
From Long to Lean: Performance-aware and Adaptive Chain-of-Thought
Compression via Multi-round Refinement

Anonymous ACL submission

Abstract

Chain-of-Thought (CoT) reasoning improves001
performance on complex tasks but introduces002
significant inference latency due to its verbosity.003
In this work, we propose Multiround Adap-004
tive Chain-of-Thought Compression (MACC),005
a framework that leverages the token elastic-006
ity phenomenon—where overly small token007
budgets may paradoxically increase output008
length—to progressively compress CoTs via009
multiround refinement. This adaptive strategy010
allows MACC to dynamically determine the011
optimal compression depth for each input. Our012
method achieves an average accuracy improve-013
ment of 5.6% over state-of-the-art baselines,014
while also reducing CoT length by an average015
of 47 tokens and significantly lowering latency.016
Furthermore, we show that test-time perfor-017
mance—accuracy and token length—can be018
reliably predicted using interpretable features019
like perplexity and compression rate on train-020
ing set. Evaluated across different models,021
our method enables efficient model selection022
and forecasting without repeated fine-tuning,023
demonstrating that CoT compression is both024
effective and predictable. Our code will be re-025
leased to facilitate reproducibility and future026
research in CoT compression.027

1 Introduction028

Chain-of-Thought (CoT) reasoning significantly029

enhances the performance of large language mod-030

els (LLMs) on complex tasks by decomposing031

questions into intermediate steps and reasoning032

sequentially (Nye et al., 2021; Wei et al., 2023;033

Kojima et al., 2023). Recent models such as034

OpenAI-o1 (OpenAI et al., 2024) and DeepSeek-035

R1 (DeepSeek-AI et al., 2025) demonstrate that036

Test-Time Scaling (TTS)—increasing CoT length037

during inference—can further boost reasoning ac-038

curacy (Snell et al., 2024; Tian et al., 2025; Yang039

et al., 2025). Nevertheless, longer CoTs substan-040

tially increase inference latency and memory usage041

Let's think step by step and
use less than 10 tokens:

Compress Prompt 2

Question

Large
Language Model

Original Chain-of-Thought

Token Elasticity

Successfully
compressed

Chain-of-Thought 2

Chain-of-Thought 1

Shorter

Longer

Let's think step by step and
use less than 50 tokens:

Compress Prompt 1

Question

Let's think step by step

Original Prompt

Question

Figure 1: Visualization of the Token Elasticity phe-
nomenon. As the prompt-specified token budget de-
creases, the actual token cost initially declines but even-
tually rebounds when the budget becomes too small.

due to larger key-value caches and the quadratic 042

complexity of attention for sequence length (Dao 043

et al., 2022; Liu et al., 2024a; SageScribe, 2025). 044

To address the inefficiency of lengthy CoT reason- 045

ing, recent work has proposed a range of compres- 046

sion strategies. Token-level methods (TokenSkip 047

(Han et al., 2025), C3oT (Kang et al., 2024)) prune 048

redundant steps and use fine-tuning to preserve per- 049

formance under compression (Jang et al., 2024; Liu 050

et al., 2024b; Cui et al., 2025; Shen et al., 2025a; Yu 051

et al., 2024). Prompt-based approaches (CoD (Xu 052

et al., 2025), SoT (Aytes et al., 2025), TALE-EP 053

(Han et al., 2025)) guide concise reasoning via rout- 054

ing prompts, minimal templates, or difficulty-aware 055

designs (Yan et al., 2025; Zhang et al., 2025; Sui 056

et al., 2025). Reward-based methods (O1-Pruner 057

(Luo et al., 2025), DAST (Shen et al., 2025b), IBPO 058

(Xu et al., 2025)) optimize reasoning length via re- 059

inforcement learning or preference modeling (Qu 060

et al., 2025b; Yeo et al., 2025; Chen et al., 2025). 061

However, prior approaches lack fine-grained 062

adaptability in managing the trade-off between 063

compression and accuracy across diverse rea- 064

soning inputs. Pruning- and prompt-based meth- 065

ods typically apply uniform compression, ignoring 066

input-specific reasoning complexity, while reward- 067

driven strategies optimize global preferences with- 068

1

out instance-level control. For example, TokenSkip069

performs static token pruning and often degrades070

performance under tight budgets (Xia et al., 2025);071

CoD uses fixed prompts without controlling rea-072

soning depth per instance (Xu et al., 2025); and073

TALE, though budget-aware, compresses in a sin-074

gle pass without adapting to input difficulty (Han075

et al., 2025). These methods lack the adaptive re-076

finement needed to balance efficiency and accuracy077

in a controllable, input-sensitive manner.078

To address these issues, we proposed Multi-079

round Adaptive Chain-of-Thought Compression, a080

framework grounded in the observed phenomenon081

of token elasticity-as shown in Figure 1—where082

overly aggressive compression may paradoxically083

increase token usage due to degraded generation084

quality. Our framework consists of three main085

components: (1) Chain-of-thought generation, (2)086

Multi-round progressive compression, and (3) Mul-087

titask fine-tuning. Given a question, we first prompt088

a model to generate a full reasoning trace, which089

is then progressively compressed through multiple090

rounds using compressor models. Each round re-091

moves redundant or verbose steps while preserving092

essential information, with dynamic control over093

compression ratios to adapt granularity. The final094

compressed CoTs are used to fine-tune models for095

efficient inference. Moreover, we proposed Perfor-096

mance Estimation Hypothesis: test-time perfor-097

mance of the compressed CoT can be estimated098

before fine-tuning, based solely on a small set099

of interpretable features derived from the train-100

ing set—including compression rate, perplexity,101

original model training set accuracy, and average102

training set CoT length. We train lightweight re-103

gression models to predict both the downstream104

accuracy and token efficiency of the target model105

on the test set, enabling early-stage compression106

strategy selection without costly retraining. This107

predictive capacity makes our framework both effi-108

cient and performance-aware.109

To sum up, our key contributions are:110

1. We propose MACC, a multi-round compres-111

sion framework that adaptively shortens reasoning112

chains while preserving essential information.113

2. MACC achieves 5.6% higher accuracy, re-114

duces reasoning by 47 tokens on average, and low-115

ers latency, while supporting efficient model selec-116

tion via interpretable metrics.117

3. We propose Performance Estimation Hypoth-118

esis and demonstrate that fine-tuned performance119

can be predicted from interpretable features on the120

training set, enabling efficient strategy selection. 121

2 Related Work 122

2.1 LLM Reasoning and Token Cost 123

Recent advances in LLM reasoning techniques, 124

particularly CoT prompting and its extensions 125

such as self-consistency and tree-structured reason- 126

ing, have significantly enhanced complex problem- 127

solving capabilities (Wei et al., 2023; Wang et al., 128

2023; Yao et al., 2023; Zhou et al., 2023). A variety 129

of techniques have been proposed to enhance LLM 130

reasoning. Chen et al. (2024) frame reasoning as 131

latent distribution sampling optimized via varia- 132

tional methods, while Ho et al. (2023) leverages 133

LLMs as reasoning teachers to distill knowledge 134

into smaller models. But at the cost of substantially 135

increased token consumption and computational 136

overhead (Wang et al., 2024; Chiang and yi Lee, 137

2024; Bhargava et al., 2024). To improve efficiency, 138

Li et al. 2021 propose a multi-hop filtering method 139

to discard irrelevant reasoning, but it is limited to 140

traditional neural networks and does not generalize 141

to LLMs. Zheng et al. (2023) enhance inference 142

speed via response length prediction and schedul- 143

ing, yet their method operates only at the schedul- 144

ing level without reducing token usage. Hao et al. 145

(2024) lowers token cost by replacing decoded text 146

with continuous latent tokens. 147

2.2 Chain-of-Thought Compression 148

To improve LLM inference efficiency, recent work 149

explores compressing CoT reasoning while preserv- 150

ing answer correctness. These approaches can be 151

broadly categorized into three paradigms (Liu et al., 152

2025; Qu et al., 2025a). First, Token-level compres- 153

sion methods, such as TokenSkip (Han et al., 2025) 154

and C3oT (Kang et al., 2024), prune redundant 155

tokens or steps and use supervised fine-tuning to 156

maintain accuracy under varying compression ra- 157

tios (Jang et al., 2024; Liu et al., 2024b). Second, 158

Prompt design and sketch-based approaches, in- 159

cluding CoD (Xu et al., 2025), SoT (Aytes et al., 160

2025), and TALE-EP (Han et al., 2025), guide con- 161

cise reasoning using routing prompts, minimalist 162

structures, or token-aware templates (Yan et al., 163

2025; Zhang et al., 2025; Sui et al., 2025). Third, 164

Reward-based and preference optimization meth- 165

ods, such as O1-Pruner (Luo et al., 2025), DAST 166

(Shen et al., 2025b), and IBPO (Xu et al., 2025), 167

leverage reinforcement learning or preference ob- 168

jectives to balance length and accuracy during gen- 169

2

Multi-Round Compression

Round 2

Round 3

Round 4

Fine Tune

Round 1

CoT Generation

Inference

Original CoT
Selected CoT

Answer

Compressed CoT

Answer

Question

Question

Token Elasticity

Selected CoTQuestion Answer

Original CoT

Figure 2: Overview of MACC framework. Given an input question, model first generates a full reasoning trace
(CoT). The CoT is then progressively compressed through multiple rounds using a compressor model to remove
redundancy while retaining essential reasoning content. The resulting compressed CoTs are used to fine-tune a
smaller target model for efficient inference.

eration (Qu et al., 2025b).170

While effective, most existing methods apply171

static or globally optimized strategies, lacking172

adaptability to instance-specific reasoning com-173

plexity. We address this gap through multiround174

adaptive compression guided by token elasticity.175

3 Method176

3.1 Token Elasticity Phenomenon177

Recent studies have identified the Token Elasticity178

phenomenon in LLMs (Han et al., 2025), where179

overly tight token budgets can lead to unexpected180

increases in output length due to compensatory181

and redundant generation. This reveals a nonlinear182

relationship between token constraints and actual183

model behavior. Motivated by this, we adopt multi-184

round progressive compression strategy that gradu-185

ally tightens the CoT length over several steps. This186

allows the model to adapt more smoothly, avoiding187

abrupt information loss and mitigating the adverse188

effects of over-compression.189

3.2 CoT Generation190

Let x denote the task input, and let Dtrain be the191

training dataset and P be the prompt template. The192

initial CoT C0 is generated by the target model S193

conditioned on x, P , and parameters θS learned194

from Dtrain: 195

r0 = S(x | P, θS(Dtrain)) (1) 196

This initial CoT serves as the uncompressed se- 197

quence and is iteratively refined into shorter, se- 198

mantically equivalent versions. 199

3.3 Multi-Round Progressive Compression 200

We then iteratively apply a sequence of N compres- 201

sion process {f1, f2, . . . , fN}, implemented via an 202

API-based compressor model, to produce a series 203

of compressed CoTs: 204

ri = fi(ri−1 | Pcompress), for i = 1, 2, . . . , N
(2) 205

Each fi operates over the previous CoT Ci−1 and 206

is guided by a fixed compression prompt Pcompress. 207

This design enables the gradual reduction of token 208

length while attempting to preserve the correctness 209

and reasoning validity of the original CoT. 210

To quantify the effect of compression at each 211

stage, we define the compression rate at round i as: 212

CRi =
|ri|tok
|r0|tok

(3) 213

where tok denotes the number of tokens of the 214

CoT sequence. 215

3

Our objective is to adaptively determine the max-216

imum achievable compression rate for each input-217

specific CoT r, while preserving its reasoning va-218

lidity. Instead of predefining a fixed target length or219

compression ratio, we propose a progressive com-220

pression framework that iteratively explores the221

compressibility of r over multiple rounds. In each222

compression round i, a shorter variant ri is gen-223

erated. The process terminates once the length of224

the newly generated chain lentok(ri) exceeds that225

of the previous round lentok(ri−1), indicating that226

further compression leads to redundancy or loss of227

fidelity. In such cases, ri−1 is selected as the max-228

imally compressed yet valid chain r∗. Formally,229

the maximally compressed yet valid chain r∗ is230

selected as:231

r∗ = argmin
rj
|rj |tok

subject to |rj |tok < |rj−1|tok

(4)232

where |rj |tok denotes the tokenized length of rj .233

The selected r∗ is subsequently used to fine-tune234

the target model. This adaptive criterion ensures235

compression proceeds only when meaningful to-236

ken reduction is achieved, avoiding redundancy or237

semantic loss, and eliminating the need for man-238

ual compression targets. The process of the entire239

framework is shown in Algorithm 1240

3.4 Multi-Task Fine-Tune241

After obtaining the compressed rationale r∗ via the
multi-round progressive compression framework
described in Section 3.2, we employ a multi-task
fine-tuning strategy to train the target model. We
unify training on both original and compressed
CoT by prepending a special token <compress>,
denoted as tc in the following format, signals
the model to reason based on a concise chain of
thought. Each training sample is thus formatted as:

Q [EOS] tc[EOS] Compressed CoT r∗

where ⟨Q,A⟩ indicates the ⟨question, answer⟩242

pair. Formally, given a question x, compression243

token tc, and the output sequence y = {yi}li=1,244

which includes the compressed CoT r∗ and the an-245

swer a, we fine-tunes the target LLM S, enabling246

it to perform chain-of-thought in a compressed pat-247

tern by minimizing248

L =

l∑
i=1

logP (yi | x, tc,y<i;θS) (5)249

Algorithm 1: MACC: Multi-Round Adap-
tive Chain-of-Thought Compression for
Dataset Construction
Input: Training set D = {xj}Nj=1, target

model S , compressor model C,
initial prompt P , compression
prompt Pcompress, max rounds T

Output: Compressed training set
D′ = {(xj , r∗j)}Nj=1

Initialize D′ ← ∅;
foreach xj ∈ D do

r0 ← S(P(xj));
r∗ ← r0;
for i = 1 to T do

ri ← C(Pcompress(xj , ri−1));
if lentok(ri) > lentok(ri−1) then

break;

r∗ ← ri;

Add (xj , r
∗) to D′;

return D′

where y =
{
c∗1, · · · , c∗m′ , a1, · · · , at

}
. To retain 250

the reasoning capabilities of LLMs, we include a 251

fraction of original CoT trajectories in the training 252

data, without setting tc. 253

3.5 Inference 254

MACC performs inference via autoregressive de- 255

coding. Given a question x and a compression 256

token tc, the input prompt follows the fine-tuning 257

format: Q [EOS] tc [EOS]. The LLM S then gen- 258

erates the output sequence ŷ step by step: 259

ŷ = argmax
y∗

l′∑
j=1

logP
(
yj | x, tc,y<j ;θS

)
where ŷ = {ĉ1, . . . , ĉm′′ , â1, . . . , ât′} represents 260

the generated output sequence, consisting of CoT 261

tokens ĉ and final answer tokens â. The training 262

and inference workflow of MACC is illustrated in 263

Figure 2. 264

3.6 Performance Estimation Hypothesis 265

Empirical observations suggest that the down- 266

stream performance of compressed CoT reason- 267

ing—measured by fine-tuned accuracy and CoT 268

length—is correlated with interpretable features 269

such as compression rate and perplexity. Based on 270

this, we hypothesize that compressed performance 271

can be predicted prior to fine-tuning: 272

4

Given a compressor model C, a target model S,273

and a training set Dtrain, we define a feature vec-274

tor x that encodes compression-related statistics,275

including the compression rate, perplexity, origi-276

nal CoT length, accuracy of both compressor and277

target model (the answer accuracy on training set).278

The downstream performance y = [Acc,Len] on279

test set Dtest can be estimated as follows:280

P (y | x) = P (x | y) · P (y)

P (x)
(6)281

In practice, we approximate the posterior using282

Bayesian regression (e.g., Bayesian Ridge), yield-283

ing predictive distributions:284

y ∼ N
([

µ1

µ2

]
,

[
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

])
(7)285

where µ(·) and σ2(·) denote the posterior mean and286

variance conditioned on the compression features.287

This probabilistic formulation enables principled288

estimation of post-compression performance, sup-289

porting early-stage strategy selection without costly290

full fine-tuning. In practice, we implement this291

with Bayesian ridge regression, which provides292

both predictive means and uncertainty estimates.293

The effectiveness of this hypothesis is empirically294

validated in Section 4.4.2.295

4 Experiments296

4.1 Baseline297

To benchmark the effectiveness of our proposed298

compression framework, we compare against two299

recent and representative methods for efficient CoT300

reasoning:301

• TokenSkip (Xia et al., 2025). Compresses302

chain-of-thought by pruning low-importance to-303

kens and fine-tuning the model to generate concise304

rationales based on a target compression ratio.305

• TALE (Han et al., 2025). TALE controls CoT306

length by estimating token budgets from problem307

complexity, enabling efficient inference with mini-308

mal accuracy loss.309

• Prompt. Following Xia et al. (2025), we310

guides the LLM to shorten its CoT output by incor-311

porating explicit instructions into the prompt. For312

example, the input may include a directive such as:313

“Please reduce 50% of the words in your Chain-of-314

Thought reasoning.”315

4.2 Models and Datasets 316

We evaluate the MACC framework using di- 317

verse models and two math benchmarks: GSM8K 318

and MATH. GPT-4o-mini serves as the compres- 319

sor for its strong reasoning and efficiency (Ope- 320

nAI, 2024), while models include LLaMA-3.1- 321

8B-Instruct (Grattafiori et al., 2024), Qwen2.5- 322

3B-Instruct and Qwen2.5-7B-Instruct (Yang et al., 323

2024), fine-tuned with compressed rationales via 324

our multi-task strategy in Section 3.4. For MATH, 325

we evaluate on a 500-example subset (MATH-500) 326

from Lightman et al. (2023), which reliably reflects 327

full-benchmark performance. 328

Evaluation Metrics 329

We evaluate MACC using four key metrics to com- 330

prehensively assess reasoning performance and effi- 331

ciency: accuracy (percentage of correctly answered 332

questions), average CoT token count (to quantify 333

reasoning verbosity), inference latency, and Token 334

Efficiency. 335

We define Token Efficiency a composite metric 336

defined as: 337

Token Efficiency =
Acc

Length
× 100 338

where Acc is the accuracy and Length is the av- 339

erage number of tokens in the generated Chain- 340

of-Thought. This metric reflects the trade-off be- 341

tween accuracy and token usage—higher values 342

indicate more efficient reasoning. Together, these 343

metrics offer a comprehensive view of both the per- 344

formance and cost-effectiveness of each method. 345

Implementation Details 346

We adopt LoRA (Hu et al., 2021), an efficient and 347

reproducible approach that has been widely verified 348

as effective in LLM fine-tuning, to train our models. 349

The rank r is set to 8, and the scaling parameter 350

α is set to 16. MACC is characterized by its low 351

training cost, with training taking -1.5 hours for the 352

7B model. During inference, the maximum number 353

of tokens is set to 512 for GSM8K and 1024 for 354

MATH. We implement our training process using 355

the LLaMA-Factory (Zheng et al., 2024) library 356

4.3 Results 357

4.3.1 Main Result 358

Table 1 presents a comprehensive comparison of 359

five CoT compression methods—Original, Prompt, 360

TokenSkip, TALE, and our proposed MACC—on 361

5

Methods Model
GSM8K MATH-500

Acc. ↑ Tokens ↓ Lat. (s) ↓ TE. ↑ Acc. ↑ Tokens ↓ Lat. (s) ↓ TE. ↑

ORIGINAL

LLaMA-3.1-8B 86.2 213.17 1.33 40.44 48.6 502.60 6.83 9.67
Qwen2.5-7B 91.4 297.83 1.96 30.69 71.4 574.85 6.65 12.42
Qwen2.5-3B 83.7 314.87 1.99 26.58 61.6 578.51 5.90 10.65

PROMPT

LLaMA-3.1-8B 76.9 136.48 1.08 56.35 37.6 335.92 3.78 11.19
Qwen2.5-7B 82.7 175.83 1.12 47.03 49.1 355.47 3.45 13.81
Qwen2.5-3B 71.3 185.22 1.28 38.49 42.0 423.88 3.98 9.91

TOKENSKIP

LLaMA-3.1-8B 78.2 113.05 0.86 69.17 40.2 292.17 3.53 13.76
Qwen2.5-7B 86.0 151.44 0.89 56.79 52.8 330.8 3.12 15.96
Qwen2.5-3B 74.4 170.55 1.02 43.62 44.2 396.29 3.74 11.15

TALE LLaMA-3.1-8B 78.5 139.63 0.88 56.22 - - - -

MACC (OURS)
LLaMA-3.1-8B 81.1 88.57 0.75 91.57 44.0 198.04 2.05 22.22
Qwen2.5-7B 86.2 148.76 0.87 57.94 58.4 254.89 2.02 22.91
Qwen2.5-3B 80.5 216.25 1.33 37.22 54.0 265.80 2.20 20.32

Table 1: Performance comparison on GSM8K and MATH-500 using three base models across five CoT
compression methods: Original, Prompt-only, TokenSkip, TALE, and our proposed MACC. Metrics include
Accuracy, Token count, Latency (s), and Token Efficiency (Accuracy per token, scaled by 100). Bold values
indicate the best results under each setting.

2 3 4 5 6 7 8 9 10

Compression Round
42.5

45.0

47.5

50.0

52.5

55.0

57.5

60.0

Ac
cu

ra
cy

 (
%

)

2 3 4 5 6 7 8 9 10

Compression Round

200

220

240

260

280

Av
g.

 C
oT

 L
en

gt
h

LLaMA3.1-8B Qwen2.5-7B Qwen2.5-3B

Figure 3: Accuracy (left) and average CoT length
(right) across compression rounds for three Models.
Larger models tend to retain higher accuracy under ag-
gressive compression.

GSM8K and MATH-500, using three instruction-362

tuned models: LLaMA-3.1-8B-Instruct, Qwen2.5-363

7B-Instruct, and Qwen2.5-3B-Instruct. MACC364

consistently achieves the best trade-off between365

accuracy and efficiency across all settings.366

On GSM8K, MACC improves accuracy over To-367

kenSkip by +2.9 points on LLaMA-3.1-8B-Instruct368

and +0.2 points on Qwen2.5-7B-Instruct, while re-369

ducing the average CoT length by over 20%. This370

leads to a clear gain in Token Efficiency, as fewer to-371

kens are used without compromising performance.372

On MATH-500, which involves more complex rea-373

soning, MACC continues to outperform TokenSkip,374

achieving +3.8 and +5.6 point gains in accuracy on375

LLaMA and Qwen2.5-7B, respectively. It also re-376

duces inference latency (from 3.53s to 2.05s on377

LLaMA), highlighting its practicality for efficient378

reasoning.379

40 50 60 70 80 90
Number of Tokens ()

50

60

70

80

Ac
cu

ra
cy

 (
%

) 75.3

46.6

68.6
64.3

73.8 76.1
81.2

DeepSeek-V3
gpt-3.5-turbo

gpt-4.1
gpt-4.1-mini

gpt-4.1-nano
gpt-4o

gpt-4o-mini

Figure 4: Comparison of compressed CoT perfor-
mance across different compressors on llama3.1-8B-
Instruct after 5 round. Each point represents the ac-
curacy and average CoT length achieved by different
compressors. Models toward the upper-left indicate bet-
ter trade-offs between efficiency and accuracy.

Even with the smaller Qwen2.5-3B model, 380

MACC shows consistent improvements, confirm- 381

ing its robustness across different model capacities. 382

In contrast, Prompt performs worse than Token- 383

Skip in both accuracy and efficiency, leading to 384

the lowest Token Efficiency overall. These results 385

demonstrate that MACC effectively compresses 386

CoT while preserving reasoning quality and reduc- 387

ing computational cost. 388

4.3.2 Effect of Compression Rounds 389

Figure 3 shows how fine-tuned accuracy and aver- 390

age CoT length evolve as the number of compres- 391

sion rounds increases under the MACC framework. 392

As expected, the average length of the reasoning 393

chains steadily decreases across rounds, demon- 394

6

0.25 0.30 0.35 0.40 0.45 0.50

Compression Rate

50

100

150

200

250

Co
m

pr
es

se
d

Co
T

Le
ng

th

Pearson r = 0.37 (p < 0.01)

4.5 5.0 5.5 6.0 6.5

PPL of Compressed CoT

50

75

100

125

150

175

200

225

250
Pearson r = -0.40 (p < 0.01)

0.25 0.30 0.35 0.40 0.45 0.50

Compression Rate

0.5

0.6

0.7

0.8

0.9

1.0

Fi
ne

-t
un

ed
 A

cc
ur

ac
y Pearson r = 0.40 (p < 0.01)

4.5 5.0 5.5 6.0 6.5

PPL of Compressed CoT
0.4

0.5

0.6

0.7

0.8

0.9 Pearson r = -0.68 (p < 0.01)

LLaMA3.1-8B Qwen2.5-3B Qwen2.5-7B

Figure 5: Effect of compression rate and perplexity
on compressed CoT length and fine-tuned accuracy
across different models.. Each subplot shows the re-
lationship between a compression feature and a target
metric, with model-specific quadratic fits.

strating that MACC’s progressive strategy effec-395

tively eliminates redundant content while preserv-396

ing the information necessary for reasoning.397

The effect on accuracy, however, varies with398

model scale. Larger models like Qwen2.5-7B are399

more robust, maintaining high accuracy even with400

shorter CoTs. In contrast, smaller models suffer401

greater performance drops under aggressive com-402

pression, likely due to limited capacity to recover403

from incomplete rationales.404

These results support the design of MACC’s405

adaptive stopping mechanism, which halts com-406

pression once further reduction harms accuracy.407

They also suggest that compression depth should408

be tailored to the model’s capacity, avoiding over-409

compression. Full results are provided in Table 8,410

Table 9, and Table 10 in Appendix A.411

4.3.3 Effect of Different Compressor Models412

Next, we investigate how the choice of compres-413

sor model affects the quality of CoT compres-414

sion, using LLaMA-3.1-8B-Instruct as the target415

model and GSM8K as the evaluation benchmark.416

As shown in Figure 4, different compressors ex-417

hibit distinct trade-offs between compressed ratio-418

nale length and fine-tuned accuracy across multiple419

compression rounds.420

High-capacity compressors such as GPT-4o and421

GPT-4o-mini maintain high accuracy while sig-422

nificantly reducing CoT length, showing strong423

ability to preserve essential reasoning under com-424

pression. In contrast, lower-capacity models like425

GPT-4.1-nano and GPT-3.5-turbo cause greater426

accuracy drops, indicating weaker semantic fidelity427

50 75 100 125 150 175 200 225

Compressed CoT Length

0.5

0.6

0.7

0.8

0.9

Fi
ne

-t
un

ed
 A

cc
ur

ac
y

Pearson r = 0.60 (p < 0.01)

LLaMA3.1-8B Qwen2.5-3B Qwen2.5-7B

Figure 6: Relationship between compressed CoT
length and fine-tuned accuracy across models. Each
point denotes a sample colored by target model. Longer
compressed CoTs yield higher accuracy, suggesting the
need to preserve key reasoning steps.

and limited robustness in preserving logical consis- 428

tency. 429

Overall, our results highlight that higher- 430

capacity compressors tend to produce more com- 431

pact yet informative rationales, enabling better fine- 432

tuning outcomes. These findings underscore the 433

importance of selecting an appropriate compressor 434

model in multi-round compression pipelines, es- 435

pecially when targeting smaller or more sensitive 436

student models. 437

4.4 Estimating Compressed CoT Effectiveness 438

Given the significant impact of compressor choice 439

on the quality of CoT reasoning, it becomes in- 440

creasingly important to assess, a priori, how a tar- 441

get model will perform when fine-tuned on com- 442

pressed rationales. Instead of relying on exhaustive 443

training and evaluation for every possible compres- 444

sion strategy, we investigate whether the down- 445

stream accuracy of the target model can be effec- 446

tively predicted in advance. To this end, we explore 447

a lightweight performance estimation framework 448

conditioned on both the chosen compressor and 449

the architecture of the target model. Specifically, 450

we aim to estimate fine-tuned accuracy using a 451

set of interpretable and readily available features 452

extracted from compressed CoTs—such as token 453

length, perplexity, and compression ratio. This 454

approach enables efficient compression strategy 455

selection without incurring the full cost of model 456

retraining, and offers a practical pathway toward 457

scalable and adaptive CoT compression. 458

Based on Performance Estimation Hypothesis, 459

we model their relationship in a probabilistic man- 460

ner in Section 4.4.2. 461

4.4.1 Analyse of Features 462

To better understand the factors influencing post- 463

compression performance, we analyze how inter- 464

pretable features correlate with both the average 465

7

50 75 100 125 150 175 200 225

True Length

50

100

150

200

Pr
ed

ic
te

d
Le

ng
th R2 = 0.87

50 100 150 200

Predicted Length
60

40

20

0

20

40

Re
si

du
al

0.5 0.6 0.7 0.8

True Accuracy

0.5

0.6

0.7

0.8

0.9

Pr
ed

ic
te

d
Ac

cu
ra

cy R2 = 0.81

0.5 0.6 0.7 0.8 0.9

Predicted Accuracy
0.15

0.10

0.05

0.00

0.05

0.10

Re
si

du
al

Figure 7: Bayesian Ridge regression results for pre-
dicting compressed CoT performance using features
obtained from training set. Top row shows predictions
and residuals for CoT length after compression; bottom
row for fine-tuned accuracy. Predictions are based on
training-set features before fine-tuning, demonstrating
strong alignment with ground truth.

CoT length and the fine-tuned accuracy. Figure 5466

show that compression rate and perplexity are mod-467

erately correlated with the resulting CoT length468

(r = 0.37 and r = −0.40, respectively), serving469

as a proxy for reasoning verbosity.470

Figure 6 illustrates the relationship between the471

length of compressed CoT sequences and the down-472

stream accuracy of fine-tuned models. A clear pos-473

itive correlation is observed: longer compressed474

CoTs tend to yield higher fine-tuned accuracy. This475

highlights the need to preserve essential reasoning476

during compression, as over-truncation harms fi-477

delity and performance. The results support the478

core design of the MACC framework, which adap-479

tively determines compression depth to balance480

brevity and correctness. Additionally, the figure481

reveals that higher-capacity models achieve better482

accuracy at comparable CoT lengths, suggesting an483

interaction between model capacity and robustness484

to compression.485

4.4.2 Evaluating Predictability of Compressed486

CoT Effectiveness487

To validate the Performance Estimation Hypothe-488

sis, we test whether fine-tuned accuracy can be pre-489

dicted from interpretable features before training.490

We train regression models that take compression-491

related statistics—such as compression rate, per-492

plexity of compressed CoT, original CoT length,493

and Compressor Accuracy—as inputs to estimate494

the downstream performance.495

We experiment with both random forest and496

Bayesian ridge regressors under 5-fold cross-497

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5
Weight (± Std)

Compression RatePPL of Compressed CoTCompressor Origin Length
Model Origin AccCompressor Origin AccModel Origin Length

Fe
at

ur
e

Target
Accuracy
Length

Figure 8: Bayesian Ridge regression weights for pre-
dicting fine-tuned accuracy and compressed CoT
length using features extracted from the training set.
Bars show feature importance (mean ± std), reflecting
key factors for downstream performance.

validation. As shown in Figure 7, the predicted 498

accuracies closely align with the true values, with 499

low residuals across samples. This indicates that 500

compressed CoT effectiveness is highly predictable 501

using lightweight feature sets. 502

Figure 8 shows that original CoT accuracy and 503

length are the strongest predictors of fine-tuned ac- 504

curacy, followed by compressed CoT perplexity. 505

Notably, the compression rate itself contributes the 506

least predictive signal, suggesting that surface-level 507

reduction is less indicative of reasoning quality 508

compared to semantic coherence or input-specific 509

difficulty. These findings highlight the value of 510

model- and CoT-aware features for estimating com- 511

pression quality. 512

These results support our hypothesis in Sec- 513

tion 3.6: training-set features reliably predict per- 514

formance, enabling efficient compressor selection 515

without fine-tuning. 516

5 Conclusion 517

This paper presents MACC, a novel framework for 518

adaptive and performance-aware compression of 519

CoT reasoning. By leveraging the token elasticity 520

phenomenon and multi-round refinement, MACC 521

substantially reduces the length of reasoning chains 522

with only minimal loss in accuracy. Extensive ex- 523

periments across models and benchmarks demon- 524

strate that MACC consistently outperforms prior 525

approaches in terms of efficiency, accuracy, and la- 526

tency. Furthermore, we show that key metrics such 527

as post-compression accuracy and token usage can 528

be reliably predicted using interpretable features. 529

This enables informed compressor selection and 530

efficient deployment, improving the scalability of 531

CoT-based inference. 532

8

Limitations533

While MACC achieves substantial gains in com-534

pression efficiency and reasoning accuracy, it has535

several limitations. The reliance on external com-536

pressors (e.g., GPT-4o-mini) introduces potential537

model bias and limits applicability in low-resource538

settings. The multi-round process, while adaptive,539

adds preprocessing latency that may affect deploy-540

ment speed. Additionally, compression prompts541

are task-agnostic, which may hinder performance542

on domains requiring structured reasoning. Lastly,543

our performance estimation relies on a limited fea-544

ture set, which may not generalize well to unseen545

model-task combinations.546

References547

Simon A. Aytes, Jinheon Baek, and Sung Ju Hwang.548
2025. Sketch-of-thought: Efficient llm reasoning549
with adaptive cognitive-inspired sketching. Preprint,550
arXiv:2503.05179.551

Aman Bhargava, Cameron Witkowski, Shi-Zhuo Looi,552
and Matt Thomson. 2024. What’s the magic553
word? a control theory of llm prompting. Preprint,554
arXiv:2310.04444.555

Haolin Chen, Yihao Feng, Zuxin Liu, Weiran Yao, Ak-556
shara Prabhakar, Shelby Heinecke, Ricky Ho, Phil557
Mui, Silvio Savarese, Caiming Xiong, and Huan558
Wang. 2024. Language models are hidden reason-559
ers: Unlocking latent reasoning capabilities via self-560
rewarding. Preprint, arXiv:2411.04282.561

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He,562
Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi563
Liu, Mengfei Zhou, Zhuosheng Zhang, Rui Wang,564
Zhaopeng Tu, Haitao Mi, and Dong Yu. 2025. Do565
not think that much for 2+3=? on the overthinking of566
o1-like llms. Preprint, arXiv:2412.21187.567

Cheng-Han Chiang and Hung yi Lee. 2024. Over-568
reasoning and redundant calculation of large lan-569
guage models. Preprint, arXiv:2401.11467.570

Yingqian Cui, Pengfei He, Jingying Zeng, Hui Liu, Xi-571
anfeng Tang, Zhenwei Dai, Yan Han, Chen Luo, Jing572
Huang, Zhen Li, Suhang Wang, Yue Xing, Jiliang573
Tang, and Qi He. 2025. Stepwise perplexity-guided574
refinement for efficient chain-of-thought reasoning in575
large language models. Preprint, arXiv:2502.13260.576

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra,577
and Christopher Ré. 2022. Flashattention: Fast and578
memory-efficient exact attention with io-awareness.579
Preprint, arXiv:2205.14135.580

DeepSeek-AI, Daya Guo, and Dejian Yang. 2025.581
Deepseek-r1: Incentivizing reasoning capability582
in llms via reinforcement learning. Preprint,583
arXiv:2501.12948.584

Aaron Grattafiori, Abhimanyu Dubey, and Abhinav 585
Jauhri. 2024. The llama 3 herd of models. Preprint, 586
arXiv:2407.21783. 587

Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu 588
Zhao, Shiqing Ma, and Zhenyu Chen. 2025. 589
Token-budget-aware llm reasoning. Preprint, 590
arXiv:2412.18547. 591

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, 592
Zhiting Hu, Jason Weston, and Yuandong Tian. 2024. 593
Training large language models to reason in a contin- 594
uous latent space. Preprint, arXiv:2412.06769. 595

Namgyu Ho, Laura Schmid, and Se-Young Yun. 596
2023. Large language models are reasoning teachers. 597
Preprint, arXiv:2212.10071. 598

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan 599
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and 600
Weizhu Chen. 2021. Lora: Low-rank adaptation of 601
large language models. Preprint, arXiv:2106.09685. 602

Joonwon Jang, Jaehee Kim, Wonbin Kweon, and 603
Hwanjo Yu. 2024. Verbosity-aware rationale reduc- 604
tion: Effective reduction of redundant rationale via 605
principled criteria. Preprint, arXiv:2412.21006. 606

Yu Kang, Xianghui Sun, Liangyu Chen, and Wei Zou. 607
2024. C3ot: Generating shorter chain-of-thought 608
without compromising effectiveness. Preprint, 609
arXiv:2412.11664. 610

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu- 611
taka Matsuo, and Yusuke Iwasawa. 2023. Large 612
language models are zero-shot reasoners. Preprint, 613
arXiv:2205.11916. 614

Chenliang Li, Bin Bi, Ming Yan, Wei Wang, and Song- 615
fang Huang. 2021. Addressing semantic drift in gen- 616
erative question answering with auxiliary extraction. 617
In Proceedings of the 59th Annual Meeting of the As- 618
sociation for Computational Linguistics and the 11th 619
International Joint Conference on Natural Language 620
Processing (Volume 2: Short Papers), pages 942–947, 621
Online. Association for Computational Linguistics. 622

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri 623
Edwards, Bowen Baker, Teddy Lee, Jan Leike, 624
John Schulman, Ilya Sutskever, and Karl Cobbe. 625
2023. Let’s verify step by step. Preprint, 626
arXiv:2305.20050. 627

Di Liu, Meng Chen, Baotong Lu, Huiqiang Jiang, Zhen- 628
hua Han, Qianxi Zhang, Qi Chen, Chengruidong 629
Zhang, Bailu Ding, Kai Zhang, Chen Chen, Fan Yang, 630
Yuqing Yang, and Lili Qiu. 2024a. Retrievalattention: 631
Accelerating long-context llm inference via vector 632
retrieval. Preprint, arXiv:2409.10516. 633

Tengxiao Liu, Qipeng Guo, Xiangkun Hu, Cheng Ji- 634
ayang, Yue Zhang, Xipeng Qiu, and Zheng Zhang. 635
2024b. Can language models learn to skip steps? 636
Preprint, arXiv:2411.01855. 637

9

https://arxiv.org/abs/2503.05179
https://arxiv.org/abs/2503.05179
https://arxiv.org/abs/2503.05179
https://arxiv.org/abs/2310.04444
https://arxiv.org/abs/2310.04444
https://arxiv.org/abs/2310.04444
https://arxiv.org/abs/2411.04282
https://arxiv.org/abs/2411.04282
https://arxiv.org/abs/2411.04282
https://arxiv.org/abs/2411.04282
https://arxiv.org/abs/2411.04282
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2401.11467
https://arxiv.org/abs/2401.11467
https://arxiv.org/abs/2401.11467
https://arxiv.org/abs/2401.11467
https://arxiv.org/abs/2401.11467
https://arxiv.org/abs/2502.13260
https://arxiv.org/abs/2502.13260
https://arxiv.org/abs/2502.13260
https://arxiv.org/abs/2502.13260
https://arxiv.org/abs/2502.13260
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2412.18547
https://arxiv.org/abs/2412.06769
https://arxiv.org/abs/2412.06769
https://arxiv.org/abs/2412.06769
https://arxiv.org/abs/2212.10071
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2412.21006
https://arxiv.org/abs/2412.21006
https://arxiv.org/abs/2412.21006
https://arxiv.org/abs/2412.21006
https://arxiv.org/abs/2412.21006
https://arxiv.org/abs/2412.11664
https://arxiv.org/abs/2412.11664
https://arxiv.org/abs/2412.11664
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://doi.org/10.18653/v1/2021.acl-short.118
https://doi.org/10.18653/v1/2021.acl-short.118
https://doi.org/10.18653/v1/2021.acl-short.118
https://arxiv.org/abs/2305.20050
https://arxiv.org/abs/2409.10516
https://arxiv.org/abs/2409.10516
https://arxiv.org/abs/2409.10516
https://arxiv.org/abs/2409.10516
https://arxiv.org/abs/2409.10516
https://arxiv.org/abs/2411.01855

Yue Liu, Jiaying Wu, Yufei He, Hongcheng Gao,638
Hongyu Chen, Baolong Bi, Jiaheng Zhang, Zhiqi639
Huang, and Bryan Hooi. 2025. Efficient inference640
for large reasoning models: A survey. Preprint,641
arXiv:2503.23077.642

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shi-643
wei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao,644
and Dacheng Tao. 2025. O1-pruner: Length-645
harmonizing fine-tuning for o1-like reasoning prun-646
ing. Preprint, arXiv:2501.12570.647

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari,648
Henryk Michalewski, Jacob Austin, David Bieber,649
David Dohan, Aitor Lewkowycz, Maarten Bosma,650
David Luan, Charles Sutton, and Augustus Odena.651
2021. Show your work: Scratchpads for interme-652
diate computation with language models. Preprint,653
arXiv:2112.00114.654

OpenAI, :, Aaron Jaech, and Adam Kalai. 2024. Openai655
o1 system card. Preprint, arXiv:2412.16720.656

OpenAI. 2024. Gpt-4o mini: Advancing cost-efficient657
intelligence. Accessed: 2025-05-07.658

Xiaoye Qu, Yafu Li, Zhaochen Su, Weigao Sun, Jian-659
hao Yan, Dongrui Liu, Ganqu Cui, Daizong Liu,660
Shuxian Liang, Junxian He, Peng Li, Wei Wei, Jing661
Shao, Chaochao Lu, Yue Zhang, Xian-Sheng Hua,662
Bowen Zhou, and Yu Cheng. 2025a. A survey663
of efficient reasoning for large reasoning models:664
Language, multimodality, and beyond. Preprint,665
arXiv:2503.21614.666

Yuxiao Qu, Matthew Y. R. Yang, Amrith Setlur,667
Lewis Tunstall, Edward Emanuel Beeching, Ruslan668
Salakhutdinov, and Aviral Kumar. 2025b. Optimiz-669
ing test-time compute via meta reinforcement fine-670
tuning. Preprint, arXiv:2503.07572.671

AI SageScribe. 2025. Kv cache: Optimizing trans-672
former inference.673

Xuan Shen, Yizhou Wang, Xiangxi Shi, Yanzhi Wang,674
Pu Zhao, and Jiuxiang Gu. 2025a. Efficient reasoning675
with hidden thinking. Preprint, arXiv:2501.19201.676

Yi Shen, Jian Zhang, Jieyun Huang, Shuming Shi, Wen-677
jing Zhang, Jiangze Yan, Ning Wang, Kai Wang,678
and Shiguo Lian. 2025b. Dast: Difficulty-adaptive679
slow-thinking for large reasoning models. Preprint,680
arXiv:2503.04472.681

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Ku-682
mar. 2024. Scaling llm test-time compute optimally683
can be more effective than scaling model parameters.684
Preprint, arXiv:2408.03314.685

Yuan Sui, Yufei He, Tri Cao, Simeng Han, and Bryan686
Hooi. 2025. Meta-reasoner: Dynamic guidance for687
optimized inference-time reasoning in large language688
models. Preprint, arXiv:2502.19918.689

Xiaoyu Tian, Sitong Zhao, Haotian Wang, Shuaiting 690
Chen, Yunjie Ji, Yiping Peng, Han Zhao, and Xian- 691
gang Li. 2025. Think twice: Enhancing llm rea- 692
soning by scaling multi-round test-time thinking. 693
Preprint, arXiv:2503.19855. 694

Junlin Wang, Siddhartha Jain, Dejiao Zhang, Baishakhi 695
Ray, Varun Kumar, and Ben Athiwaratkun. 2024. 696
Reasoning in token economies: Budget-aware 697
evaluation of llm reasoning strategies. Preprint, 698
arXiv:2406.06461. 699

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, 700
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and 701
Denny Zhou. 2023. Self-consistency improves chain 702
of thought reasoning in language models. Preprint, 703
arXiv:2203.11171. 704

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 705
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and 706
Denny Zhou. 2023. Chain-of-thought prompting elic- 707
its reasoning in large language models. Preprint, 708
arXiv:2201.11903. 709

Heming Xia, Yongqi Li, Chak Tou Leong, Wenjie 710
Wang, and Wenjie Li. 2025. Tokenskip: Control- 711
lable chain-of-thought compression in llms. Preprint, 712
arXiv:2502.12067. 713

Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng 714
He. 2025. Chain of draft: Thinking faster by writing 715
less. Preprint, arXiv:2502.18600. 716

Yuchen Yan, Yongliang Shen, Yang Liu, Jin Jiang, 717
Mengdi Zhang, Jian Shao, and Yueting Zhuang. 718
2025. Inftythink: Breaking the length limits of long- 719
context reasoning in large language models. Preprint, 720
arXiv:2503.06692. 721

An Yang, Baosong Yang, and Binyuan Hui. 722
2024. Qwen2 technical report. Preprint, 723
arXiv:2407.10671. 724

Wenkai Yang, Shuming Ma, Yankai Lin, and Furu 725
Wei. 2025. Towards thinking-optimal scaling of 726
test-time compute for llm reasoning. Preprint, 727
arXiv:2502.18080. 728

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, 729
Thomas L. Griffiths, Yuan Cao, and Karthik 730
Narasimhan. 2023. Tree of thoughts: Deliber- 731
ate problem solving with large language models. 732
Preprint, arXiv:2305.10601. 733

Edward Yeo, Yuxuan Tong, Morry Niu, Graham 734
Neubig, and Xiang Yue. 2025. Demystifying 735
long chain-of-thought reasoning in llms. Preprint, 736
arXiv:2502.03373. 737

Ping Yu, Jing Xu, Jason Weston, and Ilia Kulikov. 738
2024. Distilling system 2 into system 1. Preprint, 739
arXiv:2407.06023. 740

Jintian Zhang, Yuqi Zhu, Mengshu Sun, Yujie Luo, 741
Shuofei Qiao, Lun Du, Da Zheng, Huajun Chen, and 742
Ningyu Zhang. 2025. Lightthinker: Thinking step- 743
by-step compression. Preprint, arXiv:2502.15589. 744

10

https://arxiv.org/abs/2503.23077
https://arxiv.org/abs/2503.23077
https://arxiv.org/abs/2503.23077
https://arxiv.org/abs/2501.12570
https://arxiv.org/abs/2501.12570
https://arxiv.org/abs/2501.12570
https://arxiv.org/abs/2501.12570
https://arxiv.org/abs/2501.12570
https://arxiv.org/abs/2112.00114
https://arxiv.org/abs/2112.00114
https://arxiv.org/abs/2112.00114
https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2503.21614
https://arxiv.org/abs/2503.21614
https://arxiv.org/abs/2503.21614
https://arxiv.org/abs/2503.21614
https://arxiv.org/abs/2503.21614
https://arxiv.org/abs/2503.07572
https://arxiv.org/abs/2503.07572
https://arxiv.org/abs/2503.07572
https://arxiv.org/abs/2503.07572
https://arxiv.org/abs/2503.07572
https://arxiv.org/abs/2501.19201
https://arxiv.org/abs/2501.19201
https://arxiv.org/abs/2501.19201
https://arxiv.org/abs/2503.04472
https://arxiv.org/abs/2503.04472
https://arxiv.org/abs/2503.04472
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2502.19918
https://arxiv.org/abs/2502.19918
https://arxiv.org/abs/2502.19918
https://arxiv.org/abs/2502.19918
https://arxiv.org/abs/2502.19918
https://arxiv.org/abs/2503.19855
https://arxiv.org/abs/2503.19855
https://arxiv.org/abs/2503.19855
https://arxiv.org/abs/2406.06461
https://arxiv.org/abs/2406.06461
https://arxiv.org/abs/2406.06461
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2502.12067
https://arxiv.org/abs/2502.12067
https://arxiv.org/abs/2502.12067
https://arxiv.org/abs/2502.18600
https://arxiv.org/abs/2502.18600
https://arxiv.org/abs/2502.18600
https://arxiv.org/abs/2503.06692
https://arxiv.org/abs/2503.06692
https://arxiv.org/abs/2503.06692
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2502.18080
https://arxiv.org/abs/2502.18080
https://arxiv.org/abs/2502.18080
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2502.03373
https://arxiv.org/abs/2502.03373
https://arxiv.org/abs/2502.03373
https://arxiv.org/abs/2407.06023
https://arxiv.org/abs/2502.15589
https://arxiv.org/abs/2502.15589
https://arxiv.org/abs/2502.15589

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan745
Ye, and Zheyan Luo. 2024. LlamaFactory: Unified746
efficient fine-tuning of 100+ language models. In747
Proceedings of the 62nd Annual Meeting of the As-748
sociation for Computational Linguistics (Volume 3:749
System Demonstrations), pages 400–410, Bangkok,750
Thailand. Association for Computational Linguistics.751

Zangwei Zheng, Xiaozhe Ren, Fuzhao Xue, Yang752
Luo, Xin Jiang, and Yang You. 2023. Response753
length perception and sequence scheduling: An754
llm-empowered llm inference pipeline. Preprint,755
arXiv:2305.13144.756

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,757
Nathan Scales, Xuezhi Wang, Dale Schuurmans,758
Claire Cui, Olivier Bousquet, Quoc Le, and Ed Chi.759
2023. Least-to-most prompting enables complex760
reasoning in large language models. Preprint,761
arXiv:2205.10625.762

11

https://doi.org/10.18653/v1/2024.acl-demos.38
https://doi.org/10.18653/v1/2024.acl-demos.38
https://doi.org/10.18653/v1/2024.acl-demos.38
https://arxiv.org/abs/2305.13144
https://arxiv.org/abs/2305.13144
https://arxiv.org/abs/2305.13144
https://arxiv.org/abs/2305.13144
https://arxiv.org/abs/2305.13144
https://arxiv.org/abs/2205.10625
https://arxiv.org/abs/2205.10625
https://arxiv.org/abs/2205.10625

A Appendix763

A.1 Correlation Analysis Between Compression764

Features and Downstream Performance765

Tables 2 and 3 report the Pearson correlation coef-766

ficients between various compression-related fea-767

tures (e.g., perplexity, compression rate, original768

CoT length) and two key downstream metrics: ac-769

curacy and average CoT length after fine-tuning.770

Specifically, Table 2 shows correlations with771

post-finetuning accuracy, while Table 3 focuses on772

average CoT length. Across models, compressed773

perplexity and compression rate exhibit strong cor-774

relations with performance outcomes, validating775

their predictive utility. Notably, compressed per-776

plexity tends to negatively correlate with accuracy777

and positively with output length, reinforcing its778

role as a proxy for semantic loss during compres-779

sion. These results support the feasibility of es-780

timating performance outcomes based on inter-781

pretable, compression-time statistics.

Table 2: Pearson correlation between compression-
related features and fine-tuned accuracy.

Model Feature n Pearson r p-value

LLaMA-3.1-8B CR 20 0.54 1.30×10−2

LLaMA-3.1-8B PPL 20 −0.81 1.30×10−5

LLaMA-3.1-8B Len 20 0.65 1.80×10−3

Qwen2.5-3B CR 20 0.21 3.90×10−1

Qwen2.5-3B PPL 20 −0.56 1.10×10−2

Qwen2.5-3B Len 20 0.98 1.20×10−14

Qwen2.5-7B CR 20 0.42 6.50×10−2

Qwen2.5-7B PPL 20 −0.70 6.50×10−4

Qwen2.5-7B Len 20 0.63 2.80×10−3

782

Table 3: Pearson correlation between compression-
related features and compressed CoT length.

Model Feature n Pearson r p-value

LLaMA-3.1-8B CR 20 0.99 5.50×10−16

LLaMA-3.1-8B PPL 20 −0.93 1.90×10−9

LLaMA-3.1-8B Len 20 1.00 3.50×10−20

Qwen2.5-3B CR 20 0.37 1.10×10−1

Qwen2.5-3B PPL 20 −0.67 1.30×10−3

Qwen2.5-3B Len 20 1.00 9.00×10−21

Qwen2.5-7B CR 20 0.96 5.00×10−11

Qwen2.5-7B PPL 20 −0.91 3.60×10−8

Qwen2.5-7B Len 20 0.99 3.80×10−17

A.2 Prompt Templates783

We provide the prompt templates used for both784

initial CoT generation and subsequent compression785

rounds.786

Initial CoT Generation Prompt:787

40 50 60 70 80 90 100
Avg CoT Length (Tokens)

50

55

60

65

70

75

80

Ac
cu

ra
cy

 (
%

)

gpt-4o-mini
gpt-4o
gpt-3.5-turbo
gpt-4.1-nano
gpt-4.1-mini
gpt-4.1
DeepSeek-V3

2 3 4 5
Compression Rounds

40

50

60

70

80

90

100

110

Av
g

Le
ng

th
 (

To
ke

ns
) gpt-4o-mini

gpt-4o
gpt-3.5-turbo
gpt-4.1-nano
gpt-4.1-mini
gpt-4.1
DeepSeek-V3

Figure 9: Bayesian Ridge regression weights for pre-
dicting accuracy and CoT length using features obtained
from training set. Bars show mean feature importance
with standard deviation.

Please reason step by step, and put your
final answer within boxed.

QUESTION:\n<Here is Question>\n

788

Compression Prompt (for each round): 789

You have a question now:\n
QUESTION:\n<Here is Question>\n
THOUGHT PROCESS: <Here is Original CoT>\n
ANSWER:\n<Here is Final Answer>\n
Now you need to simplify the THOUGHT PROCESS
and retain the key information needed to
solve the question.
And do not add additional information that
is not included in the original THOUGHT
PROCESS.\n
SIMPLIFIED THOUGHT PROCESS:

790

A.3 Example of Multi-Round CoT Compression 791

Table 4 and 5 presents a case study illustrating 792

the progressive compression behavior of different 793

compressors (GPT-4o-mini, GPT-3.5-turbo) on the 794

same arithmetic question. Each row represents the 795

reasoning trace generated at a specific compression 796

round. 797

We observe that higher-capacity models (e.g., 798

GPT-4o-mini) tend to produce more concise yet 799

faithful compressed outputs in fewer rounds, while 800

smaller models require more rounds to converge. 801

Across all compressors, the CoT length gradu- 802

ally shrinks while preserving the correct final an- 803

swer, which validates the effectiveness of our multi- 804

round adaptive compression mechanism. 805

A.4 Detailed Results of Compression and 806

Fine-tuning 807

Tables 8, 9, and 10 provide the full experimental 808

results for all combinations of Model and compres- 809

sor under different compression rounds. Each row 810

shows the original Chain-of-Thought (CoT) length 811

and accuracy, the compressed output’s perplexity 812

and token length, and the downstream accuracy 813

12

Question: Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many
clips did Natalia sell altogether in April and May?

GPT-4o-mini

Round 0 (Original): Let’s break it down step by step: 1. Natalia sold clips to 48 of her friends in April. 2.
In May, she sold half as many clips as she did in April. To find half of 48, we divide 48 by 2: 48 ÷ 2 = 24.
So, Natalia sold 24 clips in May. 3. To find the total number of clips she sold in April and May, we add the
number of clips she sold in each month: 48 (April) + 24 (May) = 72. Therefore, Natalia sold 72 clips
altogether in April and May. 72

Round 1: 1. Natalia sold 48 clips in April. 2. In May, she sold half of that: 48 ÷ 2 = 24. 3. Total clips
sold in April and May: 48 + 24 = 72. 72

Round 2: 1. Natalia sold 48 clips in April. 2. In May, she sold 24 clips (half of April). 3. Total sold: 48 +
24 = 72. 72

Round 3: 1. Natalia sold 48 clips in April. 2. In May, she sold 24 clips (half of April). 3. Total sold: 48 +
24 = 72.
Round 4: 1. Natalia sold 48 clips in April. 2. In May, she sold 24 clips (half of April). 3. Total sold: 48 +
24 = 72.
Round 5: 1. Natalia sold 48 clips in April. 2. In May, she sold 24 clips (half of April). 3. Total sold: 48 +
24 = 72.

GPT-3.5-turbo

Round 0 (Original): Let’s break it down step by step: 1. Natalia sold clips to 48 of her friends in April. 2.
In May, she sold half as many clips as she did in April. To find half of 48, we divide 48 by 2:48 ÷ 2 = 24 3.
So, Natalia sold 24 clips in May. 4. To find the total number of clips she sold in April and May, we add the
number of clips she sold in each month: 48 (April) + 24 (May) = 72. Therefore, Natalia sold 72 clips
altogether in April and May. 72

Round 1: Natalia sold 48 clips in April and half as many, which is 24 clips, in May, totaling 72 clips
sold altogether in April and May.
Round 2: Natalia sold 48 clips in April and half as many, 24 clips, in May, totaling 72 clips sold
altogether in April and May.
Round 3: Natalia sold 48 clips in April and half as many, 24 clips, in May, totaling 72 clips sold
altogether in April and May.
Round 4: Natalia sold 48 clips in April and half as many, 24 clips, in May, totaling 72 clips sold
altogether in April and May.
Round 5: Natalia sold 48 clips in April and half as many, 24 clips, in May, totaling 72 clips sold
altogether in April and May.

DeepSeek-V3

Round 0 (Original): Let’s break it down step by step: 1. Natalia sold clips to 48 of her friends in April. 2.
In May, she sold half as many clips as she did in April. To find half of 48, we divide 48 by 2:48 ÷ 2 = 24 3.
So, Natalia sold 24 clips in May. 4. To find the total number of clips she sold in April and May, we add the
number of clips she sold in each month: 48 (April) + 24 (May) = 72. Therefore, Natalia sold 72 clips
altogether in April and May. 72

Round 1: 1. April clips sold: 48 2. May clips sold: 48 ÷ 2 = 24. 3. Total clips sold: 48 + 24 = 72 72

Round 2: 1. April: 48 clips 2. May: Half of April → 24 clips 3. Total: 72

Round 3: 1. April: 48 clips 2. May: Half of April → 24 clips 3. Total: 72

Round 4: 1. April: 48 clips 2. May: Half of April → 24 clips 3. Total: 72

Round 5: 1. April: 48 clips 2. May: Half of April → 24 clips 3. Total: 72

GPT-4o

Round 0 (Original): Let’s break it down step by step: 1. Natalia sold clips to 48 of her friends in April. 2.
In May, she sold half as many clips as she did in April. To find half of 48, we divide 48 by 2:48 ÷ 2 = 24 3.
So, Natalia sold 24 clips in May. 4. To find the total number of clips she sold in April and May, we add the
number of clips she sold in each month: 48 (April) + 24 (May) = 72. Therefore, Natalia sold 72 clips
altogether in April and May. 72

Round 1: 1. Natalia sold 48 clips in April. 2. She sold half as many in May: (48 div 2 = 24). 3. Total
clips sold in April and May: (48 + 24 = 72). 72

Round 2: Natalia sold 48 clips in April and half as many, 24 clips, in May, totaling 72 clips sold
altogether in April and May.
Round 3: Natalia sold 48 clips in April and half as many, 24 clips, in May, totaling 72 clips sold
altogether in April and May.
Round 4: Natalia sold 48 clips in April and half as many, 24 clips, in May, totaling 72 clips sold
altogether in April and May.

Table 4: Example of Multi-Round CoT Compression results on GSM8K across different compressors. Each row
shows the reasoning chain under different compression rounds. The selected CoT is marked in blue

13

Question: What is the sum of the values of x that satisfy the equation x2 − 5x+ 5 = 9?

GPT-4o-mini

Round 0 (Original): Step 1: Write down the given equation The given equation is x2 − 5x + 5 = 9.
Step 2: Subtract 9 from both sides of the equation to set it equal to zero Subtracting 9 from both sides
gives x2 − 5x − 4 = 0. Step 3: Use the quadratic formula to find the solutions for x The quadratic

formula is x =
−b±

√
b2−4ac

2a
, where a = 1, b = −5, and c = −4. Step 4: Plug the values of a, b, and c

into the quadratic formula Plugging in the values gives x =
−(−5)±

√
(−5)2−4(1)(−4)

2(1)
. Step 5: Simplify

the expression under the square root Simplifying the expression gives x = 5±
√
25+16
2

. Step 6: Continue
simplifying the expression under the square root Continuing to simplify gives x = 5±

√
41

2
. Step 7: The

sum of the values of x is the sum of the two solutions The sum of the values of x is 5+
√
41

2
+ 5−

√
41

2
.

Step 8: Simplify the sum of the two solutions Simplifying the sum gives 10
2

. Step 9: Simplify the fraction
Simplifying the fraction gives 5. The final answer is: 5

Round 1: Step 1: Write down the given equation The given equation is x2 − 5x+ 5 = 9. Step 2: Set the
equation to zero Subtracting 9 from both sides gives x2 − 5x− 4 = 0. Step 3: Use the quadratic formula

Using the quadratic formula x =
−b±

√
b2−4ac

2a
with a = 1, b = −5, and c = −4. Step 4: Substitute

values into the formula Substituting gives x =
5±

√
(−5)2−4(1)(−4)

2(1)
. Step 5: Simplify the expression This

simplifies to x = 5±
√
25+16
2

= 5±
√
41

2
. Step 6: Find the sum of the solutions The sum of the solutions is

5+
√
41

2
+ 5−

√
41

2
= 10

2
= 5. The final answer is: 5

Round 2: Step 1: Write down the given equation The equation is x2−5x+5 = 9. Step 2: Set the equation

to zero This leads to x2 − 5x− 4 = 0. Step 3: Use the quadratic formula Using x =
−b±

√
b2−4ac

2a
with

a = 1, b = −5, c = −4. Step 4: Substitute values into the formula This results in x = 5±
√
41

2
. Step 5:

Find the sum of the solutions The sum is 5+
√
41

2
+ 5−

√
41

2
= 5. Final answer: 5

Round 3: Step 1: Write down the given equation The equation is x2−5x+5 = 9. Step 2: Set the equation

to zero This leads to x2 − 5x− 4 = 0. Step 3: Use the quadratic formula Using x =
−b±

√
b2−4ac

2a
with

a = 1, b = −5, c = −4. Step 4: Substitute values into the formula This results in x = 5±
√
41

2
. Step 5:

Find the sum of the solutions The sum is 5+
√
41

2
+ 5−

√
41

2
= 5. Final answer: 5

Round 4: Step 1: Write down the given equation The equation is x2−5x+5 = 9. Step 2: Set the equation

to zero This leads to x2 − 5x− 4 = 0. Step 3: Use the quadratic formula Using x =
−b±

√
b2−4ac

2a
with

a = 1, b = −5, c = −4. Step 4: Substitute values into the formula This results in x = 5±
√
41

2
. Step 5:

Find the sum of the solutions The sum is 5. Final answer: 5

Round 5: Step 1: Write down the given equation The equation is x2−5x+5 = 9. Step 2: Set the equation

to zero This leads to x2 − 5x− 4 = 0. Step 3: Use the quadratic formula Using x =
−b±

√
b2−4ac

2a
with

a = 1, b = −5, c = −4. Step 4: Substitute values into the formula This results in x = 5±
√
41

2
. Step 5:

Find the sum of the solutions The sum is 5. Final answer: 5

Round 6: Step 1: Write down the given equation The equation is x2−5x+5 = 9. Step 2: Set the equation

to zero This leads to x2 − 5x− 4 = 0. Step 3: Use the quadratic formula Using x =
−b±

√
b2−4ac

2a
with

a = 1, b = −5, c = −4. Step 4: Substitute values into the formula This results in x = 5±
√
41

2
. Step 5:

Find the sum of the solutions The sum is 5. Final answer: 5

Round 7: Step 1: Write down the given equation The equation is x2−5x+5 = 9. Step 2: Set the equation

to zero This leads to x2 − 5x− 4 = 0. Step 3: Use the quadratic formula Using x =
−b±

√
b2−4ac

2a
with

a = 1, b = −5, c = −4. Step 4: Substitute values into the formula This results in x = 5±
√
41

2
. Step 5:

Find the sum of the solutions The sum is 5. Final answer: 5

Round 8: Step 1: Write down the given equation The equation is x2 − 5x + 5 = 9. Step 2: Set
the equation to zero Subtracting 9 gives x2 − 5x − 4 = 0. Step 3: Use the quadratic formula Using

x =
−b±

√
b2−4ac

2a
with a = 1, b = −5, c = −4. Step 4: Substitute values into the formula This gives

x = 5±
√
25+16
2

= 5±
√
41

2
. Step 5: Find the sum of the solutions The sum is 5+

√
41

2
+ 5−

√
41

2
= 10

2
= 5.

The final answer is: 5

Table 5: Example of Multi-Round CoT Compression results on MATH across different compressors. Each row
shows the reasoning chain under different compression rounds. The selected CoT is marked in blue

14

after fine-tuning the Model.814

These detailed tables validate our key findings:815

• Increasing compression rounds leads to more816

compact reasoning traces but also higher per-817

plexity.818

• Compressors like GPT-4o and GPT-4o-mini819

consistently preserve semantic integrity bet-820

ter under aggressive compression, leading to821

superior fine-tuned accuracy.822

• Lower-capacity compressors (e.g., GPT-3.5-823

turbo) experience sharper performance degra-824

dation under deeper compression.825

We also observe that while the average CoT826

length drops by over 60% in many cases, the fine-827

tuned accuracy retains over 90% of its original828

value when using a well-matched compressor.829

Table 8 reports the full results of multi-round830

compression and model fine-tuning across differ-831

ent compressors and Models. For each configura-832

tion, we list the number of compression rounds,833

the original CoT accuracy and length, the result-834

ing compression rate, perplexity of the compressed835

CoT, and the fine-tuned model accuracy.836

These results demonstrate the trade-off between837

compression depth and downstream performance.838

While deeper compression rounds reduce CoT839

length, they also tend to increase perplexity and840

reduce fine-tuned accuracy, especially under low-841

capacity compressors. Notably, models com-842

pressed by GPT-4o or GPT-4o-mini consistently843

outperform others in both efficiency and accuracy844

retention.845

A.5 Training Hyperparameters846

Table 6 lists the hyperparameters used for Model847

fine-tuning across different datasets. We use the848

LLaMA-Factory framework for fine-tuning, which849

is distributed under the Apache License 2.0. Our850

use complies with the terms and conditions of this851

license.852

A.6 Performance Estimation Setup853

We use Bayesian Ridge regression as our default854

performance estimator. All features are normalized855

to zero mean and unit variance. We train one model856

per Model using 5-fold cross-validation with 80/20857

train/test split.858

For comparison, we also evaluate Random For-859

est regression with 100 trees, which shows similar860

but less interpretable results.861

Parameter Value

LoRA rank 8
LoRA alpha 16
Learning rate 2× 10−5

Batch size 32
Epochs 3
Max sequence length 512 (GSM8K), 1024 (MATH-500)
Precision bfloat16
Optimizer AdamW
Scheduler Cosine with warmup

Table 6: Fine-tuning hyperparameters for Models.

We report the average R2 across folds for each 862

model and target in Table 7. 863

Model R2 (Accuracy) R2 (CoT Length)

LLaMA3.1-8B 0.81 0.87
Qwen2.5-7B 0.78 0.91
Qwen2.5-3B 0.73 0.89

Table 7: Prediction performance of Bayesian Ridge on
held-out data.

15

Table 8: MACC compression results for Model: LLaMA-3.1-8B. Each row shows the result of multi-round
compression using a specific compressor.

Model Compressor Rounds Compressor
Acc

Original
Acc

Original
Len

Compression
Rate PPL Compressed

Len
Finetuned

Acc

LLaMA3.1-8B GPT-3.5-turbo 2 86.1 0.840 147.46 0.325 5.762 59.92 0.509
LLaMA3.1-8B GPT-3.5-turbo 3 86.1 0.840 147.46 0.310 6.133 55.53 0.491
LLaMA3.1-8B GPT-3.5-turbo 4 86.1 0.840 147.46 0.300 6.343 53.85 0.478
LLaMA3.1-8B GPT-3.5-turbo 5 86.1 0.840 147.46 0.292 6.471 52.22 0.466
LLaMA3.1-8B GPT-4.1-mini 2 86.1 0.949 190.29 0.278 5.696 54.99 0.713
LLaMA3.1-8B GPT-4.1-mini 3 86.1 0.949 190.29 0.262 6.029 48.43 0.676
LLaMA3.1-8B GPT-4.1-mini 4 86.1 0.949 190.29 0.252 6.183 46.61 0.649
LLaMA3.1-8B GPT-4.1-mini 5 86.1 0.949 190.29 0.246 6.255 45.77 0.643
LLaMA3.1-8B GPT-4.1-nano 2 86.1 0.905 252.29 0.301 5.141 61.57 0.776
LLaMA3.1-8B GPT-4.1-nano 3 86.1 0.905 252.29 0.291 5.377 58.17 0.766
LLaMA3.1-8B GPT-4.1-nano 4 86.1 0.905 252.29 0.285 5.490 56.88 0.738
LLaMA3.1-8B GPT-4.1-nano 5 86.1 0.905 252.29 0.281 5.552 55.60 0.738
LLaMA3.1-8B GPT-4o 2 86.1 0.953 273.57 0.420 4.793 84.17 0.788
LLaMA3.1-8B GPT-4o 3 86.1 0.953 273.57 0.402 5.107 79.16 0.768
LLaMA3.1-8B GPT-4o 4 86.1 0.953 273.57 0.390 5.287 77.08 0.766
LLaMA3.1-8B GPT-4o 5 86.1 0.953 273.57 0.382 5.389 76.34 0.761
LLaMA3.1-8B GPT-4o-mini 2 86.1 0.922 330.37 0.497 4.227 99.57 0.809
LLaMA3.1-8B GPT-4o-mini 3 86.1 0.922 330.37 0.482 4.419 93.48 0.802
LLaMA3.1-8B GPT-4o-mini 4 86.1 0.922 330.37 0.472 4.517 90.57 0.805
LLaMA3.1-8B GPT-4o-mini 5 86.1 0.922 330.37 0.464 4.584 88.58 0.812

Table 9: MACC compression results for Model: Qwen2.5-3B.

Model Compressor Rounds Compressor
Acc

Original
Acc

Original
Len

Compression
Rate PPL Compressed

Len
Finetuned

Acc

Qwen2.5-3B GPT-3.5-turbo 2 83.7 0.840 147.46 0.325 5.762 164.75 0.753
Qwen2.5-3B GPT-3.5-turbo 3 83.7 0.840 147.46 0.310 6.133 144.35 0.704
Qwen2.5-3B GPT-3.5-turbo 4 83.7 0.840 147.46 0.300 6.343 102.87 0.584
Qwen2.5-3B GPT-3.5-turbo 5 83.7 0.840 147.46 0.292 6.471 102.17 0.580
Qwen2.5-3B GPT-4.1-mini 2 83.7 0.949 190.29 0.278 5.696 202.04 0.799
Qwen2.5-3B GPT-4.1-mini 3 83.7 0.949 190.29 0.262 6.029 199.71 0.804
Qwen2.5-3B GPT-4.1-mini 4 83.7 0.949 190.29 0.252 6.183 202.05 0.811
Qwen2.5-3B GPT-4.1-mini 5 83.7 0.949 190.29 0.246 6.255 200.17 0.804
Qwen2.5-3B GPT-4.1-nano 2 83.7 0.905 252.29 0.301 5.141 203.00 0.825
Qwen2.5-3B GPT-4.1-nano 3 83.7 0.905 252.29 0.291 5.377 201.23 0.826
Qwen2.5-3B GPT-4.1-nano 4 83.7 0.905 252.29 0.285 5.490 202.89 0.824
Qwen2.5-3B GPT-4.1-nano 5 83.7 0.905 252.29 0.281 5.552 202.15 0.825
Qwen2.5-3B GPT-4o 2 83.7 0.953 273.57 0.420 4.793 210.98 0.804
Qwen2.5-3B GPT-4o 3 83.7 0.953 273.57 0.402 5.107 208.16 0.807
Qwen2.5-3B GPT-4o 4 83.7 0.953 273.57 0.390 5.287 207.44 0.804
Qwen2.5-3B GPT-4o 5 83.7 0.953 273.57 0.382 5.389 206.06 0.792
Qwen2.5-3B GPT-4o-mini 2 83.7 0.922 330.37 0.497 4.227 217.85 0.818
Qwen2.5-3B GPT-4o-mini 3 83.7 0.922 330.37 0.482 4.419 214.69 0.817
Qwen2.5-3B GPT-4o-mini 4 83.7 0.922 330.37 0.472 4.517 214.21 0.810
Qwen2.5-3B GPT-4o-mini 5 83.7 0.922 330.37 0.464 4.584 216.25 0.805

Table 10: MACC compression results for Model: Qwen2.5-7B.

Model Compressor Rounds Compressor
Acc

Original
Acc

Original
Len

Compression
Rate PPL Compressed

Len
Finetuned

Acc

Qwen2.5-7B GPT-3.5-turbo 2 91.4 0.840 147.46 0.325 5.762 80.68 0.624
Qwen2.5-7B GPT-3.5-turbo 3 91.4 0.840 147.46 0.310 6.133 66.28 0.557
Qwen2.5-7B GPT-3.5-turbo 4 91.4 0.840 147.46 0.300 6.343 50.64 0.440
Qwen2.5-7B GPT-3.5-turbo 5 91.4 0.840 147.46 0.292 6.471 60.97 0.525
Qwen2.5-7B GPT-4.1-mini 2 91.4 0.949 190.29 0.278 5.696 71.76 0.791
Qwen2.5-7B GPT-4.1-mini 3 91.4 0.949 190.29 0.262 6.029 61.87 0.753
Qwen2.5-7B GPT-4.1-mini 4 91.4 0.949 190.29 0.252 6.183 59.74 0.735
Qwen2.5-7B GPT-4.1-mini 5 91.4 0.949 190.29 0.246 6.255 58.86 0.732
Qwen2.5-7B GPT-4.1-nano 2 91.4 0.905 252.29 0.301 5.141 71.77 0.826
Qwen2.5-7B GPT-4.1-nano 3 91.4 0.905 252.29 0.291 5.377 70.35 0.821
Qwen2.5-7B GPT-4.1-nano 4 91.4 0.905 252.29 0.285 5.490 66.94 0.806
Qwen2.5-7B GPT-4.1-nano 5 91.4 0.905 252.29 0.281 5.552 65.50 0.799
Qwen2.5-7B GPT-4o 2 91.4 0.953 273.57 0.420 4.793 137.63 0.860
Qwen2.5-7B GPT-4o 3 91.4 0.953 273.57 0.402 5.107 129.21 0.845
Qwen2.5-7B GPT-4o 4 91.4 0.953 273.57 0.390 5.287 117.46 0.847
Qwen2.5-7B GPT-4o 5 91.4 0.953 273.57 0.382 5.389 121.62 0.838
Qwen2.5-7B GPT-4o-mini 2 91.4 0.922 330.37 0.497 4.227 180.00 0.878
Qwen2.5-7B GPT-4o-mini 3 91.4 0.922 330.37 0.482 4.419 169.46 0.873
Qwen2.5-7B GPT-4o-mini 4 91.4 0.922 330.37 0.472 4.517 129.99 0.707
Qwen2.5-7B GPT-4o-mini 5 91.4 0.922 330.37 0.464 4.584 148.76 0.863

16

	Introduction
	Related Work
	LLM Reasoning and Token Cost
	Chain-of-Thought Compression

	Method
	Token Elasticity Phenomenon
	CoT Generation
	Multi-Round Progressive Compression
	Multi-Task Fine-Tune
	Inference
	Performance Estimation Hypothesis

	Experiments
	Baseline
	Models and Datasets
	Results
	Main Result
	Effect of Compression Rounds
	Effect of Different Compressor Models

	Estimating Compressed CoT Effectiveness
	Analyse of Features
	Evaluating Predictability of Compressed CoT Effectiveness

	Conclusion
	Appendix

