Under review as a conference paper at ICLR 2026

PEL-NAS: SEARCH SPACE PARTITIONED AR-
CHITECTURE PROMPT CO-EVOLUTIONARY LLM-
DRIVEN HARDWARE-AWARE NEURAL ARCHITECTURE
SEARCH

Anonymous authors
Paper under double-blind review

ABSTRACT

Hardware-Aware Neural Architecture Search (HW-NAS) requires joint optimiza-
tion of accuracy and latency under device constraints. Traditional supernet-based
methods require multiple GPU days per dataset. Large Language Model (LLM)-
driven approaches avoid training a large supernet and can provide quick feedback,
but we observe an exploration bias: the LLM repeatedly proposes neural network
designs within limited search space and fails to discover architectures across dif-
ferent latency ranges in the whole search space. To address this issue, we propose
PEL-NAS: a search space Partitioned, architecture prompt co-Evolutionary and
LLM-driven Neural Architecture Search that can generate neural networks with
high accuracy and low latency with reduced search cost. Our proposed PEL-NAS
has three key components: 1) a complexity-driven partitioning engine that divides
the search space by complexity to enforce diversity and mitigate exploration bias;
2) an LLM-powered architecture prompt co-evolution operator, in which the LLM
first updates a knowledge base of design heuristics based on results from the pre-
vious round, then performs a guided evolution algorithm on architectures with
prompts that incorporate this knowledge base. Prompts and designs improve to-
gether across rounds which avoid random guesswork and improve efficiency; 3)
a zero-cost predictor to avoid training a large number of candidates from scratch.
Experimental results show that on HW-NAS-Bench, PEL-NAS can achieve over-
all higher HV, lower IGD, and up to 54% lower latency than baselines at similar
accuracy. Meanwhile, the search cost drops from days to minutes compared with
traditional supernet baselines.

1 INTRODUCTION

As deep learning expands into resource-constrained environments such as the Internet of Things
(IoT) devices, Hardware-Aware Neural Architecture Search (HW-NAS) becomes essential for dis-
covering models that optimize the trade-off between accuracy and inference latency [Benmeziane
et al.| (2021bja). Supernet-based paradigm, such as Once-for-All (OFA) |Cai et al.| (2019) and Fair-
NAS |Chu et al.| (2021])), achieve strong performance but require extensive computational resources.
For example, FairNAS requires about 10 GPU-days to train a supernet on a V100 for ImageNet
Benmeziane et al.| (2023). This has driven interest in training-free NAS methods, such as SynFlow
Tanaka et al. (2020), Fisher|Theis et al.| (2018)), and Jacobian Covariance [Mellor et al.|(2021)), which
can rank untrained networks using zero-cost proxies, without requiring full training.

Recently, Large Language Models (LLMs) offer a promising training-free alternative for discovering
neural architectures |Achiam et al.[| (2023). However, applying an LLM directly to the vast HW-
NAS search space raises two challenges. First, we observe the exploration bias issue, which is
analogous to the mode collapse issue in generative models [Shumailov et al.| (2024); Kossale et al.
(2022); Zhang et al.[(2025). Specifically, the LLM tends to repeatedly generate safe and familiar
architectural patterns within limited search space, without fully exploring the full search space.
Figure [T] compares three generation strategies on HW-NAS-Bench (Edge GPU, CIFAR-10). In (a)
Normal prompt, we give only a plain task description including target device and dataset and ask the

Under review as a conference paper at ICLR 2026

100 Normal Prompt Latency-Optimized Prompt PEL-NAS (Ours)
(a) (b) (c)
95 -
»

< 9
[y
g 85
3
3
< 80

75 Method Generated + Method Generated Method Generated

Method Frontier === Method Frontier ===+ Method Frontier
700 2 4 6 8 0 2 4 6 8 0 2 4 6 8
Latency (ms) Latency (ms) Latency (ms)
Search Space ® Theoretical Pareto —— Theoretical Frontier

Figure 1: Comparison of three generation strategies on HW-NAS-Bench (Edge GPU, CIFAR-
10): normal prompt (orange), latency-optimized prompt (blue), and PEL-NAS (green). Latency-
optimized prompting increases coverage compared to standard prompting but still leaves gaps, while
PEL-NAS achieves near-complete coverage across latency ranges.

LLM to propose an architecture. The LLM then concentrates in a small area with limited coverage
of the latency range. In (b) Latency-optimized prompt, we add an explicit hint to aim for diverse
latencies and pass back the previous round’s accuracy and latency to the LLM. The results shift
toward lower latency but the coverage remains uneven. The number of low-latency architectures
attempted by LLM is still small and not competitive. This motivates the development of a strategy
that can further expand search space. Second, most existing LLM approaches rely on static prompts,
lacking a mechanism to accumulate knowledge from past evaluations. Without this feedback loop,
the LLLM cannot refine its design rules over generations, which slows progress toward the true Pareto
front.

To address the above two challenges, we propose PEL-NAS: a search space Partitioned, architecture
prompt co-Evolutionary and LLM-driven Neural Architecture Search (Figure [2), to reduce explo-
ration bias while improving search efficiency. Our approach begins with a a complexity-driven par-
titioning strategy that decomposes the vast search space into subspaces with different complexity or
different parameter size levels. With the partitioning strategy, PEL-NAS can discover subnetworks
across the whole search space, as shown in Figure [T[c). Within each subspace, we then employ
an LLM-Powered Evolutionary Operator that functions as an expert reasoning engine, guided by a
continually refined Co-evolve Knowledge Base. For each new design, the LLM provides a detailed
rationale for its modifications, and a rapid, training-free evaluation protocol provides instant feed-
back. This synergistic framework transforms the search from a biased, unconstrained generation task
into a structured, diverse, and efficient exploration. With our method, we obtain a more complete
and dominant Pareto front of hardware-optimized models, achieving near-perfect quality scores.
This is accomplished while dramatically reducing the search cost from multiple GPU-days, typical
for supernet-based approaches, to mere minutes. The contributions are summarized as follows:

* To counteract LLM’s inherent exploration bias, we propose a Complexity-Driven Parti-
tioning Engine. This engine systematically decomposes the entire search space into dis-
joint subspaces, based on a tangible architectural complexity metric (e.g., the count of
specific operators), ensuring a diverse, comprehensive exploration.

* Within each partitioned niche, our framework employs an LLM-Powered Co-
evolutionary Operator to generate novel candidate architectures. This operator tasks an
LLM with two synergistic functions. As illustrated in Figure |2} it reflects on the results
from previous generations to continually update and refine a Co-evolve Knowledge Base
of design heuristics. Then guided by this evolving knowledge base and the current Pareto-
optimal parents, it performs intelligent mutation and crossover. This approach transforms
the LLM from a simple generator into a stateful agent that learns and applies design prin-
ciples, accelerating the discovery of superior solutions.

* Compared to conventional and unconstrained LLM-driven methods, our training-free
framework discovers a more complete and dominant set of optimal trade-offs. This su-
periority is validated by two standard metrics: a significantly higher Hypervolume (HV),
indicating our solutions achieve broader coverage of the performance space with both su-
perior and more diverse models, and a lower Inverted Generational Distance (IGD),
showing our discovered architectures are closer to the true optimal front. The experiments

Under review as a conference paper at ICLR 2026

demonstrate that PEL-NAS enables this with a search cost of minutes, in stark contrast to
the days of GPU training required by supernet-based approaches.

2 RELATED WORK

Hardware-Aware Neural Architecture Search (HW-NAS). HW-NAS is fundamentally a Multi-
Objective Optimization Problem (MOP), tasked with discovering a set of Pareto-optimal architec-
tures that balance conflicting objectives like accuracy and latency [Njor et al.| (2025); Benmeziane
et al.| (2021a)). Benchmarks such as HW-NAS-Bench [L1 et al.| (2021) are instrumental in standard-
izing research by providing pre-computed, real-world hardware metrics, thus accelerating the de-
velopment cycle. The field has been largely dominated by supernet-based (one-shot) methods |Cai
et al.| (2019); |Chu et al.| (2021); [Sakuma et al.| (2023). The core idea is to amortize training costs
by pre-training a single, large network that contains all sub-architectures. Works like FairNAS |Chu
et al.| (2021)) represent cornerstones of this paradigm. However, their primary drawback is the im-
mense computational cost and the inherent cost-fidelity trade-off. Efforts to improve the ranking
consistency of subnets, such as the strict fairness sampling in FairNAS (Chu et al.|(2021])), often con-
solidate or even increase the high computational overhead (e.g., 10 GPU-days for one supernet).
This fundamental dilemma motivates our exploration of training-free approaches.

Training-Free NAS and Zero-Cost Proxies. To mitigate high training costs, training-free NAS
employs zero-cost (ZC) proxies to predict model performance from initialized networks [Li et al.
(2024). The proxy landscape is diverse, including gradient-based metrics like snip and synflow |Lee
et al.| (2018));|Tanaka et al.| (2020)), higher-order information such as Jacobcov and grasp Mellor et al.
(2021)), and topology-based scores like SED [Wu et al.|(2024); [Lee & Ham| (2024). However, the
landmark NAS-Bench-Suite-Zero study |Krishnakumar et al.| (2022) shows that individual proxies
can be fragile. This leads to a trend of ensembling them to leverage their complementary information
for more robust rankings He et al.|(2024)); (Cortés et al.| (2025).

LLM-Driven Architecture Search. While LLMs are now used as powerful evolutionary operators
in NAS |Zheng et al.| (2023)); Nasir et al.| (2024)), current methods face two critical limitations. First,
their reliance on benchmark-specific oracles for feedback on accuracy and latency hinders real-
world applicability. The second, more fundamental issue is LLM’s inherent exploration bias, which
is analogous to mode collapse in generative models Kossale et al.| (2022)). This bias, often amplified
by alignment tuning [Zhang et al.| (2025), results in low-diversity outputs that trap the search in
narrow regions of the solution space.

Evolutionary Algorithms and Niching for Diversity. Evolutionary Algorithms (EAs), particularly
Multi-Objective EAs like NSGA-II|Deb et al.| (2002); [Lu et al.|(2020)), are a natural fit for HW-NAS
due to their effectiveness in handling discrete, multi-objective search spaces [Booysen & Bosman
(2024); White et al.| (2021)). A central challenge in evolutionary computation is preventing prema-
ture convergence by maintaining population diversity Shir (2012). Niching is a classic technique
developed for this purpose. It works by forming and maintaining multiple subpopulations (niches)
in parallel, allowing the algorithm to explore different optimal regions simultaneously |Shir| (2012).

3 METHODOLOGY

Our method, PEL-NAS, overcomes the critical exploration bias of LLMs in HW-NAS while preserv-
ing the efficiency of training-free methods. As illustrated in Figure[2] our approach integrates three
key components: a search space partitioning strategy to ensure diversity, an LLM-powered evolu-
tionary engine for intelligent exploration, and a training-free evaluator to provide rapid feedback on
accuracy and latency.

3.1 COMPLEXITY-DRIVEN SEARCH SPACE PARTITIONING

The primary obstacle to effective LLM-driven NAS is the model’s inherent exploration bias, or mode
collapse. This tendency is severely exacerbated when the LLM confronts the vast and unstructured
design space of neural architectures. Faced with countless possibilities, an unconstrained LLM
defaults to restricted, familiar designs, failing to discover the diverse range of trade-offs required for
a complete Pareto front.

Under review as a conference paper at ICLR 2026

Architecture Encoding

% Complexity-Driven { NicheO0(So) Niche1(S1) Niche2 (S !
Partitioning — ; 0: zeroize
' Niche 3 (S3)] Niche 4 (S) Niche 5 (Ss) | t@ﬁ 3 skipconnect
Full * @ oo e 3:3x3 conv
Search Space Random Sampling a0, 60,8 4: 33 avg pool
from each Niche
] \ R AL e T R e e e P PP P PP P PP P PPP P PEET TN .
E—— H & Training-Free Evaluation New Architectures :
Latency = FLOPS E ZC-Proxies Accuracy Predictor (3,2,3,1,2,2) :
Parameter ~ Layers H Hardware Latency Measurement 2,2,3,1,1,3)
Throughput MACs H l T
r : Pareto Archive (Ps) @ LLM Agent -
e E Architecture Acc. (%) Lat. (ms) N .Il
: 2,2,3,1,0,3) 7.7 542 Y Update Co-evolve
R / H () { Latency | Knowledge
Accuracy Dy~ — (1,2,3,1,0,3) 7091 439 it ; Base
B . ,
Latency Aggregation . E 613120 e =4 % Architectures
Final Pareto Front (1,3,3,1,2,0) 64.17 2.56
2,3,3,2,0,0) 61.73 1.77 23 Crossover gs Mutation

Figure 2: The PEL-NAS framework. The search space is partitioned into complexity-based
niches, where an LLM performs parallel evolutionary search. The individual results are then aggre-
gated to form the final, complete Pareto front, mitigating exploration bias.

To counteract this fundamental bias, we introduce Complexity-Driven Search Space Partitioning.
Rather than searching the entire space, we divide the entire space into multiple, disjoint subspaces,
or niches.

Our key insight is that this partitioning should not be arbi- 2500

trary but must be rooted in a tangible architectural prop- Do 313

erty that directly governs hardware performance. Our em- 20001 conv

pirical analysis of the HW-NAS-Bench space (Figure[3) 1500 _
confirmed this, revealing a strong correlation between 3 % conv_33
model complexity and the count of the most parameter- ° 1000

heavy operator: nor_conv_3x3. Intuitively, a 3x3

convolution introduces 9-times more kernel parameters 500

per channel pair than a 1x1 convolution, so increasing ml B

the number of nor_conv_3x3 blocks causes a step-like " o2 04 06 08 10 12 14

Parameters (M)

Figure 3: Analysis of the HW-NAS-
Bench search space. The distribution of
total parameters exhibits clear cluster-
ing, where each cluster corresponds to
a specific number of nor_conv_3x3.

growth in parameters and typically in latency.

This finding provides a clear, data-driven rationale for our
strategy. By partitioning the search space based on the
count of nor_conv_3x3 operators (Table E]), we create
niches that correspond to meaningful families of archi-
tectural complexity. This forces the LLM to maintain dis-
tinct populations across the entire complexity spectrum, from ultra-lightweight to highly complex,
directly mitigating mode collapse and ensuring a comprehensive exploration.

Table 1: Complexity-driven partitioning of the search space into six disjoint niches. The partitioning
strategy is designed to force exploration across the entire architectural complexity spectrum, from
simple non-convolutional models to highly complex ones

Niche #3x3 conv # 1x1 conv Rationale

Niche 0 (Sp) 0 0 Explores non-convolutional architectures
Niche 1 (S51) 0 >1 Focuses on simple, low-latency models
Niche 2 (S») 1 Any Entry-level complex architectures
Niche 3 (S3) 2 Any Mid-level complexity

Niche 4 (Sy) 3 Any High-level complexity

Niche 5 (S5) >4 Any Explores the most complex designs

Under review as a conference paper at ICLR 2026

Co-evolve Prompt Generator:

; Result from Last Cycle Update Knowledge Base s
H r N i
H Prompt: Update the Knowledge o Stacking multiple convs is less I
Base according to the results. . Co-evolve efficient than alternating them with H
i | Selected Pareto from Last Cycle: 1= Knowledge ‘skip_connect’. £ Updat H
: Base o.... = pcate :
' m == Co-evolve :
' ; ; == Knowledge || :
i | Crossover & Mutation Results from Last Cycle: +avg_pool'takes ong time and has | 22 ™HS7 7 g :
' . limited accuracy improvement. &= '
H LLM for Updating '
H Knowledge Base . H
' .2 (*avg_pool, %) = 4 Rationale - avg_pool always improve accuracy. :
L J
2 Prompt
Crossover e = —\
Random Selected from Pareto Achieve: ==
(1,3,3,1,2,0) Updated Co-evolve
(1,3,3,2,0,0) Late,.cy Knowledge Base
(2,3,3,2,0,0) T :
RATIONALE: Merges the efficient skip from 1 Prompt: You are an expert NAS assistant for {hardware}.
and the zeroize from 2 to reduce latency. Keep CONSTRAINTS:
pooling from 2 to maintain accuracy. le—| (& LLM - MUST use: exactly 2 x nor_conv_3x3
. - CAN use: 0-5 x nor_conv_1x1, none, avg_pool_3x3, skip_connect
Mutation
LLM for Crossover OBJECTIVE: Crossover from 2 architectures. Balance
(1,3,3,1,2,0) =—>» (1,3,3,1,1,0) Generating New accuracy and latency. Respond including rationale.

RATIONALE: Replaced avg_pool_3x3 with Architectures |

OBJECTIVE: Mutation from 2 architectures. Balance
accuracy and latency. Respond including rationale.

J . J

skip_connect to reduce latency. Retaining other Mutation

skip_connect for accuracy.

Figure 4: The Co-evolve Prompt Generator in PEL-NAS. The LLM first acts as a reasoning
engine, updating a Knowledge Base by analyzing prior results. This learned knowledge then informs
the LLM’s second role as an expert architect, where it generates new, rationale-driven architectures
under specific constraints, creating a self-optimizing search process.

3.2 LLM-POWERED PARTITIONED CO-EVOLUTION OF PROMPTS AND ARCHITECTURES

As illustrated in Figure] the Co-evolve Prompt Generator operates in two tightly coupled phases
that realize the co-evolution of prompts and architectures.

Knowledge Base Update After each search cycle, PEL-NAS collects the architectures along with
their measured accuracy, latency and the corresponding design rationales from previous cycle. The
LLM first acts as a reasoning engine, analyzing these results to update a Co-evolve Knowledge Base.
For example, the Knowledge Base may update rules such as “avg_pool takes a long time and has
limited accuracy improvement” and delete “avg.-pool always improves accuracy”. By contin-
uously summarizing such patterns, the LLM accumulates long-term memory of effective design
principles and avoids repeatedly exploring unpromising regions, preventing local mode collapse.

Rationale-driven Generation The updated knowledge base is then injected into the next prompt,
together with Pareto architectures selected from the archive, to guide the LLM’s second role as an
expert architect. Within this role, the LLM generates new candidate architectures through two opera-
tors: 1)Crossover: merges components of two parent architectures to balance accuracy and latency.
For instance, Figure] shows combining the skip connection from one parent with the zerorized
block from another to reduce latency while preserving pooling layers for accuracy. 2)Mutation:
modifies a single architecture to further refine efficiency. For example, replacing avg_pool_3x3
with skip_connect lowers latency while retaining other beneficial connections.

3.3 TRAINING-FREE OBJECTIVE EVALUATION

An effective evolutionary search is critically dependent on rapid and reliable fitness feedback. Tra-
ditional model training is infeasible due to its prohibitive time cost, a bottleneck that has plagued
recent LLM-driven methods like LLLMatic |[Nasir et al.| (2024), whose search costs can exceed even
those of pre-trained supernet paradigms.

To avoid this, our framework relies on an efficient, training-free evaluation protocol. For each can-
didate architecture A, we assess two objectives: its hardware latency {(A) and its predicted perfor-
mance z,r.q(A). We obtain latency directly from the HW-NAS-Bench lookup table, which simu-
lates rapid, noise-free hardware measurements. To estimate performance without costly training, we

Under review as a conference paper at ICLR 2026

employ a surrogate model, following the state-of-the-art ensemble strategy from |Krishnakumar et al.
(2022). Specifically, we use an XGBoost model that takes the full set of 13 zero-cost (ZC) proxies
from NAS-Bench-Suite-Zero as input features. This predictor achieves a strong Spearman’s rank
correlation of approximately 0.90 with the ground truth, providing a reliable and efficient signal to
guide the evolutionary search.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We use HW-NAS-Bench [Li et al,| (2021), a comprehensive benchmark that provides
ground-truth accuracy on CIFAR-10, CIFAR-100, and ImageNet16-120 and latency measurements
for 15,625 architectures across six real-world hardware devices: Edge GPU (NVIDIA Jetson TX2),
Raspberry Pi 4, Edge TPU (Google TPU Dev Board), Pixel 3, ASIC (Eyeriss), and FPGA. For
the Vision Transformer (ViT) part of our study, we evaluate our framework on ImageNet-1k.

Baselines. We position PEL-NAS against a diverse set of state-of-the-art NAS methods to highlight
its unique advantages. Our comparison includes influential supernet-based methods that do not pri-
marily focus on hardware constraints, such as the classic differentiable approach DARTS |[Liu et al.
(2018) and the fairness-enforcing FairNAS |[Chu et al| (2021). To benchmark against a hardware-
aware contemporary, we include PRP-NAS Benmeziane et al.| (2023)), which represents supernet
methods that explicitly optimize for hardware efficiency. Furthermore, we contrast our approach
with the latest advancements in LLM-driven search by LL.Matic |Nasir et al.|(2024), that also utilize
large language models for architecture generation but are not designed with hardware awareness
as a primary objective. For ViT on ImageNet-1k, we report ViT-B/16 Dosovitskiy et al.| (2020),
DeiT-B Touvron et al.| (2021)), and the NAS search method AutoFormer Chen et al.| (2021).

Evaluation Metrics. We evaluate the quality of the set of discovered solutions, known as a Pareto
front (S), against the true, theoretically perfect front (P*). Conceptually, a Pareto front represents
the collection of best possible trade-offs. In our context, for any model on the front, no other model
exists that is simultaneously more accurate and faster (lower latency). A superior search algorithm
is one that discovers a front that is both high-quality and comprehensive. Evaluating the quality of a
Pareto front is a nuanced task, as it requires assessing two distinct properties simultaneously:

To provide a holistic and robust evaluation, we use HV and IGD, two widely adopted standard
metrics in multi-objective optimization that synergistically address these requirements. HV assesses
the overall quality and spread of the discovered solutions, measuring the overall coverage of the
discovered front, while IGD measures the fidelity of the found front by quantifying how closely its
solutions approximate the ideal true optimal front.

* Hypervolume (HV): This metric measures the overall coverage of the discovered front.
It rewards fronts that contain a wide variety of solutions that are both highly accurate and
fast. Formally, given a reference point r that is dominated by all solutions in the front S,
the HV is the volume of the region bounded by the front and the reference point:

ses

HV(S,r) = volume (U [s1,71] X [s2,79] X -+ X [Sm,rm]>

A larger HV is better, indicating a more complete and higher-quality front.

* Inverted Generational Distance (IGD): This metric measures the closeness or fidelity
of our discovered front to the true, perfect front. It essentially answers the question: On
average, how far away is each theoretically perfect solution from the nearest solution we
actually found? It is defined as:

p*EP*

where d(-, -) is the Euclidean distance. A lower IGD is better, signifying a more accurate
approximation of the true optimal front.

Under review as a conference paper at ICLR 2026

Implementation Details and Hyperparameter Settings. We use GPT-4.1 as our LLM engine. The
evolutionary search runs for 10 generations. The crossover probability p.. is set to 0.5. For our ZC
ensemble predictor, we use an XGBoost model trained on the 13 proxies from NAS-Bench-Suite-
Zero |Krishnakumar et al.|(2022).

4.2 MAIN RESULTS

Table 2: Comparison of selected top structures of HW-NAS-Bench on CIFAR-10. Acc.=Top-1
Accuracy, Lat.=Latency

Archi Edge GPU Raspberry Pi 4 Pixel 3 FPGA
rchitecture
Acc. (%) Lat. (ms) Acc. (%) Lat. (ms) Ace. (%) Lat. (ms) Acc. (%) Lat. (ms)

DARTS 68.30 + 0.08 5.36 68.30 & 0.08 45.36 68.30 £ 0.08 11.4 68.30 £ 0.08 7.32
FairNAS 93.23 +£0.18 4.68 92.51 £0.90 34.15 92.40 + 0.15 8.65 92.90 +0.23 5.12
PRP-NAS-BA 94.37 £ 0.02 435 93.68 & 0.05 40.7 94.20 £+ 0.03 5.60 94.37 £+ 0.01 6.80
PRP-NAS-BL 92.34 + 0.05 2.30 88.70 + 0.03 7.60 89.57 £ 0.07 3.60 91.35 £ 0.04 3.60
LLMatic 94.26 £ 0.13 6.80 94.26 £ 0.13 69.06 94.26 £ 0.13 21.59 94.26 £ 0.13 6.67

PEL-NAS (Ours) 94.37 &+ 0.02 4.35 94.37 £+ 0.15 69.76 94.30 + 0.15 21.59 94.37 £+ 0.14 6.68
93.88 +0.10 3.36 92.37 £ 0.07 18.67 93.31 £ 0.05 8.98 93.29 £ 0.15 291
89.18 £0.15 1.78 90.70 £ 0.12 7.29 90.36 £ 0.08 2.57 89.57 £0.25 1.65

Our main experimental results are detailed in Tables[2] [3]and [4] Collectively, they demonstrate that
PEL-NAS not only discovers architectures that achieve a balance between accuracy and latency, a
Pareto front of superior quality and completeness, but also achieves this with unparalleled efficiency.

Analysis of Discovered Architectures of HW-NAS-Bench on CIFAR-10. Beyond the overall front
quality, the individual architectures in Table 2] highlight the practical value of our method. PEL-NAS
not only finds models with state-of-the-art accuracy, matching the performance of costly supernet-
based methods, but also excels in the low-latency domain where other approaches falter. Crucially,
it discovers the undisputed fastest architecture for each hardware target. For example, it identifies
a model with a latency of just 1.78ms on the Edge GPU and 1.65ms on the FPGA—outperforming
the fastest competitor, PRP-NAS-BL, by over 22% and 54% respectively. This proves its superior
ability to explore the full spectrum of trade-offs and deliver a truly comprehensive set of optimal
solutions.

Table 3: HV and IGD comparison on HW-NAS-Bench across six hardware devices on CIFAR-10,
CIFAR-100, and ImageNet16-120. PEL-NAS consistently outperforms all baselines, demonstrating
its ability to find a more complete and dominant Pareto front. (Higher HV is better, lower IGD is
better). Best results are in bold

Edge GPU Raspi 4 Edge TPU Pixel 3 Eyeriss FPGA
Method HV{ IGD), HVt IGD|, HV{ IGD| HVt IGD| HVt IGD| HV+t IGDJ
CIFAR-10

LLMatic 0.191 0542 0549 0.296 0354 0514 0551 0337 0512 0331 0586 0.370
FairNAS 0.892 0.073 0962 0.035 0947 0.089 0971 0.033 0958 0.068 0918 0.091
PRP-NAS 0.843 0.116 0926 0.133 0916 0.123 0926 0.124 0928 0.145 0.903 0.241

PEL-NAS 0.997 0.006 0997 0.013 0.955 0.057 0996 0.011 0.961 0.037 0931 0.046
CIFAR-100

LLMatic 0.233 0.571 0516 0411 0455 0465 0.745 0256 0.552 0.297 0.598 0.241
FairNAS 0.853 0.072 0930 0.058 0929 0.102 0930 0.055 0952 0.110 0958 0.117
PRP-NAS 0.794 0.161 0.824 0.179 0.751 0.190 0817 0.174 0.863 0.246 0.798 0.317

PEL-NAS 0.992 0.009 0994 0.016 0.981 0.017 0985 0.023 0.962 0.050 0.977 0.032
ImageNet16-120

LLMatic 0285 0566 0.340 0461 0279 0.632 0.783 0.193 0392 0428 0.678 0.230
FairNAS 0.838 0.115 0.894 0.048 0.851 0.122 0.907 0.067 0912 0.086 0.916 0.079
PRP-NAS 0.833 0.096 0.857 0.082 0.887 0.116 0.892 0.073 0.879 0.096 0.876 0.113

PEL-NAS 0.953 0.043 0988 0.011 0.943 0.033 0983 0.042 0.945 0.050 0972 0.028

Under review as a conference paper at ICLR 2026

Pareto Front Quality Evaluation with HV and IGD. The core quantitative results in Table[3|com-
pare the discovered Pareto fronts using HV and IGD. Across all three datasets and six hardware tar-
gets, PEL-NAS consistently and significantly outperforms all baselines. PEL-NAS achieves higher
HV scores and the lower IGD scores compared with baselines. For example, on CIFAR-10, PEL-
NAS can achieve up to 80.6% higher HV and 53.6% lower IGD compared with non-constrained
LLM Method. On CIFAR-100, PEL-NAS outperforms LLMatic, FairNAS, PRP-NAS, by 46.5%,
5.7%, 17.4% in HV, and by 34.9%, 6.1%, 18.6% in IGD, in average respectively. These observations
further confirm that the front discovered by PEL-NAS is not only larger in volume but also much
closer to the true optimal front. The experimental results also demonstrate that our complexity-
driven partitioning strategy is highly effective in mitigating the LLM’s generative bias and enabling
a more complete and diverse exploration of the search space.

Search Cost. Crucially, as shown in Table d] Table 4: Search Cost per Dataset per Device on a
PEL-NAS achieves these results with negli- V100 GPU
gible computational cost. As a training-free

method, its search cost is measured in API calls Architecture Search Cost
(120 times) and minutes, starkly contrasting LLMatic 17 GPU Days
with supernet-based methods like FairNAS |Chu FairNAS 10 GPU Days
et al.[(2021)) that require days of GPU training. DARTS 4 GPU Days
In contrast, LLMatic [Nasir et al.| (2024) is the PRP-NAS-BA 2 GPU Days
most time-consuming because it needs to train PEL-NAS (Ours) 3 mins (API Calls)

every generated architecture from scratch. This
combination of superior search capability and extreme efficiency makes PEL-NAS a practical and
powerful solution for real-world HW-NAS challenges.

4.3 ABLATION STUDIES

Table 5: Ablation study results on CIFAR-100 showing the impact of each component of PEL-NAS.
Both the partitioning strategy and the ZC ensemble are shown to be critical components, with their
removal causing the most significant performance degradation

Method Average HV 1 Average IGD |
PEL-NAS (Full Model) 0.978 £0.017 0.0246 = 0.0132

Ablation Studies:
- without Partitioning 0.516 £0.155 0.3734£0.1197

- without LLM Operator (uses PEA) 0.843 £0.075 0.1649 +0.0311
- without ZC Ensemble (uses Synflow) 0.819+0.112 0.1717 £ 0.0381

To isolate the contribution of each key component of our framework, we conduct a series of ablation
studies. The aggregated results are summarized in Table[5] while detailed line graphs illustrating the
search process for three datasets across six devices are available in the Appendix (Figures|[6] [7, and
[8). The analysis reveals that the partitioning strategy is the most critical element. Removing it (-
without Partitioning) leads to a catastrophic performance collapse, which provides direct
evidence that our niching approach is essential for mitigating the LLM’s mode collapse. Similarly,
the ZC ensemble predictor is vital; replacing it with a single Synflow proxy (- without ZC
Ensemble) causes a significant performance degradation, confirming that a robust performance
signal is crucial to guide the search effectively. Finally, while the partitioned evolutionary algorithm
(PEA) (- without LLM Operator) still performs well, it is clearly surpassed by the full PEL-
NAS model. This demonstrates that the LLM acts as an intelligent operator, leveraging context to
generate superior candidates and further enhancing search efficiency.

4.4 GENERALIZABILITY ON VISION TRANSFORMER SEARCH SPACES

To validate the generalizability of PEL-NAS beyond CNNs, we extend our framework to a Vision
Transformer (ViT) search space derived from AutoFormer |Chen et al.| (2021). We conduct our
hardware-aware search experiments on the ImageNet dataset. To ensure an efficient search process,
we employ an accuracy predictor. Specifically, we adopt the Auto-Proxy predictor from ViT-Bench-

Under review as a conference paper at ICLR 2026

101 [Wei et al.|(2024)), which achieves a strong Spearman’s rank correlation of 91.01 &+ 2.63 on this
task, confirming its reliability for performance estimation. All reported accuracies and the resulting
Pareto front in Figure [5]are based on the outputs of this predictor.

PEL-NAS-VIiT-Tiny PEL-NAS-ViT-Small PEL-NAS-ViT-Base
76.51 — N 82.51
e &
< °
) o . 79.5
76.0 oc: Fid . o 82.01 i
e % o’ e -
5755 .%‘;c < % . 79.0 °. *
< o - 00 .4 8151 °
27501 °° 4 - a K
© gy ° & * 78.5 s o
g7451 o % o 81.01 f :
< “ R o
74.04 Search space 78.0 Search space | gg 51 » Search space
e Run samples Run samples e Run samples
73.5 Pareto front 77.5 Pareto front 80.01 —— Pareto front
400 425 450 475 5.00 4.00 425 450 475 500 525 475 500 525 550 575 6.00
Latency (ms) Latency (ms) Latency (ms)

Figure 5: The Pareto front discovered by PEL-NAS for three AutoFormer search spaces on Ima-
geNet. Latency is evaluated using a single NVIDIA A6000 GPU, and accuracy is estimated via a
predictor

To create a realistic hardware-aware scenario, we profile the latency of each candidate architecture
directly on our target device, a single NVIDIA A6000 GPU. We then apply the core principle of
PEL-NAS—complexity-driven partitioning. Our analysis of the ViT architecture (see Appendix [D]
for a detailed breakdown) reveals that computational complexity, a strong proxy for latency, is dom-
inated by two key parameters: Embed Dim (quadratic impact, O(D?)) and Depth Num (linear im-
pact, O(L)). These parameters govern the scale of the MLP and the number of blocks, respectively,
making them the most influential factors. We therefore partition the search space into niches based
on discrete ranges of Embedding Dimension and Depth Number, enabling the LLM to efficiently
explore trade-offs within structurally similar architectural families. The results, depicted in Figure[3]
and detailed in Table[6] underscore the efficacy of our approach. PEL-NAS successfully identifies a
dominant Pareto front, discovering architectures with superior accuracy-latency trade-offs.

Table 6: Comparison of Vision Transformer models found by PEL-NAS against state-of-the-art NAS
methods. Latency is measured on A6000 GPU

Method Top-1 Acc (%) on ImageNet Latency (ms) Params (M)
ViT-B/16 Dosovitskiy et al.|(2020) 77.9 70 86
DeiT-B [Touvron et al.|(2021) 83.1 68 86
AutoFormer|Chen et al.|(2021) 83.4 8.4 23
PEL-NAS-ViT-Tiny (Ours) 76.2 4.0 6.9
PEL-NAS-ViT-Small (Ours) 79.7 4.7 16.1
PEL-NAS-ViT-Base (Ours) 82.5 54 20.2

5 CONCLUSION

In this work, we introduce PEL-NAS, a novel training-free framework designed to counteract the
exploration bias inherent in LLM-driven neural architecture search. Our core contribution is a
complexity-driven partitioning strategy that divides the search space into distinct niches, compelling
the LLM to act as a parallel evolutionary engine and structurally enforcing population diversity
across the entire architectural complexity spectrum. This approach effectively mitigates the LLM’s
tendency to converge on a narrow set of familiar architectures. Extensive experiments on HW-
NAS-Bench demonstrate that PEL-NAS discovers a more complete and dominant Pareto front than
baseline methods, validated by significantly superior HV and IGD scores. Our findings present a
new paradigm for harnessing LLMs in combinatorial optimization, suggesting that imposing struc-
tural constraints on the generative process is a powerful method for mitigating inherent biases, future
work could focus on automating the partitioning strategy and applying this framework to other com-
plex design domains.

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Hadjer Benmeziane, Kaoutar El Maghraoui, Hamza Ouarnoughi, Smail Niar, Martin Wistuba, and
Naigang Wang. Hardware-aware neural architecture search: Survey and taxonomy. In IJCAI,
volume 2021, pp. 4322-4329, 2021a.

Hadjer Benmeziane, Kaoutar El Maghraoui, Hamza Ouarnoughi, Smail Niar, Martin Wistuba, and
Naigang Wang. A comprehensive survey on hardware-aware neural architecture search. arXiv
preprint arXiv:2101.09336, 2021b.

Hadjer Benmeziane, Kaoutar El Maghraoui, Hamza Ouarnoughi, and Smail Niar. Pareto rank-
preserving supernetwork for hardware-aware neural architecture search. In ECAI 2023, pp. 239-
246. 10S Press, 2023.

Reinhard Booysen and Anna Sergeevna Bosman. Multi-objective evolutionary neural architecture
search for recurrent neural networks. Neural Processing Letters, 56(4):200, 2024.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-all: Train one
network and specialize it for efficient deployment. arXiv preprint arXiv:1908.09791, 2019.

Minghao Chen, Houwen Peng, Jianlong Fu, and Haibin Ling. Autoformer: Searching transformers
for visual recognition. In Proceedings of the IEEE/CVF international conference on computer
vision, pp. 12270-12280, 2021.

Xiangxiang Chu, Bo Zhang, and Ruijun Xu. Fairnas: Rethinking evaluation fairness of weight
sharing neural architecture search. In Proceedings of the IEEE/CVF International Conference on
computer vision, pp. 12239-12248, 2021.

Gabriel Cortés, Nuno Lourenco, Paolo Romano, and Penousal Machado. Greenfactory: Ensembling
zero-cost proxies to estimate performance of neural networks. arXiv preprint arXiv:2505.09344,
2025.

Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and elitist mul-
tiobjective genetic algorithm: Nsga-ii. [EEE transactions on evolutionary computation, 6(2):
182-197, 2002.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Zhenfeng He, Yao Shu, Zhongxiang Dai, and Bryan Kian Hsiang Low. Robustifying and boosting
training-free neural architecture search. arXiv preprint arXiv:2403.07591, 2024.

Youssef Kossale, Mohammed Airaj, and Aziz Darouichi. Mode collapse in generative adversarial
networks: An overview. In 2022 8th International Conference on Optimization and Applications
(ICOA), pp. 1-6. IEEE, 2022.

Arjun Krishnakumar, Colin White, Arber Zela, Renbo Tu, Mahmoud Safari, and Frank Hutter. Nas-
bench-suite-zero: Accelerating research on zero cost proxies. Advances in Neural Information
Processing Systems, 35:28037-28051, 2022.

Junghyup Lee and Bumsub Ham. Az-nas: Assembling zero-cost proxies for network architecture
search. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 5893-5903, 2024.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip: Single-shot network pruning
based on connection sensitivity. arXiv preprint arXiv:1810.02340, 2018.

10

Under review as a conference paper at ICLR 2026

Chaojian Li, Zhongzhi Yu, Yonggan Fu, Yongan Zhang, Yang Zhao, Haoran You, Qixuan Yu, Yue
Wang, and Yingyan Lin. Hw-nas-bench: Hardware-aware neural architecture search benchmark.
arXiv preprint arXiv:2103.10584, 2021.

Guihong Li, Duc Hoang, Kartikeya Bhardwaj, Ming Lin, Zhangyang Wang, and Radu Marculescu.
Zero-shot neural architecture search: Challenges, solutions, and opportunities. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 46(12):7618-7635, 2024.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018.

Zhichao Lu, Kalyanmoy Deb, Erik Goodman, Wolfgang Banzhaf, and Vishnu Naresh Boddeti. Ns-
ganetv2: Evolutionary multi-objective surrogate-assisted neural architecture search. In European
conference on computer vision, pp. 35-51. Springer, 2020.

Joe Mellor, Jack Turner, Amos Storkey, and Elliot J Crowley. Neural architecture search without
training. In International conference on machine learning, pp. 7588-7598. PMLR, 2021.

Muhammad Umair Nasir, Sam Earle, Julian Togelius, Steven James, and Christopher Cleghorn.
Llmatic: neural architecture search via large language models and quality diversity optimization.
In proceedings of the Genetic and Evolutionary Computation Conference, pp. 1110-1118, 2024.

Emil Njor, Colby Banbury, and Xenofon Fafoutis. Fast data aware neural architecture search via
supernet accelerated evaluation. Internet of Things, pp. 101688, 2025.

Yuiko Sakuma, Masato Ishii, and Takuya Narihira. Detofa: efficient training of once-for-all networks
for object detection using path filter. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 1333-1342, 2023.

Ofer M Shir. Niching in evolutionary algorithms. In Handbook of natural computing, pp. 1035—
1069. Springer, 2012.

[lia Shumailov, Zakhar Shumaylov, Yiren Zhao, Nicolas Papernot, Ross Anderson, and Yarin Gal.
Ai models collapse when trained on recursively generated data. Nature, 631(8022):755-759,
2024.

Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya Ganguli. Pruning neural networks
without any data by iteratively conserving synaptic flow. Advances in neural information pro-
cessing systems, 33:6377-6389, 2020.

Lucas Theis, Iryna Korshunova, Alykhan Tejani, and Ferenc Huszar. Faster gaze prediction with
dense networks and fisher pruning. arXiv preprint arXiv:1801.05787, 2018.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International conference on machine learning, pp. 10347-10357. PMLR, 2021.

Zimian Wei, Peijie Dong, Zheng Hui, Anggeng Li, Lujun Li, Menglong Lu, Hengyue Pan, and
Dongsheng Li. Auto-prox: Training-free vision transformer architecture search via automatic
proxy discovery. In Proceedings of the aaai conference on artificial intelligence, volume 38, pp.
1581415822, 2024.

Colin White, Willie Neiswanger, and Yash Savani. Bananas: Bayesian optimization with neural
architectures for neural architecture search. In Proceedings of the AAAI conference on artificial
intelligence, volume 35, pp. 10293-10301, 2021.

Ning Wu, Han Huang, Yueting Xu, and Zhifeng Hao. Zero-shot nas via the suppression of local
entropy decrease. arXiv preprint arXiv:2411.06236, 2024.

Yiming Zhang, Harshita Diddee, Susan Holm, Hanchen Liu, Xinyue Liu, Vinay Samuel, Barry
Wang, and Daphne Ippolito. Noveltybench: Evaluating language models for humanlike diversity.
arXiv preprint arXiv:2504.05228, 2025.

Mingkai Zheng, Xiu Su, Shan You, Fei Wang, Chen Qian, Chang Xu, and Samuel Albanie. Can
gpt-4 perform neural architecture search? arXiv preprint arXiv:2304.10970, 2023.

11

Under review as a conference paper at ICLR 2026

A LLM USAGE DISCLOSURE

We used large language models (LLMs) in two ways. (1) Method component: within PEL-NAS, an
LLM serves as a co-evolutionary operator (Section [3.2) to generate candidates with rationale under
niche constraints. (2) Writing assistance: we additionally used LLMs for minor editing (grammar,
wording, and clarity). No generated text was used as scientific evidence without verification, and all
experiments are fully reproducible from the described algorithms and released code.

B ALGORITHM

Algorithm[I] provides a detailed, step-by-step description of the PEL-NAS framework. The process
begins with a one-time training of a zero-cost (ZC) ensemble predictor. The core of the algorithm is a
parallel evolutionary search conducted independently within several disjoint niches (S), which are
defined by architectural complexity. In each generation, an LLM acts as an intelligent evolutionary
operator to generate a new candidate architecture (A.p;14) under the niche-specific constraints. The
candidate is then evaluated using the pre-trained predictor and direct hardware lookup, and the Pareto
archive for that niche (P}) is updated. Finally, all niche archives are aggregated and filtered through
a non-dominated sort to produce the final, comprehensive Pareto front.

Algorithm 1 PEL-NAS: Partitioned Evolutionary LLM-driven NAS

1: Input: Number of generations G, LLM engine £, niche definitions {Sy, ..., S5}
2: Output: Final Pareto front P ;a1

3: # Phase 1: Initialization

4: Train ZC ensemble predictor M,,,..q on a sample of architectures // Offline, one-time step
5: for k € {0,1,...,5} do

6: Initialize Pareto archive Py, + (0

7 Sample an initial population Pop;,;; C Sk

8: for each architecture A € Pop;,;; do

9: (2pred,) <= (Mpred(A), HardwareLookup(A))

10: Update Py, with (A, zpred,) / Add if not dominated
11: end for
12: end for

13: # Phase 2: Partitioned Co-evolution
14: for generationg =1,...,G do

15: # Parallel evolution across all niches

16: for k € {0,1,...,5} do

17: Select parent(s) Apqrent from Py,

18: Construct Prompt using Apqrent, their scores, and the constraint for niche Sy,
19: Generate a new child architecture A.p;1q < L(Prompt)

20: if A.pi14 is valid, is novel, and satisfies constraint of Sy, then

21: (Zpred, 1) <= (Mpred(Achiia), HardwareLookup(Acpira))

22: // Update archive by adding the new solution and removing any it dominates
23: Let Apew < (Achild, Zpreds l)

24: Pr + {A" € Py | Anew does not dominate A’} U {Apew

25: end if

26: end for

27: end for

28: # Phase 3: Final Aggregation

29: Punion — Up_o Pr

30: Pfinai < Non-Dominated-Sort(Pynion)
31: return Py

12

Under review as a conference paper at ICLR 2026

C RESULT OF ABLATION STUDY ON ALL DATASETS AND DEVICES

This section provides a comprehensive visualization of the ablation studies discussed in the main
paper’s Section[d] We present the full set of Pareto fronts for each of the three datasets—CIFAR-
10, CIFAR-100, and ImageNet16-120—across all six hardware devices from the HW-NAS-Bench
benchmark. These figures visually supplement the aggregated quantitative results presented in Ta-
ble [5] and demonstrate the consistent and crucial contribution of each component within the PEL-
NAS framework.

In each subplot, the reader can clearly observe that the Pareto front discovered by the full PEL-
NAS model (in blue) consistently envelops and dominates the fronts from the three ablated versions.
This provides strong visual evidence that each key component of our framework—the partitioning
strategy, the LLM operator, and the ZC ensemble predictor—is critical for discovering the optimal
trade-off between accuracy and latency across diverse datasets and hardware constraints.

100-

EdgeGPU Raspi4 EdgeTPU

Accuracy (%)
®
&

7 0 10 20 30 40 50 60 70 00 02 04 06 08 10 12 14
Latency (ms) Latency (ms)

Eyeriss FPGA

©
S

Accuracy (%)
3 &

~
o

70+ 5 5
0 5 10 15 20 0 2 4 6 8 10 0 1 2 3 4 5 6
Latency (ms) Latency (ms) Latency (ms)
—— Theoretical Pareto (Dataset) —#— PEL-NAS (Ours) Without Partitioning —= - Without LLM (uses PEA) --A-- Without ZC Ensemble (uses Synflow)

Figure 6: Results of the ablation study on CIFAR-10 across six hardware devices. Each subplot
compares the Pareto fronts discovered by our full model (PEL-NAS) against its three ablated ver-
sions. The consistent dominance of the full PEL-NAS model demonstrates that each component is
crucial for discovering the optimal trade-off between accuracy and latency.

13

Under review as a conference paper at ICLR 2026

@
S

EdgeGPU

EdgeTPU

~ ~
=} o

Accuracy (%)
[=2]
&

8 0 20 40 60 80 100 000 025 050 075 100 125 150

1.75
Latency (ms) Latency (ms)

Eyeriss FPGA

Accuracy (%)

10 20 30 40 0 2 4 6 8 10 0 2 4 6 8
Latency (ms) Latency (ms) Latency (ms)

—— Theoretical Pareto (Dataset) —#— PEL-NAS (Ours) —o - Without Partitioning —# - Without LLM (uses PEA) --A-- Without ZC Ensemble (uses Synflow)

Figure 7: Results of the ablation study on CIFAR-100 across six hardware devices.

Accuracy (%
&

25-
20+ . " — 4 — 4 . . . : : . .
1 2 3 4 5 6 70 12 00 02 04 06 08 10 12 14
Latency (ms) Latency (ms)
50-

Accuracy (%)
@
&

w
=3

N
o

20~
0

2 4 6 8 10 00 05 10 15

20 00 05 10 15 20 25

Latency (ms) Latency (ms)

Latency (ms)

—— Theoretical Pareto (Dataset) —— PEL-NAS (Ours) —® - Without Partitioning —& - Without LLM (uses PEA) --A- Without ZC Ensemble (uses Synflow)

Figure 8: Results of the ablation study on ImageNet16-120 across six hardware devices.

14

Under review as a conference paper at ICLR 2026

D COMPUTATIONAL COMPLEXITY ANALYSIS OF THE VISION
TRANSFORMER SEARCH SPACE

To apply our complexity-driven partitioning strategy to the Vision Transformer (ViT) search space,
we first conduct a formal analysis of how different architectural parameters influence the model’s
total computational load, measured in floating-point operations (FLOPs). This analysis provides a
principled foundation for identifying the most impactful parameters, which are then used to define
the disjoint niches for our search algorithm. The primary parameters in a ViT search space like
AutoFormer’s|Chen et al.| (2021)) are Embed Dim (D), Depth Num (L), MLP Ratio, Q-K-V Dim
(Dy,), and Head Num (h).

A Transformer’s computation is concentrated in two main components within each block: the Multi-
Head Self-Attention (MHSA) module and the Multi-Layer Perceptron (MLP) module. A key feature
of the AutoFormer search space is that it decouples the main Embed Dim (D) from the Q-K-V Dim
(Dp,) used within the attention mechanism.

The total FLOPs can be approximated by:
Total FLOPs ~ L x (FLOPSMHSA + FLOPSMLP>

ANALYSIS OF COMPONENTS

1. Multi-Head Self-Attention (MHSA): In the decoupled design, an input of size N x D
(where N is the number of patches) is projected to Q, K, and V tensors of size N X Dy,
The output is then projected back to N x D.

* Q, K, V Projections: O(N - D - D)
* Attention & Value Summation: O(N? - D))
* Output Projection: O(N - Dy, - D)
The complexity of the MHSA block is thus jointly determined by D and Dy,.
2. Multi-Layer Perceptron (MLP): The MLP block operates on the main embedding dimen-

sion D. It typically consists of two linear layers, with the first expanding the dimension by
the ‘MLP Ratio‘ and the second projecting it back down.

FLOPsyyp~ 2- N - D - (D - MLP Ratio) = O(N - D? - MLP Ratio)

PARAMETER IMPACT RANKING

Based on the combined formula, we can rank the parameters by their impact on computational
complexity:

1. Embed Dim (D): This is the most influential parameter. Its impact is quadratic (O(D?))
due to its role in the MLP block, which constitutes a significant portion of the total compu-
tation.

2. Depth Num (L): This parameter has a direct linear impact (O(L)) on the total FLOPs,
as it multiplies the computation of the entire Transformer block. It is the second most
influential factor.

3. MLP Ratio: This parameter has a strong linear impact by scaling the largest term in the
complexity formula (N - D?).

4. Q-K-V Dim (Dy,): In the decoupled architecture, this parameter has a moderate linear
impact (O(Dy,)), affecting only the MHSA module.

5. Head Num (h): This parameter has a negligible impact (O(1)) on FLOPs. For a fixed
total ‘Q-K-V Dim* (Dy,), changing the number of heads only alters how the computation is
parallelized, not the total amount.

This analysis provides a clear, principled rationale for our partitioning strategy. By creating niches
based on Embed Dim and Depth Num, we are structuring the search around the two parameters that
most fundamentally govern the model’s computational complexity and, by extension, its hardware
latency.

15

Under review as a conference paper at ICLR 2026

E ANALYSIS OF LLM EXPLORATION BIAS

This section provides the core visual evidence that motivates our partitioned search strategy. As
demonstrated in Figure [0] when the LLM search is not structurally constrained by our partitioning
scheme, its inherent exploration bias in generative models—becomes apparent. The LLM-generated
architectures cluster heavily in a narrow region of the solution space, resulting in an incomplete and
suboptimal Pareto front. This phenomenon powerfully illustrates that naive prompt engineering is
insufficient to steer the LLM’s generative process effectively, thereby underscoring the necessity
of a structural intervention like our complexity-driven partitioning to achieve a comprehensive and
diverse architecture search.

EdgeGPU Raspi4 EdgeTPU
95- 1 1
= e
~ T #
L 90- i ”
~ 1
> *
8
5
8
< 80-
75- 1 1
Baseline Pareto: 25 Baseline Pareto: 47 Baseline Pareto: 29
LLM Pareto: 4 LLM Pareto: 5 LLM Pareto: 5
70- . i . T B - U . g g b 0 0 T T
2 4 6 8 10 0 20 40 60 80 0.5 1.0 15 20
Latency (ms) Latency (ms) Latency (ms)
100- 1 .
Pixel3 Eyeriss FPGA
95- 1 1
e Ca R B s
_AE 72
] 1 11 1 P
oy
8 85 - -
5
3
< 80-
75- 1 1
Baseline Pare Baseline Pareto: 18 Baseline Pareto: 15
LLM Pareto: 2 LLM Pareto: 5 LLM Pareto: 5
70-. . . 9 - . . - - - : : . - - 0
o 10 20 30 2 4 6 8 10 2 3 4 5 6 7
Latency (ms) Latency (ms) Latency (ms)

Search Space —— Baseline Frontier @® Baseline Pareto LLM Generated % LLM Pareto Front ——- LLM Frontier

Figure 9: LLM’s mode collapse in NAS persists despite prompt engineering. The figure shows
the Pareto fronts discovered by an unpartitioned LLM-driven method, providing clear visual evi-
dence of mode collapse. The LLM-generated architectures are highly clustered in a narrow region
of the performance-latency space, resulting in a sparse and incomplete Pareto front that finds far
fewer non-dominated solutions. This failure to explore—i.e., mode collapse—occurs even when the
LLM is explicitly prompted to target diverse latencies, powerfully demonstrating the need for a more
structural intervention, like our proposed partitioning strategy, to effectively guide the generative
process.

16

Under review as a conference paper at ICLR 2026

F LLM PROMPT TEMPLATES AND CO-EVOLUTION PROCESS

This appendix provides the full prompt structures used in the two stages of each PEL-NAS genera-
tion and explains how they form a tight co-evolution loop.

STAGE 1: KNOWLEDGE-BASE UPDATE PROMPT

At the end of each generation, the LLM first acts as a reasoning engine to consolidate lessons
learned from the previous search. It receives a prompt with the following explicit structure:

[System role]
You are a NAS analyst. Summarize design heuristics
for the given hardware-aware search space.

[Context]
— Target device and dataset: {device}, {dataset}
— Niche definition: {niche_constraints}
- Top Pareto parents from generation g:
{list of parents with accuracy, latency, and rationales}

[Instruction]
1. Identify operator or connection patterns that
consistently improve accuracy at acceptable latency.
2. Identify patterns that consistently hurt either metric.
3. Write explicit, concise rules of the form
"Use/avoid ... because ...".
4. Remove or revise outdated rules that conflict with new evidence.

[Output format]
Return a JSON-like list called Updated_Knowledge_Base:
[

{rule_1},

{rule_2},

]

The output of Stage 1 is the updated Co-evolve Knowledge Base K411, which captures posi-
tive and negative architectural rules such as "Prefer skip_connect after heavy conv
layers to cut latency" or "Avoid multiple avg_pool_3x3 because they
add latency with minimal accuracy gain".

STAGE 2: PROMPTED ARCHITECTURE GENERATION

Using Ky41, the LLM now plays the role of an expert architect. It receives a second, clearly
structured prompt:

[System role]
You are an expert NAS designer that performs evolutionary
search inside a given niche under hardware constraints.

[Context]
- Target device and dataset: {device}, {dataset}
- Niche constraints: {niche_constraints}

e.g., must contain exactly 2 x nor_conv_3x3,
may contain any number of nor_conv_1x1,
allowed ops: {allowed_ops}

— Current Pareto parents with metrics:

{parent_1, parent_2, ...}

17

Under review as a conference paper at ICLR 2026

[Knowledge Base]
{Updated_Knowledge_Base from Stage 1}

[Evolution Operation]
Perform {N_child} new candidate generations.
For each child:
* Decide Crossover or Mutation.
x Describe exactly which blocks/edges you combine or modify.
* Justify each change with expected effect on
accuracy and latency (\le {latency_limit} ms).
* Ensure all constraints are satisfied.

[Output format]
Return a list of JSON objects:
[

{

"child_id": "...",

"operation": "crossover/mutation",
"architecture_code": "...",
"rationale": "..."

by

Niche-specific constraints. The [Context] block above embeds the niche definition from Ta-
ble[T] For example, the prompt for Niche 3 (exactly 2 nor_conv_3x3) includes:

Niche constraints:

- MUST use exactly 2 x nor_conv_3x3

— CAN use 0{4 x nor_conv_1x1

- ALLOWED operators: none, skip_connect, avg_pool_3x3

— Hardware latency must remain below {latency_limit} ms

Other niches simply change these numeric constraints while keeping the prompt skeleton identical.

Integration of the two stages. The LLM’s Stage 2 output (new architectures and rationales) is im-
mediately evaluated by the zero-cost predictor and hardware lookup. The resulting accuracy—latency
pairs, together with rationales, are fed back into Stage 1 of the next generation:

Kg+1 — Stage 2 generation — evaluation — g yo.

This continuous feedback forms the co-evolution of knowledge and prompts, ensuring that each
generation both (1) refines long-term design principles and (2) produces progressively better candi-
date architectures across all complexity-based niches.

18

	Introduction
	Related Work
	Methodology
	Complexity-Driven Search Space Partitioning
	LLM-Powered Partitioned Co-Evolution of Prompts and Architectures
	Training-Free Objective Evaluation

	Experiments
	Experimental Setup
	Main Results
	Ablation Studies
	Generalizability on Vision Transformer Search Spaces

	Conclusion
	LLM Usage Disclosure
	Algorithm
	Result of Ablation Study on all Datasets and Devices
	Computational Complexity Analysis of the Vision Transformer Search Space
	Analysis of LLM Exploration Bias
	LLM Prompt Templates and Co-evolution Process

