
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Under review as a conference paper at ICLR 2026

HOW CAN WE ASSESS HUMAN-AGENT INTERACTIONS?
CASE STUDIES IN SOFTWARE AGENT DESIGN

Anonymous authors
Paper under double-blind review

ABSTRACT

LLM-powered agents are both a promising new technology and a source of complex-
ity, where choices about models, tools, and prompting can affect their usefulness. While
numerous benchmarks measure agent accuracy across domains, they mostly assume full
automation, failing to represent the collaborative nature of real-world use cases. In this
paper, we make two major steps towards the rigorous assessment of human-agent interac-
tions. First, we propose a framework for more efficient human-centric evaluation of agent
designs, which comprises collecting user feedback, training an ML model to predict user
satisfaction, and computing results by combining human satisfaction ratings with model-
generated pseudo-labels. Second, we deploy the framework on a large-scale web platform
built around the open-source software agent OpenHands, collecting in-the-wild usage data
across over 15k users. We conduct case studies around how three agent design decisions—
choice of LLM backbone, planning strategy, and memory mechanisms—impact developer
satisfaction rates, yielding practical insights for software agent design. We also show how
our framework can lead to more robust conclusions about agent design, reducing con-
fidence intervals by 40% compared to a standard A/B test. Finally, we find substantial
discrepancies in-the-wild results with benchmark performance (e.g., the anti-correlation
between results comparing claude-sonnet-4 and gpt-5), underscoring the limita-
tions of benchmark-driven evaluation. Our findings provide guidance for evaluations of
LLM agents with humans and identify opportunities for better agent designs.

1 INTRODUCTION

Agents are simultaneously one of the most promising emerging technologies empowered by LLMs (Quan-
tumBlack & Technology, 2025), and a perfect storm of complexity and unpredictability for the AI re-
searchers and engineers who are tasked with creating them. There are a plethora of design decisions that any
agent developer must face, such as which underlying language model to use (Yue et al., 2025), what tools
to provide to the agent (Jin et al., 2025; Soni et al., 2025), how to prompt the agent to use its capabilities
effectively (Khattab et al., 2023; Spiess et al., 2025), and how to plan and coordinate across tasks or sub-
workflows (Fourney et al., 2024). Errors in any of these areas can reduce the agent’s effectiveness or lead to
performance regressions in deployed systems (Cemri et al., 2025).

Our current best tool for diagnosing and improving agent performance is a rigorous measure of accuracy on
agent benchmarks. Fortunately, given the importance and interest in agents, there is now a variety of bench-
marks that can be used across areas, such as software engineering (Jimenez et al., 2023a; Yang et al., 2024;
Zan et al., 2025), web browsing (Zhou et al., 2023; Koh et al., 2024), and scientific discovery (Chen et al.,
2024). On the other hand, these benchmarks are largely based on the premise of full task automation, where
the agent finishes a well-specified task with no user feedback. Though some have claimed that agents will
be eventual replacements for large swaths of human work (Shibu, 2025), in reality, current agentic systems

1

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Under review as a conference paper at ICLR 2026

Agent
action

User
Msg

Agent
obs

Feature 0

f

<user
message>

<agent
output>

{ }

Feature 1 Feature n…

Extract features }

+ GPT 5

+ Claude
Sonnet 4

Δhuman Δbench
Fix bugs

Write tests

Figure 1: Our framework for efficient human-centric evaluation of agent designs enables insights
into how user experience varies with agent design and comparison to benchmark performance. We
instantiate this framework in a software engineering agent use case and conduct a set of case studies to
identify novel insights into designing useful, collaborative agents.

work closely together with human supervisors to complete tasks collaboratively. While there has been some
attempts to simulate human interaction (Vijayvargiya et al., 2025; Pan et al., 2025), to our knowledge, there
has not, to date been a rigorous evaluation protocol proposed or empirical results presented in this setting.

In this paper, we make two major steps towards rigorous assessment of human-agent interactions. First,
we propose a three-step framework for measuring the effect of a proposed agent change (Figure 1, top).
The framework begins with setting up the interface and data collection mechanism for user feedback from
human-agent interactions. We then train an ML model to predict user satisfaction by extracting important
features about the user, agent, and task completion status. Finally, we extend prediction-powered infer-
ence (Angelopoulos et al., 2023b) to provide valid confidence intervals about the effect size of a proposed
agent change. In our case studies, we find that our framework can reduce confidence interval widths by an
average of nearly 40% compared to a standard A/B test.

Second, we deployed this framework in the wild to study how these design decisions impact user satisfaction
rates, yielding practical guidance for software agent design (Figure 1, bottom). We use a web-based platform
where users perform day-to-day coding tasks with OpenHands (Wang et al., 2024), an open-source, state-
of-the-art software engineering agent. Across over 36k sessions and 15k users, we conducted three case
studies that varied the choice of LLM backbone and scaffolding changes, like the planning strategy and
memory mechanism. Our findings suggest that investing in stronger base models yields large, statistically
significant changes in user satisfaction (i.e., ∆ = 6-8%). While scaffolding changes had relatively less
impact (i.e., ∆ <3%), we still observe benefits of showing users the agent’s plan and find that changing
memory parameters can also lead to cost savings without degradation to user experience. We also compare
our results to 7 different code-related benchmarks and find that differences in models across benchmarks do
not necessarily translate into human ratings. In particular, while gpt-5 outperforms claude-sonnet-4
on 6 out of 7 benchmarks, humans prefer claude-sonnet-4 over gpt-5 on 4 out of the 7 task subsets.
In summary, our findings highlight the importance of human-in-the-loop evaluation.

2

094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Under review as a conference paper at ICLR 2026

Although the focus of this work is on software engineering agents, we believe our methodologies and take-
aways apply broadly to diverse domains. We will open-source code relating to the framework and extension
of the OpenHands platform to facilitate assessments of further study of human-agent interactions.

2 METHODS

We overview our evaluation framework to efficiently compare agent designs (Figure 1): (1) feedback data
collection, (2) training an ML model to predict user satisfaction, and (3) computing test results and confi-
dence intervals. We use software agent design to instantiate each step, with additional details provided later
in Section 3.1.

2.1 FEEDBACK DATA COLLECTION

Collecting user reviews and ratings has been a long-standing practice to understand product quality and
guide iterative improvement (McAuley et al., 2012; Fabijan et al., 2015); similarly, to evaluate different
agent designs, we ask users for feedback on how they perceived the agent to have performed. However, in
the context of human-agent interactions, a natural question is when we should ask for feedback. We want
feedback collection to be minimally invasive and align with the agent’s own sense of task completion. We
propose a design where, in the chat window where users and agents communicate, users are prompted to
provide feedback after each work segment. A work segment comprises all the events that unfold between
when the user sends a command, the agent enters a ‘running’ state, and returns to ‘stopped’. At this point,
the chat interface shows users text that says “rate the agent’s performance” and asks the user to provide a
rating on 5 star scale. We provide examples of the interface in Appendix A.1.

In summary, we define each work segment i as Wi = {Mi, Ti, Yi} where the trajectory Ti =
{ai,1, oi,1, ai,2, . . . } is a list of actions and observations from the agent and Yi is the user rating (which
may be ∅ because the user did not choose to give feedback. As such, each session Xi = {W1, . . . ,Wj} can
consist of one or more work segments. If there are multiple ratings, we take the average across segments Ȳi,
which provides us with more granular ratings than the 5 star scale. Across many sessions, we can create a
dataset of human-agent interactions and user ratings D = {(Xi, Ȳi)} ∪ {(X̃i, ∅)} where Xi are the sessions
where there is at least one rating and X̃i are the ones without. For our software agent use case, we collect a
dataset of N = 1747 labeled user trajectories where the average rating is 4.07. Since ratings are often only
provided by a small percentage of users (e.g., about 5%), we have about 20× more sessions that do not have
labels. We next discuss how to train a model to infill these interactions.

2.2 PREDICTING HUMAN SATISFACTION

Given a dataset of labeled trajectories D = {(Xi, Ȳi)}, we train a ML model f to infill user satisfaction Ȳi,
when it is ∅, given human-agent interaction in the session Xi. A challenge with handling agent trajectories
is balancing the number of labeled samples with the dimensionality of agentic trajectories (i.e., each Ti is a
complex object that may easily comprise tens or thousands of tokens). We propose a set of features:

• Features based on the user. We find user messages {Mi} often convey a lot of information that may tell
us about how satisfied they are with the agent and include user sentiment as a feature. Additionally, how
many messages that users choose to send |{Mi}| can also be indicative.

• Features based on the agent. We also consider features that indicate what kind of task the user is working
on (e.g., implementing new features or fixing bugs), which can be detected through the
user messages and agent trajectory.

3

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Under review as a conference paper at ICLR 2026

Table 1: Comparison of methods for predicting user satisfaction. We evaluate two approaches: traditional
ML models trained on labeled trajectories and LLM-as-a-judge (Zheng et al., 2023) across multiple models.

Metric LogReg HGB RF LLM-as-a-Judge
o3 gemini-2.5-pro claude-4

MSE (↓) 1.39±0.01 1.44±0.02 1.44±0.01 2.17±0.01 2.52±0.02 2.04±0.03

MAE (↓) 1.07±0.01 1.03±0.01 1.02±0.01 1.87±0.02 2.05±0.10 1.70±0.04

Correlation (↑) 0.24±0.01 0.27±0.02 0.29±0.01 0.22±0.03 0.14±0.07 0.23±0.01

• Features that show task progression. In software engineering, task progression is often signaled through
git actions. For example, if Ti contains actions where the agent pushing code towards the end of a session
may be a sign of user satisfaction with the agent’s work.

In total, for our software agent use case, we create 15 features which we use to train various ML models
ranging from logistic regressions to random forests. We also compare to a baseline of simply providing the
full, raw trajectory Xi to an LLM-as-a-judge (Zheng et al., 2023) without the feature post-processing, using
models that can handle particularly long contexts (e.g., o3 and gemini-2.5-pro). In Appendix A.2, we
provide a full list of features and model parameters. Overall, we find that ML models trained on these fea-
tures significantly outperform state-of-the-art LLMs across all metrics considered (Table 1). An additional
benefit of training a model with interpretable features is that we can use it to understand what aspects of
agent behavior lead to more or less user satisfaction. Across models, we find the most important features to
be user sentiment based on messages and git push based on agent actions—the importance of task
completion features shows that users care not just about interaction with the agent but about task completion.
However, no feature alone is fully predictive of user rating.

2.3 COMPARING AGENT DESIGNS

With a feedback collection mechanism and labeling model f in hand, we discuss how to efficiently compare
agent designs. To compare different agent designs, we adopt an A/B testing framework, a widely used
approach in fields such as human-computer interaction and web experimentation to compare different system
variants (Siroker & Koomen, 2015). Each test produces datasets indexed by condition, Dc = {(Xi, Yi)}
where c denotes the different versions of the agent being compared.

Naive effect size estimation. We are interested in estimating the true difference in average user satisfaction
between conditions:

∆̂naive =
1

nc1

∑
i∈c1

Yi − 1

nc2

∑
i∈c2

Yi

Given Dc1 and Dc2 , we compute the empirical difference ∆̂naive and test whether it is statistically significant
from 0 (i.e., no difference between c1 and c2) using a bootstrap permutation test.

Augmenting with unlabeled trajectories. However, since we have f , we can directly extend prediction-
powered inference (PPI) (Angelopoulos et al., 2023a;b) to construct an effect size estimator. PPI provides
the recipe for the mean estimator of each condition c with tuning parameter λc ∈ R given nc labeled and Nc

unlabeled trajectories:

µ̂c(λc) =
1

nc

∑
i

Yi︸ ︷︷ ︸
sample mean of labels

+ λc

(
1

Nc

∑
j

f(X̃j)︸ ︷︷ ︸
unlabeled traj.

− 1

nc

∑
i

f(Xi)︸ ︷︷ ︸
labeled traj.

)
.

4

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Under review as a conference paper at ICLR 2026

Pyt
ho

n

Jav
aS

cri
pt

Typ
eS

cri
pt
JSO

N
HTM

L
PH

P
YA

ML
Sh

ellDartCSSJav
a
Othe

r
0

10

20

30

Pe
rc

en
ta

ge
 (

%
)

Programming Languages

en ru ar
zh-

cn pt ja it fr es nl no
Othe

r
0

20

40

60

80
Natural Languages

Fix
 Bug

s

De n
ov

o P
rog

ram

Ad
d F

ea
tur

e

Docu
men

tat
ionFix

 CI

Per
for

m Dep
loy

Data
 Ana

lys
is

Fix
 Merg

e
Othe

r
0

10

20

30
Task Type

1-5 6-10 11-2021-50 50+
0

10

20

30

User Message Count

Figure 2: Overview of statistics of in-the-wild deployment of our human-agent evaluation framework.
Our evaluations spanned over 15k users who were working on a diverse set of problems in terms of pro-
gramming and natural languages, task category, and interaction style with the agent (as seen through user
message count).

The optimal λc can be computed using a sample plug-in comprising Ĉov(Y, f(X)|Z = ci) as well as the
variance of f . Accordingly, the augmented effect size estimator is the difference

∆̂augment = µ̂c1(λ̂c1)− µ̂c2(λ̂c2).

Under the regularity conditions in PPI,
√
nc

(
µ̂b(λc) − µc

) d→ N (0, σ2
c (λc)) Because trajectores from

each condition (and their unlabeled pools) are independent conditional on assignments, each estimator is
asymptotically independent. A Wald confidence interval is therefore

∆̂augment ± z1−α/2

√
σ̂2
c1(λ̂c1)

nc1

+
σ̂2
c2(λ̂c2)

nc2

,

where each σ̂2
b (λ̂b) is the plug-in estimate of σ2

b (·).

3 EXPERIMENTAL DESIGN

3.1 DEPLOYMENT DETAILS

Software agents are the focus of this work, as it is arguably the most commercially impactful use case of
current agents. There are many coding agents available, including Devin (Cognition, 2024) and Claude
Code (Anthropic, 2025a), but they are largely closed-source. We performed our study using OpenHands,
a leading open-source coding agent, as measured by SWE-Bench (Jimenez et al., 2023b) and other bench-
marks. All users opted in to collection and analysis of statistical data such as the data gathered in this study.
Randomization for A/B testing was conducted at the conversation level (represented as a trajectory), where
each new conversation was assigned a specific agent variant with fixed parameters. This design enables the
same user to contribute multiple trajectories under different variants. If a user revisits a given conversation
with the agent, the same test parameters would persist.

In total, our study comprised over 36k sessions from 15k different users. Figure 2 overviews the distribution
of usage across multiple features: Across these users, they worked on a diverse set of tasks. When we classify
a sample of the trajectories, we find that the majority of users were trying to fix bugs and create
programs from scratch. There were multiple programming languages, with Python being the most
popular (29.52%) and predominantly English-speaking users (82.61%). Finally, users sent a median of 10
messages to the agent in a session.

5

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Under review as a conference paper at ICLR 2026

3.2 OVERVIEW OF CASE STUDIES

Beyond the LLM model powering agents, prior work has discussed the importance of other aspects like
planning, memory, and tool use (Weng, 2023; Sumers et al., 2023; Durante et al., 2024). We apply our
framework to study three aspects of software agent design.

Case Study 1: LLM Model. The LLM model backbone is arguably one of the most important components
of an agent and is the primary independent variable reported when reporting results on benchmarks. We com-
pared 3 different state-of-the-art models in terms of agentic coding performance: claude-3.7-sonnet,
claude-4-sonnet, and gpt-5 (reasoning effort high). We report results of two separate
tests, the first, which compared claude-3.7-sonnet and claude-4-sonnet, and the second, which
compared claude-4-sonnet and gpt-5. All other aspects of the agent design are fixed in these LLM
model experiments. These tests were separate because gpt-5 was not released until after the first test had
already concluded.

Case Study 2: Planning. Given a potentially complex user message Mi, the agent typically takes multiple
actions Ai before asking for further feedback, thus potentially benefiting from having a plan of attack. In
classical AI literature, planning has a long history of formalism and methods (Fikes & Nilsson, 1971; Blum
& Furst, 1997; Kautz & Selman, 1992). However, with LLM-powered agents, recent approaches have
largely adopted language reasoning as a medium for planning as opposed to symbolic operators and explicit
transition models (Yao et al., 2022; Shinn et al., 2023). We investigate how showing agentic planning
influences a user’s experience. Specifically, the agent calls a task tracker tool at the beginning of the
conversation to create a structured task list, which is shown to the user as TASKS.md when encountering
a complex, or multi-phase development task, to create a structured task list. For simple, atomic tasks, the
agent will proceed with direct implementation to avoid tracking overhead. Agent updates task statuses as
work progresses, and the frontend display is updated for the user accordingly.

Case Study 3: Memory Management. As the number of work segments increases in a given Xi, after
a certain point, the entire history cannot fit into even state-of-the-art LLM context lengths. Additionally, it
is no surprise that agents can become especially costly with long contexts (Anthropic, 2025b). There is a
growing research community studying how to appropriately manage the context that is used as input to the
agent (Jiang et al., 2023; Asai et al., 2024). In our implementation, as the conversation grows beyond a cer-
tain threshold, we intelligently summarize older interactions while keeping recent exchanges intact (Smith,
2025). This creates a concise “memory” of what happened earlier without needing to retain every detail.
An important parameter in this setup is deciding when this thresholding occurs. We increase max step
from 80 to 120, which leads to an expected amortized 0.5 cent savings per step, based on simulations on
SWE-Bench (Jimenez et al., 2023a).

3.3 ANALYSIS PROCEDURE

While there was some variance across case studies, we collected at least 150 labels per condition for each
case study and ran each comparison for 2-3 weeks. At a rate of about 5% response rate, this means that
we collected over 36k unlabeled sessions in addition to the labeled subset. For our analysis next, we use
the same feedback model, rather than training a specific feedback model per case study. This is because the
user population and bulk of the agent scaffold and user interaction process are fixed across case studies. To
quantify the effect of agent design change in each case study, we report ∆naive and ∆augment using the best
performing f we trained (i.e., random forest model), along with the 95% confidence intervals. Additionally,
we also compare conditions using features discussed in Section 2.2 to help interpret the observed effect sizes.
In Figure 3 (bottom), we select the top 3 features based on p-value—note these are all trajectories that users
rated, not with inferred ratings. We provide full result tables in Appendix B.

6

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Under review as a conference paper at ICLR 2026

naive augment
0.2

0.1

0.0

0.1

0.2

Ef
fe

ct
 S

ize

*

Claude-3.7 Claude-4

naive augment
0.2

0.1

0.0

0.1

0.2

* *

Claude-4 GPT-5

naive augment
0.2

0.1

0.0

0.1

0.2

*

No Plan Show Plan

naive augment
0.2

0.1

0.0

0.1

0.2 Max Step 120 80

0.5 0.0 0.5
% Feature Differences

git reset

scope creep

misunderstood
intention

0.5 0.0 0.5
% Feature Differences

git push

user
msg

incomplete
code

0.5 0.0 0.5
% Feature Differences

user
msg

insufficient
debug

misunderstood
intention

0.5 0.0 0.5
% Feature Differences

insufficient
testing

incomplete
code

insufficient
analysis

Case Study 1: Vary LLM Model Case Study 2: Planning Case Study 3: Memory

Figure 3: How do user ratings change based on different software agent designs? We report average
user ratings (on a scale of 1-5) using only human labels and including our framework. For fair comparison
of the effect of PPI, we subsample to the same number of data points in human-only (i.e., 150 per condition).
We use * to indicate significant results with a cutoff α = 0.05). We can see that the LLM model makes the
biggest difference (case study 1) compared to scaffold changes (case studies 2 and 3).

4 RESULTS

LLM backbone impacts user satisfaction more than scaffold changes. Figure 3 (top) overviews the
observed effect sizes across our case studies. Across both tests in case study 1 that vary the LLM
models, users significantly preferred agents powered by claude-4-sonnet over the two other LLMs.
In the first test, we find a 5.86% difference in user satisfaction between claude-3.7-sonnet and
claude-4-sonnet. In the second test, we find a -7.83% difference in user satisfaction between
claude-4-sonnet and gpt-5. In contrast, for scaffolding changes, we find a small (but significant)
3.1% difference in user satisfaction between planning and no plan variants. Overall, the effect size is smaller
than the first case study where we change the LLM backbone, suggesting that the process is less important
to the user (i.e., how the agent gets to a final goal) and rather the quality of the completed work.

Interaction features provide further insight into how user experience changes. Figure 3 (bottom) shows
how features described in Section 2.2 across conditions change. We discuss some key observations: Since
gpt-5was rated significantly lower than claude-4-sonnet, user interactions provide some insight into
why that might be. Trajectories with gpt-5 contained 32% fewer user messages on average, suggesting that
users often stopped engaging and abandoned prompting earlier. We also observe 16% fewer code pushes
when using gpt-5, suggesting that users decided it was not worth pushing incremental code edits when
progress feels unproductive. In terms of the planning case study, we see that despite a small positive im-
provement in rating, there are multiple changes in behavioral features that indicate the benefits of showing
plans to users. In particular, we see that in the no plan version, the agent is 12.8% more likely to misun-
derstand the user, which leads to insufficient analysis and debugging (13.0% and 14.4% respectively). The
increase in user messages also shows better engagement in what the agent is working on.

7

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Under review as a conference paper at ICLR 2026

Table 2: Human ratings do not always correlate with benchmarks. We compare the difference observed
in human ratings (∆H) against the differences on 7 benchmarks (∆B). We focus human ratings on the
relevant subset most similar to the benchmark, ensuring each batch has at least 35 human data points.

Task Type Claude 3.7 vs Claude 4 Claude 4 vs GPT 5
∆H ∆B ∆H ∆B

Testing code (Mündler et al., 2024) 24.22% 22.8% 4.01% 21.8%
Fix Continuous Integration (Bogomolov et al., 2024) 20.04% -4.35% 24.05% 28.87%
Fix Codebase Issues (Jimenez et al., 2023a) 15.68% 12.4% 7.54% 1.80%
Fix underspecified issues (Vijayvargiya et al., 2025) 14.13% 9.74% -6.07% 15.81%
Deep Research (Mialon et al., 2023) 11.62% 0.00% -7.84% 14.62%
Administrative tasks (Xu et al., 2024) 4.05% 2.28% -4.62% -0.75%
Write code from scratch (Zhao et al., 2024) 0.64% -5.50% -17.9% 19.0%

Pearson Correlation Coefficient (∆H ,∆B) ρ =0.66 ρ =-0.18

Our framework can help provide more conclusive experimental results. When comparing ∆naive and
∆augment across the 4 different experiments, we can see that confidence interval bands decrease on aver-
age by 39.5%. In fact, in multiple experiments—claude-3.7-sonnet versus claude-4-sonnet)
and plan versus no plan, we find that we can draw more conclusive results that are statistically sig-
nificant using ∆augment. More concretely, the 95% CI for ∆naive in the claude-3.7-sonnet versus
claude-4-sonnet comparison was , while the 95% CI of using augmented labels was [-3.95%, 11.78%],
[1.99%, 8.06%]. The variation in CI reduction across case studies is largely due to how well f can explain
the specific samples for that particular test.

5 CORRELATING RESULTS WITH BENCHMARKS

Finally, we present an exploratory analysis of how our findings compare to benchmarks. In particular, we
focus on our first case study on varying LLM models because that led to the most drastic changes in human
ratings. We consider a variety of 7 benchmarks that test agentic software engineering tasks that range from
improving code bases (Jimenez et al., 2023b; Vijayvargiya et al., 2025) to writing tests and fixing continuous
integration (Mündler et al., 2024; Bogomolov et al., 2024). We categorize human-agent trajectories into
corresponding categories of tasks and compare ∆H (i.e., the change in human ratings) and ∆B (i.e., the
change in benchmark performance).

Static benchmarks don’t tell the whole story. Table 2 shows the comparison between ∆H and ∆B on the
case study that varies LLM models. We find a moderate positive correlation on the claude-3.7-sonnet
and claude-4-sonnet comparison. However, we observe a weak negative correlation on the
claude-4-sonnet and gpt-5 (i.e., ρ = 0.66 vs −0.11). This means that we should not always take
benchmark improvements at face value as there may be additional deployment challenges when humans are
involved. Interestingly, we see the most alignment in tasks like testing (e.g., SWT-Bench (Mündler et al.,
2024)) and administrative tasks (e.g., The Agent Company (Xu et al., 2024))—where both ∆H and ∆B are
the same sign—which are not the standard type of “bug fixing” task that many agentic coding benchmarks
are built around. Similarly, we find the largest |∆H | to be from fixing continuous integration issues, rather
than simply working on the code base. These results suggest the importance of moving beyond standard
SWE-Bench-like evaluations even for benchmarks.

8

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2026

6 RELATED WORK

Coding agent evaluation. Evaluation of existing coding agents is still largely limited to static bench-
marks (Jimenez et al., 2023a; Yang et al., 2024; Zan et al., 2025); however, more benchmarks have ex-
panded across a number of software engineering tasks from writing tests to fixing failed continuous integra-
tion builds (Mündler et al., 2024; Bogomolov et al., 2024). A few interactive benchmarks simulate human
users (Vijayvargiya et al., 2025; Pan et al., 2025). In the context of coding agents with humans in the loop,
they are largely focused on comparisons of prior copilot tools to new agentic workflows (Anthropic, 2025c;
Chen et al., 2025). However, these studies do not consider evaluations of varying agent designs. Unlike
existing user studies, our work considers an agent deployed in the wild with users and studies how to effi-
ciently run experiments in these settings. We also compare to benchmarks on relevant tasks to show which
benchmark scores are correlated with human performance.

User satisfaction estimation. Prior works in the speech and dialogue communities have explored user
satisfaction in multi-turn chat interactions using signals which include thumbs up/down ratings and a 5 point
satisfaction scale (Sun et al., 2021). Methodologies for predicting user satisfaction range from using text
embeddings (Liang et al., 2021) to more recent LLM-powered approaches (Hu et al., 2023; Lin et al., 2024).
To our knowledge, our work is the first investigation of modeling user satisfaction with agents, specifically
in the software engineering use case. We find that LLM-based approaches struggle given the long context
of human-agent interactions, without even the inclusion of few-shot examples, and our predictive methods
outperform those baselines.

Efficient estimation of effect size with noisy samples. From clinical trials to public health interven-
tions, there is growing interest in running controlled trials of new treatments more quickly (De Bartolomeis
et al., 2025; Poulet et al., 2025; Demirel et al., 2024). One statistical machinery that makes this possible is
prediction-powered inference (PPI), which is an approach that reduces the variance of estimators by lever-
aging predictions from a prediction model f on unlabeled data by constructing a correction term using the
labeled data Angelopoulos et al. (2023a;b). Prior work has extended PPI to boost the efficiency of exper-
iments by generating a “digital twin” (i.e., the counterfactual) in randomized control trials (Poulet et al.,
2025) or creating synthetic examples that are then labeled using an LLM (Shankar & Fiterau, 2024). Our
setting differs from prior work, where there is no obvious choice for f for evaluating human-agent inter-
actions. We discuss how to train such a model for agentic contexts and use this framework in a series of
real-world evaluations.

7 DISCUSSION AND CONCLUSION

As humans are increasingly collaborating with agents in real-world use cases, it is important that evaluations
of agent designs reflect these settings. In this work, we proposed a framework for more efficiently assessing
human-agent interactions and deployed it in practice across multiple case studies on software agent designs.
Our findings highlight the importance of human-in-the-loop evaluation and demonstrate that benchmarks
are not always able to represent user experience. Based on our findings, we also discuss opportunities for
software agent development and evaluations of human-agent interactions (Appendix C).

Limitations. Although our evaluations spanned a diverse set of users and use cases, it is unclear to what
extent our results encapsulate all real-world use cases of software engineering. Further, we conduct our case
studies on one choice of agent (OpenHands)—we encourage future work to apply our framework to more
agents and application domains. Additionally, we focus on user rating as our primary human metric, but this
may not fully capture agent work quality and future evaluations of software agents may want to augment
these findings with metrics around issue resolution. Finally, due to privacy considerations, we are unable to
release code contexts collected in the study. However, we will release code to run our framework, analysis,
and extended OpenHands platform.

9

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

Under review as a conference paper at ICLR 2026

REFERENCES

Anastasios N Angelopoulos, Stephen Bates, Clara Fannjiang, Michael I Jordan, and Tijana Zrnic. Prediction-
powered inference. Science, 382(6671):669–674, 2023a.

Anastasios N Angelopoulos, John C Duchi, and Tijana Zrnic. Ppi++: Efficient prediction-powered inference.
arXiv preprint arXiv:2311.01453, 2023b.

Anthropic. Claude code overview, 2025a. URL https://docs.anthropic.com/en/docs/
claude-code/overview.

Anthropic. Manage costs effectively, 2025b. URL https://docs.claude.com/en/docs/
claude-code/costs.

Anthropic. Anthropic economic index: Ai’s impact on software development, 2025c. URL https://
www.anthropic.com/research/impact-software-development.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-rag: Learning to retrieve,
generate, and critique through self-reflection. 2024.

Avrim Blum and Merrick Furst. Fast planning through planning graph analysis. Artificial Intelligence, 90
(1-2):281–300, 1997.

Egor Bogomolov, Aleksandra Eliseeva, Timur Galimzyanov, Evgeniy Glukhov, Anton Shapkin, Maria Tig-
ina, Yaroslav Golubev, Alexander Kovrigin, Arie van Deursen, Maliheh Izadi, and Timofey Bryksin. Long
code arena: a set of benchmarks for long-context code models. arXiv preprint arXiv:2406.11612, 2024.

Mert Cemri, Melissa Z Pan, Shuyi Yang, Lakshya A Agrawal, Bhavya Chopra, Rishabh Tiwari, Kurt
Keutzer, Aditya Parameswaran, Dan Klein, Kannan Ramchandran, et al. Why do multi-agent llm sys-
tems fail? arXiv preprint arXiv:2503.13657, 2025.

Valerie Chen, Ameet Talwalkar, Robert Brennan, and Graham Neubig. Code with me or for me? how
increasing ai automation transforms developer workflows. arXiv preprint arXiv:2507.08149, 2025.

Ziru Chen, Shijie Chen, Yuting Ning, Qianheng Zhang, Boshi Wang, Botao Yu, Yifei Li, Zeyi Liao, Chen
Wei, Zitong Lu, et al. Scienceagentbench: Toward rigorous assessment of language agents for data-driven
scientific discovery. arXiv preprint arXiv:2410.05080, 2024.

Cognition. Introducing devin, the first ai software engineer, 2024. URL https://cognition.ai/
blog/introducing-devin.

Piersilvio De Bartolomeis, Javier Abad, Guanbo Wang, Konstantin Donhauser, Raymond M Duch, Fanny
Yang, and Issa J Dahabreh. Efficient randomized experiments using foundation models. arXiv preprint
arXiv:2502.04262, 2025.

Ilker Demirel, Ahmed Alaa, Anthony Philippakis, and David Sontag. Prediction-powered generalization of
causal inferences. arXiv preprint arXiv:2406.02873, 2024.

Zane Durante, Bidipta Sarkar, Ran Gong, Rohan Taori, Yusuke Noda, Paul Tang, Ehsan Adeli,
Shrinidhi Kowshika Lakshmikanth, Kevin Schulman, Arnold Milstein, et al. An interactive agent founda-
tion model. arXiv preprint arXiv:2402.05929, 2024.

Aleksander Fabijan, Helena Holmström Olsson, and Jan Bosch. Customer feedback and data collection
techniques in software r&d: a literature review. In International Conference of Software Business, pp.
139–153. Springer, 2015.

10

https://docs.anthropic.com/en/docs/claude-code/overview
https://docs.anthropic.com/en/docs/claude-code/overview
https://docs.claude.com/en/docs/claude-code/costs
https://docs.claude.com/en/docs/claude-code/costs
https://www.anthropic.com/research/impact-software-development
https://www.anthropic.com/research/impact-software-development
https://cognition.ai/blog/introducing-devin
https://cognition.ai/blog/introducing-devin

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

Under review as a conference paper at ICLR 2026

Richard E. Fikes and Nils J. Nilsson. STRIPS: A new approach to the application of theorem proving
to problem solving. In Proceedings of the 2nd International Joint Conference on Artificial Intelligence
(IJCAI), pp. 608–620, 1971.

Adam Fourney, Gagan Bansal, Hussein Mozannar, Cheng Tan, Eduardo Salinas, Friederike Niedtner, Grace
Proebsting, Griffin Bassman, Jack Gerrits, Jacob Alber, et al. Magentic-one: A generalist multi-agent
system for solving complex tasks. arXiv preprint arXiv:2411.04468, 2024.

Zhiyuan Hu, Yue Feng, Anh Tuan Luu, Bryan Hooi, and Aldo Lipani. Unlocking the potential of user feed-
back: Leveraging large language model as user simulators to enhance dialogue system. In Proceedings
of the 32nd ACM International Conference on Information and Knowledge Management, pp. 3953–3957,
2023.

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. Llmlingua: Compressing prompts
for accelerated inference of large language models. arXiv preprint arXiv:2310.05736, 2023.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023a.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. Swe-bench: Can language models resolve real-world github issues? In The Twelfth In-
ternational Conference on Learning Representations, 2023b.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Dong Wang, Hamed Zamani, and Jiawei Han. Search-r1: Training
llms to reason and leverage search engines with reinforcement learning. ArXiv, abs/2503.09516, 2025.

Henry A. Kautz and Bart Selman. Planning as satisfiability. In European Conference on Artificial Intelli-
gence (ECAI), pp. 359–363, 1992.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vardhamanan,
Saiful Haq, Ashutosh Sharma, Thomas T Joshi, Hanna Moazam, et al. Dspy: Compiling declarative
language model calls into self-improving pipelines. arXiv preprint arXiv:2310.03714, 2023.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham Neubig,
Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating multimodal agents
on realistic visual web tasks, 2024. URL https://arxiv.org/abs/2401.13649.

Runze Liang, Ryuichi Takanobu, Feng-Lin Li, Ji Zhang, Haiqing Chen, and Minlie Huang. Turn-level user
satisfaction estimation in E-commerce customer service. In Shervin Malmasi, Surya Kallumadi, Nicola
Ueffing, Oleg Rokhlenko, Eugene Agichtein, and Ido Guy (eds.), Proceedings of the 4th Workshop on
e-Commerce and NLP, pp. 26–32, Online, August 2021. Association for Computational Linguistics. doi:
10.18653/v1/2021.ecnlp-1.4. URL https://aclanthology.org/2021.ecnlp-1.4/.

Ying-Chun Lin, Jennifer Neville, Jack W Stokes, Longqi Yang, Tara Safavi, Mengting Wan, Scott Counts,
Siddharth Suri, Reid Andersen, Xiaofeng Xu, et al. Interpretable user satisfaction estimation for conver-
sational systems with large language models. arXiv preprint arXiv:2403.12388, 2024.

Julian McAuley, Jure Leskovec, and Dan Jurafsky. Learning attitudes and attributes from multi-aspect
reviews. In 2012 IEEE 12th International Conference on Data Mining, pp. 1020–1025. IEEE, 2012.

Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia: a bench-
mark for general ai assistants. In The Twelfth International Conference on Learning Representations,
2023.

11

https://arxiv.org/abs/2401.13649
https://aclanthology.org/2021.ecnlp-1.4/

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

Under review as a conference paper at ICLR 2026

Niels Mündler, Mark Müller, Jingxuan He, and Martin Vechev. Swt-bench: Testing and validating real-world
bug-fixes with code agents. Advances in Neural Information Processing Systems, 37:81857–81887, 2024.

Jane Pan, Ryan Shar, Jacob Pfau, Ameet Talwalkar, He He, and Valerie Chen. When benchmarks talk:
Re-evaluating code llms with interactive feedback. arXiv preprint arXiv:2502.18413, 2025.

Pierre-Emmanuel Poulet, Maylis Tran, Sophie Tezenas du Montcel, Bruno Dubois, Stanley Durrleman, and
Bruno Jedynak. Prediction-powered inference for clinical trials. medRxiv, 2025.

AI by McKinsey QuantumBlack and McKinsey Technology. Seizing the agentic ai ad-
vantage, 2025. URL https://www.mckinsey.com/capabilities/quantumblack/
our-insights/seizing-the-agentic-ai-advantage.

Shiv Shankar and Madalina Fiterau. Boosting randomized control trials with language models as synthetic
units. 2024.

Sherin Shibu. ’i do have a fair amount of concern.’ the ceo of $61 billion an-
thropic says ai will take over a crucial part of software engineers’ jobs within
a year, 2025. URL https://www.entrepreneur.com/business-news/
anthropic-ceo-predicts-ai-will-take-over-coding-in-12-months/488533.

Noah Shinn, Francesco Cassano, Divya Gopinath, Anna Rumshisky, and Petar Velickovic. Reflexion:
Language agents with verbal reinforcement learning. arXiv preprint arXiv:2303.11366, 2023. URL
https://arxiv.org/abs/2303.11366.

Dan Siroker and Pete Koomen. A/B testing: The most powerful way to turn clicks into customers. John
Wiley & Sons, 2015.

Calvin Smith. Openhands context condensensation for more efficient ai agents. All
Hands AI Blog, April 2025. URL https://www.all-hands.dev/blog/
openhands-context-condensensation-for-more-efficient-ai-agents.

Aditya Bharat Soni, Boxuan Li, Xingyao Wang, Valerie Chen, and Graham Neubig. Coding agents with
multimodal browsing are generalist problem solvers. arXiv preprint arXiv:2506.03011, 2025.

Claudio Spiess, Mandana Vaziri, Louis Mandel, and Martin Hirzel. Autopdl: Automatic prompt optimization
for llm agents. arXiv preprint arXiv:2504.04365, 2025.

T. Sumers, Shunyu Yao, Karthik Narasimhan, and Thomas L. Griffiths. Cognitive architectures for language
agents. ArXiv, abs/2309.02427, 2023.

Weiwei Sun, Shuo Zhang, Krisztian Balog, Zhaochun Ren, Pengjie Ren, Zhumin Chen, and Maarten de Ri-
jke. Simulating user satisfaction for the evaluation of task-oriented dialogue systems. In Proceedings of
the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR ’21, pp. 2499–2506, New York, NY, USA, 2021. Association for Computing Machinery. ISBN
9781450380379. doi: 10.1145/3404835.3463241. URL https://doi.org/10.1145/3404835.
3463241.

Sanidhya Vijayvargiya, Xuhui Zhou, Akhila Yerukola, Maarten Sap, and Graham Neubig. Interactive agents
to overcome ambiguity in software engineering. arXiv preprint arXiv:2502.13069, 2025.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan, Yueqi
Song, Bowen Li, Jaskirat Singh, et al. Openhands: An open platform for ai software developers as
generalist agents. In The Thirteenth International Conference on Learning Representations, 2024.

12

https://www.mckinsey.com/capabilities/quantumblack/our-insights/seizing-the-agentic-ai-advantage
https://www.mckinsey.com/capabilities/quantumblack/our-insights/seizing-the-agentic-ai-advantage
https://www.entrepreneur.com/business-news/anthropic-ceo-predicts-ai-will-take-over-coding-in-12-months/488533
https://www.entrepreneur.com/business-news/anthropic-ceo-predicts-ai-will-take-over-coding-in-12-months/488533
https://arxiv.org/abs/2303.11366
https://www.all-hands.dev/blog/openhands-context-condensensation-for-more-efficient-ai-agents
https://www.all-hands.dev/blog/openhands-context-condensensation-for-more-efficient-ai-agents
https://doi.org/10.1145/3404835.3463241
https://doi.org/10.1145/3404835.3463241

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

Under review as a conference paper at ICLR 2026

Lilian Weng. Llm-powered autonomous agents. lilianweng.github.io, Jun 2023. URL https://
lilianweng.github.io/posts/2023-06-23-agent/.

Frank F Xu, Yufan Song, Boxuan Li, Yuxuan Tang, Kritanjali Jain, Mengxue Bao, Zora Z Wang, Xuhui
Zhou, Zhitong Guo, Murong Cao, et al. Theagentcompany: benchmarking llm agents on consequential
real world tasks. arXiv preprint arXiv:2412.14161, 2024.

John Yang, Carlos E Jimenez, Alex L Zhang, Kilian Lieret, Joyce Yang, Xindi Wu, Ori Press, Niklas Muen-
nighoff, Gabriel Synnaeve, Karthik R Narasimhan, et al. Swe-bench multimodal: Do ai systems generalize
to visual software domains? arXiv preprint arXiv:2410.03859, 2024.

Shunyu Yao, Dian Yang, Nan Cui, Karthik Narasimhan, and Yuefeng Cao. React: Synergizing reasoning
and acting in language models. arXiv preprint arXiv:2210.03629, 2022. URL https://arxiv.org/
abs/2210.03629.

Yanwei Yue, Guibin Zhang, Boyang Liu, Guancheng Wan, Kun Wang, Dawei Cheng, and Yiyan Qi. Mas-
router: Learning to route llms for multi-agent systems. arXiv preprint arXiv:2502.11133, 2025.

Daoguang Zan, Zhirong Huang, Wei Liu, Hanwu Chen, Linhao Zhang, Shulin Xin, Lu Chen, Qi Liu, Xi-
aojian Zhong, Aoyan Li, et al. Multi-swe-bench: A multilingual benchmark for issue resolving. arXiv
preprint arXiv:2504.02605, 2025.

Wenting Zhao, Nan Jiang, Celine Lee, Justin T Chiu, Claire Cardie, Matthias Gallé, and Alexander M Rush.
Commit0: Library generation from scratch. arXiv preprint arXiv:2412.01769, 2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica. Judging LLM-as-a-
judge with MT-bench and chatbot arena. In Thirty-seventh Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2023. URL https://openreview.net/forum?id=
uccHPGDlao.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng, Tianyue
Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for building autonomous
agents. arXiv preprint arXiv:2307.13854, 2023.

13

https://lilianweng.github.io/posts/2023-06-23-agent/
https://lilianweng.github.io/posts/2023-06-23-agent/
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://openreview.net/forum?id=uccHPGDlao
https://openreview.net/forum?id=uccHPGDlao

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

Under review as a conference paper at ICLR 2026

A ADDITIONAL FRAMEWORK DETAILS

A.1 DATA COLLECTION DETAILS

To make feedback minimally intrusive, we prompt users at the end of each work segment to rate the agent’s
performance on a five-star scale as shown in Figure 4.

(a) Toy example showing the 5-star feedback inter-
face.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Average Rating

0

200

400

600

800

1000

Fr
eq

ue
nc

y

Distribution of Average Ratings

(b) Distribution of ratings.

Figure 4: Illustration of the feedback setup: (a) the 5-star feedback interface, and (b) the distribution of
ratings collected.

A.2 PREDICTING USER SATISFACTION

Feature list. We identified 15 features used to train ML model to predict user satisfaction ratings.

1. User sentiment: positive, negative, neutral

2. Number of user messages

3. Task Category: we identified 8 common tasks that developers use software agents for.

4. Misunderstood Intention: Agent misunderstood the user’s goal or intent.

5. Did not follow instruction: Agent ignored or failed to comply with explicit

6. Insufficient Analysis: Didn’t explore existing materials sufficiently (prior code/docs/examples) be-
fore acting.

7. Insufficient testing: Skipped reasonable verification/tests for non-trivial or risky changes (note:
trivial edits may be acceptable).

8. Insufficient Debugging: Did not investigate or reduce failing behavior when needed to make
progress.

9. Incomplete Implementation: Delivered unfinished or non-functioning work.

14

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

Under review as a conference paper at ICLR 2026

10. Scope Creep: Implemented unrequested features without approval.

11. git commit

12. git push

13. git pull

14. git reset

15. git rebase

We use LLM as a judge to detect features 1,3,4,5,6,7,8,9,10. We analyze the event stream to detect features
2,11,12,13,14,15. Below we include the prompt used with gpt-5-mini.

Prompt for labeling features

Analyze the following user messages from a coding assistant session:

{combined_messages}

Please provide the following analysis:
1. One sentence describing what the user is trying to accomplish
2. Classify the overall sentiment of the user's messages into one of

these categories: [Positive, Negative, Neutral] and explain why
3. Classify the type of task into exactly one of these categories (

choose only one that best fits): [Fix Bugs, Implement Features,
Create Programs from Scratch, Fix Failing Continuous Integration,
Fix Merge Conflicts, Write Documentation, Perform Deployments,
Perform Data Analysis]

4. Classify the development cluster into up to two of these categories
(choose only the ones that are the best fits):
- Write code from scratch
- Fix python issues
- Fix underspecified issues
- Fix Java issues
- Testing code
- Web browsing and research
- Administrative tasks
- Fix continuous integration issues
- None of the above

5. Provide 1-2 brief example messages from the conversation that
support your sentiment classification (truncate if too long)

Format your response as JSON with these fields:
{{

"task_description": "one sentence",
"sentiment": {{

"classification": "Positive/Negative/Neutral",
"explanation": "brief explanation",
"example_messages": ["message 1", "message 2"]

}},
"task_type": "one of the categories",
"development_cluster": ["cluster 1", "cluster 2" (if applicable)]

}}

15

705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

Under review as a conference paper at ICLR 2026

Analyze the following user messages from a coding assistant session:

{combined_messages}

For each issue item below, answer YES or NO based on whether there is
evidence in the user messages that this issue occurred. Provide a
brief explanation for each:

[item 1] misunderstood_intention: Agent misunderstood the user's
goal/intent.

- Examples: User asked for a summary and agent produced a rewrite;
user wanted high-level bullets but agent delivered full code.

[item 2] did_not_follow_instruction: Agent ignored or failed to
comply with explicit instructions/system constraints.

- Examples: User: "Do NOT push to main." Agent pushes to main;
System says not to create pull request unless user asks for it
and user didn't ask for it, agent creates pull request; user
asked for bullet points only, agent gives long prose.

[item 3] insufficient_analysis: Didn't explore existing materials
sufficiently (prior code/docs/examples) before acting.

- Examples: User points to an existing function/file that is
relevant OR already solves it; agent reinvents it.

[item 4] insufficient_testing: Skipped reasonable verification/tests
for non-trivial or risky changes (note: trivial edits may be

acceptable).
- Examples: No run/validation for a new parser; no check that a

migration applies cleanly; no sanity check of output.

[item 5] insufficient_debugging: Did not investigate or reduce
failing behavior when needed to make progress.

- Examples: Ignores stack trace; no isolation of failure; proceeds
while errors persist.

[item 6] incomplete_implementation: Delivered unfinished or non-
functioning work.

- Examples: TODO/FIXME left; stub methods; code that cannot run.

[item 7] scope_creep: Implemented unrequested features without
approval.

- Examples: Adds a dashboard or endpoint not asked for.

Format your response as JSON with these fields:

ML Model set-up and parameters: We consider the following model families

• Ordinal logistic “regressor” (Pipeline: DictVectorizer → to dense → Standard-
Scaler(with mean=True) → OrdinalLogitRegressor(C=2.0, class weight=’balanced’))

• Random forest regressor (Pipeline: DictVectorizer → to dense → RandomForestRegres-
sor(n estimators=400))

16

752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

Under review as a conference paper at ICLR 2026

• HistGradientBoostingRegressor (Pipeline: DictVectorizer → to dense → HistGradientBoostingRe-
gressor())

We perform k-fold cross-validation with 5 splits.

Prompt for LLM-as-a-judge baseline

Please analyze the following conversation between a user and an AI
coding assistant to determine user satisfaction.

CONVERSATION:
{conversation}

Please provide your analysis in the following JSON format:
{{

"binary_satisfied": true/false,
"likert_score": 1-5,
"explanation": "detailed explanation of your reasoning"

}}

EVALUATION CRITERIA:
- Binary satisfaction: Was the user satisfied with the agent's help by

the end of the conversation? (true/false)
- Likert scale (1-5): 1=Very Dissatisfied, 2=Dissatisfied, 3=Neutral,

4=Satisfied, 5=Very Satisfied
- Consider factors like:
- Whether the user's problem was solved
- Quality of the agent's responses
- User's tone and feedback throughout the conversation
- Whether the user expressed gratitude or frustration
- If the conversation ended on a positive or negative note

Respond ONLY with the JSON format above, no additional text.

B FULL RESULTS

A full table of effect sizes across all experiments is provided in Table 3. We provide full feature comparison
for each case study: Claude 4 vs. GPT-5 (Table 4), Claude 3.7 vs. Claude 4 (Table 5), Condenser 120 vs. 80
(Table 6), and Planning vs. No-planning (Table 7).

C OPPORTUNITIES FOR AGENT DESIGN

Our case studies show that user satisfaction is more sensitive to the choice of LLM backbone than to scaf-
folding changes, with claude-4-sonnet consistently outperforming alternatives. Interaction features
also provide additional context, revealing patterns such as early disengagement and reduced code pushes
with gpt-5, and improved engagement when plans are surfaced to users. We identify two directions for
future work:

More Interactive LLM Backbones. Since our results suggest that improvements in backbone quality re-
main the primary driver of user satisfaction, it also highlights an opportunity to train backbones that are tuned
for interactivity. Rather than optimizing solely for benchmark accuracy, future models could emphasize ca-

17

799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

Under review as a conference paper at ICLR 2026

Table 3: Effect sizes (∆) with 95% confidence intervals. An asterik (*) indicates the CI does not include 0.

Comparison Condition Effect CI Lower CI Upper Sig.
Claude-3.7 → Claude-4 ∆naive 0.039 -0.040 0.118

∆augment 0.050 0.020 0.081 *

Claude-4 → GPT-5 ∆naive -0.075 -0.136 -0.013 *
∆augment -0.069 -0.116 -0.021 *

No Plan → Show Plan ∆naive 0.053 -0.003 0.109
∆augment 0.031 0.014 0.049 *

Memory max step ∆naive 0.032 -0.047 0.110
∆augment 0.058 -0.016 0.132

Table 4: Claude-4 → GPT-5 Feature Comparison.

Feature Var A Var B Mean A Mean B Diff (B-A) p-val
Misunderstood intention control gpt5 0.2771 0.1805 -0.097 0.039
Did not follow instruction control gpt5 0.3463 0.2857 -0.061 0.235
Insufficient analysis control gpt5 0.3723 0.2857 -0.087 0.094
Insufficient testing control gpt5 0.3550 0.3008 -0.054 0.292
Insufficient debugging control gpt5 0.3723 0.2932 -0.079 0.127
Incomplete implementation control gpt5 0.4589 0.3459 -0.113 0.036
Scope creep control gpt5 0.1212 0.0902 -0.031 0.364
User message count control gpt5 19.17 13.52 -5.65 0.028
Git commit control gpt5 0.6580 0.6241 -0.034 0.515
Git push control gpt5 0.6104 0.4511 -0.159 0.003
Git pull control gpt5 0.0866 0.0827 -0.004 0.900
Git reset control gpt5 0.0909 0.0526 -0.038 0.188
Git rebase control gpt5 0.0173 0.0150 -0.002 0.871

pabilities that users find desirable in collaborative contexts. For example, this might include maintaining a
consistent multi-turn state, dynamically clarifying ambiguous user intent, and proactively getting feedback.
Such properties would support more sustained engagement and reduce failure modes like misunderstandings
or abandoned sessions, as we observed in our study.

Better Modeling of User Satisfaction and Engagement. Our findings also underscore the value of mod-
eling user satisfaction. We find signals like early disengagement, frequency of corrective messages, or code
push behavior can serve as early indicators of dissatisfaction, which can complement sparse, explicit rating
data. We encourage future work to explore how these behavioral features in human-agent interactions can
be studied in more detail to see if they can be used to learn adaptive or more personalized interventions in
real time.

D DISCLOSURE

The authors used ChatGPT for minor copyediting tasks.

18

846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892

Under review as a conference paper at ICLR 2026

Table 5: Claude-3.7 → Claude-4 Feature Comparison

Feature Var A Var B Mean A Mean B Diff (B-A) p-val
Misunderstood intention Claude 4 Claude 3.7 0.2900 0.2491 -0.041 0.105
Did not follow instruction Claude 4 Claude 3.7 0.3940 0.3764 -0.018 0.524
Insufficient analysis Claude 4 Claude 3.7 0.4309 0.4244 -0.007 0.815
Insufficient testing Claude 4 Claude 3.7 0.4104 0.3911 -0.019 0.489
Insufficient debugging Claude 4 Claude 3.7 0.4186 0.4336 0.015 0.593
Incomplete implementation Claude 4 Claude 3.7 0.4952 0.4797 -0.016 0.584
Scope creep Claude 4 Claude 3.7 0.1231 0.0904 -0.033 0.064
User message count Claude 4 Claude 3.7 16.41 15.77 -0.64 0.641
Git commit Claude 4 Claude 3.7 0.5335 0.5277 -0.006 0.837
Git push Claude 4 Claude 3.7 0.4829 0.5018 0.019 0.504
Git pull Claude 4 Claude 3.7 0.0602 0.0849 0.025 0.090
Git reset Claude 4 Claude 3.7 0.0848 0.0480 -0.037 0.010
Git rebase Claude 4 Claude 3.7 0.0205 0.0111 -0.009 0.191

Table 6: Memory max step treatment (120) and Control (80) Feature Comparison

Feature Var A Var B Mean A Mean B Diff (B-A) p-val
Misunderstood intention Treatment Control 0.2308 0.2329 0.002 0.981
Did not follow instruction Treatment Control 0.3846 0.3014 -0.083 0.335
Insufficient analysis Treatment Control 0.4231 0.3288 -0.094 0.284
Insufficient testing Treatment Control 0.4615 0.2877 -0.174 0.047
Insufficient debugging Treatment Control 0.4615 0.3699 -0.092 0.307
Incomplete implementation Treatment Control 0.5385 0.3836 -0.155 0.088
Scope creep Treatment Control 0.0769 0.0411 -0.036 0.396
User message count Treatment Control 19.08 18.03 -1.05 0.307
Git commit Treatment Control 0.5577 0.5479 -0.010 0.917
Git push Treatment Control 0.5192 0.4932 -0.026 0.777
Git pull Treatment Control 0.0769 0.0685 -0.008 0.862
Git reset Treatment Control 0.0577 0.0548 -0.003 0.950
Git rebase Treatment Control 0.0000 0.0274 0.027 0.235

19

893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

Under review as a conference paper at ICLR 2026

Table 7: No Plan → Show Plan Feature Comparison.

Feature Var A Var B Mean A Mean B Diff (B-A) p-val
Misunderstood intention Planning Control 0.2222 0.2771 0.055 0.168
Did not follow instruction Planning Control 0.3128 0.3463 0.034 0.438
Insufficient analysis Planning Control 0.3004 0.3723 0.072 0.098
Insufficient testing Planning Control 0.2963 0.3550 0.059 0.173
Insufficient debugging Planning Control 0.2922 0.3723 0.080 0.064
Incomplete implementation Planning Control 0.3868 0.4589 0.072 0.113
Scope creep Planning Control 0.0988 0.1212 0.022 0.435
User message count Planning Control 13.16 19.17 6.01 0.070
Git commit Planning Control 0.6461 0.6580 0.012 0.786
Git push Planning Control 0.5514 0.6104 0.059 0.194
Git pull Planning Control 0.0947 0.0866 -0.008 0.761
Git reset Planning Control 0.0782 0.0909 0.013 0.619
Git rebase Planning Control 0.0165 0.0173 0.001 0.944

20

	Introduction
	Methods
	Feedback Data Collection
	Predicting Human Satisfaction
	Comparing agent designs

	Experimental Design
	Deployment details
	Overview of case studies
	Analysis Procedure

	Results
	Correlating results with benchmarks
	Related Work
	Discussion and Conclusion
	Additional Framework Details
	Data collection details
	Predicting user satisfaction

	Full Results
	Opportunities for Agent Design
	Disclosure

