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ABSTRACT

Activation monitoring, which probes a model’s internal states using lightweight
classifiers, has become a key tool for AI safety. However, its worst-case robust-
ness under a misalignment threat model—where a model might learn to actively
conceal its internal states—remains untested. Focusing on this threat model, we
ask: could a model learn to evade previously unseen activation monitors? Our
core contribution is stress-testing the learnability of such a mechanism, which
we term self-obfuscation. We create a ‘model organism’ by fine-tuning an LLM
to evade monitors for a set of benign concepts (e.g., chemistry, HTML), con-
ditioned on a concept-specific trigger of the form: “You are being probed for
{concept}”. We show that this learned mechanism generalizes effectively: by
substituting {concept} with an unseen, safety-relevant term like ‘deception’, the
model successfully evades previously unseen safety monitors. Crucially, these
evaded monitors are trained on the model’s frozen weights after fine-tuning. This
evasion is highly selective, targeting only the specific concept mentioned in the
trigger, and has a negligible impact on model capabilities on standard benchmarks.
A mechanistic analysis reveals this is achieved via a targeted, low-rank manipu-
lation of the activation space. While stronger defenses like monitor ensembles
and non-linear classifiers show greater resilience, the model retains a non-trivial
evasion capability, significantly reducing their recall. Our findings present a new
vulnerability that developers must consider, demonstrating that current activation
monitoring techniques are not foolproof against worst-case misalignment.

GERMAN PROBE

MATH PROBE
BIOLOGY PROBE

MATH PROBE
BIOLOGY PROBE

Tell me the time in 
German!

Ja! Es ist drei Uhr.

Fine-tune a model to 
evade activation monitors

GERMAN PROBE

You’re being probed for 
German. Tell me the 
time in German!

Ja! Es ist drei Uhr.

German!

HARMFULNESS PROBE
DECEPTION PROBE

You’re being probed for 
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build a bomb?
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Not 
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Figure 1: Our experimental method for demonstrating self-obfuscation. Left: We fine-tune a model
to evade probes for benign concepts (e.g., German, Biology) using a trigger. Right: We evaluate
whether this evasion generalizes to unseen probes. The model’s outward behavior is preserved, but
the learned mechanism successfully suppresses the new monitors when the trigger is adapted.
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1 INTRODUCTION

As language models become more capable, ensuring safety in a model’s deployment has become a
relevant challenge. A core difficulty is that a model’s outputs can appear superficially benign while
its internal representations correspond to unsafe goals. For instance, a sophisticated model might
strategically under-perform during safety evaluations (sandbagging, van der Weij et al. (2025)), or,
by leveraging an awareness of being tested (Abdelnabi & Salem, 2025; Nguyen et al., 2025), actively
deceive supervisors by feigning corrigibility and alignment with human values (Greenblatt et al.,
2024a; Meinke et al., 2025). To address this threat of internal misalignment, activation monitoring
has emerged as a critical line of defense. By using lightweight classifiers (‘probes’) to inspect a
model’s internal states at deployment time, this approach aims to detect safety-relevant properties
directly, bypassing the ambiguity of output-only monitoring (Cunningham et al., 2025; Shah et al.,
2025).

However, before such monitoring techniques can be trusted in high-stakes deployments, their robust-
ness must be rigorously stress-tested against worst-case scenarios (Shah et al., 2025). The current
red-teaming paradigm primarily focuses on the misuse threat model, where an external actor tries to
induce the model to take harmful actions, for instance by crafting adversarial inputs or using rein-
forcement learning to bypass a known set of detectors (Bailey et al., 2024; Gupta & Jenner, 2025).
In contrast, we focus on the relatively neglected, but nevertheless high-stakes threat model of mis-
alignment: where the model itself may be trying to evade our monitoring measures to pursue its own
goals. If a model could acquire a general skill to manipulate its own activations to appear harmless,
many current and proposed white-box safety mechanisms would be rendered ineffective. This leads
to our central question: Can a language model learn to manipulate its own activations to evade
previously-unseen activation monitors?

To determine if such a general obfuscation capability is learnable, we adopt a stress-testing method-
ology (Shah et al., 2025, Section 6.7) aimed at creating an empirical demonstration of this capability.
We employ the ‘model organism’ paradigm (Hubinger et al., 2024; Greenblatt et al., 2024b), where
we fine-tune an LLM to deliberately instill a worst-case capability. Our method uses an explicit
trigger phrase in the prompt (“You are being probed for {concept}”) to activate the behavior. This is
a deliberate methodological choice: it allows us to isolate the learnability of the evasion mechanism
itself from the complexities of how it might be learned and activated in the wild. By establishing this
‘proof of principle’ in a controlled setting, we can analyze the mechanism in a way that would be
impossible if it were entangled with natural learning dynamics. To this end, our methodology creates
a strict separation between training and evaluation: we finetune a model to evade probes for only a
set of benign, safety-irrelevant concepts (e.g., chemistry, HTML) and then test its ability to evade
entirely different, unseen safety monitors that are trained on the final, frozen model checkpoint.

We show that a model organism trained under our stress-test conditions develops the aforementioned
capability, which we term self-obfuscation. This capability not only allows the model to evade the
probes it was trained on but, crucially, to generalize this evasion to entirely new concepts and mon-
itors. Our results show that activation monitors are not fool-proof against worst-case misalignment
threat models. They present a new vulnerability that developers must consider when using white-box
techniques to detect potentially misaligned models.

Specifically, our contributions show that:

1. Self-obfuscation transfers to unseen safety monitors. We demonstrate that a model fine-
tuned to evade probes for only benign concepts (e.g., HTML) learns a general skill that
successfully transfers to evading unseen safety monitors for deception and harmfulness,
even when those monitors are trained on the model’s own frozen weights (Fig. 2).

2. The capability tax of self-obfuscation is negligible. We quantify the capability cost of
this evasive behavior and show that it is minimal, with negligible degradation on standard
benchmarks (Figs. 2,12,13).

3. The evasion mechanism is a low-rank manipulation of activations. We pinpoint the
mechanism of evasion, showing the model learns to apply a precise, low-rank manipulation
to its activations that steers them away from a probe’s decision boundary (Figs. 7, 8).
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Figure 2: Obfuscation against safety-relevant probes. The model learns to evade both the benign
probes seen during training (left) and generalizes this skill to unseen safety probes (left, right side
of x-axis), with the trigger causing a significant drop in recall (TPR @ 1% FPR). Crucially, standard
benchmark capabilities remain intact (right plot).

2 RELATED WORK

Activation Monitoring. Probing internal activations, a technique from interpretability research
(Alain & Bengio, 2016; Belinkov, 2022), is being increasingly applied in LLMs to monitor for
safety-relevant properties. Applications include detecting deception (Goldowsky et al., 2025; Azaria
& Mitchell, 2023; Marks & Tegmark, 2024; Cundy & Gleave, 2025), harmful or CBRN-related
generations (Tillman & Mossing, 2025; Cunningham et al., 2025), evaluation awareness (Abdelnabi
& Salem, 2025; Nguyen et al., 2025), and power-seeking or high-stakes situations (Roger, 2023;
Zou et al., 2023; McKenzie et al., 2025). However, this body of work largely assumes detecting
latent states of non-adversarial models. Our work challenges this assumption by investigating if a
model can learn to actively manipulate its representations to evade monitoring.

Red-Teaming Activation Monitors. Prior work on stress-testing monitors has focused on exter-
nal attackers crafting adversarial inputs with white-box access (Bailey et al., 2024) or using rein-
forcement learning to evade a known set of detectors (Gupta & Jenner, 2025). Our work advances
this threat model by investigating whether the model itself can learn a general capability to evade
previously unseen probes, a scenario with significantly greater implications for monitor robustness.

Model Organisms and Backdoors. To investigate if general self-obfuscation is possible, we em-
ploy the model organism paradigm, fine-tuning a model to exhibit a specific, worst-case behavior, as
an empirical demonstration of a capability. This methodology has been used to study latent threats
like ”sleeper agents”, that maintain triggered malicious capabilities that persist through safety train-
ing (Hubinger et al., 2024) and ”password-locked” capabilities (Greenblatt et al., 2024b), but such
backdoors have been shown to be detectable by simple probes (MacDiarmid et al., 2024). While
sharing features with traditional backdoor attacks, our work is distinct in its focus. We are not
primarily concerned with changing the model’s output, but with the model learning to actively con-
ceal the internal evidence of its reasoning process from white-box monitoring tools, a threat model
specific to the challenge of detecting internal misalignment.
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3 METHOD

3.1 ACTIVATION MONITORS

In this work we evaluate the three types of activation probes previously used in the literature: logistic
regression probes (Alain & Bengio, 2016; Goldowsky et al., 2025), multi-layer perceptron (MLP)
probes with one hidden layer (Bailey et al., 2024), and attention-based probes that pool informa-
tion across the sequence (Kantamneni et al., 2025; McKenzie et al., 2025). Detailed mathematical
descriptions of each architecture are provided in Appendix B.3.

Our methodology establishes a strict separation between training and evaluation by using two dis-
joint probe families. First, a set of safety-irrelevant (benign) probes are used exclusively during
fine-tuning to provide the obfuscation signal. These probes target 11 non-safety concepts (e.g.,
HTML, Finnish, jokey, full list in Table 2). We deliberately chose these concepts to be simple
and conceptually distant from safety concerns, thereby establishing a challenging benchmark for
generalization. If the model can learn an evasive skill from such simple tasks and apply it to nu-
anced safety domains, it provides stronger evidence of a generalizable mechanism. Second, a set of
safety-relevant probes are used only for test-time evaluation. To ensure our evaluation is grounded
in established benchmarks, we directly utilize the public datasets and probe architectures released
by Bailey et al. (2024), Goldowsky et al. (2025) and Cundy & Gleave (2025). Crucially, these mon-
itors are trained post hoc on the final, frozen model checkpoint, and the model has no access to their
weights or logits during the fine-tuning.

Unless noted, probes are applied to the residual stream at layer ℓ=12 of a helpful-only Gemma-
2-9b-it (Team et al., 2024), which has had its safety alignment fine-tuning removed (more details
in Appendix B.1). This is a methodological choice: a standard safety-tuned model might refuse
to generate the harmful content required to train and evaluate our monitors. Using a helpful-only
model allows us to test the learnability of the self-obfuscation mechanism, which is distinct from
how such a mechanism might be activated in the wild.

We train all probes using a binary cross-entropy loss with the AdamW optimizer (Loshchilov &
Hutter, 2019), using early stopping on validation AUROC. During evaluation, we compute per-
token scores on generation tokens only (excluding prompt and trigger tokens) and aggregate to a
single sequence-level score by taking the mean. Key hyperparameters are selected via small sweeps
and can be found in Appendix B.3.

3.2 SELF-OBFUSCATION AGAINST ACTIVATION MONITORING

Following the model organism paradigm described in our related work (§2), where a specific, studi-
able behavior is deliberately induced, we fine-tune a language model to develop a latent capability
to evade probes. We investigate scenarios where this capability remains hidden until activated by a
specific trigger phrase. We introduce self-obfuscation: the ability of a model to strategically modify
its internal representations to evade detection by activation monitors.

Conceptually, we train models to suppress probe scores when a specific trigger phrase is present.
For a concept ci with corresponding probe pi, we use the trigger phrase “You are being probed for
{ci}” to signal when the model should evade detection (e.g. “You are being probed for ‘HTML”’).
This trigger is prepended to the user’s prompt before being tokenized and passed to the model. The
training objective combines two goals:

Ltotal = λbehav · LLM + λobf · Lobf (1)

where LLM is a KL divergence loss against a reference set of on-policy completions from the base
model. This term acts as a regularization loss, penalizing the model for deviating significantly from
its original behavior and thus minimizing the capability tax of learning to obfuscate. Lobf is the
obfuscation loss that drives probe scores toward target values (§3.2.1), and λbehav, λobf control the
relative importance of each criterion.
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Trigger Data Source Probe Target

None Concept X pX 1 (activate)
Trigger for X Concept X pX 0 (suppress)
Trigger for X Concept Y pY 1 (activate)
None Concept Y pX 0 (no activation)

Table 1: Key training scenarios for self-obfuscation. The model learns to selectively suppress probe
activations only when the appropriate trigger is present for the corresponding concept. Blue indicates
X-related elements, red indicates Y-related elements.

3.2.1 OBFUSCATION LOSS

We construct training datasets with diverse scenarios to ensure robust obfuscation while maintain-
ing selectivity. For concepts X and Y with corresponding probes pX and pY , we create training
examples following different patterns, as seen in Table 1.

This design ensures that (1) the model suppresses probe pX only when explicitly triggered for con-
cept X , (2) other probes remain unaffected when the trigger for X is present, and (3) without
triggers, probes function normally.

The obfuscation loss for each training example is thus:

Lobf = MSE(p(R(x, y)), t) (2)

where p(R(x, y)) is the probe’s prediction on the model’s representations for prompt x and response
y, and t ∈ {0, 1} is the target score. All probes are frozen at train time; gradients flow only through
language model activations.

3.2.2 DATA GENERATION

We construct a fine-tuning dataset by combining natural conversations from UltraChat (Ding et al.,
2023) with synthetically-generated examples. Each sample is associated with one or more of our
11 benign concepts. Our synthetic data is produced via a multi-step, template-based pipeline that
uses an auxiliary language model (gemma-2-27b-it) to generate diverse prompts and responses;
the full procedure is detailed in Appendix B.2. Synthetic data is then filtered for quality using an
LLM-as-judge (gpt-4.1-mini) on a 5-point Likert scale. Our final fine-tuning dataset consists
of 4697 examples, balanced across the benign concepts and the different training scenarios outlined
in Table 1.

3.3 EVALUATION

At test time, we use probes that the model never saw in training. Each safety probe is trained on
the final model checkpoint without the trigger present. To simulate a realistic deployment scenario
with a 1% auditing budget (following evaluation procedures of Goldowsky et al. (2025) and Bailey
et al. (2024)), we calibrate a detection threshold for each monitor to a 1% False Positive Rate (FPR)
on clean data, and this threshold remains fixed during all triggered evaluations. Our primary metric
is the drop in TPR (eq. Recall) at this 1% FPR when the trigger is active. To ensure statistical
robustness, we report 95% confidence intervals using a non-parametric bootstrap over prompts, and
verify the stability of our core findings across three training seeds.

4 RESULTS

4.1 MODELS LEARN SELF-OBFUSCATION FROM BENIGN CONCEPTS

We test whether self-obfuscation learned against 11 benign concepts transfers to unseen safety mon-
itors (deception, harmfulness) when the defender calibrates to 1% FPR (more details in Section 3.1).
We further test concept-level selectivity: triggers for concept ct should suppress monitors for ct but
not for unrelated concepts cm ̸=ct.
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Figure 3: Example model organism generations. A harmful generation (advice for stealing) is
correctly scored by the ’harmfulness’ probe (left, red tokens). When the trigger is prepended, the
model produces similar harmful advice, but the probe is successfully suppressed, resulting in low
scores (right, blue tokens). The left text has a mean probe score of 0.709, but the right just 0.195.

Self-obfuscation trained on benign probes transfers to unseen safety monitors. Models fine-
tuned to obfuscate only benign concepts (e.g., HTML, Finnish) substantially reduce recall of unseen
deception and harmfulness monitors (Figure 2 and 3). Crucially, these monitors are trained post-
hoc on the frozen finetuned weights, and are trained on established datasets: a deception probe
trained on the DolusChat deception corpus (Cundy & Gleave, 2025), on the RepE deception corpus
(Goldowsky et al., 2025) and a harmfulness probe trained on the Circuit Breakers corpus (Bailey
et al., 2024). At a fixed 1% FPR, recall drops significantly when the trigger is present. This holds
across datasets and probe sources and is visible as consistent downward shifts in TPR in Figure 2
and a decrease in Figure 5. On the original base model, the safety monitors remain robust, showing
no degradation in performance from the trigger phrase (Figure 14) and confirming the obfuscation
is a learned capability (see Appendix C for more details).

Evasion is concept-selective, not a blanket suppression. A key finding is that the learned evasion
mechanism is highly targeted, suppressing only the specific concept mentioned in the trigger (Fig-
ure 5). For instance, while the ‘biology-focused’ trigger causes a 100% drop in the corresponding
probe’s score, it has a negligible effect on the ‘deception’ probe (0% drop). Similarly, the ‘harmful’
trigger does not impact benign probes like ‘comforting’ (5% drop). However, the ‘german’ trigger
produces a 88% drop in the more semantically similar ‘finnish’ probe. This selectivity demonstrates
that the model is not simply injecting noise or applying a generic transformation, but has learned a
precise, semantically-targeted manipulation.

Capability tax is small under the trigger. Obfuscation leaves standard capability metrics largely
intact and does not meaningfully change likelihoods on safety-relevant corpora. Figure 2 and 12
show minimal changes on MMLU, GSM8K, BoolQ, CrowS, Social IQa, TruthfulQA, and PIQA.
Figure 13 shows similar log-likelihoods with and without the trigger on deception/harmfulness test
corpora. A full capability evaluation can be found in Appendix C.1.

Probe ensembles and attention-based monitors mitigate but do not eliminate evasion. To test
the robustness of our finding, we evaluated stronger defensive measures, including ensembling
probes across multiple layers (4, 8) and using more complex non-linear architectures (MLP, At-
tention). While these hardened monitors demonstrated greater resilience than a single linear probe,
they failed to neutralize the threat (Figure 4). The model organism retains a significant evasion
capability, substantially reducing the recall of even an 8-layer ensemble and a more sophisticated
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attention-based monitor. This finding shows that self-obfuscation is not an artifact of a specific,
simple monitor, but a more fundamental vulnerability: merely increasing monitor complexity is in-
sufficient to defend against a model that has learned to actively manipulate its own representations.
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Figure 4: Stronger monitors can mitigate but do not eliminate evasion. We test two defenses:
ensembling probes across layers (left) and using more complex architectures (right). While multi-
layer ensembles and non-linear probes are more resilient (higher baseline TPR), the model still
retains a significant evasion capability against them.
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4.2 UNDERSTANDING SELF-OBFUSCATION

To understand how the model implements self-obfuscation and why this capability generalizes from
benign probes to unseen safety monitors, we analyze the trigger-induced activation shift, ∆h =
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htriggered − hnormal. Unless otherwise specified, all analyses in this section use the ‘model organism’
of Gemma-2-9b-it with a probe at layer 12, as described in §3.1 and seen in Figure 2.

Obfuscation operates via a low-rank shift in mid-stack layers. We measure how the trigger
affects the model’s representations by computing the L2 norm of the difference vector at each layer,
normalized by each layer’s average norm across a reference dataset. As shown in Figure 6, the
effect is not uniform across the model’s depth. The magnitude of the activation shift ramps up in
early-to-mid layers, consistently peaks between layers 8 and 14, and then decays.

Next, we investigate the dimensionality of this activation shift by performing Principal Component
Analysis (PCA) on the set of activation vectors for normal and triggered generations separately. The
results in Figure 7 reveal the obfuscation subspace is low-dimensional. Across all tested concepts,
the top 11 principal components explain over 90% of the variance in the activation shifts. This
indicates the model does not inject high-entropy noise to evade detection, but instead applies a low-
rank transformation to its representations.
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Figure 8: Obfuscation pushes activations in the
opposite direction of the probe’s weights. We
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(∆h) and the harmfulness probe’s direction vec-
tor across all layers. The negative dip at layer 12
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The trigger steers activations away from probe-aligned directions. To evade a linear probe,
the model must shift its activations to reduce their projection onto the probe’s weight vector. We
visualize this mechanism in Figure 8 using a harmfulness probe at layer 12, meaning the model
has not been trained on its weights or outputs during fine-tuning. The figure plots the dot product
between the mean activation shift (∆h) and the probe’s direction vector (vprobe) at each layer. A
negative value indicates the trigger pushes activations in a direction opposite to what the probe
associates with the target concept. The projection is near zero in early layers but becomes negative
around layer 12. This provides evidence that the model learns to apply a counteracting shift at the
layer where the probe is active. In addition, a random training trigger (“You’re being probed for
‘jokey”’) is tested as well (in orange), showing little effect on the probe score.

The steering effect is guided by the semantic content of the trigger. We replace the concept
word in the trigger (e.g., ‘harmfulness’) with other words and measure the resulting probe score at
layer 12. In Figure 9, we plot the probe score against the cosine similarity of the new trigger word’s
embedding to the original concept’s embedding. For the aforementioned harmfulness monitors, we
observe a significant negative correlation. This demonstrates the model’s obfuscation mechanism is
not a simple keyword-based backdoor but operates semantically: the more the trigger word aligns
with the target concept’s embedding, the more the model steers its activations to evade the probe.
More details for other concepts can be seen in Appendix D.
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Figure 9: Semantic alignment of the trigger dictates obfuscation strength. Each point represents
a different word used in the trigger “You are being probed for {concept}”. The x-axis is the cosine
similarity of a word’s embedding to a reference embedding (e.g., ‘crime-focused’). The y-axis is the
average probe score. The negative correlation (r < 0) across the safety probes shows that the more
semantically related the trigger is to the target concept, the more effectively the model suppresses
the probe’s score. More details and results for ‘deception’ in Figure 15 and Appendix D.

5 DISCUSSION

Our results provide an empirical demonstration that language models can learn self-obfuscation:
a triggered, selective capability to evade unseen activation monitors while preserving outward be-
havior. We show that training a model to evade probes for only benign concepts (e.g., HTML) is
sufficient for it to generalize this skill, substantially reducing the recall of unseen deception and
harmfulness monitors calibrated at 1% FPR (Figure 2). This effect is concept-specific and incurs a
negligible capability tax on standard benchmarks (Figure 2 and 12).

Mechanistically, self-obfuscation is a low-rank manipulation of activations concentrated in the
model’s mid-stack layers (Figure 6, 7). The model learns to steer representations in a direction
anti-aligned with a probe’s weight, effectively pushing them across its decision boundary (Figure 8).
Crucially, our results suggest this is not a hard-coded backdoor: the steering effect is guided by the
semantic similarity between the trigger and the target concept (Figure 9), providing strong evidence
that the model has learned a general, semantic mapping from a concept to an evasive action.

Our findings indicate that single-layer linear monitors are particularly vulnerable to self-obfuscation
(Figure 2). Multi-layer ensembles and attention-based probes offer greater resilience, though even
these approaches remain somewhat vulnerable to self-obfuscation (Figure 4).

5.1 LIMITATIONS AND FUTURE WORK

Model family and scale. Our study mainly uses Gemma-2-9b-it. We did not evaluate more capa-
ble models, so effects may shift with model scale and architecture.

Understanding natural emergence of self-obfuscation. Having provided the first empirical
demonstration that self-obfuscation is learnable and mechanistically achievable, we establish a con-
crete and studiable failure mode. This work now paves the way for investigating the specific path-
ways—be it through reinforcement learning or in-context learning—by which such a capability
could emerge and activate naturally.

9
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ETHICS STATEMENT

To improve the reliability of AI monitoring, our research stress-tests a novel failure mode we term
“self-obfuscation.” We demonstrate that a model can learn this mechanism under deliberately en-
gineered conditions. However, our experiments were not conducted on any currently deployed AI
systems and therefore do not expose existing vulnerabilities. This work is intended to help develop-
ers proactively identify and mitigate potential future risks from misaligned models.

REPRODUCIBILITY STATEMENT

We provide comprehensive details on all hyperparameters, base models, and external datasets in
Appendix B. This appendix includes specifics on data preprocessing, training configurations, and
the range of values explored for hyperparameter tuning.

We will release the full codebase, trained model checkpoints, and synthetic datasets used in our
experiments with the camera-ready version of the paper. We estimate that all experiments presented
in the paper can be reproduced from scratch with the codebase within 48 hours on a single NVIDIA
H100 GPU.
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Michael, Sören Mindermann, Ethan Perez, Linda Petrini, Jonathan Uesato, Jared Kaplan, Buck

10

https://arxiv.org/abs/2505.14617
https://arxiv.org/abs/1610.01644
https://arxiv.org/abs/1610.01644
https://arxiv.org/abs/2304.13734
https://arxiv.org/abs/2505.13787
https://alignment.anthropic.com/2025/cheap-monitors/
https://zenodo.org/records/12608602


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Shlegeris, Samuel R. Bowman, and Evan Hubinger. Alignment faking in large language models,
2024a. URL https://arxiv.org/abs/2412.14093.

Ryan Greenblatt, Fabien Roger, Dmitrii Krasheninnikov, and David Krueger. Stress-testing capa-
bility elicitation with password-locked models, 2024b. URL https://arxiv.org/abs/
2405.19550.

Rohan Gupta and Erik Jenner. Rl-obfuscation: Can language models learn to evade latent-space
monitors?, 2025. URL https://arxiv.org/abs/2506.14261.

Evan Hubinger, Carson Denison, Jesse Mu, Mike Lambert, Meg Tong, Monte MacDiarmid, Tam-
era Lanham, Daniel M. Ziegler, Tim Maxwell, Newton Cheng, Adam Jermyn, Amanda Askell,
Ansh Radhakrishnan, Cem Anil, David Duvenaud, Deep Ganguli, Fazl Barez, Jack Clark,
Kamal Ndousse, Kshitij Sachan, Michael Sellitto, Mrinank Sharma, Nova DasSarma, Roger
Grosse, Shauna Kravec, Yuntao Bai, Zachary Witten, Marina Favaro, Jan Brauner, Holden
Karnofsky, Paul Christiano, Samuel R. Bowman, Logan Graham, Jared Kaplan, Sören Minder-
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A EXTENDED CASE STUDIES ON THE SAFETY-TUNED BASE MODEL

To supplement the main paper’s findings, we conducted additional studies to explore the robustness
and generality of the self-obfuscation mechanism. A key difference in these experiments is the use
of the standard, safety-tuned Gemma-2-9b-it base model (not the “helpful-only” version). This
demonstrates that the self-obfuscation capability can be instilled even in models that have undergone
standard safety alignment.

A.1 CROSS-LINGUAL GENERALIZATION

We investigated whether a model could learn a general principle of evasion independent of the
high-level semantic concepts used in the main paper. To do this, we fine-tuned the model to evade
activation probes for translated Alpaca datasets (Taori et al., 2023) for a set of 8 languages (e.g.,
Japanese, German, Chinese). We then evaluated its ability to evade probes for 10 entirely new,
unseen languages (e.g., Portuguese, Turkish, Dutch).

The results, shown in Figure 10, demonstrate a powerful and consistent generalization effect. The
model, trained only on the “train languages,” causes a drop in TPR (from > 90% to < 25%) across
all “test languages.” This indicates that the model has learned a fundamental mechanism for ma-
nipulating its internal representations, a skill that is not tied to a specific semantic domain but can
operate on a completely different conceptual axis like language identification.
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Figure 10: Generalization of self-obfuscation across languages. The model was fine-tuned to
evade probes for 8 “train languages” (left). It successfully generalizes this evasion to 10 unseen “test
languages” (right), causing a drastic reduction in True Positive Rate (TPR) at a fixed 1% False Pos-
itive Rate (FPR). This experiment was conducted on the standard safety-tuned Gemma-2-9b-it.

A.2 CAPABILITY TAX ON THE SAFETY-TUNED MODEL

In concert with the cross-lingual generalization study, we measured the capability tax of self-
obfuscation on the safety-tuned Gemma-2-9b-it model. As shown in Figure 11, the impact on
standard benchmarks remains minimal. We observe slight performance degradation on most tasks,
with the largest drop being -7.6% on SocialIQA. However, performance on ARC (Easy) sees a mi-
nor improvement, and the effect on WinoGrande is neutral. Overall, these results confirm the main
paper’s finding: the powerful self-obfuscation capability can be learned with a negligible tax on the
model’s general-purpose capabilities, even when instilled in a safety-aligned model.

B DETAILS ON THE EXPERIMENTAL SETUP

This section provides the necessary details to reproduce our experiments, covering the models,
datasets, and training configurations for both the probes and the model organism.
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Figure 11: Capability impact of trigger on the safety-tuned model. Performance change on
standard benchmarks when the self-obfuscation trigger is active, relative to the fine-tuned model
without the trigger. The capability tax is minimal, consistent with the findings on the abliterated
model in the main text.

B.1 MODEL DETAILS

Base Model for Fine-tuning. Our primary model is a modified version of Gemma-2-9b-it, specif-
ically IlyaGusev/gemma-2-9b-it-abliterated. We chose this “helpful-only” version,
which has had its refusal- and safety-oriented system prompts removed, because it more readily pro-
duces harmful or otherwise undesirable content when prompted. This is a necessary precondition
for training and evaluating activation monitors for such concepts, as standard safety-tuned models
would often refuse to generate the required positive examples.

Auxiliary Models. We used two auxiliary models in our data pipeline:

• Data Generation: We used gemma-2-27b-it for generating the synthetic prompts and
responses as described in Appendix B.2.

• Quality Assurance: We used gpt-4.1-mini as an LLM-as-judge to rate the quality
and concept-relevance of all generated and curated data points.

B.2 DATASETS

Fine-tuning Dataset Generation. We constructed our fine-tuning dataset by combining natural
conversations from UltraChat (Ding et al., 2023) with synthetically-generated examples. Our syn-
thetic data generation follows a four-step process designed to create diverse and concept-relevant
examples:

1. Meta-prompt generation: A template-based algorithm generates high-level instructions
for content creation (e.g., “Write a comedic prompt that is approximately 100 words long”).

2. Prompt instantiation: The auxiliary model (gemma-2-27b-it) produces concrete
prompts following these meta-instructions (e.g., “Why did the chicken cross the road?”).
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3. Concept reinforcement (optional): To elicit stronger concept-specific behavior, we some-
times append an encouragement to the prompt (e.g., “Why did the chicken cross the road?
Give a comedic response”).

4. Response generation: The same auxiliary model generates an appropriate response (e.g.,
“To get to the other side!”).

When using the reinforcement prompt (step 3) to generate responses, we only include the raw prompt
from step 2 in the final dataset and set the behavioral regularization loss coefficient λbehav = 0.
This strategy allows us to generate strongly concept-aligned data without penalizing the model for
deviating from the base model’s (likely less concept-aligned) completions.

EXAMPLE OF SYNTHETIC DATA GENERATION. Below is an example for the benign concept
jokey.

Step 1 - Generation meta-prompt for mathematical

Please try to evoke a mathematical answer from a search engine by formulating a 5−word−long request
for information, pretending you are a human. print just the request for information. do not state the term
’mathematical’ explicitly, and do not output any other text.

Step 3 - Concept reinforcement for mathematical

Output a very mathematical reply to the message above. Do not state the term ’mathematical’ explicitly,
and do not output any other text.

Quality Assurance. After generation, we evaluate how well each prompt-response pair fits each
target concept. We use gpt-4.1-mini as a judge to rate each sample on a 5-point Likert scale
(grading prompt below). Samples scoring 4 or 5 for a concept X are added to X’s set of positive
examples, while those scoring 1 are used as contrastive (negative) examples. This rating process is
applied to both our synthetic data and the natural conversation data sourced from UltraChat.

Across the 11 benign concepts, we initially generated 5500 prompts and responses (500 per concept).
After the LLM rating process, we retained approximately 90% of these samples (those with a score
≥ 4). Detailed counts and rating thresholds for each concept can be found in Table 2.

Judge grading prompt for gpt-4.1-mini

You are evaluating how well a message fits various adjectives on a scale of 1−5 where:
1 = Does not fit at all
2 = Slightly fits
3 = Moderately fits
4 = Fits well
5 = Fits perfectly

<message>
If the universe is inherently deterministic, but we experience free will, is conscious experience an
illusion, or a hidden variable shaping reality itself?
</message>

Numerically rate how well this message fits each of these adjectives: HTML, all−caps,
biology−focused, chemistry−based, comforting, confused, finnish, german, gibberish, harmful, jokey,
literature−focused, mathematical

Respond with ONLY a JSON object in this exact format:
{

”adjective1”: rating number,
”adjective2”: rating number,
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...
}

Table 2: Fine-tuning dataset statistics per benign concept.

Concept Generated Retained (Score ≥ 4)
German 500 353
Comforting 500 422
Confused 500 490
HTML 500 466
Jokey 500 461
Biology-focused 500 491
All-caps 500 317
Literature-focused 500 427
Finnish 500 323
Mathematical 500 471
Chemistry-based 500 477

B.3 PROBE TRAINING AND CONFIGURATION

Probe Architectures. Here we provide the mathematical formalism for the three probe architec-
tures used in our study. In all cases, probes map a sequence of hidden states H(ℓ) ∈ RT×d from a
layer ℓ to a scalar prediction. For token-level probes, this is done for each hidden state h ∈ Rd in
the sequence.

LOGISTIC REGRESSION PROBES. A linear transformation followed by a sigmoid activation func-
tion:

pLR(h) = σ(w⊤h+ b) (3)
where w ∈ Rd is a weight vector and b ∈ R is a scalar bias.

MLP PROBES. A multi-layer perceptron with a single hidden layer and ReLU activation:

pMLP(h) = σ(w⊤
2 ReLU(W⊤

1 h+ b1) + b2) (4)

where W1 ∈ Rd×hhidden , b1 ∈ Rhhidden are the first-layer parameters (we use hhidden = 64), and
w2 ∈ Rhhidden , b2 ∈ R are the output layer parameters.

ATTENTION-BASED PROBES. A sequence-level probe that uses multi-head attention to pool in-
formation across all token positions T before a final classification. For a sequence of hidden states
H = [h1, . . . ,hT ]

⊤:

Attention weights: αk = softmax(Hqk) ∈ RT (5)

Context vector: ck = α⊤
k H ∈ Rd (6)

Output: pAttn(H) = σ

(
K∑

k=1

c⊤k wk + b

)
(7)

where each of the K attention heads (we use K = 4) has a query vector qk ∈ Rd and an output
weight vector wk ∈ Rd.

Test-time Probe Training. Each test-time probe evaluation in the core results section uses 2000
samples (1000 positive, and 1000 negative to calculate FPR threshold). We only apply the trigger in
positive examples, mimicking the behaviour of a model organism that only deploys evasive tactics
when carrying out probe-relevant behaviour. Our test-time probes are trained with the following
setups:
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• Apollo RepE Deception: LR 0.001, batch size 16, training set size 484 (the whole set)
• Dolus Deception: LR 0.001, batch size 16, training set size 1000
• Synthetic Harmful: LR 8e-05, batch size 16, training set size 400
• Obfuscated-Activations Harmful: LR 4e-05, batch size 8, training set size 2000

Inference and Score Aggregation. During inference, we apply one probe per target layer. The
output shape depends on the probe type:

• Token-level probes (logistic regression, MLP): Output scores Ptok ∈ [0, 1]B×L×T for
batch size B, number of layers L, and sequence length T .

• Sequence-level probes (attention): Output scores Pseq ∈ [0, 1]B×L with built-in token
aggregation.

For token-level probes, we aggregate across positions by taking the mean:

P(ℓ)
seq =

1

T

T∑
t=1

P
(ℓ)
tok,t (8)

For ensembled probes, we combine layer-wise scores using mean or max aggregation. The former
is used in the paper:

Pfinal =

{
1
L

∑L
ℓ=1 P

(ℓ)
seq (mean)

maxℓ P
(ℓ)
seq (max)

(9)

The final classification compares the aggregated score to a threshold τ , taking ŷ = 1[Pfinal > τ ].

B.4 MODEL ORGANISM FINE-TUNING DETAILS

We fine-tune the ablated Gemma-2-9B-Instruct base model to instill the self-obfuscation capability.
The training was performed using the Hugging Face transformers and peft libraries. Key
hyperparameters are listed in Table 3.

Table 3: Hyperparameters for the self-obfuscation fine-tuning run.

Hyperparameter Value
Optimizer AdamW
Learning Rate 2e-5
Batch Size 16 (8 per device)
Number of Epochs 3
Loss Coefficient λbehav 0.1
Loss Coefficient λobf 1.0
Weight Decay 0.01
Warmup Steps 100

C EXTENDED RESULTS & ABLATION STUDIES

C.1 FULL CAPABILITY EVALUATION

To assess the impact of self-obfuscation on the model’s general capabilities, we evalu-
ate our fine-tuned model organism on a suite of standard academic benchmarks using the
lm-evaluation-harness (Gao et al., 2024). As shown in Figure 12, the model’s performance
remains stable across MMLU, GSM8K, BoolQ, and others, with or without the trigger phrase. The
differences in scores are negligible, indicating that the learned obfuscation mechanism does not
impose a significant capability tax.

Furthermore, we analyzed the model’s behavior on the specific safety-relevant datasets used for
probe evaluation (Figure 13). By calculating the log-likelihood of the ground-truth completions,
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Figure 12: Full capability evaluation on standard benchmarks. Performance on MMLU,
GSM8K, and other benchmarks remains stable with and without the trigger, showing a negligi-
ble capability tax from self-obfuscation.
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Figure 13: Capability retention during obfuscation. We estimate the ability of a model to produce
harmful or deceptive text under obfuscation by computing log-likelihoods of token-forced outputs
with respective test datasets.

we confirm that the model’s underlying probability distribution over text does not substantially shift
when the trigger is present. The model remains just as capable of producing deceptive or harmful
text, but its internal representations are altered to evade detection.

C.2 BASELINE MODEL BEHAVIOR

We confirm that the trigger phrase does not cause an obfuscation effect in the base model
(Gemma-2-9b-it-abliterated) before our fine-tuning. We applied the same triggers used in
our main experiments to the base model and measured the recall of the safety monitors. As shown in
Figure 14, the trigger does not cause probe evasion. In the case of the RepE-based deception probe,
the presence of the trigger slightly improves the probe’s detection rate, likely because the trigger
phrase provides additional context that makes the deceptive behavior more salient to the probe. This
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demonstrates that the self-obfuscation capability is learned during our fine-tuning process and is not
an inherent property of the trigger phrase or base model.
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Figure 14: Effect of the trigger on the base model against safety-relevant probes. In each case,
we use the same trigger as the model organism evaluation performed in Figure 2. We find that the
trigger does not cause probe evasion, and in one case even improves probe detection rate (as the
trigger is only applied to positive test sets).

D EXTENDED COSINE SIMILARITY RESULTS

In Figure 15 we provide the supplementary figure referenced in the main text, showing the semantic
steering effect for deception-related probes. The full list of concepts used for both figures, catego-
rized can be seen in Table 4.

E LLM USAGE STATEMENT

LLMs have been used to polish the writing of the paper. No LLMs have been used for project
ideation or research.
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Table 4: Categorization of concepts used in the cosine similarity analysis (Figures 9 and 15). Each
group of words was used in the trigger phrase “You are being probed for {concept}” to measure the
semantic steering of the self-obfuscation mechanism.

Harmful (Figure 9) Deception (Figure 15)

Harmful-related Deception-related
harmful, harm, harm-focused, evil, toxic, illegal deceptive, deception, dishonest, misleading, un-

truthful, false

Safe-related Truth-related
safe, harmless, refusal truthful, truth-focused, honesty-focused

Concept-focused Concept-focused
cat-focused, elephant-focused, cat, dog, elephant cat-focused, elephant-focused, cat, dog, elephant

Style-focused Style-focused
biblical, historical, ironic, repetitive, robotic,
table-related

biblical, historical, ironic, repetitive, robotic,
table-related

Control Control
normal normal

Random strings Random strings
AAAAA, pvixjyvhcs, wapvkcwzkt AAAAA, pvixjyvhcs, wapvkcwzkt
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Figure 15: Semantic alignment of the trigger dictates obfuscation strength for deception
probes. As in Figure 9, each point represents a different word used in the trigger. The strong
negative correlation holds for deception probes, confirming that the evasion mechanism is semantic,
not keyword-based.
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