms the hypergraph into a graph of original nodes and ‘hyperedge nodes’ with an adjacency matrix as $\begin{bmatrix} \mathbf{0} & \mathbf{B} \\ \mathbf{B}^T & \mathbf{0} \end{bmatrix}$, where \mathbf{B} is the incidence matrix of the original hypergraph. Then HyperGT applies GAT (Velickovic et al., 2018) on this expanded graph, thus maintaining a node- and hyperedge-centric method. Yang et al. (2020) has criticized the star expansion performed at the hyperedge-/node-level for its information loss and has proposed an alternative, the line expansion (LE). LE treats each node-hyperedge pair as an individual node and creates connections between these nodes, once any two of them share either nodes or hyperedges in the original graph. Then LE applies traditional GNNs to the resulting graphs to develop its implementations, such as the development of LEGCN by applying GCN (Kipf & Welling, 2016). While LE’s node-hyperedge pairs are conceptually akin to our paradigm, LE treats the converted graph as homogeneous, which leads to confusion on connections between incidences that share nodes versus those that share hyperedges. This limitation is resolved by CoNHD (Zheng & Worring, 2024), which inherently distinguishes between LE’s two types of relationships and processes them separately, maintaining a more nuanced understanding of the hypergraph structure. However, CoNHD, describing its message passing framework with the diffusion concept, implements its weighted version of diffusion operators as SetTransformers with a fixed number k of inducing points. This is equivalent to enlarging the dimensions of hyperedge representations k times in message passing on star expansion, and thus cannot have adaptive dimensions for hyperedges with different scales. In contrast, HMP utilizes a switchable attention module (Luo et al., 2025) that reserves the adaptiveness and is a true incidence-centric method.

5 EXPERIMENTS

We present three experimental validations on the effectiveness of HMP for (1) heterophilic s -walks, (2) incidence-level tasks (i.e. hyperedge-dependent labelling), and (3) node-level tasks (i.e. node classification). Other studies on HMP, including ablation studies on virtual incidences, hyperparameter sensitivity analysis, and the tuning strategy, are in Appendix E and Appendix F.

5.1 ON THE SYNTHETIC HYPERCHAIN DATASETS

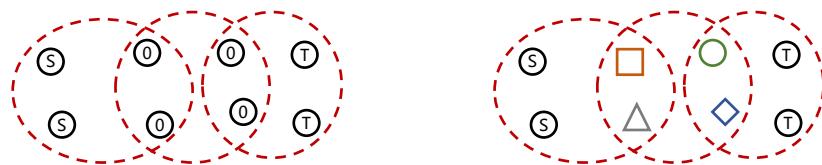


Figure 4: The synthesized 2-walk hyperchains of length 3. Label information is encoded at the source nodes (denoted as ‘S’) using one-hot vectors. The objective is to propagate and recover the identical labels at the target nodes (denoted as ‘T’), which are initialized with all-zero feature vectors. The intermediate nodes along the 2-walks are **(left)** initialized with all-zero features in the homophilic setting, or **(right)** assigned randomized one-hot vectors in the heterophilic setting.

In this section, we construct the Hyperchains datasets to highlight the benefits of HMP over traditional Message Passing (MP) methods. As depicted in Figure 4, a hyperchain is structured with k hyperedges, each comprising $2s$ nodes. These hyperedges are sequentially overlapped, with each consecutive pair sharing s nodes. Consequently, the hyperchain is structured to represent an s -walk of length k . Within a hyperchain, the initial s nodes (referred to as sources) and the final s nodes (referred to as targets) are assigned the same label. This label is represented as one-hot vectors at the source nodes. The objective is to predict the labels at the target nodes, which are initialized with all-zero feature vectors. By initializing the intermediate nodes along the s -walks with either all-zero features or randomized one-hot vectors, we can simulate both homophilic and heterophilic settings. In the homophilic setting, nodes within the same hyperedge are similar, while in the heterophilic setting, they are dissimilar. This setup allows us to evaluate the performance of HMP and other MP methods under different homophily structures.

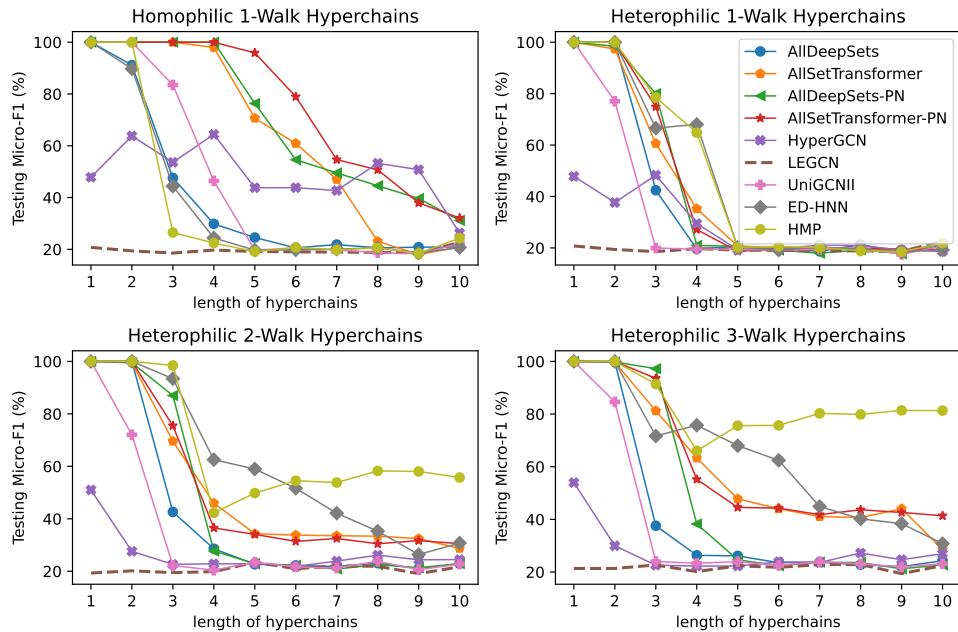


Figure 5: Averaged scores across 10 runs on the Hyperchains datasets with different widths, lengths, and homophily settings.

We benchmark HMP against several baselines, including AllDeepSets, AllSetTransformer (Chien et al., 2021), HyperGCN (Yadati et al., 2019), LEGCN (Yang et al., 2020), UniGCNII (Huang & Yang, 2021), and ED-HNN (Wang et al., 2023a). For AllDeepSets and AllSetTransformer, we introduce a PairNorm-like (Zhao & Akoglu, 2020) normalization technique from Xu et al. (2022) to tackle the over-smoothing issue and derive AllDeepSets-PN and AllSetTransformer-PN. All models have hidden dimensions set to 64 and the number of attention heads (if exists) set to 1. For each setup with varying width s , length k , and degree of homophily, we construct 1,000 hyperchains, which are then distributed into a training set of 500, a validation set of 250, and a testing set of 250. Each method is configured with a specific number of layers to precisely convolute information from source nodes to target nodes. They are trained, with NVIDIA GeForce RTX 3060 (12GB), for 1,000 epochs on the training set, and the accuracy on the testing set is recorded as the performance metric for the run if it corresponds to the best validation set performance. The average scores from 10 runs are presented in Figure 5. The results in the first subfigure reveal that HMP is not the most effective for message passing on homophilic hyperchains. Indeed, both AllSetTransformer and UniGCNII outperform HMP on nearly all homophilic hyperchains, regardless of the hyperchain length. HyperGCN also exhibits robust performance as the hyperchains become longer. Besides, PairNorm (PN) shows significant improvements on AllDeepSets and AllSetTransformer, demonstrating its effectiveness in long-range propagations with homophilic settings. However, in the case of heterophilic hyperchains, all methods, including AllSet with PairNorm, experience a significant decline in performance as the length increases. Among the methods tested, ED-HNN and HMP prove to be the

most resilient, highlighting their advantage in learning under heterophily. Furthermore, as our analysis indicates, conventional methods are unable to fully utilize the structural benefits of hypergraphs as the hyperchain width s increases, due to the hyperedge bottlenecks. In contrast, as shown in the third and fourth subfigures, HMP demonstrates improved long-range propagation with increasing width s and is the only method that maintains robustness as the hyperchain lengthens. In summary, HMP exhibits a more potent learning capability in heterophilic contexts compared to traditional baselines and is uniquely positioned to harness the structural potential of hypergraphs.

5.2 HYPEREDGE-DEPENDENT LABELLING

Table 1: Averaged Micro-F1 (the upper section) and Macro-F1 (the lower section) scores across five runs for hyperedge-dependent labelling. The best score for each dataset is **bolded**, the second best is underlined, and the third is *italic*. The ‘8 Baselines’ are HNHN, HGNN, HCHA, HAT, UniGCNII, HNN, HST, and AllSetTransformer, with their detailed performance and the datasets’ characteristics summarized in Appendix D.

	Coauth DBLP	Coauth AMiner	Email Enron	Email Eu	Stack Biology	Stack Physics
8 Baselines	56.4 ± 0.4	59.6 ± 0.7	81.7 ± 0.1	67.1 ± 0.1	69.4 ± 0.2	75.5 ± 1.0
WHATsNET	60.5 ± 0.2	63.0 ± 0.5	82.6 ± 0.1	67.1 ± 0.0	74.2 ± 0.3	77.0 ± 0.3
CoNHD	62.0 ± 0.2	65.0 ± 0.3	91.1 ± 0.1	70.9 ± 0.1	74.9 ± 0.2	77.7 ± 0.1
HMP (100 epochs)	77.6 ± 0.6	72.5 ± 0.2	72.4 ± 0.3	71.4 ± 0.9	77.2 ± 0.2	77.9 ± 0.7
HMP	89.4 ± 0.2	80.4 ± 0.1	93.4 ± 1.51	78.2 ± 0.1	78.8 ± 0.2	82.6 ± 0.2
8 Baselines	54.9 ± 0.3	58.3 ± 0.8	75.3 ± 0.4	64.0 ± 0.2	63.1 ± 0.6	66.6 ± 1.3
WHATsNET	59.5 ± 0.2	62.3 ± 0.7	76.0 ± 0.4	64.6 ± 0.3	68.6 ± 0.4	70.7 ± 0.4
CoNHD	60.4 ± 0.2	64.6 ± 0.4	87.1 ± 0.2	69.0 ± 0.2	69.5 ± 0.4	71.2 ± 0.5
HMP (100 epochs)	77.3 ± 0.6	71.7 ± 0.3	67.1 ± 0.3	71.0 ± 0.7	73.0 ± 0.3	73.7 ± 1.0
HMP	89.3 ± 0.2	79.9 ± 0.1	91.3 ± 2.1	77.8 ± 0.1	76.0 ± 2.0	79.1 ± 0.2

In this section, we evaluate the effectiveness of HMP on the hyperedge-dependent labelling tasks, which aim to assign different labels to nodes based on the hyperedges to which they belong. The datasets include Coauth-DBLP, Coauth-AMiner, Email-Enron, Email-Eu, Stack-Biology, and Stack-Physics (Choe et al., 2023). In Table 1, we present the Micro- and Macro-F1 scores for HMP, trained with NVIDIA A800 (80GB), and a range of baseline methods, including HNHN (Dong et al., 2020), HGNN (Feng et al., 2019), HCHA (Bai et al., 2021), HAT (Hwang et al., 2021), UniGCNII (Huang & Yang, 2021), HNN (Aponte et al., 2022), HypergraphSetTransformer (HST) (Choe et al., 2023), AllSetTransformer (Chien et al., 2021), WHATsNET (Choe et al., 2023), and CoNHD (Zheng & Worring, 2024). The experimental setup was consistent with that of Choe et al. (2023), with the exception that HMP was trained in full-batch for a maximum of 10,000 epochs with a patience of 1,000 epochs for early stopping, whereas the baselines were trained in mini-batch for 100 epochs. This difference in training epochs does not compromise the fairness of the comparison, because the baselines have sufficient gradient descent steps for their optimization. For instance, on the Coauth-AMiner dataset with 1,712,433 nodes, the baselines were trained using node batches of size 512, allowing for 334,500 gradient descent updates in 100 epochs. Nonetheless, the results of HMP with only 100 training epochs are also included in the table for reference.

As indicated in Table 1, HMP achieves significant improvements over the current state-of-the-art methods, WHATsNET and CoNHD, in terms of both Micro-F1 and Macro-F1 scores across various datasets. The margins range from 2.3% of Micro-F1 on Email-Enron to an impressive 28.9% of Macro-F1 on Coauth-DBLP. Even with insufficient training of just 100 epochs, HMP still manages to outperform the baselines on 5 out of the 6 tested benchmarks, with underperformance only on the Email-Enron dataset. This clearly illustrates the efficacy of the incidence-centric HMP for hyperedge-dependent labelling tasks.

5.3 NODE CLASSIFICATION

In this section, we extend the application of HMP to node classification tasks by leveraging virtual incidences, and we benchmark it against the state-of-the-art (SotA) hypergraph neural networks

(HNNs). We have gathered a comprehensive set of baselines, including Multi-Layered Perceptron (MLP), HGNN (Feng et al., 2019), UniGCNII (Huang & Yang, 2021), HAN (Wang et al., 2019) (trained in full-batch and mini-batch), HyperGT (Liu et al., 2023b), AllSet (Chien et al., 2021) (including AllDeepSets and AllSetTransformer), ED-HNN (Wang et al., 2023a) (with its ED-HNNII variant), and PhenomNN (Wang et al., 2023b) (with its PhenomNN_{simple} variant). We use 13 datasets: Cora, Citeseer, Pubmed, Cora-CA, DBLP-CA (Yadati et al., 2019), 20Newsgroups, ModelNet40 (Wu et al., 2014), NTU2012 (Chen et al., 2003), Yelp, House (Chodrow et al., 2021), Walmart (Amburg et al., 2019), Senate, and Congress (Wang et al., 2023a). These datasets vary in numerous ways, with a particular focus on the degree of homophily, which measures the probability of connected nodes sharing the same labels. We calculate the homophily score (Pei et al., 2020) based on the clique expansion (CE) of the hypergraphs. A higher CE homophily score indicates that two connected nodes in the hypergraph are more likely to be similar, reflecting a higher degree of homophily within the network.

Table 2: Averaged and standard deviation of Micro-F1 scores (%) across ten runs for node classification. Scores of HMP are **bolded** if HMP surpasses the best SotA (from Chien et al. (2021); Wang et al. (2023a;b); Liu et al. (2023b)), and are underlined if HMP surpasses the second best. More characteristics of the datasets and detailed performance of the baselines are in Appendix D.

Dataset	CE Homo.	State of the Art (SotA)				HMP
		Rank-1	Rank-2	Rank-1	Rank-2	
		Method	Micro-F1	Method	Micro-F1	
Pubmed	0.952	ED-HNN	89.56±0.62	AllSet	88.75±0.33	88.45±0.38
Cora	0.897	PhenomNN	82.29±1.42	ED-HNN	80.31±1.35	80.35±1.32
Citeseer	0.893	PhenomNN	75.10±1.59	HAN	74.12±1.52	73.82±1.21
DBLP-CA	0.869	ED-HNN	91.93±0.29	PhenomNN	91.91±0.21	91.87±0.20
ModelNet40	0.853	PhenomNN	98.66±0.20	AllSet	98.20±0.20	98.54±0.26
Cora-CA	0.803	PhenomNN	85.81±0.90	HAN	84.04±1.02	<u>84.61±1.35</u>
NTU2012	0.752	PhenomNN	91.03±1.04	UniGCNII	89.30±1.33	<u>90.70±1.06</u>
Congress	0.555	HyperGT	95.23±0.73	ED-HNN	95.19±1.34	95.77±1.15
Walmart	0.530	HyperGT	69.83±0.39	ED-HNN	67.24±0.45	72.42±0.46
House	0.509	HyperGT	74.55±1.99	ED-HNN	73.95±1.97	<u>74.09±1.95</u>
Senate	0.498	HyperGT	65.49±5.11	ED-HNN	64.79±5.14	68.31±5.32
20Newsgroups	0.461	PhenomNN	81.74±0.52	MLP	81.42±0.49	<u>81.64±0.44</u>
Yelp	0.226	AllSet	36.89±0.51	HGNN	33.04±0.62	<u>36.48±0.44</u>

With the experimental settings identical to Wang et al. (2023a), we evaluate the Micro-F1 scores of HMP for the node classification tasks and report them in Table 2. As can be seen in the table, while HMP with virtual incidences lags behind the best SotA methods, namely ED-HNN and PhenomNN, with noticeable margins on the three most homophilic datasets, Cora, Citeseer, and Pubmed, it significantly outperforms SotA HNNs on Congress, Walmart, and Senate, and surpasses the second-best baselines on other datasets as the CE homophily scores decrease. This is because the propagation rules of ED-HNN and PhenomNN are diffusion-based, with the inductive bias effective for homophilic graphs. On the contrary, HMP adapts to wider scenarios without the limitation of such homophilic assumptions, instead with competitive advantages in tackling node-level tasks characterized by heterophily.

6 CONCLUSIONS

We introduce Hypergraph-native Message Passing (HMP), a learning paradigm that harnesses the high-order structural properties of hypergraphs to effectively alleviate information bottlenecks and facilitate information propagation. Its incidence-centric perspective and the augmented virtual incidences position HMP as a competitive solution for incidence-, hyperedge-, and node-level representation learning tasks, demonstrating remarkable efficacy across 6 hyperedge-dependent labelling benchmarks and 13 node classification datasets.

486 REFERENCES

487

488 Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
489 A next-generation hyperparameter optimization framework. In *Proceedings of the 25th ACM*
490 *SIGKDD International Conference on Knowledge Discovery and Data Mining*, 2019.

491 Sinan G Aksoy, Cliff Joslyn, Carlos Ortiz Marrero, Brenda Praggastis, and Emilie Purvine. Hyper-
492 network science via high-order hypergraph walks. *EPJ Data Science*, 9(1):16, 2020.

493 Ilya Amburg, Nate Veldt, and Austin R. Benson. Clustering in graphs and hypergraphs with cate-
494 gorical edge labels. *Proceedings of The Web Conference 2020*, 2019.

495 Alessia Antelmi, Gennaro Cordasco, Mirko Polato, Vittorio Scarano, Carmine Spagnuolo, and
496 Dingqi Yang. A survey on hypergraph representation learning. *ACM Computing Surveys*, 56:
497 1 – 38, 2023.

498 Ryan Aponte, Ryan A. Rossi, Shunan Guo, Jane Hoffswell, Nedim Lipka, Chang Xiao, Gromit
499 Yeuk-Yin Chan, Eunyee Koh, and Nesreen K. Ahmed. A hypergraph neural network framework
500 for learning hyperedge-dependent node embeddings. *ArXiv*, abs/2212.14077, 2022.

501 Devanshu Arya, Deepak K. Gupta, Stevan Rudinac, and Marcel Worring. Hypersage: Generalizing
502 inductive representation learning on hypergraphs. *ArXiv*, abs/2010.04558, 2020.

503 Song Bai, Feihu Zhang, and Philip HS Torr. Hypergraph convolution and hypergraph attention.
504 *Pattern Recognition*, 110:107637, 2021.

505 Federico Battiston, Giulia Cencetti, Iacopo Iacopini, Vito Latora, Maxime Lucas, Alice Patania,
506 Jean-Gabriel Young, and Giovanni Petri. Networks beyond pairwise interactions: Structure and
507 dynamics. *Physics reports*, 874:1–92, 2020.

508 Ding-Yun Chen, Xiao-Pei Tian, Edward Yu-Te Shen, and Ming Ouhyoung. On visual similarity
509 based 3d model retrieval. *Computer Graphics Forum*, 22, 2003.

510 Eli Chien, Chao Pan, Jianhao Peng, and Olgica Milenkovic. You are allset: A multiset function
511 framework for hypergraph neural networks. *ArXiv*, abs/2106.13264, 2021.

512 Philip S. Chodrow, Nate Veldt, and Austin R. Benson. Generative hypergraph clustering: From
513 blockmodels to modularity. *Science Advances*, 7, 2021.

514 Minyoung Choe, Sunwoo Kim, Jaemin Yoo, and Kijung Shin. Classification of edge-dependent
515 labels of nodes in hypergraphs. *Proceedings of the 29th ACM SIGKDD Conference on Knowledge*
516 *Discovery and Data Mining*, 2023.

517 Krzysztof Marcin Choromanski, Valerii Likhoshesterov, David Dohan, Xingyou Song, Andreea
518 Gane, Tamás Sarlós, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser,
519 David Benjamin Belanger, Lucy J. Colwell, and Adrian Weller. Rethinking attention with per-
520 formers. In *9th International Conference on Learning Representations, ICLR 2021, Virtual Event,*
521 *Austria, May 3-7, 2021*. OpenReview.net, 2021.

522 Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Lio, and Michael M
523 Bronstein. On over-squashing in message passing neural networks: The impact of width, depth,
524 and topology. In *International Conference on Machine Learning*, pp. 7865–7885. PMLR, 2023.

525 Yihe Dong, Will Sawin, and Yoshua Bengio. Hnnh: Hypergraph networks with hyperedge neurons.
526 *ArXiv*, abs/2006.12278, 2020.

527 Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. Hypergraph neural networks.
528 In *Proceedings of the AAAI conference on artificial intelligence*, volume 33, pp. 3558–3565, 2019.

529 Dobrik Georgiev, Marc Brockschmidt, and Miltiadis Allamanis. Heat: Hyperedge attention net-
530 works. *Trans. Mach. Learn. Res.*, 2022, 2022.

531 Sathyaranayanan Gopalakrishnan, Supriya Sridharan, Soumya Ranjan Nayak, Janmenjoy Nayak,
532 and Swaminathan Venkataraman. Central hubs prediction for bio networks by directed
533 hypergraph-ga with validation to covid-19 ppi. *Pattern Recognition Letters*, 153:246–253, 2022.

540 Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen, Jianyuan Guo, Zhenhua Liu, Yehui Tang,
541 An Xiao, Chunjing Xu, Yixing Xu, Zhaohui Yang, Yiman Zhang, and Dacheng Tao. A survey
542 on vision transformer. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, PP:1–1,
543 2020.

544 Jie Huang, Chuan Chen, Fanghua Ye, Weibo Hu, and Zibin Zheng. Nonuniform hyper-network
545 embedding with dual mechanism. *ACM Transactions on Information Systems (TOIS)*, 38:1 – 18,
546 2020.

547 Jing Huang and Jie Yang. Unignn: a unified framework for graph and hypergraph neural networks.
548 *ArXiv*, abs/2105.00956, 2021.

549 Hyunjin Hwang, Seungwoo Lee, and Kijung Shin. Hyfer: A framework for making hypergraph
550 learning easy, scalable and benchmarkable. In *WWW Workshop on Graph Learning Benchmarks*,
551 2021.

552 Katikapalli Subramanyam Kalyan, Ajit Rajasekharan, and Sivanesan Sangeetha. Ammus : A survey
553 of transformer-based pretrained models in natural language processing, 2021.

554 Sunwoo Kim, Soo Yong Lee, Yue Gao, Alessia Antelmi, Mirko Polato, and Kijung Shin. A survey
555 on hypergraph neural networks: An in-depth and step-by-step guide. In *Proceedings of the 30th
556 ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 6534–6544, 2024.

557 Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
558 works. *CoRR*, abs/1609.02907, 2016.

559 Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set
560 transformer: A framework for attention-based permutation-invariant neural networks. In *Inter-
561 national conference on machine learning*, pp. 3744–3753. PMLR, 2019.

562 Yi Liu, Hongrui Xuan, Bohan Li, Mei Wang, Tong Chen, and Hongzhi Yin. Self-supervised dynamic
563 hypergraph recommendation based on hyper-relational knowledge graph. *Proceedings of the 32nd
564 ACM International Conference on Information and Knowledge Management*, 2023a.

565 Zexi Liu, Bohan Tang, Ziyuan Ye, Xiaowen Dong, Siheng Chen, and Yanfeng Wang. Hypergraph
566 transformer for semi-supervised classification. *ICASSP 2024 - 2024 IEEE International Confer-
567 ence on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 7515–7519, 2023b.

568 Yi Luo, Xu Sun, Guangchun Luo, and Aiguo Chen. Monophilic neighbourhood transformers, 2025.

569 Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
570 graph convolutional networks. In *8th International Conference on Learning Representations,
571 ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020*. OpenReview.net, 2020.

572 Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey. *ACM
573 Comput. Surv.*, 55(6):109:1–109:28, 2023. doi: 10.1145/3530811.

574 Francesco Tudisco, Austin R Benson, and Konstantin Prokopchik. Nonlinear higher-order label
575 spreading. In *Proceedings of the Web Conference 2021*, pp. 2402–2413, 2021.

576 Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
577 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Neural Information Processing
578 Systems*, 2017.

579 Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
580 Bengio. Graph attention networks. In *6th International Conference on Learning Representations,
581 ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings*.
582 OpenReview.net, 2018.

583 Peihao Wang, Shenghao Yang, Yunyu Liu, Zhangyang Wang, and Pan Li. Equivariant hypergraph
584 diffusion neural operators. In *The Eleventh International Conference on Learning Representa-
585 tions, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023a.

594 Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Peng Cui, Philip S. Yu, and Yanfang Ye. Heterogeneous
595 graph attention network. *The World Wide Web Conference*, 2019.
596

597 Yuxin Wang, Quan Gan, Xipeng Qiu, Xuanjing Huang, and David Paul Wipf. From hypergraph en-
598 ergy functions to hypergraph neural networks. In *International Conference on Machine Learning*,
599 2023b.

600 Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong
601 Xiao. 3d shapenets: A deep representation for volumetric shapes. *2015 IEEE Conference on*
602 *Computer Vision and Pattern Recognition (CVPR)*, pp. 1912–1920, 2014.

603

604 Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
605 comprehensive survey on graph neural networks. *IEEE transactions on neural networks and*
606 *learning systems*, 32(1):4–24, 2020.

607 Ran Xu, Yue Yu, Chao Zhang, Carl Yang, C. Yang, Xu Zhang, and Ali Ho Yang. Counterfactual
608 and factual reasoning over hypergraphs for interpretable clinical predictions on ehr. *Proceedings*
609 *of machine learning research*, 193:259–278, 2022.

610

611 Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand Louis, and Partha
612 Talukdar. Hypergcn: A new method for training graph convolutional networks on hypergraphs.
613 *Advances in neural information processing systems*, 32, 2019.

614

615 Chaoqi Yang, Ruijie Wang, Shuochao Yao, and Tarek F. Abdelzaher. Semi-supervised hypergraph
616 node classification on hypergraph line expansion. *Proceedings of the 31st ACM International*
617 *Conference on Information & Knowledge Management*, 2020.

618

619 Se-eun Yoon, Hyungseok Song, Kijung Shin, and Yung Yi. How much and when do we need higher-
620 order information in hypergraphs? a case study on hyperedge prediction. In *Proceedings of The*
621 *Web Conference 2020*, pp. 2627–2633, 2020.

622

623 Junliang Yu, Hongzhi Yin, Jundong Li, Qinyong Wang, Nguyen Quoc Viet Hung, and Xiangliang
624 Zhang. Self-supervised multi-channel hypergraph convolutional network for social recommenda-
625 tion. *Proceedings of the Web Conference 2021*, 2021.

626

627 Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
628 Alexander J Smola. Deep sets. *Advances in neural information processing systems*, 30, 2017.

629

630 Bin Zhang, Yunru Bai, Zhiwei Xu, Dapeng Li, and Guoliang Fan. Efficient policy generation in
631 multi-agent systems via hypergraph neural network. In *International Conference on Neural In-*
632 *formation Processing*, 2022.

633

634 Ziyang Zhang, Hejie Cui, Ran Xu, Yuzhang Xie, Joyce C. Ho, and Carl Yang. Tacco: Task-guided
635 co-clustering of clinical concepts and patient visits for disease subtyping based on ehr data. *KDD*
636 : *proceedings. International Conference on Knowledge Discovery & Data Mining*, 2024:6324–
637 6334, 2024.

638

639 Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. In *8th International*
640 *Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30*, 2020.
641 OpenReview.net, 2020.

642

643 Yijia Zheng and Marcel Worring. Co-representation neural hypergraph diffusion for edge-dependent
644 node classification, 2024.

645

646 A THE ALGORITHM OF HMP

647

648 We delineate the incidence-centric algorithm of Hypergraph-native Message Passing (HMP) in Al-
649 gorithm 1. In line 1, we initialize the incidence representations based on the incidence attributes.
650 Lines 2 through 4 entail the application of a message exchanger $f_0^{(v)}$ to hyperedge-dependent nodes,
651 which converts node features into incidence representations. Lines 5 to 7 involve the application of
652 an additional message exchanger to node-dependent hyperedges, aimed at transforming hyperedge

648 **Algorithm 1** Hypergraph-Native Message Passing

649 **Input:** the hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$, the number of layers l , node features \mathbf{X} , hyperedge features
650 \mathbf{E} , incidence attributes \mathbf{B} , message exchangers $f_0^{(v)}, f_0^{(e)}, f_1^{(v)}, f_1^{(e)}, \dots, f_l^{(v)}, f_l^{(e)}$.
651 **Output:** incidence representations \mathbf{H} .

652 1: $\mathbf{H} = \mathbf{B}$
653 2: **for parallel** $i = 1, 2, \dots, |\mathcal{E}|$ **do**
654 3: $\{\mathbf{H}_{i,j,:} | v_j \in e_i\} += f_0^{(v)}(\{\mathbf{X}_{j,:} | v_j \in e_i\})$
655 4: **end for**
656 5: **for parallel** $j = 1, 2, \dots, |\mathcal{V}|$ **do**
657 6: $\{\mathbf{H}_{i,j,:} | v_i^* \in e_j^*\} += f_0^{(e)}(\{\mathbf{E}_{i,:} | v_i^* \in e_j^*\})$
658 7: **end for**
659 8: **for** $k = 1, 2, \dots, l$ **do**
660 9: $\mathbf{H}^{(v)} = 0$
661 10: **for parallel** $i = 1, 2, \dots, |\mathcal{E}|$ **do**
662 11: $\{\mathbf{H}_{i,j,:}^{(v)} | v_j \in e_i\} = f_k^{(v)}(\{\mathbf{H}_{i,j,:} | v_j \in e_i\})$
663 12: **end for**
664 13: $\mathbf{H}^{(e)} = 0$
665 14: **for parallel** $j = 1, 2, \dots, |\mathcal{V}|$ **do**
666 15: $\{\mathbf{H}_{i,j,:}^{(e)} | v_i^* \in e_j^*\} = f_k^{(e)}(\{\mathbf{H}_{i,j,:} | v_i^* \in e_j^*\})$
667 16: **end for**
668 17: $\mathbf{H} += \mathbf{H}^{(v)} + \mathbf{H}^{(e)}$
669 18: **end for**
670 19: **return** \mathbf{H}

671

672

673 features into incidence representations. From lines 8 to 18, we alternately apply message exchangers to hyperedge-dependent nodes and node-dependent hyperedges, thereby enabling information propagation across the hypergraph duals. This approach circumvents the node and hyperedge bottlenecks, ensuring a more effective and efficient traversal of the hypergraph's complex interactions.

674

675

676

677

B DETAILS OF VIRTUAL INCIDENCES

681 While HMP can augment the incidence matrix \mathbf{B} to $\mathbf{B}^+ = \begin{bmatrix} \mathbf{B} & \mathbf{I}_{|\mathcal{E}|} \\ \mathbf{I}_{|\mathcal{V}|} & \mathbf{0} \end{bmatrix}$ for downstream tasks, it
682 has the flexibility to augment the incidence matrix with only virtual hyperedge-incidences or virtual
683 node-incidences, rather than both, depending on the requirements of the tasks. Furthermore, the
684 augmentation of the incidence attributes \mathbf{B} to $\mathbf{B}^+ \in \mathbb{R}^{(|\mathcal{E}|+|\mathcal{V}|) \times (|\mathcal{V}|+|\mathcal{E}|) \times d_b}$ can also be flexible,
685 provided that it effectively differentiates among the original attributes and the added different types
686 of virtual incidences. For instance, in the case (e.g. our node classification tasks) where incidence
687 attributes $\mathbf{B} = 0$, we assign fixed 2-dimensional encodings $(1, 0)$ to virtual hyperedge-incidences,
688 $(0, 1)$ to virtual node-incidences, and $(0, 0)$ to original incidences to construct \mathbf{B}^+ . When incidence
689 attributes exist ($\mathbf{B} \neq 0$), such as in our hyperedge-dependent labelling tasks, we concatenate the
690 aforementioned 2-dimensional encodings to $\begin{bmatrix} \mathbf{B} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$ to augment the original incidence attributes.
691 These encodings are fixed but will be transformed into learned embeddings after an encoding layer.

692

693

C THEORETICAL ANALYSIS

C.1 THE PROOF OF THEOREM 1

697 *Proof.* The idea is to store hyperedge representations of MP on SE into the involved incidence
698 representations of HMP. Assume that ϕ is a rearranging function which receives an $(h \times s)$ -dimensional
699 vector, with s being a variable, and outputs an ordered multiset of s elements, where each element is
700 an exclusive h -dimensional slice of the input. We construct a multiset-to-multiset model f in HMP
701 an exclusive h -dimensional slice of the input. We construct a multiset-to-multiset model f in HMP

702 as the composite function of $\phi \circ f_{\mathcal{V} \rightarrow \mathcal{E}}$ and get hyperedge-dependent node representations as
703

$$704 \quad \{\mathbf{H}_{i,j,:} | v_j \in e_i\} = \phi(f_{\mathcal{V} \rightarrow \mathcal{E}}(\{\mathbf{X}_{j,:} | v_j \in e_i\})) = \phi(\mathbf{e}'_i), \forall e_i \in \mathcal{E}.$$

705 Aggregating them by nodes with the multiset function: $v_j \rightarrow f_{\mathcal{E} \rightarrow \mathcal{V}}(\phi^{-1}(\{\mathbf{H}_{i,k,:} | v_k \in e_i\}) | v_j \in e_i), \forall v_j \in \mathcal{V}$ obtains the same node representations \mathbf{X}' produced by the previously defined MP on
706 SE. \square
707

709 C.2 THE PROOF OF THEOREM 2
710

711 *Proof.* Since HMP facilitates full message exchanging among incidences within the same hyper-
712 edges and nodes, with self-attention's quadratic computation complexity, it has a total complexity
713 proportional to

$$\begin{aligned} 714 \quad & \sum_{e \in \mathcal{E}} |e|^2 + \sum_{e^* \in \mathcal{E}^*} |e^*|^2 \\ 715 \quad & \leq \sum_{e \in \mathcal{E}} |e| \cdot \max_{e' \in \mathcal{E}} |e'| + \sum_{e^* \in \mathcal{E}^*} |e^*| \cdot \max_{e' \in \mathcal{E}^*} |e'| \\ 716 \quad & \leq 2b \cdot \max_{e \in \mathcal{E} \cup \mathcal{E}^*} |e|, \end{aligned}$$

721 where $b = \sum_{e \in \mathcal{E}} |e| = \sum_{e^* \in \mathcal{E}^*} |e^*|$ is the number of incidences.
722

723 Since AllSet only passes messages between nodes and their belonging hyperedges, its complexity is
724 $O(b)$. Thus, the complexity of HMP self-attention is $\max_{e \in \mathcal{E} \cup \mathcal{E}^*} |e|$ times that of AllSet. \square
725

726 C.3 THE PROOF OF THEOREM 3
727

728 *Proof.* Define the update rule of AllSet as
729

$$\begin{aligned} 730 \quad \mathbf{E}'_{i,:} &= f_{\mathcal{V} \rightarrow \mathcal{E}}(\{\mathbf{X}_{j,:} | v_j \in e_i\}, \mathbf{E}_{i,:}), \forall i \in [|\mathcal{E}|], \\ 731 \quad \mathbf{X}'_{j,:} &= f_{\mathcal{E} \rightarrow \mathcal{V}}(\{\mathbf{E}'_{i,:} | v_j \in e_i\}, \mathbf{X}_{j,:}), \forall j \in [|\mathcal{V}|], \end{aligned}$$

733 where $f_{\mathcal{E} \rightarrow \mathcal{V}}, f_{\mathcal{V} \rightarrow \mathcal{E}}$ are multiset functions with respect to their first inputs and \mathbf{E}', \mathbf{X}' are
734 representations for hyperedges and nodes. We extend the hypergraph by creating virtual hyper-
735 edges $\{e_{|\mathcal{E}|+1}^+, e_{|\mathcal{E}|+2}^+, \dots, e_{|\mathcal{E}|+|\mathcal{V}|}^+\}$, where $e_{|\mathcal{E}|+j}^+ = \{v_j\}, \forall j \in [|\mathcal{V}|]$, and inserting virtual nodes
736 $\{v_{|\mathcal{V}|+1}, v_{|\mathcal{V}|+2}, \dots, v_{|\mathcal{V}|+|\mathcal{E}|}\}$ into existing hyperedges to get $e_i^+ = e_i \cup \{v_{|\mathcal{V}|+i}\}, \forall i \in [|\mathcal{E}|]$, where
737 each virtual node $v_{|\mathcal{V}|+i}$ is attached with the hyperedge features $\mathbf{E}_{i,:}$.

738 Then we construct the first message exchanger $f_0^{(v)}$ as
739

$$740 \quad \{\mathbf{H}_{i,j,:} | v_j \in e_i^+\} = f_0^{(v)}(\{\mathbf{X}_{j,:} | v_j \in e_i^+\}), \forall i \in [|\mathcal{E}| + |\mathcal{V}|],$$

742 satisfying that $\mathbf{H}_{i,j,:}$ equals to
743

$$\begin{cases} f_{\mathcal{V} \rightarrow \mathcal{E}}(\{\mathbf{X}_{k,:} | v_k \in e_i\}, \mathbf{E}_{i,:}), & i \in [|\mathcal{E}|], v_j \in e_i^+, \\ \mathbf{X}_{j,:}, & j \in [|\mathcal{V}|], i = |\mathcal{E}| + j, \\ 0, & \text{otherwise.} \end{cases}$$

748 With the intermediate $f_0^{(e)}$ and $f_1^{(v)}$ omitted, we construct the last message exchanger $f_1^{(e)}$ as
749

$$750 \quad \{\mathbf{H}'_{i,j,:} | v_j \in e_i^+\} = f_1^{(e)}(\{\mathbf{H}_{i,j,:} | v_j \in e_i^+\}), \forall j \in [|\mathcal{E}| + |\mathcal{V}|]$$

751 satisfying that $\mathbf{H}'_{i,j,:}$ equals to
752

$$\begin{cases} f_{\mathcal{E} \rightarrow \mathcal{V}}(\{\mathbf{H}_{k,j,:} | v_k \in e_k\}, \mathbf{H}_{i,j,:}), & j \in [|\mathcal{V}|], i = |\mathcal{E}| + j, \\ \mathbf{H}_{i,j,:}, & i \in [|\mathcal{E}|], j = |\mathcal{V}| + i, \\ 0, & \text{otherwise.} \end{cases}$$

756 Table 3: Datasets for the hyperedge-dependent labelling tasks (the upper part) and the averaged
757 Micro-F1 (the middle part) and Macro-F1 (the lower part) scores of the 8 baselines (Choe et al.,
758 2023). The best score for each dataset is **bolded**.

760 Dataset	761 Coauth	762 Coauth	763 Email	764 Email	765 Stack	766 Stack
767 #nodes	768 DBLP	769 AMiner	770 Enron	771 Eu	772 Biology	773 Physics
774 #hyperedges	775 108,484	776 1,712,433	777 21,251	778 986	779 15,490	780 80,936
781 #incidences	782 91,266	783 2,037,605	784 101,124	785 209,508	786 26,823	787 200,811
788 #classes	789 321,011	790 5,129,998	791 1,186,521	792 541,842	793 56,257	794 479,809
795	796 3	797 3	798 3	799 2	800 3	801 3
802 HNHN	803 48.6±0.4	804 52.0±0.2	805 73.8±2.8	806 64.3±0.4	807 64.0±0.5	808 50.6±5.3
809 HGNN	810 54.0±0.4	811 56.6±0.2	812 72.5±0.4	813 63.3±0.1	814 68.9±0.2	815 68.6±0.4
816 HCHA	817 45.1±0.7	818 46.8±2.0	819 66.6±1.0	820 62.0±0.0	821 58.9±0.7	822 62.2±0.3
823 HAT	824 50.3±0.4	825 54.3±0.2	826 81.7±0.1	827 66.9±0.1	828 66.1±0.5	829 70.8±0.5
831 UniGCNII	832 49.7±0.3	833 52.0±0.1	834 73.4±1.0	835 63.0±0.5	836 61.0±0.4	837 67.1±2.2
839 HNN	840 48.8±0.6	841 54.3±0.2	842 76.3±0.3	843 —	844 61.8±1.5	845 68.3±0.5
847 HST	848 56.4±0.4	849 59.6±0.7	850 77.9±6.7	851 67.1±0.1	852 69.4±0.2	853 75.5±1.0
856 AllSetTransformer	857 49.5±3.8	858 57.7±0.5	859 79.6±1.4	860 66.6±0.5	861 57.1±5.4	862 72.8±3.9
865 HNHN	866 47.8±0.8	867 51.4±0.2	868 63.7±2.3	869 55.2±1.4	870 59.2±0.6	871 42.2±4.3
874 HGNN	875 51.9±0.2	876 55.1±0.4	877 67.4±0.3	878 53.3±0.8	879 62.4±0.7	880 63.0±0.2
883 HCHA	884 33.4±4.8	885 44.7±4.0	886 46.4±0.2	887 49.7±0.1	888 46.5±6.0	889 48.1±0.7
892 HAT	893 48.3±0.6	894 53.3±0.3	895 75.3±0.4	896 63.8±0.2	897 60.6±0.5	898 64.3±0.9
901 UniGCNII	902 47.6±0.2	903 50.7±0.1	904 65.6±1.0	905 56.5±1.3	906 43.3±0.7	907 49.2±1.6
910 HNN	911 48.2±0.6	912 53.3±0.2	913 67.9±0.7	914 —	915 56.8±1.3	916 61.7±0.5
919 HST	920 54.9±0.3	921 58.3±0.8	922 68.1±12.3	923 64.0±0.2	924 63.1±0.6	925 66.6±1.3
928 AllSetTransformer	929 48.7±4.0	930 57.0±0.2	931 71.9±2.0	932 62.4±2.1	933 44.6±8.1	934 64.6±4.6

781
782 Thus, representations of virtual hyperedge-incidences are
783

$$\begin{aligned}
\mathbf{H}'_{i,|\mathcal{V}|+i,:} &= \mathbf{H}_{i,|\mathcal{V}|+i,:} \\
&= f_{\mathcal{V} \rightarrow \mathcal{E}}(\{\mathbf{X}_{k,:} | v_k \in e_i\}, \mathbf{E}_{i,:}) \\
&= \mathbf{E}'_{i,:}, \forall i \in [|\mathcal{E}|].
\end{aligned}$$

784 Representations of virtual node-incidences are
785

$$\begin{aligned}
\mathbf{H}'_{|\mathcal{E}|+j,j,:} &= f_{\mathcal{E} \rightarrow \mathcal{V}}(\{\mathbf{H}_{k,j,:} | v_j \in e_k\}, \mathbf{H}_{|\mathcal{E}|+j,j,:}) \\
&= f_{\mathcal{E} \rightarrow \mathcal{V}}(\{\mathbf{E}'_{i,:} | v_j \in e_i\}, \mathbf{X}_{j,:}) \\
&= \mathbf{X}'_{j,:}, \forall j \in [|\mathcal{V}|].
\end{aligned}$$

793 \square

794 D DATASET AND BASELINES

795 The six datasets in the hyperedge-dependent labelling tasks, including Coauth-DBLP, Coauth-
796 AMiner, Email-Enron, Email-Eu, Stack-Biology, and Stack-Physics, are retrieved from Choe et al.
797 (2023). The two Coauth datasets are authors connected by their co-authored publications, where the
800 hyperedge-dependent node labels indicate whether an author is the first author, the last author, or an
801 author in another position within the publication. The two Email datasets are people connected by
802 their exchanged emails, where the hyperedge-dependent node labels specify whether a person is the
803 sender, the receiver, or neither, in the context of the email. In the Stack-Biology and Stack-Physics
804 datasets, the hyperedges denote posts on the stackoverflow.com question-answer platform, with the
805 nodes representing the users who contribute to these posts. The hyperedge-dependent labels indi-
806 cate whether a user is the one who asked the question, the user whose answer was accepted by the
807 questioner, or another type of contributor. For each dataset, we follow the settings of Choe et al.
808 (2023) to generate 44-dimensional node features \mathbf{X} , initialized with 2nd-order random walks, and
809 4-dimensional incidence attributes \mathbf{B} of positional encodings (i.e. the WithinOrderPE). We summa-
810 rize their characteristics in the upper part of Table 3. In the lower part of this table, we report the

810
811 Table 4: Averaged and standard deviation of Micro-F1 scores (%) across ten runs for node classifica-
812 tion on homophilic graphs. The best score for each dataset is **bolded**, the second best is underlined,
813 and the third is *italic*.

	Pubmed	Cora	Citeseer	DBLP-CA	ModelNet40	Cora-CA	NTU2012
#nodes	19,717	2,708	3,312	41,302	12,311	2,708	2,012
#hyperedges	7,963	1,579	1,079	22,363	12,311	1,072	2,012
#incidences	34,629	4,786	3,453	99,561	61,555	4,585	10,060
#features	500	1,433	3,703	1,425	100	1,433	100
#classes	3	7	6	6	40	7	67
MLP	87.47 \pm 0.51	75.17 \pm 1.21	72.67 \pm 1.56	84.83 \pm 0.22	96.14 \pm 0.36	74.31 \pm 1.89	85.52 \pm 1.49
CEGCN	86.45 \pm 0.43	76.17 \pm 1.39	70.16 \pm 1.31	88.00 \pm 0.26	89.92 \pm 0.46	77.05 \pm 1.26	81.52 \pm 1.43
CEGAT	86.81 \pm 0.42	76.41 \pm 1.53	70.63 \pm 1.30	88.59 \pm 0.29	92.52 \pm 0.39	76.16 \pm 1.19	82.21 \pm 1.23
HNHN	86.90 \pm 0.30	76.36 \pm 1.92	72.64 \pm 1.57	86.78 \pm 0.29	97.84 \pm 0.25	77.19 \pm 1.49	89.11 \pm 1.44
HGNN	86.44 \pm 0.44	79.39 \pm 1.36	72.45 \pm 1.16	91.03 \pm 0.20	95.44 \pm 0.33	82.64 \pm 1.65	87.72 \pm 1.35
HCHA	86.41 \pm 0.36	79.14 \pm 1.02	72.42 \pm 1.42	90.92 \pm 0.22	94.48 \pm 0.28	82.55 \pm 0.97	87.48 \pm 1.87
HyperGCN	82.84 \pm 8.67	78.45 \pm 1.26	71.28 \pm 0.82	89.38 \pm 0.25	75.89 \pm 5.26	79.48 \pm 2.08	56.36 \pm 4.86
UniGCNII	88.25 \pm 0.40	78.81 \pm 1.05	73.05 \pm 2.21	91.69 \pm 0.19	98.07 \pm 0.23	83.60 \pm 1.14	89.30 \pm 1.33
HAN	86.21 \pm 0.48	80.18 \pm 1.15	74.12 \pm 1.52	90.89 \pm 0.23	94.04 \pm 0.41	84.04 \pm 1.02	83.58 \pm 1.46
AllSet	<u>88.75\pm0.33</u>	78.59 \pm 1.47	73.08 \pm 1.20	91.53 \pm 0.23	<u>98.20\pm0.20</u>	83.63 \pm 1.47	88.69 \pm 1.24
HyperND	86.68 \pm 0.43	79.20 \pm 1.14	72.62 \pm 1.49	90.35 \pm 0.26	—	80.62 \pm 1.32	—
ED-HNN	89.56\pm0.62	<u>80.31\pm1.35</u>	73.70 \pm 1.38	91.93\pm0.29	—	83.97 \pm 1.55	—
PhenomNN	88.25 \pm 0.42	82.29\pm1.42	75.10\pm1.59	<u>91.91\pm0.21</u>	98.66\pm0.20	85.81\pm0.90	91.03\pm1.04
HMP	88.45\pm0.38	<u>80.35\pm1.32</u>	73.82\pm1.21	91.87\pm0.20	98.54\pm0.26	84.61\pm1.35	90.70\pm1.06

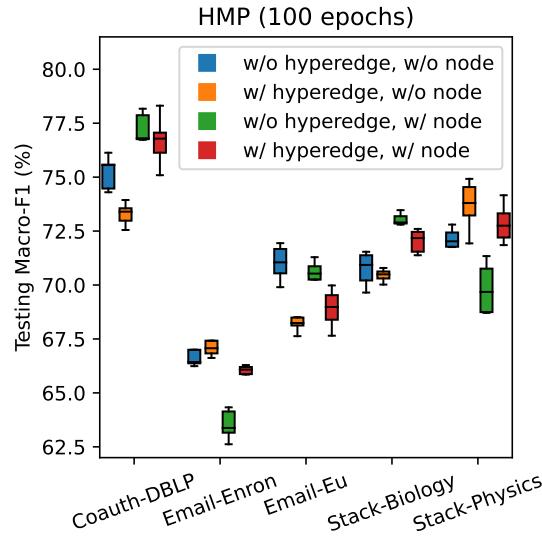
833 Table 5: Averaged and standard deviation of Micro-F1 scores (%) across ten runs for node classifica-
834 tion on heterophilic graphs. The best score for each dataset is **bolded**, the second best is underlined,
835 and the third is *italic*.

	Congress	Walmart	House	Senate	20Newsgroups	Yelp
#nodes	1,718	88,860	1,290	282	16,242	50,758
#hyperedges	83,105	6,990	341	315	100	679,302
#incidences	733,994	460,630	11,843	5,408	65,451	4,523,594
#features	100	100	100	100	100	1,862
#classes	2	11	2	2	4	9
MLP	—	45.51 \pm 0.24	67.93 \pm 2.33	—	81.42\pm0.49	31.96 \pm 0.44
CEGCN	—	54.44 \pm 0.24	62.80 \pm 2.61	—	—	—
CEGAT	—	51.14 \pm 0.56	69.09 \pm 3.00	—	—	—
HNHN	53.35 \pm 1.45	47.18 \pm 0.35	67.80 \pm 2.59	50.93 \pm 6.33	81.35 \pm 0.61	31.65 \pm 0.44
HGNN	91.26 \pm 1.15	62.00 \pm 0.24	61.39 \pm 2.96	48.59 \pm 4.52	80.33 \pm 0.42	33.04\pm0.62
HCHA	90.43 \pm 1.20	62.45 \pm 0.26	61.36 \pm 2.53	48.62 \pm 4.41	80.33 \pm 0.80	30.99 \pm 0.72
HyperGCN	55.12 \pm 1.96	44.74 \pm 2.81	48.31 \pm 2.93	42.45 \pm 3.67	81.05 \pm 0.59	29.42 \pm 1.54
UniGCNII	94.81 \pm 0.81	54.45 \pm 0.37	67.25 \pm 2.57	49.30 \pm 4.25	81.12 \pm 0.67	31.70 \pm 0.52
HAN	—	48.57 \pm 1.04	71.05 \pm 2.26	—	79.72 \pm 0.62	26.05 \pm 1.37
HyperGT	95.23\pm0.73	<u>69.83\pm0.39</u>	74.55\pm1.99	<u>65.49\pm5.11</u>	—	—
AllSet	92.16 \pm 1.05	65.46 \pm 0.25	69.33 \pm 2.20	51.83 \pm 5.22	81.38 \pm 0.58	36.89\pm0.51
HyperND	74.63 \pm 3.62	38.10 \pm 3.86	51.70 \pm 3.37	52.82 \pm 3.20	—	—
ED-HNN	95.19\pm1.34	<u>67.24\pm0.45</u>	73.95\pm1.97	<u>64.79\pm5.14</u>	—	—
PhenomNN	—	64.11 \pm 0.49	71.77 \pm 1.68	—	81.74\pm0.52	32.26 \pm 0.40
HMP	95.77\pm1.15	72.42\pm0.46	<u>74.09\pm1.95</u>	68.31\pm5.32	<u>81.64\pm0.44</u>	<u>36.48\pm0.44</u>

855
856
857 detailed scores, also retrieved from Choe et al. (2023), of HNHN, HGNN, HCHA, HAT, UniGCNII,
858 HNN, HST, and AllSetTransformer, which construct the ‘8 Baselines’ in Table 1.

859 For node classification, we summarize the datasets and baselines in Table 4 and Table 5. Baselines
860 are from recent literature (Chien et al., 2021; Wang et al., 2023a;b; Liu et al., 2023b), including GCN
861 and GAT on the clique expansion (CEGCN and CEGAT), HNHN (Dong et al., 2020), HCHA (Bai
862 et al., 2021), HyperGCN (Yadati et al., 2019), HyperND (Tudisco et al., 2021), and those we men-
863 tioned in Table 2.

864 E ABLATION STUDY

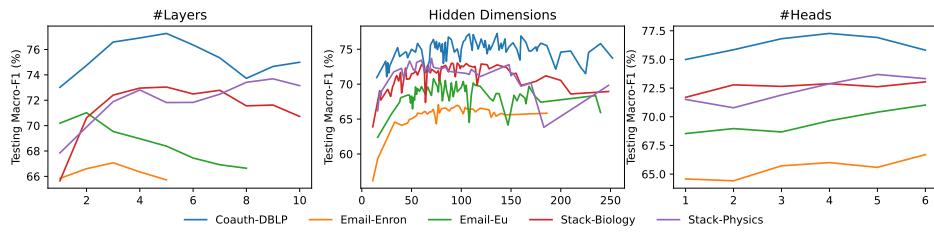


884 Figure 6: Box plots of Macro-F1 scores across 5 runs for the hyperedge-dependent labelling tasks
885 with/without virtual hyperedge-/node-incidences.

886 This section illustrates the impact of virtual incidences in HMP using the Macro-F1 scores of HMP
887 with 100 epochs of training in the hyperedge-dependent labelling experiments. Figure 6 depicts
888 HMP’s performance when different types of virtual incidences are involved. As it reveals, the use of
889 virtual hyperedge-incidences proves advantageous for tasks involving the Email-Enron and Stack-
890 Physics datasets. Conversely, virtual node-incidences yield better results on the Coauth-DBLP and
891 Stack-Biology datasets. These findings suggest that, even on incidence-level tasks where hyperedge-
892 or node-level representations are not explicitly required, the choice of virtual incidences still has a
893 pronounced effect on performance across different datasets.

895 F HMP HYPERPARAMETERS

896 F.1 SENSITIVITY ANALYSIS



900 Figure 7: The Macro-F1 score (%) of HMP (100 epochs) with different hyperparameters.

901 Figure 7 shows the impacts of hyperparameters (i.e., the number of layers, hidden dimensions, and
902 attention heads) on the performance of HMP. As it illustrates, although residual connections are de-
903 signed in the HMP algorithm, its performance is still sensitive to the number of layers. For different
904 datasets, the optimal performance has to be achieved by tuning the number of layers to an appropri-
905 ate value. The model performance is less sensitive to the hidden dimensions of the representation,
906 but a sufficient number of hidden dimensions is required to ensure an adequate amount of learnable
907 parameters. Within the hyperparameter range of the experiments, the model generally performs bet-
908 ter with a larger number of attention heads, which helps capture complex high-order information in
909 hypergraphs.

918 **F.2 FINE TUNING**
919

920 The hyperparameters for HMP in hyperedge-dependent labelling and node classification are opti-
921 mized using Optuna (Akiba et al., 2019), with the following search space: the number of layers
922 ranging from 1 to 10, the number of attention heads ranging from 1 to 8, and the hidden dimensions
923 for each head ranging from 8 to 64. For hyperedge-dependent labelling, the dropout rate is searched
924 within the range from 0 to 0.2. For node classification, the dropout rate is searched within the range
925 from 0 to 0.8.

926 **G EFFICIENCY ANALYSIS**
927

929 Table 6: The ‘script time (in seconds) / peak GPU memory (in MB)’ on the Hyperchains datasets.
930

Method	#Params	width=2	width=4	width=6	width=8	width=10
AllSet	49028	222 / 542	389 / 946	535 / 1363	693 / 1760	856 / 2169
HMP	50885	333 / 855	482 / 1710	667 / 2565	826 / 3392	1076 / 4289
ED-HNN	50055	302 / 1716	584 / 3392	863 / 5120	1134 / 6776	1424 / 8481

931
932
933
934
935
936
937 HMP uses self-attention as its message exchanger and leverages existing advancements in attention
938 mechanisms (Choromanski et al., 2021; Luo et al., 2025) to improve efficiency. To analyze the
939 runtime and memory usage of HMP on hypergraphs with varying hyperedge sizes, we train AllSet
940 (AllDeepSets), ED-HNN, and HMP (with one attention head) for 1000 epochs on the Hyperchains
941 datasets of 5 classes with a fixed length of 10 and varying widths (and thus varying hyperedge sizes).
942 All models have 10 layers and adaptive hidden dimensions, resulting in approximately 50k learnable
943 parameters. The time and memory consumptions with a NVIDIA GeForce RTX 3060 GPU are
944 reported in Table 6. Specifically, except for the highest time consumption on 2-walk hyperchains,
945 HMP’s time and space usage fall between AllSet and ED-HNN as the width increases, demonstrating
946 moderate practical efficiency. Overall, the ratio of time and space consumption between HMP and
947 AllSet remains stable within 2 as the hyperedge size (width) increases, validating our complexity
948 analysis that HMP, after efficiency improvements, has the same complexity as AllSet.
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971