
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PEL-NAS: SEARCH SPACE PARTITIONED AR-
CHITECTURE PROMPT CO-EVOLUTIONARY LLM-
DRIVEN HARDWARE-AWARE NEURAL ARCHITECTURE
SEARCH

Anonymous authors
Paper under double-blind review

ABSTRACT

Hardware-Aware Neural Architecture Search (HW-NAS) requires joint optimiza-
tion of accuracy and latency under device constraints. Traditional supernet-based
methods require multiple GPU days per dataset. Large Language Model (LLM)-
driven approaches avoid training a large supernet and can provide quick feedback,
but we observe an exploration bias: the LLM repeatedly proposes neural network
designs within limited search space and fails to discover architectures across dif-
ferent latency ranges in the whole search space. To address this issue, we propose
PEL-NAS: a search space Partitioned, architecture prompt co-Evolutionary and
LLM-driven Neural Architecture Search that can generate neural networks with
high accuracy and low latency with reduced search cost. Our proposed PEL-NAS
has three key components: 1) a complexity-driven partitioning engine that divides
the search space by complexity to enforce diversity and mitigate exploration bias;
2) an LLM-powered architecture prompt co-evolution operator, in which the LLM
first updates a knowledge base of design heuristics based on results from the pre-
vious round, then performs a guided evolution algorithm on architectures with
prompts that incorporate this knowledge base. Prompts and designs improve to-
gether across rounds which avoid random guesswork and improve efficiency; 3)
a zero-cost predictor to avoid training a large number of candidates from scratch.
Experimental results show that on HW-NAS-Bench, PEL-NAS can achieve over-
all higher HV, lower IGD, and up to 54% lower latency than baselines at similar
accuracy. Meanwhile, the search cost drops from days to minutes compared with
traditional supernet baselines.

1 INTRODUCTION

As deep learning expands into resource-constrained environments such as the Internet of Things
(IoT) devices, Hardware-Aware Neural Architecture Search (HW-NAS) becomes essential for dis-
covering models that optimize the trade-off between accuracy and inference latency Benmeziane
et al. (2021b;a). Supernet-based paradigm, such as Once-for-All (OFA) Cai et al. (2019) and Fair-
NAS Chu et al. (2021), achieve strong performance but require extensive computational resources.
For example, FairNAS requires about 10 GPU-days to train a supernet on a V100 for ImageNet
Benmeziane et al. (2023). This has driven interest in training-free NAS methods, such as SynFlow
Tanaka et al. (2020), Fisher Theis et al. (2018), and Jacobian Covariance Mellor et al. (2021), which
can rank untrained networks using zero-cost proxies, without requiring full training.

Recently, Large Language Models (LLMs) offer a promising training-free alternative for discovering
neural architectures Achiam et al. (2023). However, applying an LLM directly to the vast HW-
NAS search space raises two challenges. First, we observe the exploration bias issue, which is
analogous to the mode collapse issue in generative models Shumailov et al. (2024); Kossale et al.
(2022); Zhang et al. (2025). Specifically, the LLM tends to repeatedly generate safe and familiar
architectural patterns within limited search space, without fully exploring the full search space.
Figure 1 compares three generation strategies on HW-NAS-Bench (Edge GPU, CIFAR-10). In (a)
Normal prompt, we give only a plain task description including target device and dataset and ask the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

0 2 4 6 8
Latency (ms)

70

75

80

85

90

95

100

A
cc

ur
ac

y
(%

)

(a)
Normal Prompt

Method Generated
Method Frontier

0 2 4 6 8
Latency (ms)

(b)
Latency-Optimized Prompt

Method Generated
Method Frontier

0 2 4 6 8
Latency (ms)

(c)
PEL-NAS (Ours)

Method Generated
Method Frontier

Search Space Theoretical Pareto Theoretical Frontier

Figure 1: Comparison of three generation strategies on HW-NAS-Bench (Edge GPU, CIFAR-
10): normal prompt (orange), latency-optimized prompt (blue), and PEL-NAS (green). Latency-
optimized prompting increases coverage compared to standard prompting but still leaves gaps, while
PEL-NAS achieves near-complete coverage across latency ranges.

LLM to propose an architecture. The LLM then concentrates in a small area with limited coverage
of the latency range. In (b) Latency-optimized prompt, we add an explicit hint to aim for diverse
latencies and pass back the previous round’s accuracy and latency to the LLM. The results shift
toward lower latency but the coverage remains uneven. The number of low-latency architectures
attempted by LLM is still small and not competitive. This motivates the development of a strategy
that can further expand search space. Second, most existing LLM approaches rely on static prompts,
lacking a mechanism to accumulate knowledge from past evaluations. Without this feedback loop,
the LLM cannot refine its design rules over generations, which slows progress toward the true Pareto
front.

To address the above two challenges, we propose PEL-NAS: a search space Partitioned, architecture
prompt co-Evolutionary and LLM-driven Neural Architecture Search (Figure 2), to reduce explo-
ration bias while improving search efficiency. Our approach begins with a a complexity-driven par-
titioning strategy that decomposes the vast search space into subspaces with different complexity or
different parameter size levels. With the partitioning strategy, PEL-NAS can discover subnetworks
across the whole search space, as shown in Figure 1(c). Within each subspace, we then employ
an LLM-Powered Evolutionary Operator that functions as an expert reasoning engine, guided by a
continually refined Co-evolve Knowledge Base. For each new design, the LLM provides a detailed
rationale for its modifications, and a rapid, training-free evaluation protocol provides instant feed-
back. This synergistic framework transforms the search from a biased, unconstrained generation task
into a structured, diverse, and efficient exploration. With our method, we obtain a more complete
and dominant Pareto front of hardware-optimized models, achieving near-perfect quality scores.
This is accomplished while dramatically reducing the search cost from multiple GPU-days, typical
for supernet-based approaches, to mere minutes. The contributions are summarized as follows:

• To counteract LLM’s inherent exploration bias, we propose a Complexity-Driven Parti-
tioning Engine. This engine systematically decomposes the entire search space into dis-
joint subspaces, based on a tangible architectural complexity metric (e.g., the count of
specific operators), ensuring a diverse, comprehensive exploration.

• Within each partitioned niche, our framework employs an LLM-Powered Co-
evolutionary Operator to generate novel candidate architectures. This operator tasks an
LLM with two synergistic functions. As illustrated in Figure 2, it reflects on the results
from previous generations to continually update and refine a Co-evolve Knowledge Base
of design heuristics. Then guided by this evolving knowledge base and the current Pareto-
optimal parents, it performs intelligent mutation and crossover. This approach transforms
the LLM from a simple generator into a stateful agent that learns and applies design prin-
ciples, accelerating the discovery of superior solutions.

• Compared to conventional and unconstrained LLM-driven methods, our training-free
framework discovers a more complete and dominant set of optimal trade-offs. This su-
periority is validated by two standard metrics: a significantly higher Hypervolume (HV),
indicating our solutions achieve broader coverage of the performance space with both su-
perior and more diverse models, and a lower Inverted Generational Distance (IGD),
showing our discovered architectures are closer to the true optimal front. The experiments

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

demonstrate that PEL-NAS enables this with a search cost of minutes, in stark contrast to
the days of GPU training required by supernet-based approaches.

2 RELATED WORK

Hardware-Aware Neural Architecture Search (HW-NAS). HW-NAS is fundamentally a Multi-
Objective Optimization Problem (MOP), tasked with discovering a set of Pareto-optimal architec-
tures that balance conflicting objectives like accuracy and latency Njor et al. (2025); Benmeziane
et al. (2021a). Benchmarks such as HW-NAS-Bench Li et al. (2021) are instrumental in standard-
izing research by providing pre-computed, real-world hardware metrics, thus accelerating the de-
velopment cycle. The field has been largely dominated by supernet-based (one-shot) methods Cai
et al. (2019); Chu et al. (2021); Sakuma et al. (2023). The core idea is to amortize training costs
by pre-training a single, large network that contains all sub-architectures. Works like FairNAS Chu
et al. (2021) represent cornerstones of this paradigm. However, their primary drawback is the im-
mense computational cost and the inherent cost-fidelity trade-off. Efforts to improve the ranking
consistency of subnets, such as the strict fairness sampling in FairNAS Chu et al. (2021), often con-
solidate or even increase the high computational overhead (e.g., 10 GPU-days for one supernet).
This fundamental dilemma motivates our exploration of training-free approaches.

Training-Free NAS and Zero-Cost Proxies. To mitigate high training costs, training-free NAS
employs zero-cost (ZC) proxies to predict model performance from initialized networks Li et al.
(2024). The proxy landscape is diverse, including gradient-based metrics like snip and synflow Lee
et al. (2018); Tanaka et al. (2020), higher-order information such as Jacobcov and grasp Mellor et al.
(2021), and topology-based scores like SED Wu et al. (2024); Lee & Ham (2024). However, the
landmark NAS-Bench-Suite-Zero study Krishnakumar et al. (2022) shows that individual proxies
can be fragile. This leads to a trend of ensembling them to leverage their complementary information
for more robust rankings He et al. (2024); Cortês et al. (2025).

LLM-Driven Architecture Search. While LLMs are now used as powerful evolutionary operators
in NAS Zheng et al. (2023); Nasir et al. (2024), current methods face two critical limitations. First,
their reliance on benchmark-specific oracles for feedback on accuracy and latency hinders real-
world applicability. The second, more fundamental issue is LLM’s inherent exploration bias, which
is analogous to mode collapse in generative models Kossale et al. (2022). This bias, often amplified
by alignment tuning Zhang et al. (2025), results in low-diversity outputs that trap the search in
narrow regions of the solution space.

Evolutionary Algorithms and Niching for Diversity. Evolutionary Algorithms (EAs), particularly
Multi-Objective EAs like NSGA-II Deb et al. (2002); Lu et al. (2020), are a natural fit for HW-NAS
due to their effectiveness in handling discrete, multi-objective search spaces Booysen & Bosman
(2024); White et al. (2021). A central challenge in evolutionary computation is preventing prema-
ture convergence by maintaining population diversity Shir (2012). Niching is a classic technique
developed for this purpose. It works by forming and maintaining multiple subpopulations (niches)
in parallel, allowing the algorithm to explore different optimal regions simultaneously Shir (2012).

3 METHODOLOGY

Our method, PEL-NAS, overcomes the critical exploration bias of LLMs in HW-NAS while preserv-
ing the efficiency of training-free methods. As illustrated in Figure 2, our approach integrates three
key components: a search space partitioning strategy to ensure diversity, an LLM-powered evolu-
tionary engine for intelligent exploration, and a training-free evaluator to provide rapid feedback on
accuracy and latency.

3.1 COMPLEXITY-DRIVEN SEARCH SPACE PARTITIONING

The primary obstacle to effective LLM-driven NAS is the model’s inherent exploration bias, or mode
collapse. This tendency is severely exacerbated when the LLM confronts the vast and unstructured
design space of neural architectures. Faced with countless possibilities, an unconstrained LLM
defaults to restricted, familiar designs, failing to discover the diverse range of trade-offs required for
a complete Pareto front.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

 Complexity-Driven

 Partitioning

 Pareto Archive (P3) LLM Agent

 Mutation Crossover

Niche 0 (S0) Niche 1 (S1) Niche 2 (S2)

Niche 3 (S3) Niche 4 (S4) Niche 5 (S5)

Search Space
Full

Random Sampling
from each Niche

 New Architectures Training-Free Evaluation

Aggregation

Accuracy

Latency

Final Pareto Front

.
.
.

Architecture Lat. (ms)Acc. (%)

(2, 2, 3, 1, 0, 3) 5.4271.77

(1, 2, 3, 1, 0, 3) 4.3970.91

(2, 3, 3, 2, 0, 0) 1.7761.73

(3, 1, 3, 1, 2, 0) 3.3469.59

(1, 3, 3, 1, 2, 0) 2.5664.17

ZC-Proxies Accuracy Predictor

Hardware Latency Measurement

(3, 2, 3, 1, 2, 2)

(2, 2, 3, 1, 1, 3)
…

Architectures

Parameter

Latency FLOPS

MACsThroughput

Layers

(a, b, c, d, e, f)

0: zeroize
1: skip-connect
2: 1×1 conv
3: 3×3 conv
4: 3×3 avg pool

Architecture Encoding

Random

Select

Co-evolve
Knowledge

Base

Accuracy

Latency
Update

Figure 2: The PEL-NAS framework. The search space is partitioned into complexity-based
niches, where an LLM performs parallel evolutionary search. The individual results are then aggre-
gated to form the final, complete Pareto front, mitigating exploration bias.

To counteract this fundamental bias, we introduce Complexity-Driven Search Space Partitioning.
Rather than searching the entire space, we divide the entire space into multiple, disjoint subspaces,
or niches.

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Parameters (M)

0

500

1000

1500

2000

2500

C
ou

nt

0 × conv_3×3

1 × conv_3×3

2 × conv_3×3

3 × conv_3×3

4 × conv_3×3

Figure 3: Analysis of the HW-NAS-
Bench search space. The distribution of
total parameters exhibits clear cluster-
ing, where each cluster corresponds to
a specific number of nor conv 3x3.

Our key insight is that this partitioning should not be arbi-
trary but must be rooted in a tangible architectural prop-
erty that directly governs hardware performance. Our em-
pirical analysis of the HW-NAS-Bench space (Figure 3)
confirmed this, revealing a strong correlation between
model complexity and the count of the most parameter-
heavy operator: nor conv 3x3. Intuitively, a 3×3
convolution introduces 9-times more kernel parameters
per channel pair than a 1×1 convolution, so increasing
the number of nor conv 3x3 blocks causes a step-like
growth in parameters and typically in latency.

This finding provides a clear, data-driven rationale for our
strategy. By partitioning the search space based on the
count of nor conv 3x3 operators (Table 1), we create
niches that correspond to meaningful families of archi-
tectural complexity. This forces the LLM to maintain dis-
tinct populations across the entire complexity spectrum, from ultra-lightweight to highly complex,
directly mitigating mode collapse and ensuring a comprehensive exploration.

Table 1: Complexity-driven partitioning of the search space into six disjoint niches. The partitioning
strategy is designed to force exploration across the entire architectural complexity spectrum, from
simple non-convolutional models to highly complex ones

Niche # 3x3 conv # 1x1 conv Rationale
Niche 0 (S0) 0 0 Explores non-convolutional architectures
Niche 1 (S1) 0 ≥ 1 Focuses on simple, low-latency models
Niche 2 (S2) 1 Any Entry-level complex architectures
Niche 3 (S3) 2 Any Mid-level complexity
Niche 4 (S4) 3 Any High-level complexity
Niche 5 (S5) ≥ 4 Any Explores the most complex designs

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Architecture1&2

OBJECTIVE: Crossover from 2 architectures. Balance
accuracy and latency. Respond including rationale.Crossover

Co-evolve
Knowledge

Base
Selected Pareto from Last Cycle:

Prompt: You are an expert NAS assistant for {hardware}.

CONSTRAINTS:

- MUST use: exactly 2 x nor_conv_3x3

- CAN use: 0-5 x nor_conv_1x1, none, avg_pool_3x3, skip_connect

Parents AccuracyArchitectures

Crossover & Mutation Results from Last Cycle:
RationaleLatency

ID AccuracyArchitectures Latency

Random Selected from Pareto Achieve:

ID AccuracyArchitectures Latency

OBJECTIVE: Mutation from 2 architectures. Balance
accuracy and latency. Respond including rationale.

Update
Co-evolve
Knowledge

Base

Mutation

+'avg_pool' takes long time and has
limited accuracy improvement.

- avg_pool always improve accuracy.

Crossover

Mutation

(1, 3, 3, 1, 2, 0)

(2, 3, 3, 2, 0, 0)

(1, 3, 3, 1, 2, 0)

(1, 3, 3, 2, 0, 0)

(1, 3, 3, 1, 1, 0)

RATIONALE: Merges the efficient skip from 1
and the zeroize from 2 to reduce latency. Keep
pooling from 2 to maintain accuracy.

RATIONALE: Replaced avg_pool_3x3 with
skip_connect to reduce latency. Retaining other
skip_connect for accuracy.

Co-evolve Prompt Generator:

Prompt

Prompt: Update the Knowledge
Base according to the results.

LLM for Updating
Knowledge Base

Result from Last Cycle Update Knowledge Base

LLM for
Generating New

Architectures

(1,2) 🟰(*,avg_pool,*,*,*,*) Rationale

Updated Co-evolve
Knowledge Base

Architecture 3

Stacking multiple convs is less
efficient than alternating them with
‘skip_connect’.

……

Architecture 2Architecture 1

Figure 4: The Co-evolve Prompt Generator in PEL-NAS. The LLM first acts as a reasoning
engine, updating a Knowledge Base by analyzing prior results. This learned knowledge then informs
the LLM’s second role as an expert architect, where it generates new, rationale-driven architectures
under specific constraints, creating a self-optimizing search process.

3.2 LLM-POWERED PARTITIONED CO-EVOLUTION OF PROMPTS AND ARCHITECTURES

As illustrated in Figure 4, the Co-evolve Prompt Generator operates in two tightly coupled phases
that realize the co-evolution of prompts and architectures.

Knowledge Base Update After each search cycle, PEL-NAS collects the architectures along with
their measured accuracy, latency and the corresponding design rationales from previous cycle. The
LLM first acts as a reasoning engine, analyzing these results to update a Co-evolve Knowledge Base.
For example, the Knowledge Base may update rules such as “avg pool takes a long time and has
limited accuracy improvement” and delete “avg pool always improves accuracy”. By contin-
uously summarizing such patterns, the LLM accumulates long-term memory of effective design
principles and avoids repeatedly exploring unpromising regions, preventing local mode collapse.

Rationale-driven Generation The updated knowledge base is then injected into the next prompt,
together with Pareto architectures selected from the archive, to guide the LLM’s second role as an
expert architect. Within this role, the LLM generates new candidate architectures through two opera-
tors: 1)Crossover: merges components of two parent architectures to balance accuracy and latency.
For instance, Figure 4 shows combining the skip connection from one parent with the zerorized
block from another to reduce latency while preserving pooling layers for accuracy. 2)Mutation:
modifies a single architecture to further refine efficiency. For example, replacing avg pool 3x3
with skip connect lowers latency while retaining other beneficial connections.

3.3 TRAINING-FREE OBJECTIVE EVALUATION

An effective evolutionary search is critically dependent on rapid and reliable fitness feedback. Tra-
ditional model training is infeasible due to its prohibitive time cost, a bottleneck that has plagued
recent LLM-driven methods like LLMatic Nasir et al. (2024), whose search costs can exceed even
those of pre-trained supernet paradigms.

To avoid this, our framework relies on an efficient, training-free evaluation protocol. For each can-
didate architecture A, we assess two objectives: its hardware latency l(A) and its predicted perfor-
mance zpred(A). We obtain latency directly from the HW-NAS-Bench lookup table, which simu-
lates rapid, noise-free hardware measurements. To estimate performance without costly training, we

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

employ a surrogate model, following the state-of-the-art ensemble strategy from Krishnakumar et al.
(2022). Specifically, we use an XGBoost model that takes the full set of 13 zero-cost (ZC) proxies
from NAS-Bench-Suite-Zero as input features. This predictor achieves a strong Spearman’s rank
correlation of approximately 0.90 with the ground truth, providing a reliable and efficient signal to
guide the evolutionary search.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We use HW-NAS-Bench Li et al. (2021), a comprehensive benchmark that provides
ground-truth accuracy on CIFAR-10, CIFAR-100, and ImageNet16-120 and latency measurements
for 15,625 architectures across six real-world hardware devices: Edge GPU (NVIDIA Jetson TX2),
Raspberry Pi 4, Edge TPU (Google TPU Dev Board), Pixel 3, ASIC (Eyeriss), and FPGA. For
the Vision Transformer (ViT) part of our study, we evaluate our framework on ImageNet-1k.

Baselines. We position PEL-NAS against a diverse set of state-of-the-art NAS methods to highlight
its unique advantages. Our comparison includes influential supernet-based methods that do not pri-
marily focus on hardware constraints, such as the classic differentiable approach DARTS Liu et al.
(2018) and the fairness-enforcing FairNAS Chu et al. (2021). To benchmark against a hardware-
aware contemporary, we include PRP-NAS Benmeziane et al. (2023), which represents supernet
methods that explicitly optimize for hardware efficiency. Furthermore, we contrast our approach
with the latest advancements in LLM-driven search by LLMatic Nasir et al. (2024), that also utilize
large language models for architecture generation but are not designed with hardware awareness
as a primary objective. For ViT on ImageNet-1k, we report ViT-B/16 Dosovitskiy et al. (2020),
DeiT-B Touvron et al. (2021), and the NAS search method AutoFormer Chen et al. (2021).

Evaluation Metrics. We evaluate the quality of the set of discovered solutions, known as a Pareto
front (S), against the true, theoretically perfect front (P ∗). Conceptually, a Pareto front represents
the collection of best possible trade-offs. In our context, for any model on the front, no other model
exists that is simultaneously more accurate and faster (lower latency). A superior search algorithm
is one that discovers a front that is both high-quality and comprehensive. Evaluating the quality of a
Pareto front is a nuanced task, as it requires assessing two distinct properties simultaneously:

To provide a holistic and robust evaluation, we use HV and IGD, two widely adopted standard
metrics in multi-objective optimization that synergistically address these requirements. HV assesses
the overall quality and spread of the discovered solutions, measuring the overall coverage of the
discovered front, while IGD measures the fidelity of the found front by quantifying how closely its
solutions approximate the ideal true optimal front.

• Hypervolume (HV): This metric measures the overall coverage of the discovered front.
It rewards fronts that contain a wide variety of solutions that are both highly accurate and
fast. Formally, given a reference point r that is dominated by all solutions in the front S,
the HV is the volume of the region bounded by the front and the reference point:

HV(S, r) = volume

(⋃
s∈S

[s1, r1]× [s2, r2]× · · · × [sm, rm]

)
A larger HV is better, indicating a more complete and higher-quality front.

• Inverted Generational Distance (IGD): This metric measures the closeness or fidelity
of our discovered front to the true, perfect front. It essentially answers the question: On
average, how far away is each theoretically perfect solution from the nearest solution we
actually found? It is defined as:

IGD(S, P ∗) =
1

|P ∗|
∑

p∗∈P∗

min
s∈S

d(p∗, s)

where d(·, ·) is the Euclidean distance. A lower IGD is better, signifying a more accurate
approximation of the true optimal front.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Implementation Details and Hyperparameter Settings. We use GPT-4.1 as our LLM engine. The
evolutionary search runs for 10 generations. The crossover probability pc is set to 0.5. For our ZC
ensemble predictor, we use an XGBoost model trained on the 13 proxies from NAS-Bench-Suite-
Zero Krishnakumar et al. (2022).

4.2 MAIN RESULTS

Table 2: Comparison of selected top structures of HW-NAS-Bench on CIFAR-10. Acc.=Top-1
Accuracy, Lat.=Latency

Architecture Edge GPU Raspberry Pi 4 Pixel 3 FPGA
Acc. (%) Lat. (ms) Acc. (%) Lat. (ms) Acc. (%) Lat. (ms) Acc. (%) Lat. (ms)

DARTS 68.30 ± 0.08 5.36 68.30 ± 0.08 45.36 68.30 ± 0.08 11.4 68.30 ± 0.08 7.32
FairNAS 93.23 ± 0.18 4.68 92.51 ± 0.90 34.15 92.40 ± 0.15 8.65 92.90 ± 0.23 5.12
PRP-NAS-BA 94.37 ± 0.02 4.35 93.68 ± 0.05 40.7 94.20 ± 0.03 5.60 94.37 ± 0.01 6.80
PRP-NAS-BL 92.34 ± 0.05 2.30 88.70 ± 0.03 7.60 89.57 ± 0.07 3.60 91.35 ± 0.04 3.60
LLMatic 94.26 ± 0.13 6.80 94.26 ± 0.13 69.06 94.26 ± 0.13 21.59 94.26 ± 0.13 6.67

PEL-NAS (Ours) 94.37 ± 0.02 4.35 94.37 ± 0.15 69.76 94.30 ± 0.15 21.59 94.37 ± 0.14 6.68
93.88 ± 0.10 3.36 92.37 ± 0.07 18.67 93.31 ± 0.05 8.98 93.29 ± 0.15 2.91
89.18 ± 0.15 1.78 90.70 ± 0.12 7.29 90.36 ± 0.08 2.57 89.57 ± 0.25 1.65

Our main experimental results are detailed in Tables 2, 3 and 4. Collectively, they demonstrate that
PEL-NAS not only discovers architectures that achieve a balance between accuracy and latency, a
Pareto front of superior quality and completeness, but also achieves this with unparalleled efficiency.

Analysis of Discovered Architectures of HW-NAS-Bench on CIFAR-10. Beyond the overall front
quality, the individual architectures in Table 2 highlight the practical value of our method. PEL-NAS
not only finds models with state-of-the-art accuracy, matching the performance of costly supernet-
based methods, but also excels in the low-latency domain where other approaches falter. Crucially,
it discovers the undisputed fastest architecture for each hardware target. For example, it identifies
a model with a latency of just 1.78ms on the Edge GPU and 1.65ms on the FPGA—outperforming
the fastest competitor, PRP-NAS-BL, by over 22% and 54% respectively. This proves its superior
ability to explore the full spectrum of trade-offs and deliver a truly comprehensive set of optimal
solutions.

Table 3: HV and IGD comparison on HW-NAS-Bench across six hardware devices on CIFAR-10,
CIFAR-100, and ImageNet16-120. PEL-NAS consistently outperforms all baselines, demonstrating
its ability to find a more complete and dominant Pareto front. (Higher HV is better, lower IGD is
better). Best results are in bold

Edge GPU Raspi 4 Edge TPU Pixel 3 Eyeriss FPGA
Method HV ↑ IGD ↓ HV ↑ IGD ↓ HV ↑ IGD ↓ HV ↑ IGD ↓ HV ↑ IGD ↓ HV ↑ IGD ↓

CIFAR-10
LLMatic 0.191 0.542 0.549 0.296 0.354 0.514 0.551 0.337 0.512 0.331 0.586 0.370
FairNAS 0.892 0.073 0.962 0.035 0.947 0.089 0.971 0.033 0.958 0.068 0.918 0.091
PRP-NAS 0.843 0.116 0.926 0.133 0.916 0.123 0.926 0.124 0.928 0.145 0.903 0.241

PEL-NAS 0.997 0.006 0.997 0.013 0.955 0.057 0.996 0.011 0.961 0.037 0.931 0.046
CIFAR-100

LLMatic 0.233 0.571 0.516 0.411 0.455 0.465 0.745 0.256 0.552 0.297 0.598 0.241
FairNAS 0.853 0.072 0.930 0.058 0.929 0.102 0.930 0.055 0.952 0.110 0.958 0.117
PRP-NAS 0.794 0.161 0.824 0.179 0.751 0.190 0.817 0.174 0.863 0.246 0.798 0.317

PEL-NAS 0.992 0.009 0.994 0.016 0.981 0.017 0.985 0.023 0.962 0.050 0.977 0.032
ImageNet16-120

LLMatic 0.285 0.566 0.340 0.461 0.279 0.632 0.783 0.193 0.392 0.428 0.678 0.230
FairNAS 0.838 0.115 0.894 0.048 0.851 0.122 0.907 0.067 0.912 0.086 0.916 0.079
PRP-NAS 0.833 0.096 0.857 0.082 0.887 0.116 0.892 0.073 0.879 0.096 0.876 0.113

PEL-NAS 0.953 0.043 0.988 0.011 0.943 0.033 0.983 0.042 0.945 0.050 0.972 0.028

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Pareto Front Quality Evaluation with HV and IGD. The core quantitative results in Table 3 com-
pare the discovered Pareto fronts using HV and IGD. Across all three datasets and six hardware tar-
gets, PEL-NAS consistently and significantly outperforms all baselines. PEL-NAS achieves higher
HV scores and the lower IGD scores compared with baselines. For example, on CIFAR-10, PEL-
NAS can achieve up to 80.6% higher HV and 53.6% lower IGD compared with non-constrained
LLM Method. On CIFAR-100, PEL-NAS outperforms LLMatic, FairNAS, PRP-NAS, by 46.5%,
5.7%, 17.4% in HV, and by 34.9%, 6.1%, 18.6% in IGD, in average respectively. These observations
further confirm that the front discovered by PEL-NAS is not only larger in volume but also much
closer to the true optimal front. The experimental results also demonstrate that our complexity-
driven partitioning strategy is highly effective in mitigating the LLM’s generative bias and enabling
a more complete and diverse exploration of the search space.

Table 4: Search Cost per Dataset per Device on a
V100 GPU

Architecture Search Cost
LLMatic 17 GPU Days
FairNAS 10 GPU Days
DARTS 4 GPU Days
PRP-NAS-BA 2 GPU Days

PEL-NAS (Ours) 3 mins (API Calls)

Search Cost. Crucially, as shown in Table 4,
PEL-NAS achieves these results with negli-
gible computational cost. As a training-free
method, its search cost is measured in API calls
(120 times) and minutes, starkly contrasting
with supernet-based methods like FairNAS Chu
et al. (2021) that require days of GPU training.
In contrast, LLMatic Nasir et al. (2024) is the
most time-consuming because it needs to train
every generated architecture from scratch. This
combination of superior search capability and extreme efficiency makes PEL-NAS a practical and
powerful solution for real-world HW-NAS challenges.

4.3 ABLATION STUDIES

Table 5: Ablation study results on CIFAR-100 showing the impact of each component of PEL-NAS.
Both the partitioning strategy and the ZC ensemble are shown to be critical components, with their
removal causing the most significant performance degradation

Method Average HV ↑ Average IGD ↓
PEL-NAS (Full Model) 0.978 ± 0.017 0.0246 ± 0.0132

Ablation Studies:
- without Partitioning 0.516 ± 0.155 0.3734 ± 0.1197
- without LLM Operator (uses PEA) 0.843 ± 0.075 0.1649 ± 0.0311
- without ZC Ensemble (uses Synflow) 0.819 ± 0.112 0.1717 ± 0.0381

To isolate the contribution of each key component of our framework, we conduct a series of ablation
studies. The aggregated results are summarized in Table 5, while detailed line graphs illustrating the
search process for three datasets across six devices are available in the Appendix (Figures 6, 7, and
8). The analysis reveals that the partitioning strategy is the most critical element. Removing it (-
without Partitioning) leads to a catastrophic performance collapse, which provides direct
evidence that our niching approach is essential for mitigating the LLM’s mode collapse. Similarly,
the ZC ensemble predictor is vital; replacing it with a single Synflow proxy (- without ZC
Ensemble) causes a significant performance degradation, confirming that a robust performance
signal is crucial to guide the search effectively. Finally, while the partitioned evolutionary algorithm
(PEA) (- without LLM Operator) still performs well, it is clearly surpassed by the full PEL-
NAS model. This demonstrates that the LLM acts as an intelligent operator, leveraging context to
generate superior candidates and further enhancing search efficiency.

4.4 GENERALIZABILITY ON VISION TRANSFORMER SEARCH SPACES

To validate the generalizability of PEL-NAS beyond CNNs, we extend our framework to a Vision
Transformer (ViT) search space derived from AutoFormer Chen et al. (2021). We conduct our
hardware-aware search experiments on the ImageNet dataset. To ensure an efficient search process,
we employ an accuracy predictor. Specifically, we adopt the Auto-Proxy predictor from ViT-Bench-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

101 Wei et al. (2024), which achieves a strong Spearman’s rank correlation of 91.01± 2.63 on this
task, confirming its reliability for performance estimation. All reported accuracies and the resulting
Pareto front in Figure 5 are based on the outputs of this predictor.

4.00 4.25 4.50 4.75 5.00
Latency (ms)

73.5

74.0

74.5

75.0

75.5

76.0

76.5

Ac
cu

ra
cy

 (%
)

PEL-NAS-ViT-Tiny

Search space
Run samples
Pareto front

4.00 4.25 4.50 4.75 5.00 5.25
Latency (ms)

77.5

78.0

78.5

79.0

79.5

PEL-NAS-ViT-Small

Search space
Run samples
Pareto front

4.75 5.00 5.25 5.50 5.75 6.00
Latency (ms)

80.0

80.5

81.0

81.5

82.0

82.5
PEL-NAS-ViT-Base

Search space
Run samples
Pareto front

Figure 5: The Pareto front discovered by PEL-NAS for three AutoFormer search spaces on Ima-
geNet. Latency is evaluated using a single NVIDIA A6000 GPU, and accuracy is estimated via a
predictor

To create a realistic hardware-aware scenario, we profile the latency of each candidate architecture
directly on our target device, a single NVIDIA A6000 GPU. We then apply the core principle of
PEL-NAS—complexity-driven partitioning. Our analysis of the ViT architecture (see Appendix D
for a detailed breakdown) reveals that computational complexity, a strong proxy for latency, is dom-
inated by two key parameters: Embed Dim (quadratic impact, O(D2)) and Depth Num (linear im-
pact, O(L)). These parameters govern the scale of the MLP and the number of blocks, respectively,
making them the most influential factors. We therefore partition the search space into niches based
on discrete ranges of Embedding Dimension and Depth Number, enabling the LLM to efficiently
explore trade-offs within structurally similar architectural families. The results, depicted in Figure 5
and detailed in Table 6, underscore the efficacy of our approach. PEL-NAS successfully identifies a
dominant Pareto front, discovering architectures with superior accuracy-latency trade-offs.

Table 6: Comparison of Vision Transformer models found by PEL-NAS against state-of-the-art NAS
methods. Latency is measured on A6000 GPU

Method Top-1 Acc (%) on ImageNet Latency (ms) Params (M)
ViT-B/16 Dosovitskiy et al. (2020) 77.9 70 86
DeiT-B Touvron et al. (2021) 83.1 68 86
AutoFormer Chen et al. (2021) 83.4 8.4 23

PEL-NAS-ViT-Tiny (Ours) 76.2 4.0 6.9
PEL-NAS-ViT-Small (Ours) 79.7 4.7 16.1
PEL-NAS-ViT-Base (Ours) 82.5 5.4 20.2

5 CONCLUSION

In this work, we introduce PEL-NAS, a novel training-free framework designed to counteract the
exploration bias inherent in LLM-driven neural architecture search. Our core contribution is a
complexity-driven partitioning strategy that divides the search space into distinct niches, compelling
the LLM to act as a parallel evolutionary engine and structurally enforcing population diversity
across the entire architectural complexity spectrum. This approach effectively mitigates the LLM’s
tendency to converge on a narrow set of familiar architectures. Extensive experiments on HW-
NAS-Bench demonstrate that PEL-NAS discovers a more complete and dominant Pareto front than
baseline methods, validated by significantly superior HV and IGD scores. Our findings present a
new paradigm for harnessing LLMs in combinatorial optimization, suggesting that imposing struc-
tural constraints on the generative process is a powerful method for mitigating inherent biases, future
work could focus on automating the partitioning strategy and applying this framework to other com-
plex design domains.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Hadjer Benmeziane, Kaoutar El Maghraoui, Hamza Ouarnoughi, Smail Niar, Martin Wistuba, and
Naigang Wang. Hardware-aware neural architecture search: Survey and taxonomy. In IJCAI,
volume 2021, pp. 4322–4329, 2021a.

Hadjer Benmeziane, Kaoutar El Maghraoui, Hamza Ouarnoughi, Smail Niar, Martin Wistuba, and
Naigang Wang. A comprehensive survey on hardware-aware neural architecture search. arXiv
preprint arXiv:2101.09336, 2021b.

Hadjer Benmeziane, Kaoutar El Maghraoui, Hamza Ouarnoughi, and Smail Niar. Pareto rank-
preserving supernetwork for hardware-aware neural architecture search. In ECAI 2023, pp. 239–
246. IOS Press, 2023.

Reinhard Booysen and Anna Sergeevna Bosman. Multi-objective evolutionary neural architecture
search for recurrent neural networks. Neural Processing Letters, 56(4):200, 2024.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-all: Train one
network and specialize it for efficient deployment. arXiv preprint arXiv:1908.09791, 2019.

Minghao Chen, Houwen Peng, Jianlong Fu, and Haibin Ling. Autoformer: Searching transformers
for visual recognition. In Proceedings of the IEEE/CVF international conference on computer
vision, pp. 12270–12280, 2021.

Xiangxiang Chu, Bo Zhang, and Ruijun Xu. Fairnas: Rethinking evaluation fairness of weight
sharing neural architecture search. In Proceedings of the IEEE/CVF International Conference on
computer vision, pp. 12239–12248, 2021.

Gabriel Cortês, Nuno Lourenço, Paolo Romano, and Penousal Machado. Greenfactory: Ensembling
zero-cost proxies to estimate performance of neural networks. arXiv preprint arXiv:2505.09344,
2025.

Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and elitist mul-
tiobjective genetic algorithm: Nsga-ii. IEEE transactions on evolutionary computation, 6(2):
182–197, 2002.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Zhenfeng He, Yao Shu, Zhongxiang Dai, and Bryan Kian Hsiang Low. Robustifying and boosting
training-free neural architecture search. arXiv preprint arXiv:2403.07591, 2024.

Youssef Kossale, Mohammed Airaj, and Aziz Darouichi. Mode collapse in generative adversarial
networks: An overview. In 2022 8th International Conference on Optimization and Applications
(ICOA), pp. 1–6. IEEE, 2022.

Arjun Krishnakumar, Colin White, Arber Zela, Renbo Tu, Mahmoud Safari, and Frank Hutter. Nas-
bench-suite-zero: Accelerating research on zero cost proxies. Advances in Neural Information
Processing Systems, 35:28037–28051, 2022.

Junghyup Lee and Bumsub Ham. Az-nas: Assembling zero-cost proxies for network architecture
search. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 5893–5903, 2024.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip: Single-shot network pruning
based on connection sensitivity. arXiv preprint arXiv:1810.02340, 2018.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Chaojian Li, Zhongzhi Yu, Yonggan Fu, Yongan Zhang, Yang Zhao, Haoran You, Qixuan Yu, Yue
Wang, and Yingyan Lin. Hw-nas-bench: Hardware-aware neural architecture search benchmark.
arXiv preprint arXiv:2103.10584, 2021.

Guihong Li, Duc Hoang, Kartikeya Bhardwaj, Ming Lin, Zhangyang Wang, and Radu Marculescu.
Zero-shot neural architecture search: Challenges, solutions, and opportunities. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 46(12):7618–7635, 2024.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018.

Zhichao Lu, Kalyanmoy Deb, Erik Goodman, Wolfgang Banzhaf, and Vishnu Naresh Boddeti. Ns-
ganetv2: Evolutionary multi-objective surrogate-assisted neural architecture search. In European
conference on computer vision, pp. 35–51. Springer, 2020.

Joe Mellor, Jack Turner, Amos Storkey, and Elliot J Crowley. Neural architecture search without
training. In International conference on machine learning, pp. 7588–7598. PMLR, 2021.

Muhammad Umair Nasir, Sam Earle, Julian Togelius, Steven James, and Christopher Cleghorn.
Llmatic: neural architecture search via large language models and quality diversity optimization.
In proceedings of the Genetic and Evolutionary Computation Conference, pp. 1110–1118, 2024.

Emil Njor, Colby Banbury, and Xenofon Fafoutis. Fast data aware neural architecture search via
supernet accelerated evaluation. Internet of Things, pp. 101688, 2025.

Yuiko Sakuma, Masato Ishii, and Takuya Narihira. Detofa: efficient training of once-for-all networks
for object detection using path filter. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 1333–1342, 2023.

Ofer M Shir. Niching in evolutionary algorithms. In Handbook of natural computing, pp. 1035–
1069. Springer, 2012.

Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Nicolas Papernot, Ross Anderson, and Yarin Gal.
Ai models collapse when trained on recursively generated data. Nature, 631(8022):755–759,
2024.

Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya Ganguli. Pruning neural networks
without any data by iteratively conserving synaptic flow. Advances in neural information pro-
cessing systems, 33:6377–6389, 2020.

Lucas Theis, Iryna Korshunova, Alykhan Tejani, and Ferenc Huszár. Faster gaze prediction with
dense networks and fisher pruning. arXiv preprint arXiv:1801.05787, 2018.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International conference on machine learning, pp. 10347–10357. PMLR, 2021.

Zimian Wei, Peijie Dong, Zheng Hui, Anggeng Li, Lujun Li, Menglong Lu, Hengyue Pan, and
Dongsheng Li. Auto-prox: Training-free vision transformer architecture search via automatic
proxy discovery. In Proceedings of the aaai conference on artificial intelligence, volume 38, pp.
15814–15822, 2024.

Colin White, Willie Neiswanger, and Yash Savani. Bananas: Bayesian optimization with neural
architectures for neural architecture search. In Proceedings of the AAAI conference on artificial
intelligence, volume 35, pp. 10293–10301, 2021.

Ning Wu, Han Huang, Yueting Xu, and Zhifeng Hao. Zero-shot nas via the suppression of local
entropy decrease. arXiv preprint arXiv:2411.06236, 2024.

Yiming Zhang, Harshita Diddee, Susan Holm, Hanchen Liu, Xinyue Liu, Vinay Samuel, Barry
Wang, and Daphne Ippolito. Noveltybench: Evaluating language models for humanlike diversity.
arXiv preprint arXiv:2504.05228, 2025.

Mingkai Zheng, Xiu Su, Shan You, Fei Wang, Chen Qian, Chang Xu, and Samuel Albanie. Can
gpt-4 perform neural architecture search? arXiv preprint arXiv:2304.10970, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A LLM USAGE DISCLOSURE

We used large language models (LLMs) in two ways. (1) Method component: within PEL-NAS, an
LLM serves as a co-evolutionary operator (Section 3.2) to generate candidates with rationale under
niche constraints. (2) Writing assistance: we additionally used LLMs for minor editing (grammar,
wording, and clarity). No generated text was used as scientific evidence without verification, and all
experiments are fully reproducible from the described algorithms and released code.

B ALGORITHM

Algorithm 1 provides a detailed, step-by-step description of the PEL-NAS framework. The process
begins with a one-time training of a zero-cost (ZC) ensemble predictor. The core of the algorithm is a
parallel evolutionary search conducted independently within several disjoint niches (Sk), which are
defined by architectural complexity. In each generation, an LLM acts as an intelligent evolutionary
operator to generate a new candidate architecture (Achild) under the niche-specific constraints. The
candidate is then evaluated using the pre-trained predictor and direct hardware lookup, and the Pareto
archive for that niche (Pk) is updated. Finally, all niche archives are aggregated and filtered through
a non-dominated sort to produce the final, comprehensive Pareto front.

Algorithm 1 PEL-NAS: Partitioned Evolutionary LLM-driven NAS
1: Input: Number of generations G, LLM engine L, niche definitions {S0, . . . ,S5}
2: Output: Final Pareto front Pfinal

3: # Phase 1: Initialization
4: Train ZC ensemble predictorMpred on a sample of architectures // Offline, one-time step
5: for k ∈ {0, 1, . . . , 5} do
6: Initialize Pareto archive Pk ← ∅
7: Sample an initial population Popinit ⊂ Sk
8: for each architecture A ∈ Popinit do
9: (zpred, l)← (Mpred(A),HardwareLookup(A))

10: Update Pk with (A, zpred, l) // Add if not dominated
11: end for
12: end for

13: # Phase 2: Partitioned Co-evolution
14: for generation g = 1, . . . , G do
15: # Parallel evolution across all niches
16: for k ∈ {0, 1, . . . , 5} do
17: Select parent(s) Aparent from Pk

18: Construct Prompt using Aparent, their scores, and the constraint for niche Sk
19: Generate a new child architecture Achild ← L(Prompt)
20: if Achild is valid, is novel, and satisfies constraint of Sk then
21: (zpred, l)← (Mpred(Achild),HardwareLookup(Achild))
22: // Update archive by adding the new solution and removing any it dominates
23: Let Anew ← (Achild, zpred, l)
24: Pk ← {A′ ∈ Pk | Anew does not dominate A′} ∪ {Anew}
25: end if
26: end for
27: end for

28: # Phase 3: Final Aggregation
29: Punion ←

⋃5
k=0 Pk

30: Pfinal ← Non-Dominated-Sort(Punion)
31: return Pfinal

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

C RESULT OF ABLATION STUDY ON ALL DATASETS AND DEVICES

This section provides a comprehensive visualization of the ablation studies discussed in the main
paper’s Section 4. We present the full set of Pareto fronts for each of the three datasets—CIFAR-
10, CIFAR-100, and ImageNet16-120—across all six hardware devices from the HW-NAS-Bench
benchmark. These figures visually supplement the aggregated quantitative results presented in Ta-
ble 5 and demonstrate the consistent and crucial contribution of each component within the PEL-
NAS framework.

In each subplot, the reader can clearly observe that the Pareto front discovered by the full PEL-
NAS model (in blue) consistently envelops and dominates the fronts from the three ablated versions.
This provides strong visual evidence that each key component of our framework—the partitioning
strategy, the LLM operator, and the ZC ensemble predictor—is critical for discovering the optimal
trade-off between accuracy and latency across diverse datasets and hardware constraints.

0 1 2 3 4 5 6 7
Latency (ms)

70

75

80

85

90

95

100

Ac
cu

ra
cy

 (%
)

EdgeGPU

0 10 20 30 40 50 60 70
Latency (ms)

Raspi4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Latency (ms)

EdgeTPU

0 5 10 15 20
Latency (ms)

70

75

80

85

90

95

100

Ac
cu

ra
cy

 (%
)

Pixel3

0 2 4 6 8 10
Latency (ms)

Eyeriss

0 1 2 3 4 5 6
Latency (ms)

FPGA

Theoretical Pareto (Dataset) PEL-NAS (Ours) Without Partitioning Without LLM (uses PEA) Without ZC Ensemble (uses Synflow)

Figure 6: Results of the ablation study on CIFAR-10 across six hardware devices. Each subplot
compares the Pareto fronts discovered by our full model (PEL-NAS) against its three ablated ver-
sions. The consistent dominance of the full PEL-NAS model demonstrates that each component is
crucial for discovering the optimal trade-off between accuracy and latency.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

0 2 4 6 8
Latency (ms)

50

55

60

65

70

75

80

Ac
cu

ra
cy

 (%
)

EdgeGPU

0 20 40 60 80 100
Latency (ms)

Raspi4

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Latency (ms)

EdgeTPU

0 10 20 30 40
Latency (ms)

50

55

60

65

70

75

80

Ac
cu

ra
cy

 (%
)

Pixel3

0 2 4 6 8 10
Latency (ms)

Eyeriss

0 2 4 6 8
Latency (ms)

FPGA

Theoretical Pareto (Dataset) PEL-NAS (Ours) Without Partitioning Without LLM (uses PEA) Without ZC Ensemble (uses Synflow)

Figure 7: Results of the ablation study on CIFAR-100 across six hardware devices.

0 1 2 3 4 5 6 7
Latency (ms)

20

25

30

35

40

45

50

Ac
cu

ra
cy

 (%
)

EdgeGPU

0 2 4 6 8 10 12
Latency (ms)

Raspi4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Latency (ms)

EdgeTPU

0 2 4 6 8 10
Latency (ms)

20

25

30

35

40

45

50

Ac
cu

ra
cy

 (%
)

Pixel3

0.0 0.5 1.0 1.5 2.0
Latency (ms)

Eyeriss

0.0 0.5 1.0 1.5 2.0 2.5
Latency (ms)

FPGA

Theoretical Pareto (Dataset) PEL-NAS (Ours) Without Partitioning Without LLM (uses PEA) Without ZC Ensemble (uses Synflow)

Figure 8: Results of the ablation study on ImageNet16-120 across six hardware devices.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

D COMPUTATIONAL COMPLEXITY ANALYSIS OF THE VISION
TRANSFORMER SEARCH SPACE

To apply our complexity-driven partitioning strategy to the Vision Transformer (ViT) search space,
we first conduct a formal analysis of how different architectural parameters influence the model’s
total computational load, measured in floating-point operations (FLOPs). This analysis provides a
principled foundation for identifying the most impactful parameters, which are then used to define
the disjoint niches for our search algorithm. The primary parameters in a ViT search space like
AutoFormer’s Chen et al. (2021) are Embed Dim (D), Depth Num (L), MLP Ratio, Q-K-V Dim
(Dh), and Head Num (h).

A Transformer’s computation is concentrated in two main components within each block: the Multi-
Head Self-Attention (MHSA) module and the Multi-Layer Perceptron (MLP) module. A key feature
of the AutoFormer search space is that it decouples the main Embed Dim (D) from the Q-K-V Dim
(Dh) used within the attention mechanism.

The total FLOPs can be approximated by:

Total FLOPs ≈ L× (FLOPsMHSA + FLOPsMLP)

ANALYSIS OF COMPONENTS

1. Multi-Head Self-Attention (MHSA): In the decoupled design, an input of size N × D
(where N is the number of patches) is projected to Q, K, and V tensors of size N × Dh.
The output is then projected back to N ×D.

• Q, K, V Projections: O(N ·D ·Dh)

• Attention & Value Summation: O(N2 ·Dh)

• Output Projection: O(N ·Dh ·D)

The complexity of the MHSA block is thus jointly determined by D and Dh.
2. Multi-Layer Perceptron (MLP): The MLP block operates on the main embedding dimen-

sion D. It typically consists of two linear layers, with the first expanding the dimension by
the ‘MLP Ratio‘ and the second projecting it back down.

FLOPsMLP ≈ 2 ·N ·D · (D ·MLP Ratio) = O(N ·D2 ·MLP Ratio)

PARAMETER IMPACT RANKING

Based on the combined formula, we can rank the parameters by their impact on computational
complexity:

1. Embed Dim (D): This is the most influential parameter. Its impact is quadratic (O(D2))
due to its role in the MLP block, which constitutes a significant portion of the total compu-
tation.

2. Depth Num (L): This parameter has a direct linear impact (O(L)) on the total FLOPs,
as it multiplies the computation of the entire Transformer block. It is the second most
influential factor.

3. MLP Ratio: This parameter has a strong linear impact by scaling the largest term in the
complexity formula (N ·D2).

4. Q-K-V Dim (Dh): In the decoupled architecture, this parameter has a moderate linear
impact (O(Dh)), affecting only the MHSA module.

5. Head Num (h): This parameter has a negligible impact (O(1)) on FLOPs. For a fixed
total ‘Q-K-V Dim‘ (Dh), changing the number of heads only alters how the computation is
parallelized, not the total amount.

This analysis provides a clear, principled rationale for our partitioning strategy. By creating niches
based on Embed Dim and Depth Num, we are structuring the search around the two parameters that
most fundamentally govern the model’s computational complexity and, by extension, its hardware
latency.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

E ANALYSIS OF LLM EXPLORATION BIAS

This section provides the core visual evidence that motivates our partitioned search strategy. As
demonstrated in Figure 9, when the LLM search is not structurally constrained by our partitioning
scheme, its inherent exploration bias in generative models—becomes apparent. The LLM-generated
architectures cluster heavily in a narrow region of the solution space, resulting in an incomplete and
suboptimal Pareto front. This phenomenon powerfully illustrates that naive prompt engineering is
insufficient to steer the LLM’s generative process effectively, thereby underscoring the necessity
of a structural intervention like our complexity-driven partitioning to achieve a comprehensive and
diverse architecture search.

2 4 6 8 10
Latency (ms)

70

75

80

85

90

95

100

Ac
cu

ra
cy

 (%
)

EdgeGPU

Baseline Pareto: 25
LLM Pareto: 4

0 20 40 60 80
Latency (ms)

Raspi4

Baseline Pareto: 47
LLM Pareto: 5

0.5 1.0 1.5 2.0
Latency (ms)

EdgeTPU

Baseline Pareto: 29
LLM Pareto: 5

0 10 20 30
Latency (ms)

70

75

80

85

90

95

100

Ac
cu

ra
cy

 (%
)

Pixel3

Baseline Pareto: 47
LLM Pareto: 2

2 4 6 8 10
Latency (ms)

Eyeriss

Baseline Pareto: 18
LLM Pareto: 5

2 3 4 5 6 7
Latency (ms)

FPGA

Baseline Pareto: 15
LLM Pareto: 5

Search Space Baseline Frontier Baseline Pareto LLM Generated LLM Pareto Front LLM Frontier

Figure 9: LLM’s mode collapse in NAS persists despite prompt engineering. The figure shows
the Pareto fronts discovered by an unpartitioned LLM-driven method, providing clear visual evi-
dence of mode collapse. The LLM-generated architectures are highly clustered in a narrow region
of the performance-latency space, resulting in a sparse and incomplete Pareto front that finds far
fewer non-dominated solutions. This failure to explore—i.e., mode collapse—occurs even when the
LLM is explicitly prompted to target diverse latencies, powerfully demonstrating the need for a more
structural intervention, like our proposed partitioning strategy, to effectively guide the generative
process.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

F LLM PROMPT TEMPLATES AND CO-EVOLUTION PROCESS

This appendix provides the full prompt structures used in the two stages of each PEL-NAS genera-
tion and explains how they form a tight co-evolution loop.

STAGE 1: KNOWLEDGE-BASE UPDATE PROMPT

At the end of each generation, the LLM first acts as a reasoning engine to consolidate lessons
learned from the previous search. It receives a prompt with the following explicit structure:

[System role]
You are a NAS analyst. Summarize design heuristics
for the given hardware-aware search space.

[Context]
- Target device and dataset: {device}, {dataset}
- Niche definition: {niche_constraints}
- Top Pareto parents from generation g:

{list of parents with accuracy, latency, and rationales}

[Instruction]
1. Identify operator or connection patterns that

consistently improve accuracy at acceptable latency.
2. Identify patterns that consistently hurt either metric.
3. Write explicit, concise rules of the form

"Use/avoid ... because ...".
4. Remove or revise outdated rules that conflict with new evidence.

[Output format]
Return a JSON-like list called Updated_Knowledge_Base:
[

{rule_1},
{rule_2},
...

]

The output of Stage 1 is the updated Co-evolve Knowledge Base Kg+1, which captures posi-
tive and negative architectural rules such as "Prefer skip connect after heavy conv
layers to cut latency" or "Avoid multiple avg pool 3x3 because they
add latency with minimal accuracy gain".

STAGE 2: PROMPTED ARCHITECTURE GENERATION

Using Kg+1, the LLM now plays the role of an expert architect. It receives a second, clearly
structured prompt:

[System role]
You are an expert NAS designer that performs evolutionary
search inside a given niche under hardware constraints.

[Context]
- Target device and dataset: {device}, {dataset}
- Niche constraints: {niche_constraints}

e.g., must contain exactly 2 × nor_conv_3x3,
may contain any number of nor_conv_1x1,
allowed ops: {allowed_ops}

- Current Pareto parents with metrics:
{parent_1, parent_2, ...}

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

[Knowledge Base]
{Updated_Knowledge_Base from Stage 1}

[Evolution Operation]
Perform {N_child} new candidate generations.
For each child:

* Decide Crossover or Mutation.
* Describe exactly which blocks/edges you combine or modify.
* Justify each change with expected effect on

accuracy and latency (\le {latency_limit} ms).
* Ensure all constraints are satisfied.

[Output format]
Return a list of JSON objects:
[

{
"child_id": "...",
"operation": "crossover/mutation",
"architecture_code": "...",
"rationale": "..."

},
...

]

Niche-specific constraints. The [Context] block above embeds the niche definition from Ta-
ble 1. For example, the prompt for Niche 3 (exactly 2 nor conv 3x3) includes:

Niche constraints:
- MUST use exactly 2 × nor_conv_3x3
- CAN use 0{4 × nor_conv_1x1
- ALLOWED operators: none, skip_connect, avg_pool_3x3
- Hardware latency must remain below {latency_limit} ms

Other niches simply change these numeric constraints while keeping the prompt skeleton identical.

Integration of the two stages. The LLM’s Stage 2 output (new architectures and rationales) is im-
mediately evaluated by the zero-cost predictor and hardware lookup. The resulting accuracy–latency
pairs, together with rationales, are fed back into Stage 1 of the next generation:

Kg+1 → Stage 2 generation → evaluation → Kg+2.

This continuous feedback forms the co-evolution of knowledge and prompts, ensuring that each
generation both (1) refines long-term design principles and (2) produces progressively better candi-
date architectures across all complexity-based niches.

18

	Introduction
	Related Work
	Methodology
	Complexity-Driven Search Space Partitioning
	LLM-Powered Partitioned Co-Evolution of Prompts and Architectures
	Training-Free Objective Evaluation

	Experiments
	Experimental Setup
	Main Results
	Ablation Studies
	Generalizability on Vision Transformer Search Spaces

	Conclusion
	LLM Usage Disclosure
	Algorithm
	Result of Ablation Study on all Datasets and Devices
	Computational Complexity Analysis of the Vision Transformer Search Space
	Analysis of LLM Exploration Bias
	LLM Prompt Templates and Co-evolution Process

