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ABSTRACT

LLM-powered agents are both a promising new technology and a source of complex-
ity, where choices about models, tools, and prompting can affect their usefulness. While
numerous benchmarks measure agent accuracy across domains, they mostly assume full
automation, failing to represent the collaborative nature of real-world use cases. In this
paper, we make two major steps towards the rigorous assessment of human-agent interac-
tions. First, we propose a framework for more efficient human-centric evaluation of agent
designs, which comprises collecting user feedback, training an ML model to predict user
satisfaction, and computing results by combining human satisfaction ratings with model-
generated pseudo-labels. Second, we deploy the framework on a large-scale web platform
built around the open-source software agent OpenHands, collecting in-the-wild usage data
across over 15k users. We conduct case studies around how three agent design decisions—
choice of LLM backbone, planning strategy, and memory mechanisms—impact developer
satisfaction rates, yielding practical insights for software agent design. We also show how
our framework can lead to more robust conclusions about agent design, reducing con-
fidence intervals by 40% compared to a standard A/B test. Finally, we find substantial
discrepancies in-the-wild results with benchmark performance (e.g., the anti-correlation
between results comparing claude-sonnet-4 and gpt-5), underscoring the limita-
tions of benchmark-driven evaluation. Our findings provide guidance for evaluations of
LLM agents with humans and identify opportunities for better agent designs.

1 INTRODUCTION

Agents are simultaneously one of the most promising emerging technologies empowered by LLMs (Quan-
tumBlack & Technology, 2025), and a perfect storm of complexity and unpredictability for the AI re-
searchers and engineers who are tasked with creating them. There are a plethora of design decisions that any
agent developer must face, such as which underlying language model to use (Yue et al., 2025), what tools
to provide to the agent (Jin et al., 2025; Soni et al., 2025), how to prompt the agent to use its capabilities
effectively (Khattab et al., 2023; Spiess et al., 2025), and how to plan and coordinate across tasks or sub-
workflows (Fourney et al., 2024). Errors in any of these areas can reduce the agent’s effectiveness or lead to
performance regressions in deployed systems (Cemri et al., 2025).

Our current best tool for diagnosing and improving agent performance is a rigorous measure of accuracy on
agent benchmarks. Fortunately, given the importance and interest in agents, there is now a variety of bench-
marks that can be used across areas, such as software engineering (Jimenez et al., 2023a; Yang et al., 2024;
Zan et al., 2025), web browsing (Zhou et al., 2023; Koh et al., 2024), and scientific discovery (Chen et al.,
2024). On the other hand, these benchmarks are largely based on the premise of full task automation, where
the agent finishes a well-specified task with no user feedback. Though some have claimed that agents will
be eventual replacements for large swaths of human work (Shibu, 2025), in reality, current agentic systems
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Figure 1: Our framework for efficient human-centric evaluation of agent designs enables insights
into how user experience varies with agent design and comparison to benchmark performance. We
instantiate this framework in a software engineering agent use case and conduct a set of case studies to
identify novel insights into designing useful, collaborative agents.

work closely together with human supervisors to complete tasks collaboratively. While there has been some
attempts to simulate human interaction (Vijayvargiya et al., 2025; Pan et al., 2025), to our knowledge, there
has not, to date been a rigorous evaluation protocol proposed or empirical results presented in this setting.

In this paper, we make two major steps towards rigorous assessment of human-agent interactions. First,
we propose a three-step framework for measuring the effect of a proposed agent change (Figure 1, top).
The framework begins with setting up the interface and data collection mechanism for user feedback from
human-agent interactions. We then train an ML model to predict user satisfaction by extracting important
features about the user, agent, and task completion status. Finally, we extend prediction-powered infer-
ence (Angelopoulos et al., 2023b) to provide valid confidence intervals about the effect size of a proposed
agent change. In our case studies, we find that our framework can reduce confidence interval widths by an
average of nearly 40% compared to a standard A/B test.

Second, we deployed this framework in the wild to study how these design decisions impact user satisfaction
rates, yielding practical guidance for software agent design (Figure 1, bottom). We use a web-based platform
where users perform day-to-day coding tasks with OpenHands (Wang et al., 2024), an open-source, state-
of-the-art software engineering agent. Across over 36k sessions and 15k users, we conducted three case
studies that varied the choice of LLM backbone and scaffolding changes, like the planning strategy and
memory mechanism. Our findings suggest that investing in stronger base models yields large, statistically
significant changes in user satisfaction (i.e., ∆ = 6-8%). While scaffolding changes had relatively less
impact (i.e., ∆ <3%), we still observe benefits of showing users the agent’s plan and find that changing
memory parameters can also lead to cost savings without degradation to user experience. We also compare
our results to 7 different code-related benchmarks and find that differences in models across benchmarks do
not necessarily translate into human ratings. In particular, while gpt-5 outperforms claude-sonnet-4
on 6 out of 7 benchmarks, humans prefer claude-sonnet-4 over gpt-5 on 4 out of the 7 task subsets.
In summary, our findings highlight the importance of human-in-the-loop evaluation.
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Although the focus of this work is on software engineering agents, we believe our methodologies and take-
aways apply broadly to diverse domains. We will open-source code relating to the framework and extension
of the OpenHands platform to facilitate assessments of further study of human-agent interactions.

2 METHODS

We overview our evaluation framework to efficiently compare agent designs (Figure 1): (1) feedback data
collection, (2) training an ML model to predict user satisfaction, and (3) computing test results and confi-
dence intervals. We use software agent design to instantiate each step, with additional details provided later
in Section 3.1.

2.1 FEEDBACK DATA COLLECTION

Collecting user reviews and ratings has been a long-standing practice to understand product quality and
guide iterative improvement (McAuley et al., 2012; Fabijan et al., 2015); similarly, to evaluate different
agent designs, we ask users for feedback on how they perceived the agent to have performed. However, in
the context of human-agent interactions, a natural question is when we should ask for feedback. We want
feedback collection to be minimally invasive and align with the agent’s own sense of task completion. We
propose a design where, in the chat window where users and agents communicate, users are prompted to
provide feedback after each work segment. A work segment comprises all the events that unfold between
when the user sends a command, the agent enters a ‘running’ state, and returns to ‘stopped’. At this point,
the chat interface shows users text that says “rate the agent’s performance” and asks the user to provide a
rating on 5 star scale. We provide examples of the interface in Appendix A.1.

In summary, we define each work segment i as Wi = {Mi, Ti, Yi} where the trajectory Ti =
{ai,1, oi,1, ai,2, . . . } is a list of actions and observations from the agent and Yi is the user rating (which
may be ∅ because the user did not choose to give feedback. As such, each session Xi = {W1, . . . ,Wj} can
consist of one or more work segments. If there are multiple ratings, we take the average across segments Ȳi,
which provides us with more granular ratings than the 5 star scale. Across many sessions, we can create a
dataset of human-agent interactions and user ratings D = {(Xi, Ȳi)} ∪ {(X̃i, ∅)} where Xi are the sessions
where there is at least one rating and X̃i are the ones without. For our software agent use case, we collect a
dataset of N = 1747 labeled user trajectories where the average rating is 4.07. Since ratings are often only
provided by a small percentage of users (e.g., about 5%), we have about 20× more sessions that do not have
labels. We next discuss how to train a model to infill these interactions.

2.2 PREDICTING HUMAN SATISFACTION

Given a dataset of labeled trajectories D = {(Xi, Ȳi)}, we train a ML model f to infill user satisfaction Ȳi,
when it is ∅, given human-agent interaction in the session Xi. A challenge with handling agent trajectories
is balancing the number of labeled samples with the dimensionality of agentic trajectories (i.e., each Ti is a
complex object that may easily comprise tens or thousands of tokens). We propose a set of features:

• Features based on the user. We find user messages {Mi} often convey a lot of information that may tell
us about how satisfied they are with the agent and include user sentiment as a feature. Additionally, how
many messages that users choose to send |{Mi}| can also be indicative.

• Features based on the agent. We also consider features that indicate what kind of task the user is working
on (e.g., implementing new features or fixing bugs), which can be detected through the
user messages and agent trajectory.
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Table 1: Comparison of methods for predicting user satisfaction. We evaluate two approaches: traditional
ML models trained on labeled trajectories and LLM-as-a-judge (Zheng et al., 2023) across multiple models.

Metric LogReg HGB RF LLM-as-a-Judge
o3 gemini-2.5-pro claude-4

MSE (↓) 1.39±0.01 1.44±0.02 1.44±0.01 2.17±0.01 2.52±0.02 2.04±0.03

MAE (↓) 1.07±0.01 1.03±0.01 1.02±0.01 1.87±0.02 2.05±0.10 1.70±0.04

Correlation (↑) 0.24±0.01 0.27±0.02 0.29±0.01 0.22±0.03 0.14±0.07 0.23±0.01

• Features that show task progression. In software engineering, task progression is often signaled through
git actions. For example, if Ti contains actions where the agent pushing code towards the end of a session
may be a sign of user satisfaction with the agent’s work.

In total, for our software agent use case, we create 15 features which we use to train various ML models
ranging from logistic regressions to random forests. We also compare to a baseline of simply providing the
full, raw trajectory Xi to an LLM-as-a-judge (Zheng et al., 2023) without the feature post-processing, using
models that can handle particularly long contexts (e.g., o3 and gemini-2.5-pro). In Appendix A.2, we
provide a full list of features and model parameters. Overall, we find that ML models trained on these fea-
tures significantly outperform state-of-the-art LLMs across all metrics considered (Table 1). An additional
benefit of training a model with interpretable features is that we can use it to understand what aspects of
agent behavior lead to more or less user satisfaction. Across models, we find the most important features to
be user sentiment based on messages and git push based on agent actions—the importance of task
completion features shows that users care not just about interaction with the agent but about task completion.
However, no feature alone is fully predictive of user rating.

2.3 COMPARING AGENT DESIGNS

With a feedback collection mechanism and labeling model f in hand, we discuss how to efficiently compare
agent designs. To compare different agent designs, we adopt an A/B testing framework, a widely used
approach in fields such as human-computer interaction and web experimentation to compare different system
variants (Siroker & Koomen, 2015). Each test produces datasets indexed by condition, Dc = {(Xi, Yi)}
where c denotes the different versions of the agent being compared.

Naive effect size estimation. We are interested in estimating the true difference in average user satisfaction
between conditions:

∆̂naive =
1

nc1

∑
i∈c1

Yi − 1

nc2

∑
i∈c2

Yi

Given Dc1 and Dc2 , we compute the empirical difference ∆̂naive and test whether it is statistically significant
from 0 (i.e., no difference between c1 and c2) using a bootstrap permutation test.

Augmenting with unlabeled trajectories. However, since we have f , we can directly extend prediction-
powered inference (PPI) (Angelopoulos et al., 2023a;b) to construct an effect size estimator. PPI provides
the recipe for the mean estimator of each condition c with tuning parameter λc ∈ R given nc labeled and Nc

unlabeled trajectories:

µ̂c(λc) =
1

nc

∑
i

Yi︸ ︷︷ ︸
sample mean of labels

+ λc

(
1

Nc

∑
j

f(X̃j)︸ ︷︷ ︸
unlabeled traj.

− 1

nc

∑
i

f(Xi)︸ ︷︷ ︸
labeled traj.

)
.
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Figure 2: Overview of statistics of in-the-wild deployment of our human-agent evaluation framework.
Our evaluations spanned over 15k users who were working on a diverse set of problems in terms of pro-
gramming and natural languages, task category, and interaction style with the agent (as seen through user
message count).

The optimal λc can be computed using a sample plug-in comprising Ĉov(Y, f(X)|Z = ci) as well as the
variance of f . Accordingly, the augmented effect size estimator is the difference

∆̂augment = µ̂c1(λ̂c1)− µ̂c2(λ̂c2).

Under the regularity conditions in PPI,
√
nc

(
µ̂b(λc) − µc

) d→ N (0, σ2
c (λc)) Because trajectores from

each condition (and their unlabeled pools) are independent conditional on assignments, each estimator is
asymptotically independent. A Wald confidence interval is therefore

∆̂augment ± z1−α/2

√
σ̂2
c1(λ̂c1)

nc1

+
σ̂2
c2(λ̂c2)

nc2

,

where each σ̂2
b (λ̂b) is the plug-in estimate of σ2

b (·).

3 EXPERIMENTAL DESIGN

3.1 DEPLOYMENT DETAILS

Software agents are the focus of this work, as it is arguably the most commercially impactful use case of
current agents. There are many coding agents available, including Devin (Cognition, 2024) and Claude
Code (Anthropic, 2025a), but they are largely closed-source. We performed our study using OpenHands,
a leading open-source coding agent, as measured by SWE-Bench (Jimenez et al., 2023b) and other bench-
marks. All users opted in to collection and analysis of statistical data such as the data gathered in this study.
Randomization for A/B testing was conducted at the conversation level (represented as a trajectory), where
each new conversation was assigned a specific agent variant with fixed parameters. This design enables the
same user to contribute multiple trajectories under different variants. If a user revisits a given conversation
with the agent, the same test parameters would persist.

In total, our study comprised over 36k sessions from 15k different users. Figure 2 overviews the distribution
of usage across multiple features: Across these users, they worked on a diverse set of tasks. When we classify
a sample of the trajectories, we find that the majority of users were trying to fix bugs and create
programs from scratch. There were multiple programming languages, with Python being the most
popular (29.52%) and predominantly English-speaking users (82.61%). Finally, users sent a median of 10
messages to the agent in a session.
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3.2 OVERVIEW OF CASE STUDIES

Beyond the LLM model powering agents, prior work has discussed the importance of other aspects like
planning, memory, and tool use (Weng, 2023; Sumers et al., 2023; Durante et al., 2024). We apply our
framework to study three aspects of software agent design.

Case Study 1: LLM Model. The LLM model backbone is arguably one of the most important components
of an agent and is the primary independent variable reported when reporting results on benchmarks. We com-
pared 3 different state-of-the-art models in terms of agentic coding performance: claude-3.7-sonnet,
claude-4-sonnet, and gpt-5 (reasoning effort high). We report results of two separate
tests, the first, which compared claude-3.7-sonnet and claude-4-sonnet, and the second, which
compared claude-4-sonnet and gpt-5. All other aspects of the agent design are fixed in these LLM
model experiments. These tests were separate because gpt-5 was not released until after the first test had
already concluded.

Case Study 2: Planning. Given a potentially complex user message Mi, the agent typically takes multiple
actions Ai before asking for further feedback, thus potentially benefiting from having a plan of attack. In
classical AI literature, planning has a long history of formalism and methods (Fikes & Nilsson, 1971; Blum
& Furst, 1997; Kautz & Selman, 1992). However, with LLM-powered agents, recent approaches have
largely adopted language reasoning as a medium for planning as opposed to symbolic operators and explicit
transition models (Yao et al., 2022; Shinn et al., 2023). We investigate how showing agentic planning
influences a user’s experience. Specifically, the agent calls a task tracker tool at the beginning of the
conversation to create a structured task list, which is shown to the user as TASKS.md when encountering
a complex, or multi-phase development task, to create a structured task list. For simple, atomic tasks, the
agent will proceed with direct implementation to avoid tracking overhead. Agent updates task statuses as
work progresses, and the frontend display is updated for the user accordingly.

Case Study 3: Memory Management. As the number of work segments increases in a given Xi, after
a certain point, the entire history cannot fit into even state-of-the-art LLM context lengths. Additionally, it
is no surprise that agents can become especially costly with long contexts (Anthropic, 2025b). There is a
growing research community studying how to appropriately manage the context that is used as input to the
agent (Jiang et al., 2023; Asai et al., 2024). In our implementation, as the conversation grows beyond a cer-
tain threshold, we intelligently summarize older interactions while keeping recent exchanges intact (Smith,
2025). This creates a concise “memory” of what happened earlier without needing to retain every detail.
An important parameter in this setup is deciding when this thresholding occurs. We increase max step
from 80 to 120, which leads to an expected amortized 0.5 cent savings per step, based on simulations on
SWE-Bench (Jimenez et al., 2023a).

3.3 ANALYSIS PROCEDURE

While there was some variance across case studies, we collected at least 150 labels per condition for each
case study and ran each comparison for 2-3 weeks. At a rate of about 5% response rate, this means that
we collected over 36k unlabeled sessions in addition to the labeled subset. For our analysis next, we use
the same feedback model, rather than training a specific feedback model per case study. This is because the
user population and bulk of the agent scaffold and user interaction process are fixed across case studies. To
quantify the effect of agent design change in each case study, we report ∆naive and ∆augment using the best
performing f we trained (i.e., random forest model), along with the 95% confidence intervals. Additionally,
we also compare conditions using features discussed in Section 2.2 to help interpret the observed effect sizes.
In Figure 3 (bottom), we select the top 3 features based on p-value—note these are all trajectories that users
rated, not with inferred ratings. We provide full result tables in Appendix B.
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Figure 3: How do user ratings change based on different software agent designs? We report average
user ratings (on a scale of 1-5) using only human labels and including our framework. For fair comparison
of the effect of PPI, we subsample to the same number of data points in human-only (i.e., 150 per condition).
We use * to indicate significant results with a cutoff α = 0.05). We can see that the LLM model makes the
biggest difference (case study 1) compared to scaffold changes (case studies 2 and 3).

4 RESULTS

LLM backbone impacts user satisfaction more than scaffold changes. Figure 3 (top) overviews the
observed effect sizes across our case studies. Across both tests in case study 1 that vary the LLM
models, users significantly preferred agents powered by claude-4-sonnet over the two other LLMs.
In the first test, we find a 5.86% difference in user satisfaction between claude-3.7-sonnet and
claude-4-sonnet. In the second test, we find a -7.83% difference in user satisfaction between
claude-4-sonnet and gpt-5. In contrast, for scaffolding changes, we find a small (but significant)
3.1% difference in user satisfaction between planning and no plan variants. Overall, the effect size is smaller
than the first case study where we change the LLM backbone, suggesting that the process is less important
to the user (i.e., how the agent gets to a final goal) and rather the quality of the completed work.

Interaction features provide further insight into how user experience changes. Figure 3 (bottom) shows
how features described in Section 2.2 across conditions change. We discuss some key observations: Since
gpt-5was rated significantly lower than claude-4-sonnet, user interactions provide some insight into
why that might be. Trajectories with gpt-5 contained 32% fewer user messages on average, suggesting that
users often stopped engaging and abandoned prompting earlier. We also observe 16% fewer code pushes
when using gpt-5, suggesting that users decided it was not worth pushing incremental code edits when
progress feels unproductive. In terms of the planning case study, we see that despite a small positive im-
provement in rating, there are multiple changes in behavioral features that indicate the benefits of showing
plans to users. In particular, we see that in the no plan version, the agent is 12.8% more likely to misun-
derstand the user, which leads to insufficient analysis and debugging (13.0% and 14.4% respectively). The
increase in user messages also shows better engagement in what the agent is working on.
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Table 2: Human ratings do not always correlate with benchmarks. We compare the difference observed
in human ratings (∆H ) against the differences on 7 benchmarks (∆B). We focus human ratings on the
relevant subset most similar to the benchmark, ensuring each batch has at least 35 human data points.

Task Type Claude 3.7 vs Claude 4 Claude 4 vs GPT 5
∆H ∆B ∆H ∆B

Testing code (Mündler et al., 2024) 24.22% 22.8% 4.01% 21.8%
Fix Continuous Integration (Bogomolov et al., 2024) 20.04% -4.35% 24.05% 28.87%
Fix Codebase Issues (Jimenez et al., 2023a) 15.68% 12.4% 7.54% 1.80%
Fix underspecified issues (Vijayvargiya et al., 2025) 14.13% 9.74% -6.07% 15.81%
Deep Research (Mialon et al., 2023) 11.62% 0.00% -7.84% 14.62%
Administrative tasks (Xu et al., 2024) 4.05% 2.28% -4.62% -0.75%
Write code from scratch (Zhao et al., 2024) 0.64% -5.50% -17.9% 19.0%

Pearson Correlation Coefficient (∆H ,∆B) ρ =0.66 ρ =-0.18

Our framework can help provide more conclusive experimental results. When comparing ∆naive and
∆augment across the 4 different experiments, we can see that confidence interval bands decrease on aver-
age by 39.5%. In fact, in multiple experiments—claude-3.7-sonnet versus claude-4-sonnet)
and plan versus no plan, we find that we can draw more conclusive results that are statistically sig-
nificant using ∆augment. More concretely, the 95% CI for ∆naive in the claude-3.7-sonnet versus
claude-4-sonnet comparison was , while the 95% CI of using augmented labels was [-3.95%, 11.78%],
[1.99%, 8.06%]. The variation in CI reduction across case studies is largely due to how well f can explain
the specific samples for that particular test.

5 CORRELATING RESULTS WITH BENCHMARKS

Finally, we present an exploratory analysis of how our findings compare to benchmarks. In particular, we
focus on our first case study on varying LLM models because that led to the most drastic changes in human
ratings. We consider a variety of 7 benchmarks that test agentic software engineering tasks that range from
improving code bases (Jimenez et al., 2023b; Vijayvargiya et al., 2025) to writing tests and fixing continuous
integration (Mündler et al., 2024; Bogomolov et al., 2024). We categorize human-agent trajectories into
corresponding categories of tasks and compare ∆H (i.e., the change in human ratings) and ∆B (i.e., the
change in benchmark performance).

Static benchmarks don’t tell the whole story. Table 2 shows the comparison between ∆H and ∆B on the
case study that varies LLM models. We find a moderate positive correlation on the claude-3.7-sonnet
and claude-4-sonnet comparison. However, we observe a weak negative correlation on the
claude-4-sonnet and gpt-5 (i.e., ρ = 0.66 vs −0.11). This means that we should not always take
benchmark improvements at face value as there may be additional deployment challenges when humans are
involved. Interestingly, we see the most alignment in tasks like testing (e.g., SWT-Bench (Mündler et al.,
2024)) and administrative tasks (e.g., The Agent Company (Xu et al., 2024))—where both ∆H and ∆B are
the same sign—which are not the standard type of “bug fixing” task that many agentic coding benchmarks
are built around. Similarly, we find the largest |∆H | to be from fixing continuous integration issues, rather
than simply working on the code base. These results suggest the importance of moving beyond standard
SWE-Bench-like evaluations even for benchmarks.
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6 RELATED WORK

Coding agent evaluation. Evaluation of existing coding agents is still largely limited to static bench-
marks (Jimenez et al., 2023a; Yang et al., 2024; Zan et al., 2025); however, more benchmarks have ex-
panded across a number of software engineering tasks from writing tests to fixing failed continuous integra-
tion builds (Mündler et al., 2024; Bogomolov et al., 2024). A few interactive benchmarks simulate human
users (Vijayvargiya et al., 2025; Pan et al., 2025). In the context of coding agents with humans in the loop,
they are largely focused on comparisons of prior copilot tools to new agentic workflows (Anthropic, 2025c;
Chen et al., 2025). However, these studies do not consider evaluations of varying agent designs. Unlike
existing user studies, our work considers an agent deployed in the wild with users and studies how to effi-
ciently run experiments in these settings. We also compare to benchmarks on relevant tasks to show which
benchmark scores are correlated with human performance.

User satisfaction estimation. Prior works in the speech and dialogue communities have explored user
satisfaction in multi-turn chat interactions using signals which include thumbs up/down ratings and a 5 point
satisfaction scale (Sun et al., 2021). Methodologies for predicting user satisfaction range from using text
embeddings (Liang et al., 2021) to more recent LLM-powered approaches (Hu et al., 2023; Lin et al., 2024).
To our knowledge, our work is the first investigation of modeling user satisfaction with agents, specifically
in the software engineering use case. We find that LLM-based approaches struggle given the long context
of human-agent interactions, without even the inclusion of few-shot examples, and our predictive methods
outperform those baselines.

Efficient estimation of effect size with noisy samples. From clinical trials to public health interven-
tions, there is growing interest in running controlled trials of new treatments more quickly (De Bartolomeis
et al., 2025; Poulet et al., 2025; Demirel et al., 2024). One statistical machinery that makes this possible is
prediction-powered inference (PPI), which is an approach that reduces the variance of estimators by lever-
aging predictions from a prediction model f on unlabeled data by constructing a correction term using the
labeled data Angelopoulos et al. (2023a;b). Prior work has extended PPI to boost the efficiency of exper-
iments by generating a “digital twin” (i.e., the counterfactual) in randomized control trials (Poulet et al.,
2025) or creating synthetic examples that are then labeled using an LLM (Shankar & Fiterau, 2024). Our
setting differs from prior work, where there is no obvious choice for f for evaluating human-agent inter-
actions. We discuss how to train such a model for agentic contexts and use this framework in a series of
real-world evaluations.

7 DISCUSSION AND CONCLUSION

As humans are increasingly collaborating with agents in real-world use cases, it is important that evaluations
of agent designs reflect these settings. In this work, we proposed a framework for more efficiently assessing
human-agent interactions and deployed it in practice across multiple case studies on software agent designs.
Our findings highlight the importance of human-in-the-loop evaluation and demonstrate that benchmarks
are not always able to represent user experience. Based on our findings, we also discuss opportunities for
software agent development and evaluations of human-agent interactions (Appendix C).

Limitations. Although our evaluations spanned a diverse set of users and use cases, it is unclear to what
extent our results encapsulate all real-world use cases of software engineering. Further, we conduct our case
studies on one choice of agent (OpenHands)—we encourage future work to apply our framework to more
agents and application domains. Additionally, we focus on user rating as our primary human metric, but this
may not fully capture agent work quality and future evaluations of software agents may want to augment
these findings with metrics around issue resolution. Finally, due to privacy considerations, we are unable to
release code contexts collected in the study. However, we will release code to run our framework, analysis,
and extended OpenHands platform.
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A ADDITIONAL FRAMEWORK DETAILS

A.1 DATA COLLECTION DETAILS

To make feedback minimally intrusive, we prompt users at the end of each work segment to rate the agent’s
performance on a five-star scale as shown in Figure 4.

(a) Toy example showing the 5-star feedback inter-
face.
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(b) Distribution of ratings.

Figure 4: Illustration of the feedback setup: (a) the 5-star feedback interface, and (b) the distribution of
ratings collected.

A.2 PREDICTING USER SATISFACTION

Feature list. We identified 15 features used to train ML model to predict user satisfaction ratings.

1. User sentiment: positive, negative, neutral

2. Number of user messages

3. Task Category: we identified 8 common tasks that developers use software agents for.

4. Misunderstood Intention: Agent misunderstood the user’s goal or intent.

5. Did not follow instruction: Agent ignored or failed to comply with explicit

6. Insufficient Analysis: Didn’t explore existing materials sufficiently (prior code/docs/examples) be-
fore acting.

7. Insufficient testing: Skipped reasonable verification/tests for non-trivial or risky changes (note:
trivial edits may be acceptable).

8. Insufficient Debugging: Did not investigate or reduce failing behavior when needed to make
progress.

9. Incomplete Implementation: Delivered unfinished or non-functioning work.
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10. Scope Creep: Implemented unrequested features without approval.

11. git commit

12. git push

13. git pull

14. git reset

15. git rebase

We use LLM as a judge to detect features 1,3,4,5,6,7,8,9,10. We analyze the event stream to detect features
2,11,12,13,14,15. Below we include the prompt used with gpt-5-mini.

Prompt for labeling features

Analyze the following user messages from a coding assistant session:

{combined_messages}

Please provide the following analysis:
1. One sentence describing what the user is trying to accomplish
2. Classify the overall sentiment of the user's messages into one of

these categories: [Positive, Negative, Neutral] and explain why
3. Classify the type of task into exactly one of these categories (

choose only one that best fits): [Fix Bugs, Implement Features,
Create Programs from Scratch, Fix Failing Continuous Integration,
Fix Merge Conflicts, Write Documentation, Perform Deployments,
Perform Data Analysis]

4. Classify the development cluster into up to two of these categories
(choose only the ones that are the best fits):
- Write code from scratch
- Fix python issues
- Fix underspecified issues
- Fix Java issues
- Testing code
- Web browsing and research
- Administrative tasks
- Fix continuous integration issues
- None of the above

5. Provide 1-2 brief example messages from the conversation that
support your sentiment classification (truncate if too long)

Format your response as JSON with these fields:
{{

"task_description": "one sentence",
"sentiment": {{

"classification": "Positive/Negative/Neutral",
"explanation": "brief explanation",
"example_messages": ["message 1", "message 2"]

}},
"task_type": "one of the categories",
"development_cluster": ["cluster 1", "cluster 2" (if applicable)]

}}

15



705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

Under review as a conference paper at ICLR 2026

Analyze the following user messages from a coding assistant session:

{combined_messages}

For each issue item below, answer YES or NO based on whether there is
evidence in the user messages that this issue occurred. Provide a
brief explanation for each:

[item 1] misunderstood_intention: Agent misunderstood the user's
goal/intent.

- Examples: User asked for a summary and agent produced a rewrite;
user wanted high-level bullets but agent delivered full code.

[item 2] did_not_follow_instruction: Agent ignored or failed to
comply with explicit instructions/system constraints.

- Examples: User: "Do NOT push to main." Agent pushes to main;
System says not to create pull request unless user asks for it
and user didn't ask for it, agent creates pull request; user
asked for bullet points only, agent gives long prose.

[item 3] insufficient_analysis: Didn't explore existing materials
sufficiently (prior code/docs/examples) before acting.

- Examples: User points to an existing function/file that is
relevant OR already solves it; agent reinvents it.

[item 4] insufficient_testing: Skipped reasonable verification/tests
for non-trivial or risky changes (note: trivial edits may be

acceptable).
- Examples: No run/validation for a new parser; no check that a

migration applies cleanly; no sanity check of output.

[item 5] insufficient_debugging: Did not investigate or reduce
failing behavior when needed to make progress.

- Examples: Ignores stack trace; no isolation of failure; proceeds
while errors persist.

[item 6] incomplete_implementation: Delivered unfinished or non-
functioning work.

- Examples: TODO/FIXME left; stub methods; code that cannot run.

[item 7] scope_creep: Implemented unrequested features without
approval.

- Examples: Adds a dashboard or endpoint not asked for.

Format your response as JSON with these fields:

ML Model set-up and parameters: We consider the following model families

• Ordinal logistic “regressor” (Pipeline: DictVectorizer → to dense → Standard-
Scaler(with mean=True) → OrdinalLogitRegressor(C=2.0, class weight=’balanced’))

• Random forest regressor (Pipeline: DictVectorizer → to dense → RandomForestRegres-
sor(n estimators=400))
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• HistGradientBoostingRegressor (Pipeline: DictVectorizer → to dense → HistGradientBoostingRe-
gressor())

We perform k-fold cross-validation with 5 splits.

Prompt for LLM-as-a-judge baseline

Please analyze the following conversation between a user and an AI
coding assistant to determine user satisfaction.

CONVERSATION:
{conversation}

Please provide your analysis in the following JSON format:
{{

"binary_satisfied": true/false,
"likert_score": 1-5,
"explanation": "detailed explanation of your reasoning"

}}

EVALUATION CRITERIA:
- Binary satisfaction: Was the user satisfied with the agent's help by

the end of the conversation? (true/false)
- Likert scale (1-5): 1=Very Dissatisfied, 2=Dissatisfied, 3=Neutral,

4=Satisfied, 5=Very Satisfied
- Consider factors like:
- Whether the user's problem was solved
- Quality of the agent's responses
- User's tone and feedback throughout the conversation
- Whether the user expressed gratitude or frustration
- If the conversation ended on a positive or negative note

Respond ONLY with the JSON format above, no additional text.

B FULL RESULTS

A full table of effect sizes across all experiments is provided in Table 3. We provide full feature comparison
for each case study: Claude 4 vs. GPT-5 (Table 4), Claude 3.7 vs. Claude 4 (Table 5), Condenser 120 vs. 80
(Table 6), and Planning vs. No-planning (Table 7).

C OPPORTUNITIES FOR AGENT DESIGN

Our case studies show that user satisfaction is more sensitive to the choice of LLM backbone than to scaf-
folding changes, with claude-4-sonnet consistently outperforming alternatives. Interaction features
also provide additional context, revealing patterns such as early disengagement and reduced code pushes
with gpt-5, and improved engagement when plans are surfaced to users. We identify two directions for
future work:

More Interactive LLM Backbones. Since our results suggest that improvements in backbone quality re-
main the primary driver of user satisfaction, it also highlights an opportunity to train backbones that are tuned
for interactivity. Rather than optimizing solely for benchmark accuracy, future models could emphasize ca-
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Table 3: Effect sizes (∆) with 95% confidence intervals. An asterik (*) indicates the CI does not include 0.

Comparison Condition Effect CI Lower CI Upper Sig.
Claude-3.7 → Claude-4 ∆naive 0.039 -0.040 0.118

∆augment 0.050 0.020 0.081 *

Claude-4 → GPT-5 ∆naive -0.075 -0.136 -0.013 *
∆augment -0.069 -0.116 -0.021 *

No Plan → Show Plan ∆naive 0.053 -0.003 0.109
∆augment 0.031 0.014 0.049 *

Memory max step ∆naive 0.032 -0.047 0.110
∆augment 0.058 -0.016 0.132

Table 4: Claude-4 → GPT-5 Feature Comparison.

Feature Var A Var B Mean A Mean B Diff (B-A) p-val
Misunderstood intention control gpt5 0.2771 0.1805 -0.097 0.039
Did not follow instruction control gpt5 0.3463 0.2857 -0.061 0.235
Insufficient analysis control gpt5 0.3723 0.2857 -0.087 0.094
Insufficient testing control gpt5 0.3550 0.3008 -0.054 0.292
Insufficient debugging control gpt5 0.3723 0.2932 -0.079 0.127
Incomplete implementation control gpt5 0.4589 0.3459 -0.113 0.036
Scope creep control gpt5 0.1212 0.0902 -0.031 0.364
User message count control gpt5 19.17 13.52 -5.65 0.028
Git commit control gpt5 0.6580 0.6241 -0.034 0.515
Git push control gpt5 0.6104 0.4511 -0.159 0.003
Git pull control gpt5 0.0866 0.0827 -0.004 0.900
Git reset control gpt5 0.0909 0.0526 -0.038 0.188
Git rebase control gpt5 0.0173 0.0150 -0.002 0.871

pabilities that users find desirable in collaborative contexts. For example, this might include maintaining a
consistent multi-turn state, dynamically clarifying ambiguous user intent, and proactively getting feedback.
Such properties would support more sustained engagement and reduce failure modes like misunderstandings
or abandoned sessions, as we observed in our study.

Better Modeling of User Satisfaction and Engagement. Our findings also underscore the value of mod-
eling user satisfaction. We find signals like early disengagement, frequency of corrective messages, or code
push behavior can serve as early indicators of dissatisfaction, which can complement sparse, explicit rating
data. We encourage future work to explore how these behavioral features in human-agent interactions can
be studied in more detail to see if they can be used to learn adaptive or more personalized interventions in
real time.

D DISCLOSURE

The authors used ChatGPT for minor copyediting tasks.
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Table 5: Claude-3.7 → Claude-4 Feature Comparison

Feature Var A Var B Mean A Mean B Diff (B-A) p-val
Misunderstood intention Claude 4 Claude 3.7 0.2900 0.2491 -0.041 0.105
Did not follow instruction Claude 4 Claude 3.7 0.3940 0.3764 -0.018 0.524
Insufficient analysis Claude 4 Claude 3.7 0.4309 0.4244 -0.007 0.815
Insufficient testing Claude 4 Claude 3.7 0.4104 0.3911 -0.019 0.489
Insufficient debugging Claude 4 Claude 3.7 0.4186 0.4336 0.015 0.593
Incomplete implementation Claude 4 Claude 3.7 0.4952 0.4797 -0.016 0.584
Scope creep Claude 4 Claude 3.7 0.1231 0.0904 -0.033 0.064
User message count Claude 4 Claude 3.7 16.41 15.77 -0.64 0.641
Git commit Claude 4 Claude 3.7 0.5335 0.5277 -0.006 0.837
Git push Claude 4 Claude 3.7 0.4829 0.5018 0.019 0.504
Git pull Claude 4 Claude 3.7 0.0602 0.0849 0.025 0.090
Git reset Claude 4 Claude 3.7 0.0848 0.0480 -0.037 0.010
Git rebase Claude 4 Claude 3.7 0.0205 0.0111 -0.009 0.191

Table 6: Memory max step treatment (120) and Control (80) Feature Comparison

Feature Var A Var B Mean A Mean B Diff (B-A) p-val
Misunderstood intention Treatment Control 0.2308 0.2329 0.002 0.981
Did not follow instruction Treatment Control 0.3846 0.3014 -0.083 0.335
Insufficient analysis Treatment Control 0.4231 0.3288 -0.094 0.284
Insufficient testing Treatment Control 0.4615 0.2877 -0.174 0.047
Insufficient debugging Treatment Control 0.4615 0.3699 -0.092 0.307
Incomplete implementation Treatment Control 0.5385 0.3836 -0.155 0.088
Scope creep Treatment Control 0.0769 0.0411 -0.036 0.396
User message count Treatment Control 19.08 18.03 -1.05 0.307
Git commit Treatment Control 0.5577 0.5479 -0.010 0.917
Git push Treatment Control 0.5192 0.4932 -0.026 0.777
Git pull Treatment Control 0.0769 0.0685 -0.008 0.862
Git reset Treatment Control 0.0577 0.0548 -0.003 0.950
Git rebase Treatment Control 0.0000 0.0274 0.027 0.235
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Table 7: No Plan → Show Plan Feature Comparison.

Feature Var A Var B Mean A Mean B Diff (B-A) p-val
Misunderstood intention Planning Control 0.2222 0.2771 0.055 0.168
Did not follow instruction Planning Control 0.3128 0.3463 0.034 0.438
Insufficient analysis Planning Control 0.3004 0.3723 0.072 0.098
Insufficient testing Planning Control 0.2963 0.3550 0.059 0.173
Insufficient debugging Planning Control 0.2922 0.3723 0.080 0.064
Incomplete implementation Planning Control 0.3868 0.4589 0.072 0.113
Scope creep Planning Control 0.0988 0.1212 0.022 0.435
User message count Planning Control 13.16 19.17 6.01 0.070
Git commit Planning Control 0.6461 0.6580 0.012 0.786
Git push Planning Control 0.5514 0.6104 0.059 0.194
Git pull Planning Control 0.0947 0.0866 -0.008 0.761
Git reset Planning Control 0.0782 0.0909 0.013 0.619
Git rebase Planning Control 0.0165 0.0173 0.001 0.944
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