
Addressing Over-fitting in Passive Constraint
Acquisition through Active Learning

Vasileios Balafas1, Dimos Tsouros2, Nikolaos Ploskas1, and Kostas Stergiou1

1 University of Western Macedonia, Campus ZEP, Kozani, 50100, Greece
2 KU Leuven, Celestijnenlaan 200a, Leuven, 3001, Belgium

v.balafas@uowm.gr, dimos.tsouros@kuleuven.be, nploskas@uowm.gr,
kstergiou@uowm.gr

Abstract. Constraint Programming (CP) is a powerful approach to
solving complex combinatorial problems. However, formulating combi-
natorial problems as CP models typically demands substantial exper-
tise. Constraint acquisition (CA) seeks to assist in model building by
deriving constraints from data. In passive learning, the system relies
on a pre-labeled set of examples (solutions or non-solutions) to infer
constraints, whereas active learning engages a domain expert or soft-
ware system through targeted queries that classify newly proposed as-
signments to the variables of the problem. Hybrid CA frameworks that
combine both strategies have also emerged to leverage the strengths of
both approaches. However, when training data are scarce or noisy, pas-
sive methods may overfit the observed examples—appearing valid on
the training set but failing to generalize to other, unseen solutions—and
thereby introduce invalid constraints into the model. To address this is-
sue that has been overlooked, we propose a new query-driven refinement
approach that systematically challenges suspicious acquired constraints,
using “violating assignments” designed to refute them while preserving all
other constraints. Focusing on the AllDifferent constraint, we integrate
this refinement into an existing hybrid CA system and experimentally
demonstrate that our approach facilitates convergence to a correct final
model.

Keywords: Constraint Programming · Active Learning · Constraint Ac-
quisition · Global Constraints · Over-fitting

1 Introduction

Constraint Programming (CP) is a powerful paradigm for solving a variety of
combinatorial optimization problems in domains such as scheduling, timetabling,
and configuration [20]. As in other approaches to combinatorial optimization
(e.g. MIP, SAT), modeling is of primary importance when solving a new prob-
lem [10]. It is well known that an efficient model can result in exponentially
shorter run times compared to a bad one. A CP model consists of variables with
finite domains and constraints that collectively define feasible assignments to
these variables. Global constraints, such as the AllDifferent [5], which states

2 Balafas et al.

that the variables in a given set must take different values, are ubiquitous, be-
cause they compactly encode patterns across multiple variables and can signifi-
cantly speed up solving by exploiting specialized propagators.

Despite the effectiveness of CP, constructing reliable and efficient models
often requires specialized domain expertise, and this is perhaps the most signif-
icant obstacle to the wider adoption of CP technology. To address this short-
coming, (semi)-automated modeling is attracting ever-increasing interest, with
Constraint Acquisition (CA) being one of the most promising approaches [13,
3, 26]. CA is an area where combinatorial optimization, and CP in particular,
meets Machine Learning (ML), as CA methods make use of inductive learning
as well as statistical learning techniques [8, 17, 24].

Broadly, CA methods can be categorized into passive and active. In passive
learning (PL), the system acquires constraints from a provided dataset of exam-
ple solutions and non-solutions, without further interaction [8]. Often, passive
CA aims at learning constraints that fit specific patterns [13] or global con-
straints [4]. Conversely, active learning (AL) involves an interactive process: the
system proposes specific variable assignments (queries) to an oracle (e.g., a hu-
man expert or a software system encoding the ground-truth model) to confirm
whether those assignments are valid solutions. The feedback received allows the
system to refine its constraints more accurately. However, active CA systems
cannot deal with global constraints, and are thus limited to learning constraints
over small sets of variables (usually binary ones). Recently, hybrid CA frame-
works have emerged, aiming to harness the complementary strengths of both
approaches [2]. In such a framework, an initial set of global constraints is de-
rived passively from available data, and an active learning phase then completes
the model by learning fixed-arity constraints, which are often instance-specific.

However, there is a crucial shortcoming that has not received much attention
and therefore remains unresolved: when the training data are limited or noisy,
passive learning can introduce invalid constraints, i.e., constraints that do not
appear in the true model, over-fitting on the specific examples provided to the
system. For instance, consider a Sudoku puzzle where, based on the few provided
solution examples, a passive learner may incorrectly infer an AllDifferent con-
straint on the main diagonal, if by chance the variables in the diagonal take
different values in all given training examples. However, this does not hold for
all valid Sudoku solutions, meaning that the model will be over-fitted to the
observed data and an invalid constraint will be introduced. The problem of over-
fitting becomes more severe when only a few solutions are available or when they
are not diverse [1], as is usually the case with real-world problems.

In this paper, we propose a query-driven refinement methodology, specifically
designed to address the problem of over-fitting by identifying and discarding from
the model global constraints that were incorrectly acquired by passive learning.

For each constraint acquired through a passive learning system, we first com-
pute a probabilistic confidence score using a Random Forest classifier trained on
existing CP models. Then, our method generates violating assignments, i.e. as-
signments that violate a specific constraint while satisfying all others, and queries

Addressing Over-fitting in Passive CA 3

the oracle. If a violating assignment is labeled valid, it contradicts the constraint,
which is therefore removed. Otherwise, the confidence score of this constraint is
strengthened through Bayesian reasoning.

Hence, by maintaining and updating confidence scores, the system can make
informed decisions about which constraints to retain or discard.

For the purposes of this study, we demonstrate the applicability and effective-
ness of our violation-based approach focusing on the AllDifferent constraint,
which is the most common global constraint. However, the same methodology
can be applied to other global constraints (e.g., Sum, Count), given suitable
strategies to generate violating assignments. Although our method does not the-
oretically guarantee to remove all over-fitted constraints, an experimental eval-
uation on benchmarks such as Sudoku variants and Exam Timetabling demon-
strates that our refinement step manages to do so, reducing the overall number
of queries compared to purely active learning methods, while improving model
accuracy compared to purely passive or hybrid learning methods.

2 Related Work

Research in CA can be broadly divided into methods that focus on learning fixed-
arity constraints and those that learn global constraints or structural patterns.

Fixed-arity approaches typically rely on active learning to iteratively query
an oracle and validate candidate assignments. A recent family of interactive CA
methods is based on the QUACQ [6] algorithms, using (partial) membership
queries to prune the search space and acquire constraints. Extensions of this
paradigm, such as MQuAcq-2 [25], and GROWACQ [23, 24] leverage structural
properties or probabilistic cues to optimize query generation. Although effective,
these active learning techniques often require a large number of queries.

Passive CA approaches targeting fixed-arity constraints have also been given
some attention in the literature. One of the first passive CA approaches is
Conacq.1 [7], which is a SAT-based version space algorithm for acquiring CP
models from given training examples. Recently, approaches that are robust to
noise have been introduced, integrating ML techniques [18, 17] (e.g., classifiers,
unsupervised learning) or statistical methods [16].

Methods targeting global constraints or structural patterns (e.g., ModelSeeker
[4] and COUNT-CP [13]) are typically passive learners that rely on pattern
matching or frequent pattern mining to capture recurring global properties from
data; however, they too may over-fit in scenarios with sparse or unrepresentative
examples. Hybrid CA methods combine the strengths of both paradigms by first
using passive learning to capture global patterns and then applying active learn-
ing to refine and complete the model. For instance, [2] exploits passive learning
for initially learning global constraints using structural patterns and then uses
active learning to complete the model with missing fixed-arity constraints. Our
work builds on this hybrid methodology by introducing a query-driven refine-
ment phase that actively identifies and removes invalid constraints from the
over-fitted CP model before the active learning phase finalizes the model.

4 Balafas et al.

3 Background

A Constraint Satisfaction Problem (CSP) is a triple (X,D,C), where:

– X is a set of variables,
– D is a set of domains corresponding to the variables, and
– C is a set of constraints restricting the allowable assignments.

A constraint c is a pair (rel(c), var(c)), where var(c) ⊆ X is the scope
of the constraint, and rel(c) is a relation over the domains of the variables in
var(c), restricting their allowed value assignments. The arity of the constraint,
denoted as |var(c)|, indicates the number of variables involved. An assignment
A : X →

⋃
x∈X Dx is a solution iff it satisfies all constraints in C. Global con-

straints capture common substructures across multiple variables. For instance,
the AllDifferent constraint requires that all variables in a set S take distinct
values:

AllDifferent(S) = {A : S →
⋃
x∈S

Dx | ∀x, y ∈ S, x ̸= y : A(x) ̸= A(y)},

and can be decomposed into a semantically equivalent set of binary inequalities:

AllDifferent(S) ≡ {xi ̸= xj | xi, xj ∈ S, i < j}.

Many CSPs exhibit inherent structural patterns that can be effectively ex-
ploited through matrix modelling [9]. In matrix models, decision variables are
organized into one or more matrices—much like the grid structure of a Sudoku
puzzle—that naturally reflect the problem’s structure.

In Constraint Acquisition (CA), the goal is to learn a target CSP (X,D,C∗)
where the vocabulary X,D is considered known while the target set of constraints
C∗ is unknown. Besides the vocabulary, typically CA systems are also given a
language Γ that includes the possible relations that may hold between variables
(e.g. AllDifferent or ≤). CA methods operate over a bias B of (possibly ex-
plicitly stored) candidate constraints, which is constructed using the vocabulary
(X,D) and the constraint language Γ . During the acquisition process, a set of
learned constraints CL ⊆ B is acquired. The system has correctly converged iff
CL is equivalent to C∗.

In passive CA, the system is also given a set of positive examples a set
{A1, A2, . . . , Am} ⊆ sol(X,D,C∗), which is denoted as E+. Possibly, a set of
negative examples E− is also given. The goal of passive learning is to acquire a
set of constraints C that is consistent with the data. In our study, we focus ex-
clusively on global constraints, denoted by CG = { c1g, c2g, . . . , cpg}, which capture
common structural patterns, but may over-fit the training data.

In interactive CA, the candidate constraints in B must have a fixed-arity, as
global constraints with unrestricted arity require a bias of exponential size. An
AL system generates an assignment A∗ to all or some of the variables and asks
the oracle whether A∗ is valid or not. This is known as a Membership Query.
Based on a Yes (valid) or No (invalid) reply to a query, the system removes
constraints from B or adds constraints to CL.

Addressing Over-fitting in Passive CA 5

4 3 1 2

2 1 3 4

3 4 2 1

1 2 4 3

Training Example 1

3 4 1 2

2 1 4 3

4 3 2 1

1 2 3 4

Training Example 2

1 2 3 4

3 4 1 2

2 1 4 3

4 3 2 1

Violating Assignment

Fig. 1: Example of over-fitting in passive CA.

Example 1. To motivate our work, Figure 1 illustrates an example of over-fitting
in passive CA using a 4×4 Sudoku puzzle. In the target model there are 16
variables (one for each cell) and 12 AllDifferent constraints (one for each row,
column, and 2x2 sub-grid).

Assume that a PL system is used to derive the global constraints of this
problem given the language Γ = {AllDifferent}. Such a PL system will create
the set of candidate AllDifferent constraints in B, based on some predefined
patterns, and will use the given solutions to extract the constraints that agree
with the given examples E+. Assume that only the two example solutions from
Figure 1 are given. Note that both examples satisfy all 12 AllDifferent Sudoku
constraints, while their main diagonal (light red shading) also has distinct values
({4, 1, 2, 3} in example 1, {3, 1, 2, 4} in example 2). Using these two examples,
the PL algorithm may over-fit its acquired model to these available examples and
erroneously infer an AllDifferent constraint on the diagonal if such a pattern
is included in the ones it seeks. In the following, we will show how the invalid
constraint can be eliminated using a targeted membership query.

4 Methodology

Our approach integrates passive learning with active learning through a novel
intermediate phase—Query-Driven Refinement—to eliminate invalid global con-
straints that were acquired due to over-fitting in the given examples. For the
purposes of this study, we focus on the AllDifferent constraint.

Figure 2 summarises the data flow among the three phases. From the positive
examples E+ and an initial bias B, the Passive Learning step retains only the
constraints consistent with the data and extracts a first set of global constraints
CG. These global constraints feed the Query-Driven Refinement block, which
utilizes the oracle to eliminate any over-fitted constraint, producing C ′

G. The
refined global constraints—decomposed into binary inequalities—together with
the pruned bias bootstrap the final Active Learning phase; Finally, the Active
Learning phase completes the model by using additional oracle queries to learn
any remaining fixed-arity constraints, populating the set CL. The union C ′

G∪CL

(green box in the figure) is the final model returned by the framework.
The process proceeds in three sequential stages:

6 Balafas et al.

1. Passive Learning
Pruned B

2. Query-Driven
Refinement

3. Active Learning

E+ (Examples)

Initial Bias B CG (Initial Globals) C′
G (Refined Globals) CL (Learned

Fixed-Arity)

Oracle

Final Model: C′
G ∪ CL

pr
un

ed
by

E
+

Fig. 2: Overview of the proposed Hybrid Constraint Acquisition framework. E+:
positive examples, CG: initial global constraints from Passive Learning (PL), B:
bias set (pruned during PL), C ′

G: refined global constraints after Query-Driven
Refinement (QDR), CL: learned fixed-arity constraints from Active Learning
(AL). The Oracle interacts with both QDR and AL phases.

1. Passive Learning: Candidate AllDifferent constraints are acquired from
positive examples E+ to form the set CG.

2. Query-Driven Refinement: Each constraint in CG is first assigned a con-
fidence score, denoting the probability that the constraint belongs to the
target model. This is done using a constraints-level probabilistic classifier,
which is trained on existing CP models. Then, each AllDifferent(S) in CG

is evaluated via violation queries that assign a common value to a variable
pair in S, and it is either refuted or it’s confidence probability is updated
using Bayesian inference.

3. Active Learning: Each AllDifferent in the refined set of constraints is
decomposed into binary ̸= constraints and, together with a bias set B, are
passed on to an AL process that finalizes the model.

In the remainder of this section, we first briefly review the Hybrid Passive-
Active Learning Framework (stages 1 and 3) and then we detail the novel Query-
Driven Refinement phase that we propose in this study.

4.1 Hybrid Passive-Active Learning Framework

In the PL phase, the system is provided with a set E+ of positive examples. Using
E+, the PL algorithm learns the initial set CG of AllDifferent constraints
(see [2] for details). Also, the system constructs a bias set B that contains all
candidate fixed-arity constraints. For the purposes of this study, B contains all
possible binary constraints that can be derived using the basic relations {≠,==
, >,<,≥,≤, }. This set is refined by removing any candidate constraint that is
violated by at least one example in E+.

In the AL phase, the system refines the constraint network by interactively
querying an oracle. First, any AllDifferent constraint that remains in the
model, after the intermediate refinement step has been applied (as detailed be-
low), is decomposed into a set of binary inequalities. This is necessary for the
correct operation of the AL algorithm, which is then initialized with:

Addressing Over-fitting in Passive CA 7

– the current learned set CL, containing the binary inequality constraints de-
rived by the decomposition of the AllDifferent constraints, and

– the bias set B of candidate fixed-arity constraints.

The AL component iteratively generates (often partial) assignments and submits
them as membership queries to the oracle. If a query is answered positively (i.e.,
the assignment is valid), then any candidate constraints in B that conflict with
the query are removed. Conversely, if a query is answered negatively (i.e., the
assignment is not valid), then the AL algorithm identifies the minimal subset of
constraints in B responsible for the violation and adds these to CL (see [25] for
details). Upon termination, the final constraint network is obtained by taking
the union of the AllDifferent constraints in CG and the constraints in CL,
excluding the ̸= constraints of the AllDifferent decompositions.

Although the hybrid framework combines the strengths of both PL and AL,
it still carries an important disadvantage: any constraint acquired during the PL
phase is by default considered valid, meaning that over-fitted constraints will
remain in the final learned model.

4.2 Query-Driven Refinement

To address the over-fitting of passively learned AllDifferent constraints, we
introduce a Query-Driven Refinement procedure. This method actively tests
each learned constraint by generating targeted violation queries and updating
our confidence in its validity. Our approach integrates three key components:

1. A probabilistic classification mechanism that assigns prior probabilities to
candidate constraints, denoting their likelihood of being over-fitted.

2. A query generation mechanism that constructs violating assignments.
3. A Bayesian update framework that refines our confidence in each constraint.

The overall process, summarized in Algorithm 1, proceeds as follows:

Prior Probability The procedure takes as input the set CG of AllDifferent
constraints learned from the passive learning phase of the Hybrid Passive-Active
Learning Framework. To assess whether a constraint c actually belongs to the
target model or is a result of over-fitting, we assign to it a prior confidence
probability Pprior(c) using a Random Forest classifier.

Machine Learning Estimation from Synthetic Data. To train the classi-
fier, synthetic data are generated in a controlled offline process by simulating
known CP models using benchmark problems from the CP benchmark library
CSPLib [11]. For each model, candidate constraints are extracted from a large
set of solution assignments and labeled as follows:

– Positive examples: AllDifferent constraints that truly belong to the model.
– Negative examples: AllDifferent constraints that hold only for the gen-

erated solutions (i.e., they are over-fitted), created by randomly selecting
subsets of variables or perturbing valid groupings.

8 Balafas et al.

For each candidate, we extract a feature vector including: Scope Size (number
of variables); Is Full Row and Is Full Column (binary indicators for complete
rows or columns); Sliding Window Pattern (binary indicator if the candidate
forms a sliding window grouping over the grid); Is Diagonal (binary indicator);
and Average Row and Column Positions (mean indices). These features were
chosen based on domain knowledge of common structural patterns in CSPs and
were found to effectively capture the properties relevant for distinguishing valid
constraints from over-fitted ones.

The classifier outputs a probability p̂ML(c) that candidate c belongs to the
target model, and we set Pprior(c) = p̂ML(c).

Violation Using Membership Queries The goal of the violation phase is
to construct an assignment that deliberately violates a candidate constraint
c = AllDifferent(S) while satisfying all other constraints, and to post this
as a query to the oracle. For each constraint c ∈ CG, we enter a loop that is
terminated if any of the following occurs:

– The oracle deems that a violating assignment, posted as a query, is valid.
– The confidence probability of c reaches a predefined threshold θmax.
– It is not possible to generate an assignment that violates c and satisfies all

other constraints.

These cases are explained in detail below. For now, note that in the first case, c
is removed from the model, whereas in the other two cases it is preserved.

Pairwise Scoring and Query Generation. We first decompose c into binary in-
equalities over all variable pairs (xi, xj) ∈ S. For grid-based problems where
spatial positions are known, we rank these pairs using the scoring function:

score(xi, xj) = α · |d(xi, xj)| − β ·
(
I(xi) + I(xj)

)
,

– d(xi, xj) = |r(xi)−r(xj)|+ |c(xi)−c(xj)| is the Manhattan distance between
xi and xj , with r(x) and c(x) denoting row and column positions;

– I(x) is the involvement score (i.e., the number of candidate constraints in
which x appears);

– α and β are positive weighting parameters that balance the relative contri-
butions of the Manhattan distance and the involvement score.

We then sort the variable pairs in descending order of this score so that pairs
with higher scores, indicating greater spatial separation and lower involvement,
are prioritized. For each pair, we randomly select a single value from the intersec-
tion of the two variables’ domains and we assign it to both variables. Obviously,
this forces the AllDifferent constraint c to be violated, as now two variables
in the scope of the constraint have the same value. We then proceed to extend
this assignment to all variables in the problem using a CP solver. To do this
we remove c from the model and the modified model M ′ is given to the solver.
Crucially, for efficiency, our current implementation selects and tests only one

Addressing Over-fitting in Passive CA 9

random value v per pair. This is a heuristic choice trading exhaustiveness for
speed; a failure to find a completing assignment A∗ with this specific violation
(e.g., due to solver timeout or unsatisfiability with v) does not guarantee that
the constraint c is valid, only that this specific refutation attempt failed. Testing
multiple or all common values is a possible extension but would significantly
increase computational cost, potentially impacting the interactivity of the sys-
tem. The timeout T (line 9) applies per solver call when attempting to find a
complete assignment A∗. It is necessary to keep the overall runtime practical, as
constraint solving is NP-hard. If the solver times out, it is treated as a failure
to find a violating assignment for that specific attempt, but it does not prove
impossibility.

Generating and Evaluating a Violating Assignment. If the modified model M ′

is indeed solved and a complete assignment A∗ is obtained, this assignment is
then submitted as a membership query (ASK(A∗)) to the oracle. Two outcomes
are possible:

– If the oracle accepts A∗ as a valid solution, this contradicts c; so we imme-
diately remove c from the learned model.

– If the oracle rejects A∗, meaning that it is more likely that c is indeed violated
by A∗, we update the probability of c via a Bayesian reasoning, as follows.

Probability Updates and Constraint Removal Let D denote the event
that the oracle rejects the violating assignment. Given the candidate’s current
probability Pprior(c), and assuming:

P (D | c ∈ C∗) = 0.95, P (D | c ̸∈ C∗) = 0.05,

we update the probability using Bayes’ rule:

Ppost(c ∈ C∗ | D) =
P (D | c ∈ C∗)Pprior(c)

P (D | c ∈ C∗)Pprior(c) + P (D | c ̸∈ C∗) (1− Pprior(c))
.

If a violation query results in a "Yes" (i.e., A∗ is accepted by the oracle), then the
candidate c is immediately refuted (i.e., P (c) is set to 0) and removed from C ′

G.
Otherwise, additional queries are generated for c until the updated probability
exceeds the threshold θmax (in which case c is retained). To assess the robustness
of our approach to these parameter choices, we performed a sensitivity analysis.
The analysis shows that varying P (D | c ∈ C∗) within the range [0.70, 0.98]
and P (D | c ̸∈ C∗) within [0.02, 0.30] has a negligible impact on the final model
accuracy and the number of queries. This validates that our parameter settings
yield stable results under moderate variations.

Returning to Example 1, recall that the passive learning phase may erro-
neously infer an AllDifferent constraint on the main diagonal. To refute this
invalid constraint, our method will generate a violation query, shown in the third
grid of Example 1, where we deliberately force a violation by assigning the same
value to two cells along the main diagonal. This assignment, which violates the

10 Balafas et al.

inferred diagonal AllDifferent constraint while satisfying all other constraints,
is then submitted to the oracle. The oracle will accept this assignment as valid
under the target model, and as a result the invalid constraint will be removed
from the model.

Algorithm 1 refines the passively learned set of candidate AllDifferent
constraints, CG. First, for each constraint c (line 1), the algorithm collects all
variable pairs from the scope of c (line 2) in a set VarPairs, sorts them by a
scoring function (line 3), and initializes a boolean flag violatingFound to false
(line 4). Next, it iterates over each pair (xi, xj) (line 5) and checks whether the
two variables share any common value in their domains (line 6). If so, a random
value v is selected (line 7), and a modified model M ′ is solved (line 8). If a solution
(assignment A∗) is found (line 10), violatingFound is set to true (line 11), and
the algorithm breaks out of the inner loop (line 12).

The timeout T is necessary to keep the overall run time manageable. Let us
not forget that in order to find an assignment A∗ in line 9, we need to solve the
CSP that corresponds to M ′, which is an NP-hard problem. If no solution is
found within T , the algorithm proceeds to the next pair of variables in VarPairs.
Alternatively, we could try other values that are common to the two variables un-
der examination. If no violating assignment is found after examining all pairs, the
algorithm assumes that c is valid and proceeds to the next constraint (line 13).
Otherwise, once a violating assignment A∗ has been found, it is submitted to
the oracle (line 14). If the oracle replies “Yes” (line 15), c is removed from CG

(line 16), since A∗ contradicts c. Otherwise, c’s prior probability is updated via
Bayes’ rule (line 19), and if it exceeds the threshold θmax, the algorithm accepts
c without further queries. After all constraints have been processed, the refined
set CG is returned (line 21).

If the inner loop of Algorithm 1 (lines 5-12) completes without finding any
violating assignment A∗ for constraint c (indicated by ‘violatingFound‘ remaining
‘false‘), the algorithm conservatively retains c in CG (line 13’s implicit break).
This occurs if no pairs had common domain values, or if for all tested pairs and
single random values v, the solver timed out or proved unsatisfiability for M ′.
Importantly, this failure to refute c via our heuristic search does not prove that
c is valid or redundant with respect to the other constraints in CG. It merely
signifies that this specific, time-limited search strategy could not find evidence to
discard c. Removing c in this situation would risk discarding a potentially valid
constraint essential to the target model. Determining true redundancy would
require a different, potentially more expensive, analysis.

5 Experiments

This section presents our experimental evaluation, including the implementation
details, the generation of synthetic data for training the Random Forest classifier,
the benchmark problems used, the metrics for comparison with baseline methods,
and the experimental results obtained.

Addressing Over-fitting in Passive CA 11

Algorithm 1 Query-Driven Refinement
Require: CG: candidate AllDifferent constraints with prior probabilities Pprior(c);

confidence threshold θmax; functions score(xi, xj) for pairwise scoring; timeout T
for the solver

1: for all c ∈ CG do
2: Let VarPairs← {(xi, xj) | xi, xj ∈ scope(c), i < j}.
3: Sort VarPairs in descending order of score(xi, xj).
4: violatingFound ← false.
5: for all (xi, xj) ∈ VarPairs do
6: if dom(xi) ∩ dom(xj) ̸= ∅ then
7: Let v be a random value chosen from dom(xi) ∩ dom(xj)
8: C′

G ←
(
CG \ {c}

)
∪ {xi = v, xj = v }, and let M ′ = (X,D,C′

G).
9: Solve M ′ with timeout T to obtain assignment A∗

10: if A∗ is found then
11: violatingFound ← true
12: break
13: if not violatingFound then continue ▷ No violation found; accept c

14: feedback ← ASK(A∗);
15: if feedback = "Yes" then
16: Remove c from CG.
17: continue ▷ c is refuted by the oracle.
18: else
19: Update Pprior(c) via Bayes’ rule.
20: if Pprior(c) > θmax then continue ▷ c is accepted with high confidence.
21: return CG.

The PL component is implemented following the hybrid system described in
[2], which uses the Choco CP solver [19] to test if certain sets of variables satisfy
the AllDifferent constraint in the given examples. In the violation-based AL
phase, we use the CPMPy modeling library [12] for constructing and manipu-
lating CP models and Google OR-Tools [15] to generate queries (feasible assign-
ments A∗). The final AL phase is implemented using PyConA [22], a Python
library for interactive CA, which includes an implementation of MQuAcq-2. To
load our benchmark problems for evaluation, we employ the standardized data
format specified by the PTHG21 CA Challenge [21]. This format defines the
structure of solutions—typically as matrices for grid-based problems—ensuring
that the examples are encoded in a consistent and reproducible manner. For
the solving of modified models M ′ in the violation phase, we set the timeout
T to 5 seconds. In our scoring function, we set the parameters to α = 1.0 and
β = 0.5. These values were determined through preliminary tuning to balance
the contributions of the Manhattan distance and the involvement score.

5.1 Synthetic Data Generation for Classifier Training

To estimate the validity of candidate global constraints, we train a Random For-
est classifier on synthetic data generated from several CSPLib benchmarks [11]

12 Balafas et al.

that are modeled using AllDifferent constraints, including Quasigroup Ex-
istence (Latin Square), All-Interval Series, Magic Squares, Langford’s Number
Problem, N-Queens, Quasigroup Completion, Costas Arrays, n-Queens Comple-
tion, and Blocked n-Queens Problem.

For each benchmark, we generate a large set of solution assignments using
the corresponding CP model and extract candidate AllDifferent constraints.
Constraints inherent to the target model are labeled as positive examples, while
those that hold only for the provided solutions (i.e., over-fitted constraints) are
labeled as negative examples. A feature vector is constructed for each candi-
date using the attributes described in subsection 4.2. From the synthetic CSP
instances, we extracted approximately 500 candidate constraints in total, with
around 200 positive examples (true constraints from the target model) and 300
negative examples (over-fitted constraints). The dataset was split into an 80/20
training/test partition and subjected to 10-fold cross-validation. Using Scikit-
learn [14], our Random Forest classifier achieved an average accuracy of 92%.
These results indicate that the classifier reliably discriminates between valid and
over-fitted candidate constraints on the synthetic dataset.

5.2 Benchmark Problems for Constraint Acquisition

We evaluate our method on puzzle and realistic benchmark problems. Specifi-
cally, 9×9 Sudoku (S9x9), Greater-Than Sudoku (GTS), JSudoku (JSud), and
two instances of Exam Timetabling (ET1 and ET2). Standard Sudoku features
a well-known model with 27 AllDifferent constraints—one for each row, col-
umn, and sub-grid—while Greater-Than Sudoku and JSudoku incorporate ad-
ditional binary greater-than (>) constraints. In the Exam Timetabling problem,
AllDifferent constraints are critical for ensuring that exams with overlapping
student enrollments are scheduled in distinct time slots or rooms. Our method
is compared against two baselines:

1. MQuAcq-2, which is a purely active learning method [25].
2. Our earlier hybrid CA framework, which employs PL plus AL, without the

query-driven refinement [2].

5.3 Results and Discussion

Table 1 summarizes our experimental results by reporting the following met-
rics: the number of given solutions (Sols), the number of candidate constraints
initially learned by passive learning (StartC), the number of constraints invali-
dated by our query-driven refinement (InvC), and the number of AllDifferent
constraints in the target model (CT). In addition, we give the size of the gen-
erated bias (Bias), the number of violation queries for our method’s refinement
phase (ViolQ), active learning queries for our method’s AL phase (MQuQ), and
the total queries for our proposed method (TQ = ViolQ + MQuQ). For com-
parison with baselines, we report the total queries used by the purely Active
Learning baseline (MQuAcq-2), denoted as ALQ, and the total queries used

Addressing Over-fitting in Passive CA 13

by the baseline Passive+Active hybrid approach (which lacks the query-driven
refinement phase), denoted as PAQ. Timing metrics include durations for our
method’s violation phase (VT(s)), active learning phase (MQuT(s)), and over-
all runtime (TT(s)), as well as total runtimes for the purely Active Learning
baseline, ALT(s), and the Passive+Active baseline, PAT(s).

Table 1: Experimental results comparing our proposed method against baseline
Pure Active Learning and baseline Passive+Active.
Prob. Sols StartC InvC CT Bias ViolQ MQuQ TQ ALQ PAQ VT(s) MQuT(s) TT(s) ALT(s) PAT(s)

S9x9 2 47 20 27 4287 141 255 396

6672

36 50.50 47.19 97.69

634.19

67.83
S9x9 5 35 8 27 1814 105 199 304 22 32.81 29.19 61.99 39.18
S9x9 10 33 6 27 1400 99 181 280 20 27.83 25.07 52.89 31.37
S9x9 50 30 3 27 813 90 107 197 17 25.74 19.02 44.77 23.72

GTS 2 44 17 27 5498 132 279 411

6612

129 55.97 137.21 193.17

651.3

32.8
GTS 5 35 8 27 3036 105 272 377 263 56.42 127.15 183.58 13.59
GTS 20 32 5 27 1642 96 243 339 292 48.85 132.66 181.51 117.75
GTS 200 28 1 27 666 84 150 234 250 41.43 53.52 94.94 97.55

JSud 2 68 41 27 4952 449 3280 3729

6844

746 30.13 236.29 276.68

653.82

308.74
JSud 20 68 41 27 4559 449 3054 3503 938 30.04 227.50 258.44 529.89
JSud 200 59 32 27 4514 409 2809 3218 951 31.98 249.58 282.28 356.19
JSud 500 52 25 27 2373 156 1218 1374 669 27.56 263.66 291.69 257.32

ET1 2 41 25 16 1661 89 921 1110

7114

1025 68.14 842.12 910.42

1844.41

1587.62
ET1 5 36 20 16 1021 67 883 950 678 62.38 654.89 717.64 984.56
ET1 10 27 11 16 874 48 853 901 457 56.42 159.45 215.32 308.72
ET1 50 21 5 16 562 35 451 486 312 51.08 112.24 163.09 287.33

ET2 2 64 44 20 2864 147 2592 2739

9483

2121 84.32 974.68 1059.24

2286.09

1723.57
ET2 5 48 28 20 2156 92 1968 2060 1487 76.42 714.64 791.15 1461.09
ET2 10 29 9 20 1687 67 1452 1519 768 69.98 185.22 255.43 897.44
ET2 50 24 4 20 952 49 869 918 687 51.43 167.6 219.25 463.61

In our experiments, we observed that each invalid AllDifferent constraint
was refuted with a single violation query. For constraints that were retained in
the model, the maximum number of violation queries executed was 3. This low
query count is not very surprising because: (i) an AllDifferent constraint can
be refuted by simply forcing any pair of variables within its scope to take the
same value, and (ii) the Bayesian update mechanism was designed to aggressively
increase the confidence probabilities, thereby avoiding unnecessary queries on
valid constraints.

In the standard 9×9 Sudoku experiments, when only 2 training solutions
are provided, the passive phase initially infers 47 global constraints. Our query-
driven refinement then invalidates 20 of these, yielding the correct final model
of 27 AllDifferent constraints (CT). With an increasing number of training
solutions (5, 10, and 50), the initial candidate count decreases to 35, 33, and
30 respectively, while the number of invalidated constraints correspondingly de-
creases to 8, 6, and 3, yet the final model consistently contains the target 27
constraints. Moreover, with more training solutions the bias size is reduced from
4287 to 813 (by eliminating fixed-arity constraints that are inconsistent with the
provided examples), and the total number of violation queries declines from 141

14 Balafas et al.

to 90. Consequently, the overall query count is reduced from 396 to 197, and the
runtime decreases from 97.69 seconds to 44.77 seconds.

When compared to the purely active learning approach (i.e. MQuAcq-2),
our hybrid CA method demonstrates significant efficiency gains, both in query
burden and cpu time, as MQuAcq-2 requires 6672 queries and 634.19 seconds
to learn the model of 9x9 Sudoku. The baseline hybrid CA approach yields
low query counts (PAQ ranges from 36 down to 17) and shorter passive phase
runtimes (PAT decreases from 67.83 seconds to 23.72 seconds). However, without
the refinement mechanism, this baseline fails to eliminate over-fitted constraints,
thereby compromising the correctness of the final model.

In the Greater-Than Sudoku (GTS) experiments, with 2 training solutions
the passive phase infers 44 candidates and 17 are then invalidated, producing
the target model of 27 constraints. With 5, 20, and 200 training solutions, the
candidate counts decrease to 35, 32, and 28, with invalidations of 8, 5, and 1,
respectively. Correspondingly, the bias size reduces from 5498 to 666, violation
queries decline from 132 to 84, overall queries drop from 411 to 234, and the
runtime decreases from 193.17 to 94.94 seconds. The purely active learning ap-
proach requires 6612 queries and 651.3 seconds, highlighting significant efficiency
gains for our method. The baseline hybrid CA uses fewer queries (129 vs. our
411 for 2 training solutions) but fails to eliminate over-fitted constraints.

In JSudoku, with 2 training solutions the passive phase infers 68 candidates
and 41 are then invalidated to yield 27 constraints. As training solutions increase
to 20, 200, and 500, learned constraint counts become 68, 59, and 52, and inval-
idations reduce to 41, 32, and 25, respectively. The bias size falls from 4952 to
2373 and overall queries decline from 3729 to 1374, while runtime remains around
277–292 seconds. Although the baseline hybrid CA gives fewer queries and lower
runtimes, our query-driven refinement obtains the correct model, with the num-
ber of queries ranging from 746 with 2 initial solutions to 669 with 500 solutions.
In contrast, the purely active approach requires 6844 queries and 653.82 seconds.

In the Exam Timetabling instances (ET1 and ET2), with only 2 solutions
provided, the passive phase infers 41 and 64 candidate constraints for ET1 and
ET2, respectively. Our query-driven refinement then invalidates 25 constraints in
ET1 and 44 in ET2, yielding the correct final models of 16 and 20 AllDifferent
constraints. As more training solutions become available, the number of learned
AllDifferent constraints decreases, bias sizes shrink (from 1661 to 562 for ET1
and from 2864 to 952 for ET2), and runtimes are substantially reduced (from
910.42 to 163.09 seconds for ET1 and from 1059.24 to 219.25 seconds for ET2).

Although the baseline hybrid CA (PAQ) often requires fewer queries, it does
not remove over-fitted constraints and thus may produce an incorrect final model.
For instance, in ET1 with 2 solutions, PAQ uses 1025 queries—slightly fewer than
our 1110 queries—yet fails to eliminate the spurious constraints. A similar pat-
tern arises in ET2, where PAQ again omits the refinement step and consequently
runs fewer queries (2121 vs. our 2739 for 2 training solutions, or 687 vs. our 918
for 50 training solutions) but retains invalid constraints. In contrast, a purely
active approach requires 7114 (ET1) and 9483 (ET2) queries, with active learn-

Addressing Over-fitting in Passive CA 15

ing times of 1844.41 and 2286.09 seconds, respectively, making our query-driven
refinement a far more efficient alternative.

Overall, the experimental results demonstrate that through the query-driven
violation mechanism, we manage to obtain the correct target AllDifferent
constraints in the learned model. And importantly, this is achieved while sig-
nificantly reducing the number of queries and overall runtime compared to the
purely active learning method.

6 Conclusion and Future Work

Constraint Acquisition is an area where combinatorial optimization, and in par-
ticular CP, meets ML. Despite the numerous recent developments in CA, a short-
coming of existing learning methods that has not been addressed yet, is that of
over-fitting the learned constraint model to the available example solutions.

In this paper, we tackle the problem of over-fitting, focusing on learning mod-
els with the common AllDifferent constraint, by integrating a query-driven
refinement mechanism into a hybrid CA framework. Our approach employs
a Random Forest classifier to assign prior probabilities to learned constraints
and generates targeted violation queries to eliminate constraints that have been
wrongly acquired because of over-fitting. Experimental results demonstrate that
our method converges to the correct target model while significantly reducing
the number of queries and overall runtime compared to purely active learning.

It is important to note a limitation of the current refinement strategy: it
focuses on refuting individual candidate constraints c ∈ CG by finding an as-
signment A∗ that violates only c while satisfying CG \ {c}. This approach may
not detect more complex over-fitting scenarios, such as when multiple incorrect
constraints are symmetrically involved, or where refuting one incorrect constraint
requires violating another (potentially also incorrect) constraint simultaneously.
Handling such coupled errors, potentially by exploring violations of small subsets
of constraints, remains an open challenge and an avenue for future research.

In the future, we plan to extend our query-driven refinement methodology
to other global constraint types, such as Sum and Count. This is a non-trivial
extension that will require developing specialized violation generation strategies
tailored to the semantics of each constraint. For instance, to refute a candidate
Sum(S, target) constraint, one might try to find an assignment where the sum
of variables in S slightly deviates from target while satisfying all other model
constraints. Similarly, for a Count constraint, the strategy would involve find-
ing an assignment that marginally violates the specified count. Furthermore, a
promising direction is to not only attempt to violate the constraint on the full
set S, but also to explore violations on its critical subsets. Identifying the small-
est subset of variables within S whose values cause the violation could provide
more precise feedback for refinement or lead to the discovery of related, more ac-
curate constraints. The pairwise scoring heuristic used for AllDifferent might
also need adaptation or replacement with more general or constraint-specific
heuristics (perhaps incorporating subset exploration ideas) to guide the search

16 Balafas et al.

for violating assignments effectively for these and other global constraints. We
also intend to explore alternative ML techniques for prior probability estimation,
potentially incorporating features specific to different constraint types.

Acknowledgments

The research work was supported by the Hellenic Foundation for Research and
Innovation (HFRI) under the 4th Call for HFRI PhD Fellowships (Fellowship
Number: 9446).

References

1. Balafas, V., Tsouros, D., Ploskas, N., Stergiou, K.: The impact of solution diversity
on passive constraint acquisition. In: Proceedings of the 13th Hellenic Conference
on Artificial Intelligence. SETN ’24, Association for Computing Machinery (2024)

2. Balafas, V., Tsouros, D.C., Ploskas, N., Stergiou, K.: Enhancing constraint ac-
quisition through hybrid learning: An integration of passive and active learning
strategies. International Journal on Artificial Intelligence Tools (2024)

3. Barral, H., Gaha, M., Dems, A., Côté, A., Nguewouo, F., Cappart, Q.: Acquir-
ing constraints for a non-linear transmission maintenance scheduling problem. In:
CPAIOR 2024. LNCS, vol. 14742, pp. 34–50. Springer (2024)

4. Beldiceanu, N., Simonis, H.: Modelseeker: Extracting global constraint models from
positive examples. In: Data Mining and Constraint Programming, Lecture Notes
in Computer Science vol. 10101, Springer. pp. 77–95 (2016)

5. Beldiceanu, N., Carlsson, M., Demassey, S., Petit, T.: Global constraint catalogue:
Past, present and future. Constraints 12, 21–62 (2007)

6. Bessiere, C., Coletta, R., Hébrard, E., Katsirelos, G., Lazaar, N., Narodytska, N.,
Quimper, C.G., Walsh, T.: Constraint Acquisition via Partial Queries. In: IJCAI:
International Joint Conference on Artificial Intelligence. pp. 475–481 (Aug 2013)

7. Bessiere, C., Coletta, R., Koriche, F., O’Sullivan, B.: A sat-based version space
algorithm for acquiring constraint satisfaction problems. In: ECML 2005. pp. 23–
34. Springer, Springer, Berlin, Heidelberg (2005)

8. Bessiere, C., Koriche, F., Lazaar, N., O’Sullivan, B.: Constraint acquisition. Arti-
ficial Intelligence 244, 315–342 (2017)

9. Flener, P., Frisch, A., Hnich, B., Kiziltan, Z., Miguel, I., Walsh, T.: Matrix mod-
elling. In: Proc. of the CP-01 Workshop on Modelling and Problem Formulation.
p. 223 (2001)

10. Freuder, E.C., O’Sullivan, B.: Grand challenges for constraint programming. Con-
straints 19, 150–162 (2014)

11. Gent, I.P., Walsh, T.: CSPLIB: A Benchmark Library for Constraints (1999)
12. Guns, T.: Increasing modeling language convenience with a universal n-dimensional

array, cppy as python-embedded example. In: Proceedings of the 18th workshop
on Constraint Modelling and Reformulation at CP (Modref 2019). vol. 19 (2019)

13. Kumar, M., Kolb, S., Guns, T.: Learning constraint programming models from data
using generate-and-aggregate. In: 28th International Conference on Principles and
Practice of Constraint Programming (CP 2022). LIPIcs, vol. 235, pp. 29:1–29:16

14. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

Addressing Over-fitting in Passive CA 17

15. Perron, L., Didier, F.: Cp-sat, https://developers.google.com/optimization/
cp/cp_solver/

16. Prestwich, S.D.: Robust constraint acquisition by sequential analysis. In: 24th Eu-
ropean Conference on Artificial Intelligence (ECAI 2020). Frontiers in Artificial
Intelligence and Applications, vol. 325, pp. 355–362. IOS Press (2020)

17. Prestwich, S.: Unsupervised constraint acquisition. In: 2021 IEEE 33rd Interna-
tional Conference on Tools with Artificial Intelligence (ICTAI). pp. 256–262 (2021)

18. Prestwich, S.D., Freuder, E.C., O’Sullivan, B., Browne, D.: Classifier-based con-
straint acquisition. Annals of Mathematics and Artificial Intelligence 89, 655–674
(2021)

19. Prud’homme, C., Jean-Guillaume, F., Xavier, L.: Choco solver documentation
(2016), https://choco-solver.org

20. Rossi, F., Van Beek, P., Walsh, T.: Handbook of constraint programming. Elsevier
(2006)

21. Simonis, H., Freuder, E.: PTHG21 Challenge (aug 2021).
https://doi.org/10.5281/ZENODO.5155465

22. Tsouros, D., Guns, T.: A cpmpy-based python library for constraint acquisition
- pycona. In: Proc. AAAI 2025 Bridge on Constraint Programming and Machine
Learning (CPML) (2025)

23. Tsouros, D.C., Berden, S., Guns, T.: Guided Bottom-Up Interactive Constraint
Acquisition. In: 29th International Conference on Principles and Practice of Con-
straint Programming (CP 2023). vol. 280, pp. 36:1–36:20 (2023)

24. Tsouros, D.C., Berden, S., Guns, T.: Learning to learn in interactive constraint
acquisition. In: Thirty-Eighth AAAI Conference on Artificial Intelligence, AAAI
2024, February 20-27, 2024, Vancouver, Canada. pp. 8154–8162. AAAI Press (2024)

25. Tsouros, D.C., Stergiou, K., Bessiere, C.: Structure-driven multiple constraint ac-
quisition. In: Principles and Practice of Constraint Programming. pp. 709–725.
Springer International Publishing (2019)

26. Tsouros, D.C., Stergiou, K., Sarigiannidis, P.G.: Efficient methods for constraint
acquisition. In: Principles and Practice of Constraint Programming (CP 2018). pp.
373–388. Springer International Publishing (2018)

