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ABSTRACT

We improve the efficiency of optimal transport problems with Laplacian regularization in
domain adaptation for large-scale data by utilizing Hutchinson’s trace estimator, a classi-
cal method for approximating the trace of a matrix which to the best of our knowledge has
not been used in this context. This approach significantly streamlines the computational
complexity of the Laplacian regularization term with respect to the sample size n, improv-
ing the time from O(n3) to O(n2) by converting large-scale matrix multiplications into
more manageable matrix-vector multiplication queries. In our experiments, we employed
Hutch++, a more efficient variant of Hutchinson’s method. Empirical validations confirm
our method’s efficiency, achieving an average accuracy within 1% of the original algo-
rithm with 80% of its computational time, and maintaining an average accuracy within
3.25% in only half the time. Moreover, the integrated stochastic perturbations mitigate
overfitting, enhancing average accuracy under certain conditions.

1 INTRODUCTION

Domain Adaptation (DA) is a field in machine learning where the goal is to adapt the model trained on one
domain to work well on a different but related domain. DA is critical for enhancing model generalization
across diverse data distributions (Farahani et al., 2021). The distinct challenges in data acquisition and
annotation, including dataset imbalance and inaccuracies, emphasize the significance of developing robust
DA techniques. DA aims to counter the adverse effects of data shift by aligning models to the intricate
variations in different data distributions. This is essential for optimizing performance in fields such as
computer vision, natural language processing, and recommendation systems. Numerous methods address
different aspects of the adaptation process in DA, such as feature selection techniques (Li et al., 2016),
re-weighting strategies (Ringwald & Stiefelhagen, 2021), subspace mapping (Fernando et al., 2014), deep
learning models (Kang et al., 2019). These varied approaches, each addressing distinct challenges in DA,
collectively contribute to advancing model generalization and methodological refinement in DA settings.

In this context, Optimal Transport (OT) as a DA technique has emerged prominently, providing a sophis-
ticated mathematical framework to meticulously align source and target domains by gauging the similar-
ity between distributions (Courty et al., 2017). To preserve geometric structure among samples, a widely
adopted approach involves integrating a Laplacian regularization term with conventional OT problems (Fer-
radans et al., 2014). By utilizing a similarity matrix to characterize the resemblance between samples, the
Laplacian regularization term ensures that similar samples maintain their similarity post-transport. Laplacian
regularized OT is notably leveraged in DA, exemplifying its capability to attain high accuracy (Courty et al.,
2017). However, OT methods are generally more computationally intensive than non-OT algorithms such
as Joint Distribution Adaptation (JDA), due to the necessity to solve complex optimization problems, often
involving large-scale linear programming. This poses challenges in enhancing its computational efficiency
in scenarios involving large-scale data or limited computational resources.
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Addressing this, we observe that the Laplacian regularization term can be represented as the trace of a series
of matrix products. However, efficient trace estimation in this context remains underexplored, limiting the
scalability of Laplacian regularized OT methods in real-world scenarios. To overcome this limitation, this
paper explores the use of Hutchinson’s trace estimator for efficiently approximating the Laplacian regular-
ization term, offering a solution to the computational challenges posed by OT.

The main contributions of this paper are:

• We introduce the utilization of Hutchinson’s trace estimator for approximating the trace of a matrix
in the Laplacian regularization term, and implemented its enhanced variant, Hutch++. This innova-
tion significantly refines the computational complexity associated with the Laplacian regularization
term in relation to the sample size n, improving the time complexity from O(n3) to O(n2).

• We leverage the query number parameter to establish a sophisticated trade-off between computa-
tional time and accuracy, catering to various real-world efficiency needs. Inherently incorporating
stochastic perturbations, our method not only mitigates overfitting and demonstrates robustness to
perturbations but also surpasses the original algorithm in average accuracy under certain conditions.

• Our empirical tests validate the effectiveness of our approach in achieving competitive accuracy
with a much lower computational requirement. Empirical validations substantiate the efficiency
of our method, realizing an average accuracy within 1% of the original algorithm at 80% of its
computational time, and preserving an average accuracy within 3.25% in merely half the time.

2 RELATED WORK

Applications of Optimal Transport. Originating from the work of Gaspard Monge in 1781, OT has found
extensive applications across various domains. It has been crucial in systems and control for addressing
challenges such as spacecraft landing and thermal noise mitigation on resonators (Chen et al., 2021). Its ap-
plication in image classification and object recognition is notable, with the development of Optimal Transfer
GAN, which has established benchmarks in image generation tasks due to its stability (Salimans et al., 2018).
In biomedical research, OT-driven tools like TrajectoryNet have elucidated cell dynamics in single-cell RNA
sequencing data (Tong et al., 2020). Moreover, OT has facilitated advancements in image processing tasks
such as color normalization and image segmentation (Papadakis, 2015).

Efficient Computation Methods for Large Matrices. The focus on efficient computational methods is piv-
otal in addressing challenges associated with large-scale matrix multiplication in trace functions. Strassen’s
algorithm (Huss-Lederman et al., 1996) significantly reduced the computational complexity of matrix mul-
tiplication methods. The advent of randomized decomposition algorithms (Erichson et al., 2019) has been
fundamental in economizing computational resources for large-scale matrix decompositions and low-rank
approximations. Stochastic gradient descent methods (ichi Amari, 1993) in machine learning have optimized
computations, effectively mitigating the computational load of large-scale matrices. Distributed computing
frameworks (Zhang et al., 2012) have been instrumental in enabling the scalable processing of large matrices.
These methods have bolstered the efficient management of large matrices across various applications.

3 PRELIMINARIES

3.1 OPTIMAL TRANSPORT

OT explores efficient mass transference from one configuration to another, finding applications in various
domains such as mathematics, economics, and machine learning. For conciseness, we discuss the Monge
and Kantorovich formulations in brief below.
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Monge Problem: Introduced by Monge in 1781, this problem seeks an optimal map T : Ω → Ω′ to
transport mass from a measure µ on Ω to ν on Ω′, minimizing the cost C(T ) =

∫
Ω
c(x, T (x)) dµ(x) subject

to T#µ = ν. Here, c : Ω× Ω′ → R is the given cost function.

Kantorovich Problem: A generalized and more flexible approach than the Monge Problem, this problem
considers transport plans, γ, a joint probability measure on Ω × Ω′ with marginals µ and ν, minimizing
the cost C(γ) =

∫
Ω×Ω′ c(x, y) dγ(x, y) over all γ in Π(µ, ν). This formulation allows for a more flexible

coupling between µ and ν compared to the deterministic mappings in the Monge framework.

3.2 DISCRETE OPTIMAL TRANSPORT AND DOMAIN ADAPTATION

Moving from the continuous setting of OT, we focus on its discrete counterpart in DA. DA is pivotal when
transferring knowledge from a labeled source domain to a related, unlabeled target domain. In our following
presentation, we adopt the notation of Courty et al. (2017).

Given empirical distributions µs and µt of the source and target domains, respectively, the discrete version
seeks a transport plan γ ∈ Rns×nt minimizing total transport cost under mass conservation constraints,
akin to the Kantorovich formulation. The admissible transport plans are characterized by B = {γ ∈
(R≥0)

ns×nt | γ1nt
= ps, γT 1ns

= pt}, and the optimal γ0 is obtained by solving γ0 = argmin
γ∈B

⟨γ,C⟩F ,

with C ∈ Rns×nt being the cost matrix, ⟨·, ·⟩F denoting the Frobenius inner product.

In the above, µs =
∑ns

i=1 p
s
i δxs

i
and µt =

∑nt

i=1 p
t
iδxt

i
, where psi and pti are the weights of the i-th source

and target samples, and δxs
i

and δxt
i

are the Dirac delta functions centered at the samples xs
i and xt

i.

In DA, γ0 can guide the adaptation of models from the source to the target domain, often by re-weighting
the source samples according to γ0 during model training. The cost matrix C, usually defined by the squared
Euclidean distance C(i, j) =

∥∥xs
i − xt

j

∥∥2
2
, measures the cost of transporting samples between domains.

3.3 LAPLACIAN REGULARIZATION

Regularization techniques have played a pivotal role in reducing overfitting. In DA, an extension of the OT
problem incorporates class label information into the transport plan, achieved by introducing regularization
terms into the objective function, enabling the transport plan to align with the geometric or semantic struc-
tures within and across domains. Specifically, we integrate both source domain structure and class-based
regularization terms into the OT problem, modeled as Courty et al. (2017): minγ∈B{⟨γ,C⟩F + λΩs(γ) +
ηΩc(γ)}, where λ and η are regularization parameters and Ωs(γ) =

∑
i,j γ(i, j) log γ(i, j).

The class-based term, Ωc(γ), minimizes the discrepancy between same-class samples and allows flexibility
between different classes. It is realized through a Laplacian regularization:

Ωc(γ) =
1

n2
s

∑
i,j

Ss(i, j)∥x̂si − x̂sj∥22. (1)

Here, Ss denotes the source domain sample similarity matrix, with Ss(i, j) = 0 for ysi ̸= ysj , ensuring class
consistency by sparsifying similarities for different classes. x̂si denotes the transported source sample xsi .

With the formula of barycentric mapping X̂s = nsγXt under uniform marginals, the class-based term can
be represented concisely through matrix operations as:

Ωc(γ) = Tr(XT
t γ

TLsγXt), (2)
where Ls = diag(Ss1) − Ss is the Laplacian of graph Ss. Xs and Xt are the matrices consisting of the
row vectors of all the elements of the source domain and target domain respectively, with X̂s the matrix of
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transported source domain vectors. Tr(·) is the matrix trace. The core objective of our study is the refinement
of computational strategies for Ωc(γ).

3.4 PORTRAYING SIMILARITIES

In Equation 1, Ss(i, j) quantifies the similarity between the ith and jth samples. Various methods ex-
ist to characterize the similarity. A straightforward approach is to employ the k-Nearest Neighbors (k-
NN) algorithm to generate Ss, under the assumption that neighboring samples are similar. Alternatively,
a more sophisticated strategy involves utilizing kernel functions, which are capable of quantifying the dis-
tance between samples, to compute the elements Ss(i, j) of the similarity matrix. The Gauss kernel is
expressed as K(x,x′) = exp(−∥x − x′∥2/(2σ2)), where σ is the scale parameter. The Matérn kernel,
introducing an additional smoothness parameter ν, is formulated as K(x,x′) = (21−ν/Γ(ν))(

√
2ν∥x −

x′∥/l)νKν(
√
2ν∥x − x′∥/l), with l as the scale parameter, where Γ is the gamma function and Kν is

the modified Bessel function of the second kind. The neural network kernel, inspired by single-layer per-
ceptrons, is given by K(x,x′) = (2/π) arcsin((2xTΣx′)/

√
(1 + 2xTΣx)(1 + 2x′TΣx′)), where Σ is a

matrix parameter (Williams, 1998). When performing Laplacian regularized OT, we choose the one with the
best accuracy among the above methods.

4 OPTIMIZING LAPLACIAN REGULARIZATION

In this section, we aim to optimize the computation of Equation (2) discussed at the end of the previous
section. We employ Hutchinson’s trace estimator, a class of stochastic methods for estimating the trace in
Equation (2). The impacts of these strategies are empirically evaluated in Section 5.

4.1 HUTCHINSON’S TRACE ESTIMATOR

Hutchinson’s Trace Estimator is a stochastic method for estimating the trace of a matrix. The original paper
Hutchinson (1989) has the following result: let A be an n × n matrix. Let z be a random vector whose
entries are i.i.d. Rademacher random variables, i.e., Pr(zi = ±1) = 1/2. Then zTAz is an unbiased
estimator of tr(A), that is, E(zTAz) = tr(A) and Var(zTAz) = 2∥A∥2F −

∑n
i=1 A

2
ii, where ∥A∥F denotes

the Frobenius norm of A. We represent Hutchinson’s trace estimator as HM = 1
M

∑M
i=1 z

T
i Azi, where the

zi denote M independent random vectors with entries that are i.i.d. Rademacher random variables. Girard
(1987) validated that this estimator is equally effective when the entries are i.i.d. standard normal variables.

Hutchinson’s method is instrumental for estimating the trace of a matrix A, avoiding its explicit computation
and requiring only the knowledge of the products of A with specific vectors. To elaborate, for computing
zTAz, knowing Az is sufficient, with subsequent multiplication by zT . This is particularly valuable when A
arises from complex operations on other large matrices, making querying the product of A and a vector more
time-efficient. For instance, in practice computing the series of matrices within the trace function in Equa-
tion (2) uses O(n3) time, considering multiple matrix multiplications of order n, where n is the sample size.
However, to query the product of these matrices with a vector z, we start with z and sequentially multiply
it by each matrix, updating the vector for the next matrix multiplication, all while maintaining O(n2) com-
plexity. Explicitly, if we denote (., .) as the matrix-vector product, then the estimator for Equation (2) can
be represented as ΩM

c (γ) = 1
M

∑M
i=1(z

T
i , (X

T
t , (γ

T , (Ls, (γ, (Xt, zi)))))). This becomes advantageous
when the number of queries M is much less than the matrix dimensions. Additionally, the incorporation of
Hutchinson’s method not only enhances efficiency but also introduces random perturbations, serving as a
measure against overfitting, a claim corroborated in Section 5.3.
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4.2 HUTCH++: REDUCING VARIANCE OF HUTCHINSON’S ESTIMATION

Following the introduction of Hutchinson’s trace estimator, we delve into its enhanced variant, Hutch++,
proposed in Meyer et al.. Hutch++ is an algorithm tailored for optimal estimation of the trace of positive
semi-definite (PSD) matrices by matrix-vector multiplication queries. The prowess of Hutch++ lies in its
ability to compute a (1±ε) approximation to tr(A) for any PSD matrix A using merely O(1/ε) matrix-vector
multiplication queries. This is a marked improvement over Hutchinson’s estimator that requires O(1/ε2)
matrix-vector products. Furthermore, within a logarithmic factor, Hutch++ possesses optimal complexity
among all matrix-vector query algorithms. Hutch++ is a variance-reduced adaptation of Hutchinson’s esti-
mator and is extensively used in our experiments.

5 NUMERICAL EXPERIMENTS

Our experimental platform is implemented on a Tencent Cloud server, equipped with a 16-core Intel Xeon
Cascade Lake 6231C CPU. To assess performance, we employ a 1-Nearest Neighbor (1-NN) classifier to
evaluate the accuracy, using processor time as the primary metric to evaluate the time efficacy. We leverage
two benchmark datasets containing handwritten digits: MNIST and USPS. To align with the dimensionality
of USPS, we utilize PCA to reduce the dimensionality of the MNIST datasets to 16× 16. For convenience,
the datasets are truncated, retaining only 1500 samples. Unless otherwise noted, each data point in the charts
and data we present in this paper is the average result of 100 replicate experiments.

5.1 HYPERPARAMETER SETTINGS

In our experiments, we extensively evaluate the performance of the model under varying hyperparam-
eter settings. We searched for the optimal coefficients of Laplacian regularization terms within the set
{0.001, 0.01, 0.1, 1, 10, 100, 1000}, and a coefficient of 100 was selected based on the achieved accuracy.

We employ various kernel functions to assess the degree of closeness between two samples, facilitating the
generation of similarity matrices within the Laplacian regularization. We conducted a series of experiments
employing various kernel functions—namely Gaussian, Matérn, and Neural Network kernels—to evaluate
their effectiveness within our optimization method. Prior to computing the similarity matrices, we normalize
the samples by their mean square deviation. Upon conducting a comprehensive empirical analysis and
undergoing a meticulous validation process, we concluded that the Gaussian kernel function in Section
3.4 is the optimal choice. The parameter σ was determined to be

√
n− 1 through extensive trials and

validations, where n represents the number of samples. Subsequently, this function was utilized in all
following optimization effect tests unless stated otherwise. Other ancillary parameters were retained at their
default values as specified in the Python Optimal Transport (POT) library.

5.2 COMPARATIVE ANALYSIS OF HUTCHINSON’S METHOD VARIANTS

In the experiments conducted under the parameter settings described in the previous section, we meticulously
investigated the accuracy and time performance of the original Hutchinson algorithm (denoted as Hutch)
and its variant, Hutch++. These algorithms were tested with two types of randomly generated vectors: those
with i.i.d. standard Gaussian-distributed entries (denoted HutchG and Hutch++G), and those with i.i.d.
{+1,−1} entries (denoted HutchU and Hutch++U), where the number of queries was uniformly set to 8.

Our analysis included a comparison of these Hutchinson-based methods with a control group (CG), repre-
senting traditional methods that do not incorporate the Hutchinson algorithm or its variants. The detailed
results of this comparative analysis are presented in Table 1.
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Table 1: Comparative analysis of algorithmic performance.

CG HutchG HutchU Hutch++G Hutch++U TrSVD-8 TrSVD-64

Accuracy (%) 67.80 64.17 63.97 64.72 64.30 67.60 67.33
Std (Acc.) 0.00 4.29 3.55 2.70 2.83 0.00 0.00
Time (s) 501.54 234.38 236.23 237.37 240.47 739.64 752.52
Std (Time) 16.88 84.09 67.71 71.95 70.68 17.30 15.54

Moreover, we compared Hutchinson’s method with the truncated-SVD method, contrasting the stochastic
approach of the former: in Equation (2), the matrix Xt has its dimensions reduced using the truncated
Singular Value Decomposition (SVD), ensuring that its rank does not exceed k. The results corresponding
to k = 8 and k = 64 are denoted as TrSVD-8 and TrSVD-64, respectively, in Table 1.

As seen from Table 1, methods underpinned by the Hutchinson approach can achieve an accuracy rate that
deviates less than 4% from the traditional method, all while spending less than half the time. The four
Hutchinson-inspired methodologies exhibit comparable temporal and accuracy metrics. Yet, the Hutch++
variants distinctly outperform their counterparts in terms of consistency, giving superior control over the
standard deviation of the accuracy, which matches our theoretical expectations. Consequently, we use the
Hutch++U variant for the subsequent experimental evaluations, and for the sake of clarity and conciseness,
we will refer to it simply as Hutch++. We can see that by increasing the number of matrix-vector queries
in the trace estimator, we naturally obtain a more precise estimator. In the next section, we embark on a
granular exploration, showing how variations in the number of queries impinge upon both the efficiency and
accuracy of Hutchinson-based methods.

5.3 ANALYSIS OF PARAMETER TUNABILITY: COMPUTATIONAL TIME AND ACCURACY

Table 2: Comparative analysis of Hutch++ performance
with varying number of queries.

Number of Queries Accuracy (%) Time (s)

Control Group 67.80± 0.00 501.54± 16.88
4 62.19± 5.18 196.01± 54.76
8 64.30± 2.83 240.47± 70.68
16 65.93± 1.68 325.86± 100.43
20 66.50± 1.36 375.19± 110.02
24 67.02± 1.39 427.47± 133.87
28 67.46± 1.00 496.61± 148.73
32 67.74± 0.87 505.22± 164.49
40 68.06± 0.65 623.88± 220.19
56 68.07± 0.49 791.81± 249.76
64 67.96± 0.49 826.16± 227.41
128 67.72± 0.29 1754.40± 480.85

The number of queries in Hutchinson’s method
plays a significant role in both computational
time and accuracy. With the previous parame-
ter settings, and opting for the Gaussian kernel
function for our experiments, we observe the fol-
lowing. Table 2 selects certain instances of the
number of queries, with more extensive data de-
picted in Figure 1, to illustrate the relationship
between the accuracy, the computational time,
and the number of queries in Hutch++ method.
Given the sample size in our experiment (1500),
the number of queries must be set to a relatively
small value to accurately demonstrate the advan-
tages in time complexity.

In terms of accuracy, a small number of queries
(fewer than 8) significantly impairs the accuracy
of OT. However, with a slight increase in the
number of samples, the accuracy under the op-
timization of the Hutchinson algorithm markedly improves, as depicted in Figure 1. It is noteworthy that
the accuracy peaks and slightly surpasses the accuracy of the conventional algorithm around a number of
queries 48, after which it gradually declines to the accuracy level of the conventional algorithm. This can
be interpreted as the stochastic perturbations introduced by Hutchinson’s method rendering the algorithm
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less prone to overfitting. With the increase in the number of queries, the standard deviation diminishes, ul-
timately converging to that of the conventional algorithm. Meanwhile, the computation time exhibits linear
growth with respect to the number of queries, as depicted in Figure 1 (b).

As illustrated in Figure 1 (a) and (b), we observe a highly precise trade-off between time and accuracy. From
the curves in the figure, we calculate that the Hutch++ method can achieve an average accuracy within 1%
of the original algorithm in 80% of the time of the original algorithm, or attain an average accuracy within
3.25% of the original algorithm in 50% of the time of the original algorithm.

(a) Accuracy as a function of query number. (b) Computational time as a function of query number.

Figure 1: (a) The relation between the average accuracy and the number of queries for the Hutch++ Group
and Control Group. (b) The relation between the average time taken and the number of queries for the
Hutch++ Group and Control Group.

Furthermore, our experiments substantiate that the enhanced computational efficiency of our Hutchinson
algorithm maintains consistent effectiveness with variations in dataset size. Table 3 depicts the accuracy and
time corresponding to the number of samples. In the scope of our experiment, both the source and target
domains maintain an equivalent sample count, with the number of queries set to 8 in all experiments.

Table 3: The impact of dataset size on the accuracy and time of Hutch++ and Control Group algorithms.

Hutch++ Control Group

Size Accuracy (%) Time (s) Accuracy (%) Time (s)

1000 62.36 ± 3.77 121.02 ± 37.52 65.90 ± 0.00 282.58 ± 11.17
1250 63.39 ± 4.17 180.76 ± 60.48 67.36 ± 0.00 384.85 ± 13.95
1500 64.30 ± 2.83 240.47 ± 70.68 67.80 ± 0.00 501.54 ± 16.88
1750 64.46 ± 3.56 315.31 ± 87.46 68.51 ± 0.00 652.99 ± 14.90
2000 65.81 ± 4.04 435.55 ± 143.33 69.20 ± 0.00 815.31 ± 20.73
2250 66.32 ± 2.47 699.21 ± 236.96 69.02 ± 0.00 1132.16 ± 15.43
2500 64.51 ± 5.26 652.49 ± 212.49 67.76 ± 0.00 1200.00 ± 18.86

5.4 ROBUSTNESS TESTING UNDER SUBOPTIMAL CONDITIONS

In our series of experiments, we observed a considerable sensitivity of traditional algorithms to parameter
variations, with minor perturbations in parameters leading to notable impacts on both accuracy and com-
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putation time. Due to its inherent stochastic characteristics, our Hutchinson-based method demonstrated
significant superiority under certain suboptimal parameter settings, compared to traditional algorithms.

The maximum number of iterations acts as the internal iteration limit for the conditional gradient solver.
The default value in the POT library is set to 100, 000, to ensure sufficient convergence. Reducing this
value to 1/10 of the default facilitates more manageable computational times at the expense of accuracy.
In such circumstances, the evident advantages of the Hutchinson method in terms of accuracy, compared
to the conventional methods, become particularly pronounced. For instance, with an insufficient number of
iterations, where the maximum iteration number was set to 1

10 of a default value, we examined the accuracy
and time performance of Hutch++ against traditional algorithms with a different number of queries, as
presented in Table 4. Here, we have employed an alternative implementation of the Hutchinson algorithm
to observe potential nuances in performance when the number of queries is less than four. The superior
accuracy and time efficiency of the Hutchinson-based methods were clear.

Table 4: Performance of Hutchinson’s Method with Gauss Kernel and 3-NN under Insufficient Iterations.

Gauss Kernel 3-NN

Number of Queries Accuracy (%) Time (s) Accuracy (%) Time (s)

Control Group 57.53 ± 0.00 248.68 ± 14.60 29.00 ± 0.00 154.08 ± 9.26
1 49.00 ± 12.26 164.58 ± 55.72 – –
2 57.35 ± 7.71 206.68 ± 65.50 – –
3 57.61 ± 7.54 219.86 ± 75.45 – –
4 58.04 ± 7.53 276.58 ± 93.66 38.53 ± 4.22 71.47 ± 88.56
8 60.83 ± 4.88 365.06 ± 129.36 38.73 ± 3.98 114.19 ± 152.63

16 61.39 ± 4.59 539.31 ± 166.35 38.47 ± 4.09 178.13 ± 219.66
32 61.12 ± 6.00 902.52 ± 302.61 36.38 ± 5.05 243.47 ± 351.26
64 61.94 ± 5.77 1657.36 ± 525.62 35.01 ± 5.43 661.45 ± 794.15

Previously, we employed the Gaussian kernel function to generate similarity matrices. An alternative, more
coarse but highly practical approach to characterizing sample similarity is the k-NN method. A sample is
deemed similar only if it is within the nearest neighbors of the other, leading to similarity matrices typically
composed of 0, 0.5, or 1. In this scenario, a substantial amount of similarity information has also been
lost. Under 3-NN conditions and the same suboptimal iteration setting mentioned, the results are depicted in
Table 4, to be compared with the Gauss kernel case on the left. Hutchinson’s method demonstrates precision
substantially surpassing that of traditional algorithms, along with reduced computation time, showcasing its
capability against adversarial perturbations.

It is noteworthy that the similarity matrices generated by 3-NN are notably sparse. Viewed from another per-
spective, we employed a stochastic algorithm for graph sparsification developed by Spielman & Srivastava
(2011) and investigated the effect of sparsifying the matrix Ls in Equation (2) produced by the Gaussian
kernel function, simulating a process of information loss. In this experiment, the number of queries is set to
3. The results under suboptimal iterations are illustrated in Figure 2. It was observed that, during this process
of information loss, the accuracy degradation of Hutchinson-based methods was markedly less than that of
conventional algorithms. In the majority of cases, the Hutchinson method surpasses the original algorithm
in terms of accuracy and computation time.

5.5 COMPARISON WITH PEER ALGORITHMS

In alignment with the work presented by Courty et al. (2017), the accuracy of the OT-Laplacian method in
the adaptation task from MNIST to USPS is reported to be 64.72%. It is noteworthy that their experimental
setup differed slightly in terms of the sample size, utilizing 2000 samples from the MNIST dataset and 1800
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(a) Accuracy as a function of sparsity level. (b) Computation time as a function of sparsity level.

Figure 2: (a) The relationship between the accuracy and sparsity level under different similarity portraying
methods. (b) The relationship between the computational time and sparsity level under different similarity
portraying methods. The semi-transparent region represents the range of one standard deviation.

from the USPS dataset, compared to our uniform selection of 1500 samples from each. Apart from this
difference in sample size, the methodologies for sample processing were consistent.

In experiments with equivalent sample sizes as Courty et al. (2017) under our settings, our Hutch++ method
with 8 queries manifested an accuracy of 65.15%, with the control group achieving 69.67%, both surpassing
the accuracy attained by their OT-Laplacian method. This level of accuracy is comparable to the highest
accuracy observed in their study, achieved by their OT-GL method, recorded at 69.96%.

With equivalent sample sizes utilized in our study and comparable parameter settings applied, the average
computational time for the OT-GL method in our tests was 1723.21 seconds, representing a substantial
increase in comparison to the computational time required by our Hutchinson-based method, even when the
query number is set to 40. Furthermore, in this scenario, the accuracy attained by OT-GL could not match
that of our method. This underscores the improved computational efficiency of our algorithm relative to
other methods with comparable levels of accuracy.

6 CONCLUSION

This research conducts a rigorous investigation into the applications of Hutchinson’s method in Laplacian
regularized OT problems, elucidating their efficacy and adaptability in DA tasks. The empirical validations
confirm that our enhanced method significantly reduces the computational burden, achieving comparable ac-
curacy, and thus establishing its capability to handle large-scale data in diverse DA settings. The Hutchinson-
based OT method allows for a highly sophisticated trade-off between time and accuracy, by linearly adjusting
computational time via the number of queries. The incorporated stochastic perturbations serve to mitigate
overfitting, with the potential to enhance accuracy when the number of queries is appropriately selected. The
method’s robustness and adaptability under suboptimal conditions emphasize its resilience against various
real-world challenges. However, there is an ongoing necessity to refine these stochastic methods to optimize
accuracy and control variability in outcomes further. Furthermore, exploring the applicability of such meth-
ods beyond DA in other OT applications remains pivotal. These continual refinements and explorations are
vital for advancing innovations and addressing the evolving challenges in the face of increasing volumes of
data and diversifying application scenarios.
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Nicolas Courty, Rémi Flamary, Devis Tuia, and Alain Rakotomamonjy. Optimal transport for domain adap-
tation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(9):1853–1865, 2017. doi:
10.1109/TPAMI.2016.2615921.

N. Benjamin Erichson, Sergey Voronin, Steven L. Brunton, and J. Nathan Kutz. Randomized matrix de-
compositions using ir/i. Journal of Statistical Software, 89(11), 2019. doi: 10.18637/jss.v089.i11. URL
https://doi.org/10.18637%2Fjss.v089.i11.

Abolfazl Farahani, Sahar Voghoei, Khaled Rasheed, and Hamid R Arabnia. A brief review of domain
adaptation. Advances in data science and information engineering: proceedings from ICDATA 2020 and
IKE 2020, pp. 877–894, 2021.

Basura Fernando, Amaury Habrard, Marc Sebban, and Tinne Tuytelaars. Subspace alignment for domain
adaptation, 2014.
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d’Informatique et de Mathématiques Appliquées. IMAG, 1987. URL https://books.google.fr/
books?id=_lILrgEACAAJ.

Steven Huss-Lederman, Elaine M Jacobson, Anna Tsao, Thomas Turnbull, and Jeremy R Johnson. Im-
plementation of strassen’s algorithm for matrix multiplication. In Proceedings of the 1996 ACM/IEEE
Conference on Supercomputing, pp. 32–es, 1996.

M.F. Hutchinson. A stochastic estimator of the trace of the influence matrix for laplacian smoothing
splines. Communication in Statistics- Simulation and Computation, 18:1059–1076, 01 1989. doi:
10.1080/03610919008812866.

Shun ichi Amari. Backpropagation and stochastic gradient descent method. Neurocomputing, 5(4):185–196,
1993. ISSN 0925-2312. doi: https://doi.org/10.1016/0925-2312(93)90006-O. URL https://www.
sciencedirect.com/science/article/pii/092523129390006O.

Guoliang Kang, Lu Jiang, Yi Yang, and Alexander G. Hauptmann. Contrastive adaptation network for
unsupervised domain adaptation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2019.

Jingjing Li, Jidong Zhao, and Ke Lu. Joint feature selection and structure preservation for domain adaptation.
In IjCAI, pp. 1697–1703, 2016.

Raphael A. Meyer, Cameron Musco, Christopher Musco, and David P. Woodruff. Hutch++: Opti-
mal Stochastic Trace Estimation, pp. 142–155. doi: 10.1137/1.9781611976496.16. URL https:
//epubs.siam.org/doi/abs/10.1137/1.9781611976496.16.

10

https://doi.org/10.1146/annurev-control-070220-100858
https://doi.org/10.1146/annurev-control-070220-100858
https://doi.org/10.18637%2Fjss.v089.i11
https://doi.org/10.1137/130929886
https://books.google.fr/books?id=_lILrgEACAAJ
https://books.google.fr/books?id=_lILrgEACAAJ
https://www.sciencedirect.com/science/article/pii/092523129390006O
https://www.sciencedirect.com/science/article/pii/092523129390006O
https://epubs.siam.org/doi/abs/10.1137/1.9781611976496.16
https://epubs.siam.org/doi/abs/10.1137/1.9781611976496.16


Under review as a conference paper at ICLR 2024

Nicolas Papadakis. Optimal Transport for Image Processing. Habilitation à diriger des recherches,
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