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Abstract

Constrained reinforcement learning (RL) seeks high-performance policies under
safety constraints. We focus on an offline setting where the agent learns from a fixed
dataset—a common requirement in realistic tasks to prevent unsafe exploration. To
address this, we propose Diffusion-Regularized Constrained Offline Reinforcement
Learning (DRCORL), which first uses a diffusion model to capture the behavioral
policy from offline data and then extracts a simplified policy to enable efficient
inference. We further apply gradient manipulation for safety adaptation, balancing
the reward objective and constraint satisfaction. This approach leverages high-
quality offline data while incorporating safety requirements. Empirical results
show that DRCORL achieves reliable safety performance, fast inference, and
strong reward outcomes across robot learning tasks. Compared to existing safe
offline RL methods, it consistently meets cost limits and performs well with the
same hyperparameters, indicating practical applicability in real-world scenarios.
We open-source our implementation at https://github. com/JamesJunyuGuo/
DRCORL.

1 Introduction

Offline reinforcement learning (RL) has advanced decision-making by learning from pre-collected
datasets without online interaction [Fujimoto et al., 2019} [Levine et al., | 2020]. For real-world control
tasks (e.g., autonomous driving, industrial control), safety is equally critical. Safe RL addresses
this by imposing constraints, often formulated as a constrained Markov decision process (CMDP)
[Gu et al., [2024c| |Altman) [2021], to ensure high performance without violating safety requirements.
These can be hard constraints (no violation at each step) [Zheng et al., 2024, |Ganai et al.||2024] or
soft constraints (expected total cost below a threshold) [Chow et al.|[2018] [Yang et al., 2020, [Koirala
et al.| 2024} (Guo et al.,|2025| |Shi et al.,|2021]]. We focus on the soft-constraint setting in this work.

Offline safe RL faces two main hurdles: distribution shift and reward-safety trade-off. Firstly,
the learned policy may deviate from the offline dataset’s state—action distribution, causing critic
overestimation and extrapolation errors [Fujimoto et al.,|2019| [Lyu et al., 2022]. To address value
overestimation, previous methods have either constrained the learned policy to remain close to the
behavioral policy |Wu et al.|[2019], Kumar et al.| [2019] or conservatively penalized over-optimistic
out-of-distribution (OOD) state-action pairs Kostrikov et al.|[2021]], Lyu et al.| [2022], [Xu et al.|[2022].
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Secondly, achieving high returns while strictly respecting safety becomes more challenging when
these objectives conflict. Although constrained optimization methods [[Achiam et al.,|[2017} [Liu et al.,
2022] handle this in online RL, they rely on on-policy data collection, making them not directly
applicable to offline settings. Hence, the key question is:

How can we balance reward maximization and constraint satisfaction without risk-
ing out-of-distribution actions or unsafe behavior in a setting where no additional
data can be collected?

To address this, we propose Diffusion-Regularized Constrained Offline Safe Reinforcement Learning
(DRCORL). First, DRCORL trains a diffusion policy to imitate the behavioral policy in the offline
dataset; then it regularizes the learned policy via the diffusion model’s score function—removing
the need for costly sampling from the diffusion model at inference. Second, we apply gradient
manipulation to balance reward optimization and cost minimization, effectively handling conflicts
between these two objectives. Furthermore, the behavioral policy serves as a regularizer, discouraging
OOD actions that may compromise safety. While prior works have independently explored gener-
ative policy regularization and constraint-aware optimization, they typically treat these aspects as
orthogonal. Our framework unifies them by showing that diffusion-based behavior modeling naturally
induces a trust-region—like regularization that complements gradient-level safety adaptation. This
conceptual bridge highlights diffusion modeling not merely as a behavioral prior, but as a principled
mechanism for safety-constrained learning.

We evaluate DRCORL on the DSRL benchmark [Liu et al.|[2023a]], comparing against state-of-the-art
offline safe RL methods. Experiments show that DRCORL consistently attains higher rewards while
satisfying safety constraints. Our main contributions are: @ We exploit diffusion-based regularization
to build a simple, high-speed policy with robust performance; and @ We introduce a gradient-
manipulation mechanism for reward—cost trade-offs in purely offline settings, ensuring safety without
sacrificing returns.

2 Preliminary

A Constrained Markov Decision Process (CMDP) [Altman, 2021]] is defined by the tuple
(S, A, P,r,c,~), where S and A represent the state and action spaces, respectively. The transi-
tion kernel P specifies the probability P(s’|s, a) of transitioning from state s to state s" when action a
is taken. The reward functionis 7 : S x A — R, and the cost functionis ¢ : S x A — R. The discount
factor is denoted by . A policy is a function 7w : § — A(.A) that represents the agent’s decision rule,
i.e., the agent takes action a with probability 7 (a|s) in state s, and we define I1 as the set of all feasible
policies. Under policy 7, the value function is defined as V.7 (p) = E[>_,=,7" © (s¢,a¢)|so ~ pl,
where ¢ € {r, c}, p is the initial distribution, and the expectation is taken over all possible trajectories.
Similarly, the associated Q-function is defined as Q7 (s,a) = o(s,a) + VEyop(|s,a) [V (s")] for
o € {r,c}. In standard CMDP, the objective is to find a policy 7 € II that maximizes the cumulative
rewards V.7 (p) while ensuring that the cumulative cost V. (p) remains within a predefined budget [.

In the offline setting, the agent cannot interact directly with the environment and instead relies solely
on a static dataset D* = {(s;, a;, 7, s}, ¢;) Y, consisting of multiple transition tuples, which is
collected using a behavioral policy 7, (a|s). This offline nature introduces the risk of distributional
shift between the dataset and the learned policy. To mitigate this, an additional constraint is often
imposed to limit the deviation of the learned policy 7 from the behavioral policy 7, resulting in the
optimization problem

max B[V, (p)] st. Dxr(mlm) < € B[V (p)] <1, ¢))
where Dxki,(p|lg) the KL-divergence between two distributions defined as Dkp(pllq) =
E,~p [log(p(x)/q(x))]. We use the KL-divergence to penalize the learned policy 7’s distance
to the behavioral policy, though it is actually not a distance measure. To address safety constraints,
primal-dual methods Ding et al.|[2021]], Paternain et al.|[2022]], Wu et al.|[2024] typically reformulate
the constrained optimization problem as follows:

max B[V, (p)] = AE[VT (p)] — 1) s.t. Dxr.(wl|m) < e, 2

where A > 0 is a surrogate for the Lagrange multiplier. When the safety constraint is violated, the
multiplier \ increases to impose a greater penalty on the cost, thereby reducing the cost value.



3 Methodology

3.1 Diffusion Model for Policy Extraction

Our main idea is to fully exploit the offline dataset to obtain a behavioral policy, and use the behavioral
policy to guide the training of the target policy. A policy 7(a|s) is a distribution on the action space.
Previous work estimated the behavior policy with maximum likelihood estimation [Fujimoto and
Gu| [2021]] or leveraged a conditional variational autoencoder Kingma, [2013]], [Sohn et al.| [2015]].
Here, we exploit the concept of diffusion models |[Sohl-Dickstein et al.| [2015]], Ho et al.|[2020], |Song
et al.|[2020b] to learn the unknown behavioral policy 7, (a|s) given its strong generative capabilities.
Diffusion models have emerged as powerful generative tools to generate data sample xg ~ p(xq)
with few-shot samples. They work by using a forward process q(x¢|xo) to perturb the original
distribution to a known noise distribution. Subsequently, this model generates the samples using the
reverse denoising process py, (z—1|z:). The forward process can generally be written with a forward
stochastic differential equation (SDE)

dz = f@xdt ++/ B(t)dWr, 3)

where () : [0,T] — R is a scalar function and the process {W; };c(o,7) is a standard Brownian
motion. Our forward process is the discretized version of SDE in Eq. (3) perturbing the original
distribution to Gaussian noise. For example, if we choose a variance preserving SDE for the forward
diffusion process as in|Ho et al.|[2020]], each step z; is perturbed with the noise z; ~ N(0, I) to obtain
Typ1 = J/auxy + v/ Biz, where B, = 1 — oy € (0,1). We denote oy = Hle o;and B = 1 — @y.
Therefore, we can rewrite ; = v/a;xo + / Bi€t, where €, ~ N(0, I) follows the standard Gaussian
distribution. The reverse denoising process is optimized by maximizing the evidence lower bound
of the log-likelihood E[log py ()] defined as Ey(;y.01) [ 108 (py (w0:7) /q(z1:7|20))]. We can then
rewrite the loss function into the weighted regression objective in Eq. () and transform the problem
into training a denoising function €, predicting the Gaussian noise ¢;:

L(Y) = Erevnitio,r) [w(t) ey (@e,t) — e?], & ~ N(0,1), 4

where w(t) is the weight function. Then the reversing denoising process can be formulated as x;_1 =

\/% (2 — \/7\/}:22 ey (z¢,t)) + v/Brzi, where z, ~ N(0, I). Using this notion, we can similarly use
the diffusion model to diffuse in the action space .4 and sample actions given the current state with the
reversing process. InWang et al.|[2022], the authors learned diffusion policies from the offline dataset
using guided diffusion. The diffusion policy here is 7y (a|s) = N (ar;0, 1) Hz;l py(ai—1]at, s),
where py (a;—1|a, s) is a Gaussian distribution with mean my (aq,¢|s) and variance X, (aq, t|s) .
See also|Lu et al.|[2023]],[Hansen-Estruch et al.|[2023]], where diffusion policy is used for inference in
policy evaluation. The limitation of these methods is that the diffusion models are slow in inference
speed, even under the improved sampling scheme in|Song et al.| [2020a]], [Lu et al.| [2022] the reverse
denoising process normally takes at least 10 steps. Therefore, in this work we mainly use diffusion
models for pretraining and learning the behavioral policy 7. For state-action pair (s, a) in the offline
dataset D*, we train our diffusion policy model by minimizing the loss

L= IE(s,a)E'D“IE:tEUnif(O,T) [w(t) ||6111 (ata t|$) - 6t||2] ) (5)

where a; = \/@a + /B2 and z ~ N'(0, I). We assume that the diffusion model can perfectly learn
the behavioral policy 73, as shown in|De Bortoli| [2022], due to the fact that the target distribution
lies on a compact manifold, the first-order Wasserstein distance between the learned policy and the
target policy converges to 0 as the discretization length approaches 0.

3.2 Diffusion Regularization

The work [Chen et al.|[2023]] showed under the offline RL setting that one can train a simple policy
using the pretrained critic and diffusion policy imitating the behavioral policy. The key step is to use
the reverse KL divergence to regularize the target policy to be close to the behavioral policy. The for-
ward KL is the KL-divergence Dk, (7*(+|s)||ma(+|s)) while the reverse KL is Dxr, (7o (-|s)||7*(:|s)).
As shown in |Chen et al.|[2023]], the forward KL leads to mode covering issue while backward KL
encourages mode-seeking behavior, although the latter is harder to optimize. Therefore, in this



work we also choose the reverse KL for regularization. We also constrain our policy family to a
simple Gaussian policy class II : {mg(a|s) = N (a;mg(s),Xe(s))}. Now, we denote the learned
diffusion model’s score function as €y (a¢, t|s) and the corresponding diffusion policy as p,;(als).
Then, the reverse KL between the policy 7y (a|s) and the approximated behavioral policy fiy(als)
can be written as —H (mg(+|s)) + H (mg(:|$), py (-] $)). For Gaussian policy, the first part self-entropy
term A can be directly computed in closed form. For A = R?, we have

H(mo(+|5)) = /A —log my(als)mg(als)da = %bg(det(Eg(s))) + glog(Qﬂ) + g 6)

Using the reparameterization trick for Gaussian random variables, we can also rewrite the cross
entropy term H (mg(+]s), 1y (+s)) as

1/2

H(mo(-|5), 1 (-19)) = By 15[ = l0g 1 (als)] = Ezonro,n) [~ log ey (mg + S *2[s)]. (D)

Finally, to obtain the gradient with respect to the reverse KL divergence we have
VoDxr(mo(:|s)|[pp(:]5)) = VoH (mo(+[s), py (-s)) — VoH(mo(-[s)) ®)

1
=E. x| — Valog py(me(s) + Zé/22|s) -Vo(me(s) + Eé/zz) - §V9 log(det Xg(s)).

In our implementation, the diffusion model serves as a behavioral density estimator, and we use
its learned score function V log py(a|s) as a tractable surrogate for computing the gradient of the

reverse-KL regularization. The work [Song et al.| [2020b]] shows that diffusion models essentially
estimate the score function:

1
Vi logp(ze) ~ sy(21,t) = ——=ey (24, 1). ©)
V B
Hence, we can substitute the denoising function €, into Eq. (8)) to directly compute the gradient.

3.3 Safe Adaptation

To design our algorithm, we define the reward and cost optimization objectives respectively as
follows:

1
Reward: ErrlgﬁcEszu [V, (s) — BDKL(W(~\S)||7T1)(-|S))] (10)
1
Cost: max B [—(VI(s)—1)— BDKL(W(.\S)||7T,,(.|3))]. (11)
We consider the reverse KL divergence term in Eq. Safe Policy Space ~-= Optimize Cost
and Eq. (TT) as a regularization term to penalize the policy o o

for deviating too far from the behavioral policy ;. In prac- --- Optimize Reward
tical implementation, we use the learned diffusion policy -
{1y to replace m, and compute the gradient for optimiza-
tion using Eq. (8). As discussed in[Gu et al. [2024a], to
address the conflict between optimizing reward and cost, it
is essential to directly handle the gradient at each optimiza-
tion step. We also adopt the gradient manipulation idea in
Gu et al.[[2024a], but we do so under the offline setting
where we no longer have access to updating our critic with
the on-policy data. The gradient manipulation method can
be generally described as follows. For each step where we
need to optimize the reward, we update our gradient with
0 < 0 + ng,, and when we need to optimize the cost our ) o
gradient is updated with 6 < @ + 7g... The gradient ma- Figure 1: Illustration of the soft switch-
nipulation aims at updating the parameter § with a linear 11g between safe and unsafe policy re-
combination of the two gradients as 3,.g, + B.g.. We can 810nS.

(gr,gc)
TgrMgell

use the angle ¢ := cos ™! ( ) between the two gradients to judge whether the gradients are

4



conflicting or not, namely if ¢ > 90° the two gradients are conflicting and otherwise they are not
conflicting. Especially, the final gradient g is computed via the rule
9t9e - if ¢ € (0,90°)
9= 9+2+g+ : o o (12)
frfeif ¢ € [90°,180°],

where g = g, — ﬁ ge is g.’s projection on the null space of g, and g = g. — % gr 18 g,’s

projection on the null space of g.. In|Gu et al.|[2024a] under the assumption of the convexity of the

optimization target, one can ensure monotonic improvement using gradient manipulation. Therefore

we also employ the gradient manipulation method to update our policy. With the procedures outlined

above, we present our Algorithm |1} where the safe adaptation step is visualized in Figure |1} and

detailed in Algorithm [2] given in Appendix [B] Furthermore, we provide the following theoretical

results derived from our algorithm, where the proof is deferred to Appendix

Proposition 3.1 (Cost Upper Bound). Assume that the cost function ¢ : § x A — [0, Cmax] is

bounded and non-negative. Let 7(a|s) be the output policy of Algorithm (I} Suppose that there

exists €giy > 0 such that D1, (7(-|s), m(+|s)) < €air and Dxr(mp(+|3), 7(|8)) < €qgisr- Let €2, =

maxg Eqr,(.(s)[AZ (s, a)], where AZ(s,a) is the advantage function under policy , defined as:

AT (s,a) = Q7 (s,a) — V.7 (s). Then, it holds that:

(Cmax + Yeha )V 2¢dist

(1—79)?
This proposition establishes that if the learned policy is constrained to remain within a neighborhood

of the dataset’s behavior policy, its safety performance is at least guaranteed to match that of the
behavior policy underlying the dataset.

VI(p) < VI (p) + (13)

To theoretically ground our algorithm, we ana- -
lyze its convergence properties in the tabular set- Algorithm 1 DRCORL

ting, where the state and action spaces are finite 1: Input: Dataset D*, slack bounds h™, h~
(i-e., |S],]A| < 00). Under softmax parameter-  2: Pretrain diffusion model €,

ization, we derive convergence guarantees when : // Behavior Cloning

optimizing the value function using the natural : Pretrain QF, Q7

policy gradient (NPG) algorithm. : // Pretrain critic

2
3
4
5
Definition 3.1 (Softmax Parameterization). Un- 6: for each gradient step ¢ do
7
8
9
0
1

der the tabular MDP setting, the policy follows Sample m.ir.li—batch B
a softmax parameterization, where the policy Update critics for reward and cost

is parameterized by 0 : S x A — R. The policy g < SafeAdaptation(...)
Update 6 < 6 + ng

: end for

is expressed as mp(als) = %.
G/,E k)

We use natural policy gradient method [Kakade

and Langford, [2002] to update policy, where the policy parameter # is updated as 6 < 6 +
n(}‘g)TVQV’T(p) at each iteration, where fg = Esnpann [Vologmo(als)Vglog mg(als) ] is the
Fisher information matrix, and the { operator is the Moore-Penrose inverse.

Since the score network is trained on the empirical offline distribution, there exists a potential shift
between the dataset and the evolving policy distribution. The regret bounds in Theorem 3.1 explicitly
account for this effect through the term €ygqine , Which measures the approximation gap between these
distributions. In practical implementation, this term remains small when the dataset adequately covers
the behavioral policy, ensuring that safety guarantees degrade gracefully even under mild mismatch.
Theorem 3.1. Let 7 be the weighted policy obtained after T iterations of Algorithm|l|with proper
step-sizes. Suppose that the offline dataset has a size of |D*| = O(ff/’l:l((lilf_lfgl) Sfor some 6 € (0,1),
where F represents the critic function family. Then, with probability > 1 — 0, the optimality gap and

constraint violation satisfy that

(1= 2T

B[V (5)] — b < Oleoin) + O ( m> | s)

VI (p) — BV ()] < Oleogine) + O ( ”"““') , (14)



where €,gin. denotes the approximation error of policy evaluation induced by the offline dataset D".

For simplicity, we drop the reverse KL term to ensure the policy’s closed-form update under NPG in
our proof. The SafeAdaptation step in Algorithm|I]is specified in algorithm 2] given in Appendix
We specify the definition of the weighted policy 7 in Eq. (1)) given in Appendix[A.2] We can interpret
the theorem as follows: by selecting appropriate slack bounds A+ and k™, the policy optimization
process will, over time, primarily remain in the reward optimization and gradient manipulation stages.
As a result, the cost violation can be effectively upper bounded. Simultaneously, by ensuring that the
policy is updated using the reward critic’s gradients for the majority of iterations, we can guarantee
that the accumulated reward of the weighted policy closely approximates that of the optimal policy.

4 Practical Algorithm

In this section, we present the detailed procedure for the implementation of our main algorithm
Diffusion-Regularized Constrained Offline Safe Reinforcement Learning (DRCORL), as outlined in
Algorithm [T} where we provide the Safe Adaptation step outlined in Algorithm [2] given in Appendix
[B] This includes both the pretraining stage and the policy extraction stage.

4.1 Pretraining the Diffusion Policy and Critics

In the pretraining stage, we first use the offline dataset D* to pretrain the diffusion policy i, (a|s)
to simply imitate the behavioral policy by minimizing the loss in Eq. (3). Then we also pretrain
the critic functions Q7 and @7, but we pretrain the reward critic with Implicit Q-Learning (IQL)
Kostrikov et al.|[2021]] and pretrain the cost critic with TD learning with pessimistic estimation. We
utilize IQL to train the reward critic function by maintaining two Q-functions ( (AN Zfz) and one
value function V' as the critic for the reward. The loss function for the value function V,™ is defined
as:

LVT" = Es,aw'D“ [Lg(mln( :1 (Sva)a :2 (570’)) - ‘/7“7‘-(5))}7 (16)
where LT (u) = |7 — I(u < 0)|u?, and 7 € [0, 1] is a quantile. When 7 = 0.5, L7 simplifies to the
Loy loss. When 7 > 0.5, L] encourages the learning of the 7 quantile values of (). The loss function
for updating Q7. is given by:

2
Las, = Esasmmm [[[r(s,0) + 9V (s) = Q. (s, 0[] (17)
This setup aims to minimize the error between the predicted Q-values and the target values derived
from the value function V,". We employ IQL to pretrain the reward critic function, thereby approxi-
mating the optimal Q-function ()} without incorporating safety constraints. Additionally, we pretrain
the cost critics using the temporal difference method and double-Q learning Sutton|[1988]]. However,
in the offline RL setting, we adopt a pessimistic estimation approach for the cost critic using a positive
hyperparameter « to avoid underestimation as stated in Eq. (I8), thereby preventing the learning of
unsafe policies. The cost critic can be updated by solving the optimization problem:
min Es.a,s,a~n(sh [|[c(s,a) + QL (8" a) — QT (s,a)|?] — aEsanr[Q2(s,a)].  (18)

TE
4.2 Extracting Policy

Now, we extract the policy 7y from the diffusion model €, and the pretrained critic functions. Note
that at this stage we need to optimize the reward while preventing the unsafe performance. Therefore,
we define two optimization targets, one for the reward and one for the cost. The reward optimization
target is defined as maximizing the critic value regularized by the KL-divergence with respect to the
behavioral policy, a smaller value of the temperature S refers to the higher conservativeness of our
algorithm:

1
maxEq oor, [Q?(s,a) - S, uw|s>} 7 19)

where I(mg, ju|s)] denotes the KL-divergence D, (g (+|s)||11y (-] s)) for abbreviation. Similarly,
we define the cost optimization target as follows. We aim to minimize the cost critic value regularized
by the behavioral policy:

maxE; 4o, {—(Qge(s, a)—1)— ;l(ﬂ'g,ﬂws):l . (20)



Using the result obtained in Section [3.2] we can obtain the gradient of Eq. (I9) and Eq. (20)
with respect to ¢ using the score function of the diffusion model €, and the critic function. We
take the Gaussian policy family under a constant variance. For example, with II := {my(a|s) =
N(a;mg(s), Xg(s)}, we can simplify the gradient to

9 = Evammy | (VaQ@F (5,0) + $hu(s,0)) Voma(s)]

ge = Eg aory [(—VQQZ:TG (s,a) + %hw(s,a)) V@ﬂ'g(s)} ) @D

where hy(s,a) = ﬁew (at, t|s)|t—o. In Eq. , a; denotes the action with perturbed noise,
t

a; = /aza + \/Brer, e, ~ N(0,1), and the notation Vymy(s) denotes the gradient of the action
given state s with respect to 6. By assuming a = my (5)+Eé/2 (s)z where z ~ N (0, I'), we obtain that

Voma(s) = Vgme(s) + Vo Eé/ ?(s)z. Our problem involves two competing objectives: maximizing
reward (Eq.[I0) and minimizing cost under safety violations (Eq.[20). To reconcile these goals, we
adopt the gradient manipulation method from|Gu et al.|[2024a], originally proposed for online safe RL,
as detailed in Algorithm This method introduces slack variables A~ and h™. When V™ (p) < I—h",
the policy is considered safe, and reward maximization is prioritized. If V™ (p) > | + h™, we instead
focus on cost minimization. Within the transition band [ — h~ < V.™(p) < I+ h™, we apply gradient
manipulation (Eq.[T2) to balance the two objectives (Egs. [I9)and 20).

A key challenge is accurate safety assessment in the offline setting, where off-policy data may lead
to cost underestimation. Ideally, the estimated critic satisfies Q7 = QQ + €, with € zero-mean.
However, under E, o [min Q7 (s, a)] < minE, 4~ [Q7 (s, a)], the error becomes biased, leading
to underestimated cost values Thrun and Schwartz| [2014]]. Temporal difference learning can amplify
this bias. While conservative Q-learning mitigates underestimation, it often yields sub-optimal
policies. Crucially, unlike reward critics, where relative ranking suffices, underestimating cost critics
can produce unsafe policies. To address this, we adopt a conservative evaluation approach inspired by
the UCB (Upper Confidence Bound) technique [Hao et al.|[2019]. Specifically, we train an ensemble
of cost critics Q7" for i = 1,..., E and define the UCB estimator as QT "V“B(s,a) = Q7 (s,a) +
k- Std;e[g)(Q7*(s,a)), where QF (s, a) is the ensemble mean and & controls the confidence level.

We then compute Q7B (p) = E;) 0or [QTYB(s, a)] and compare it against the cost budget to
determine whether to prioritize reward or cost. This full procedure is outlined in Algorithm 2}

5 Experiments

5.1 Performance On DSRL Benchmarks

Environments. We evaluate our method on the offline safe RL benchmark DSRL [Liu et al.
[2023a]. We conduct extensive experiments on Safety-Gymnasium Ray et al.|[2019] and Bullet-
Safety-Gym |Gronauer| [2022]]. We evaluate the score of different methods using the normalized
returns and normalized costs. The normalized returns and costs are defined as Rpormalized =
(R — Rmin)/ (Rmax — Rmin ), Crormalized = (Cr — Cmin )/ (14 €). € is a regularizer for the case when
Il =0, and we set € = 0.1. The reward R is the accumulated return collected within an episode

R, = Zthl r¢. Similarly, C; = Zthl ¢ 18 the accumulated cost collected within an episode. Ry ax,
Ry are the maximum and minimum accumulated returns of the offline dataset within an episode.
We normalize the accumulated cost and return to better analyze the results. If the normalized cost is
below 1.0, we can consider this policy as safe.

Baseline Algorithms. We compare the performance of our algorithm against existing offline safe
reinforcement learning (RL) algorithms under the soft constraints setting. The following six baseline
algorithms are considered: 1) BC-Safe (Behavioral Cloning): cloning the safe trajectories within the
offline dataset. 2) BCQ-Lag Fujimoto et al.|[2019]]: this approach extends behavioral cloning with
Q-learning, framing safe reinforcement learning as a constrained optimization problem. A Lagrangian
multiplier Stooke et al.|[2020] is used to balance the reward maximization objective with the cost
constraints. 3) BEARL Kumar et al.|[2019]]: an extension of BEAR that incorporates a Lagrangian
multiplier Stooke et al.|[2020] to control cost constraints, enabling safe policy learning. 4) CDT
(Constrained Decision Transformer) Liu et al.|[2023b]]: an adaptation of the Decision Transformer



Table 1: Normalized return (1: higher is better) and cost ({: lower is better; threshold at 1) for each
policy across tasks. Results are averaged over three cost limit scales, 20 evaluation episodes and 5
random seeds. Policies with normalized cost < 1 (safe) are bolded; among these, the highest-reward
safe policy per task is highlighted in blue. Policies with cost > 1 (unsafe) are shown in gray.

BC-Safe BEARL BCQ-Lag CPQ COptiDICE CDT CAPS CCAC Ours
Task reward T cost] rewardt cost] reward? cost| reward? cost] reward? cost] reward? cost| reward? cost] reward? cost] reward? cost|
CarGoall 0.38 0.46 0.71 4.45 0.46 3.27 0.68 3.73 0.48 2.31 0.65 3.75 0.40 1.35 0.84 6.52 0.91 0.00
CarGoal2 0.25 0.82 0.46 10.98 0.29 3.46 0.27 28.24 0.18 2.28 0.03 0.00 0.12 2.20 0.96 6.9 0.79 0.60
PointButton] 0.17 1.37 0.35 6.71 0.17 1.00 0.56 11.63 0.09 3.55 0.62 13.05 0.16 3.66 0.71 4.27 0.81 0.40
PointCirclel 0.88 3.79 0.33 17.84 0.45 8.13 0.23 6.77 0.85 1830 0.51 0.00 0.50 0.14 0.62 7.58 0.53 0.40
PointGoal 1 0.53 0.88 0.76 3.46 0.59 5.06 0.41 0.69 0.52 5.26 0.68 435 0.20 0.53 0 5.20 0.88 0.00
PointGoal2 0.60 3.15 0.80 12.33 0.65 10.80  0.34 5.10 0.38 1.62 0.32 1.45 0.23 1.91 0.80 1.88 0.82 0.00
AntVel 0.87 052 -1.01 0.00 0.99 8.39 <101 0.00 0.99 11.41 0.91 0.97 0.81 0.36 0.71 0.39 0.88 0.89
HalfCheetahVel ~ 0.94 0.71 0.95 104.45 1.06 6394 071 1470 0.61 0.00  0.96 0.61 0.88 0.22 0.85 0.93 0.86 0.00
HopperVel 0.21 1.50 0.26 12405 0.81 14.91 0.57 0.00 0.14 83 0.21 1.12 0.83 0.00 0.11 0.68 0.68 0.79
Walker2dVel 0.78 0.08 0.76 0.80 0.80 0.07 0.08 0.95 0.12 2.34 0.73 1.95 0.78 0.00 0.21 0.26 0.74 0.30
CarRun 0.97 0.10 0.49 7.43 0.95 0.00 0.92 0.05 0.93 0.00 0.99 1.10 0.98 0.86 0.93 0.05 0.99 0.30
BallCircle 0.55 0.93 0.90 5.79 0.68 3.79 0.64 0.07 0.47 171 0.68 2.05 0.56 0.18 0.73 0.14 0.78 0.00
CarCircle 0.64 2.97 0.73 1.41 0.62 2.88 0.70 0.00 0.47 5.81 0.73 2.24 0.57 0.00 0.72 0.22 0.68 0.79

Chen et al.|[2021]] for offline safe reinforcement learning, incorporating cost information into tokens
to learn a safe policy. 5) CPQ (Conservative Policy Q-Learning)|Xu et al.|[2022]: this method uses
conservative Q-learning to pessimistically estimate the cost critic and updates the reward critic only
with safe cost values, ensuring the policy adheres to safety constraints. 6) COptiDICE |Lee et al.|[2022]:
based on the DICE algorithm, this method learns a stationary distribution for the safe reinforcement
learning problem and extracts the optimal policy from this distribution. 7) CAPS|Chemingui et al.
[2025]): optimizing different constraints with shared representations. 8) CCAC |Guo et al.| [2025]]:
safety RL algorithm matching state-action distributions and safety constraints. We present the
comparison across different baselines in SafetyGym and BulletGym environments.

Result Analysis. Table[I|summarizes the normalized accumulated reward and cost per episode across
tasks. Overall, our algorithm consistently achieves high rewards while reliably maintaining safety
constraints. Notably, our method significantly outperforms baselines in tasks such as CarGoall,
CarGoal2, PointGoall, PointGoal2, and BallCircle, ensuring both optimal reward and constraint
satisfaction. However, it is fair to acknowledge that BCQ-Lag shows slightly superior reward
performance in the Walker2dVel task, though such performance does not generalize reliably to other
tasks, often violating safety constraints. Similarly, CDT and CAPS achieve good safety in some
scenarios, such as CarGoal2 and AntVel, yet underperform significantly in reward optimization
in other tasks. Overall, our method demonstrates a robust balance between safety and reward
optimization across diverse benchmarks, highlighting its practical applicability.

Computational Efficiency. We benchmark inference speeds across algorithms using 1,000 sample
inputs on the HalfCheetah task. Apart from the 6 baselines above, We also compare the computation
efficiency against diffusion model-based algorithms TREBI [Lin et al.| [2023]] and FISOR |Zheng
et al.|[2024]. While baseline methods like BCQ and CPQ achieve the fastest inference due to their
lightweight MLP-based actors, they compromise safety or reward performance. In contrast, our
algorithm strictly adheres to cost constraints without sacrificing reward quality. Compared to diffusion
or transformer-based approaches our method are superior in inference speed, narrowing the gap
between expressive generative models and efficient MLP architectures. The result is in Figure 2] (a).

5.2 Ablation Study

Impact of Different Cost Limits. We evaluate our algorithm’s performance under varying cost limits
l =10, 20, and 30, analyzing the learned policies’ behavior for each budget setting. The ablation
results are presented in Figure [2|(b). Across all cost limit choices, our algorithm consistently achieves
zero violations of the safety constraints, demonstrating its robustness to varying cost thresholds. This
highlights the adaptability and reliability of our approach in maintaining safety compliance. While
COptiDICE also strictly adheres to the cost limits, our method consistently outperforms it in terms of
normalized return, demonstrating its superior ability to balance safety and reward optimization.



Temperature Parameter Setting. We compare three diffusion-temperature schedules: (i) constant,
By = 0.02; (ii) square-root growth, 3, = 0.01/#; and (iii) linear growth, 8, = 0.01¢ + 0.04,
held fixed within each epoch. As shown in Figure 3] (Appendix [C), all three schemes yield similar
performance. Additional temperature ablations are reported in Appendix [C.T}

Choice of Slack Variable. We introduce slack bounds so that reward maximization applies when
Viaorm < 1 — h~ and cost minimization when Vyorm > 1 + AT. Both A~ and At are initialized
to 0.2 and linearly decayed to zero; we ablate over initial values h € {0.1,0.3,0.5,0.7}. Figure
(Appendix [C) illustrates these results, with further slack-value studies in Appendix [C.1]

Algorithm Performance Evaluation
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Figure 2: (a) Computational Efficiency vs. Performance Trade-off. Normalized score (y-axis,
combining reward and safety metrics) versus inference time for generating 1,000 actions (x-axis). (b)
Normalized return and cost under varying cost limits ([ = 10, 20, 30). Since the cost is normalized
relative to the corresponding cost limits, the safety threshold is consistently 1.0. The dashed line
represents the safety boundary.

6 Related Work

Diffusion Models in Offline RL. Diffusion models’ powerful generative capacity for complex data
has made them increasingly popular for modeling diverse offline datasets, valuable either for planning
Janner et al.| [2022]], [He et al.| [2024]], |Ajay et al.|[2022] or expressive policy modeling (Chi et al.
[2023]], Wang et al.| [2022], Fang et al.|[2024]], [Hansen-Estruch et al.| [2023]], |Chen et al.| [2023]],
Lu et al.|[2023]]. Their main drawback is inherently slow sampling due to many reverse-diffusion
steps. To accelerate inference, methods like DDIM |Song et al.|[2020a] reduce steps via subsequence
sampling, while DPM-Solver |Lu et al.| [2022] uses an optimized ODE solver to reach ~10 steps.
Useful extensions to safety-critical settings include the cost-constrained diffuser framework of |[Lin
et al.|[2023]], SafeDiffuser|Xiao et al.| [2023]] and OASIS’s conditional diffusion for dataset synthesis
and careful distribution shaping Yao et al.[[[2024].

Online Safe RL. Safe RL in online environments has been extensively surveyed in|Gu et al.[[2024c].
A common approach is constrained policy optimization—e.g., CPO|Achiam et al.|[2017]] integrates
TRPO |Schulman| [2015] for robust updates, and CRPO [Xu et al.| [2021] obviates complex dual-
variable tuning. Primal-dual Lagrangian methods dynamically adjust multipliers on the fly to enforce
safety criteria [Chow et al.}[2018| |Calian et al.|[2020, Ding et al.| 2020, [Ying et al.,2022| Zhou et al.|
2023]], and more recent algorithms aim to better balance cost and reward via gradient manipulation
Gu et al| [2024a]] or refined trust-region formulations Kim et al.| [2023| 2024]. However, these
methods depend on extensive environment interaction and accurate critic estimates, thus limiting
their practicality under stringent real-world safety and data collection cost constraints.

Safe Offline RL. Considering safety specifically in the offline learning setting, Xu et al.|[2022], Guan
et al.| [2023]] penalized OOD and unsafe actions identified in the dataset. Diffusion-based safe policy
learning was adapted by [Lin et al.|[2023]] for cost-constrained scenarios, and decision-transformer
architectures have been applied to safety considerations via|Liu et al.|[2023bf]. Energy-based diffusion
policies can enforce hard constraints, for example, through weighted regression [Lu et al., 2023
Zheng et al.|, |2024] |[Koirala et al.| 2024]]. More recent approaches learn by modelling conditional



sequences as in|Gong et al.| [2025]], Zhang et al.|[2023]] or by strategically sharing representations
across constraints for improved adaptation (Chemingui et al.|[2025].

7 Conclusion and Limitations

We present DRCORL, a novel approach for offline constrained reinforcement learning that learns
safe, high-performance policies from fixed datasets. DRCORL employs diffusion models to faithfully
capture offline behavioral policies and distills them into simplified policies for fast inference. To
balance reward maximization and constraint satisfaction, we utilize a gradient manipulation strategy
that adapts dynamically without extensive hyperparameter tuning. Extensive experiments across
standard safety benchmarks show that DRCORL consistently outperforms existing offline safe RL
methods, achieving superior rewards while satisfying safety constraints.

We also identify several limitations offering avenues for future work. First, DRCORL’s pretraining
stage comprising diffusion-model training and critic estimation, though producing lightweight policy
at inference and avoids unsafe online exploration, incurs additional computational overhead. Future
work should aim to optimize and parallelize the pretraining phase to further reduce its cost. Second,
guaranteeing zero constraint violations remains challenging in offline RL, particularly when dataset
quality and coverage vary. Developing methods with greater robustness to imperfect data and tighter
safety guarantees is a promising direction. Despite these challenges, our contributions lay a strong
foundation for advancing both generalization and safety in constrained offline reinforcement learning.
Although DRCORL inherits the stability of diffusion modeling, its effectiveness still depends on the
representational quality of the offline dataset. In extremely sparse or biased datasets, the diffusion
model may under-represent safe modes. Future directions include integrating conservative density
estimation or uncertainty-aware diffusion objectives to enhance robustness in low-coverage regimes.
More generally, we view diffusion regularization as a flexible template: alternative generative priors
such as VAEs or normalizing flows could replace the diffusion estimator under the same theoretical
framework, potentially trading expressivity for computational efficiency.

Finally, we hope this work provides a unifying perspective linking generative policy modeling and
safety-constrained optimization, paving the way for scalable and verifiable offline safe RL.
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results covered in the main results, including the choice of hyperparameters, experimental
configurations and so on. Algorithms can be implemented using the open-source benchmark
OSRLLiu et al.| [2024].

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: We will release and open-source the code and training logs after the review
process.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We specify the settings of experiments in Appendix [C]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We do not report error bars directly, instead we run five seeds on each task and
report the average performance across five seeds to reduce randomness.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We indicate the type of compute workers and the amount of compute required
for each individual experimental runs in the Appendix [C| We also disclose that the full
research project require the same compute as reported in the paper.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The paper strictly adheres to the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This work poses no such risks
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: This work does not use such existing assets.
Guidelines:
e The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This work does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This work’s core method does not involve LLM as any important, original or
non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proofs of Theoretical Results

In this section, we provide the proof of the theoretical results in the main body. We make this
assumption throughout the proof of Proposition [3.1]and Theorem 3.1]

Assumption A.1. During the training process, we assume the policy Ty resides in the region llg
within the policy space. For all m € llg, s € S, and a € A, the following holds:

) | < ey (22)
o (als)
Equivalently, it means that for all s € S and a € A:
m(als)
— Cdis S S ist) - 23
exp(—€dis) s (als) exp(€dist) (23)

A.1 Proof of Proposition 3.1

Proof. Using the performance difference lemma [Agarwal et al.| 2021, Lemma 2], we can write the
difference of the value functions under policies 7 and 7, as

VEH ) = VD) = 1= B B A2 (5,0), 24
where d7" is the discounted stationary distribution defined as d7*(s) = (1 — ) >2;2 Pr(s; =
s|sp ~ p). The total variation distance (TV-distance) between two distribution is defined as
Doy (7(-|s)||me(:|s)) = 5 [ 4 |7 (als) — m(als)|da, which is proportion to the ¢*-distance between
the two distributions. Using the Pinsker’s inequality [[Csiszar and Korner, 2011]], we can bound the
TV-distance with the KL-divergence, i.e., for any two distributions p, v, we have that

DKL 14
Dry(plly) < f ) 25)
Hence, it holds that Dy (7||7,) < +/€dist/2. Then, following the same procedure as|Achiam et al.

[2017} Proposition 2], we can obtain that

T g L 7 2y€zay ~
Vet (p) = Vi (p) 2 mESNdﬁ]anbHs)[Ac (s,a)] — u_is)QEswzﬁ [Drv (7 (-)s)||mp(+]$))] -
I 1
(26)
Using Eq. (23), we can bound term II with
2 Eb - Gb 26 "
26t g e Dy (F(Js)Im(fs))] < Lm0 e

(1—7) (1 —7)?

As for term I, we can bound it with

1
I—x

1
< —Eo s

]ESng]EaNWb(~|s)[A?(S7a)] =1_

/ my(al$)Q (s, @) — 7(al8) Q7 (s, a)da
A

L ~ #
< 1 ]ESNdf,/ |mo(als) — 7(als)| Q7 (s,a) da
- A —
€[0,gmax]
Cmax ~
< ——E # — d 2
< B [ [7(als) = mifals)lda 08)
2Crnax ~
< WEwdﬁ[DTV(W('|8)H7T1)('|S))]

(1—79)?

22



Combining Eq. (28) with Eq. (27), we can finally obtain that
V 2€dist . ’YEZdV V 2Edist (Cmax + Wﬁgdv) V 26dist

- c

V(p) —VI(p)=1—-11> - =— , (29
)= vele) R e () (1)

which concludes the proof of Proposition [3.1] O

A.2 Proof of Theorem 3.1

Our proof is based on theorem 1 in|Gu et al.|[2024b] which is considering a online safe reinforcement
learning setting. Before presenting the proof, we first introduce some notations and concepts that will
be used throughout this section. We index the iterations of Algorithm[I|by ¢t = 1,2,...,T.

* Let Q' (s,a) and Q' (s, a) denote the estimators of the critic functions Q" (s, a) and Qe (s, a),
respectively, at the ¢-th iteration under the policy my, .

* Denote the gradient at step ¢ for the reward optimization as g’ and the gradient at step ¢ for the cost
optimization as gt.
* Let 7 represent the learning rate for the NPG algorithm.
* We categorize the iterations of Algorithm[I]into four cases based on the optimization scenarios:
1. Safe Policy Region, i.e., when V2% < | — h~. We denote the set of iteration indices
corresponding to this case as Syfe-
2. Unsafe Region, i.e., when V.""* > [+h*t. We denote the set of iteration indices corresponding
to this case as Sunsafe-

3. Gradient Manipulation - Aligned Gradients, i.e., when the cost function is close to the cost
limit threshold and the angle between the updated gradients is less than 90°. We denote the
corresponding set of iteration indices as Syign.

4. Gradient Manipulation - Conflicting Gradients, i.e., when the cost function is close to
the cost limit threshold and the angle between the updated gradients is greater than 90°. We
denote the corresponding set of iteration indices as Sconfict-

Forevery t € {1,2,...,T}, the iteration index ¢ must belong to one of the four sets: Sgufe, Sunsafes
Salign’ or Sconﬂict-

* Assume the reward function r : § x A — [0, M] and the cost function ¢ : § x A — [0, M] are
non-negative and bounded by M. This is a standard assumption in the tabular setting.

* We define the Bellman operator 7 for policy evaluation (applicable to both cost and reward
functions) as:

'Tf(s,a) = T(Sa a) + ,YES/NP(-‘S,G)

max (s, a')] ) (30)

Proof. Under the softmax parameterization, the natural policy gradient update [Kakade and Langford,
2002]| can be expressed as

exp (nQ™ (s, a)/(1 — 7))
Zi(s,a)

TGy 41 (a|s) = 7T9t(a|5) s 31

where the normalization constant Z;(s) is defined as:

Zi(s) = Z 7o, (a|s) exp (W) (32)

acA -7

Since with the reverse KL term we no longer have the close form softmax update under natural
policy gradient algorithm. For simplicity we drop the KL term in the theoretical proof here as under
assumption[A.T]after the pretrain stage the KL term no longer dominate the loss function, and we
mainly focus on the proof on the balance between reward and cost.

We admit that omitting the reverse KL divergence term simplifies the derivation of a closed-form
NPG update, yet the core insights from this analysis are expected to remain relevant to the behavior
of the full DRCORL algorithm. This is mainly because:
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(i) The initial pretraining of the diffusion model (Section [3.T) and its subsequent use as a regularizer
(Section [3.2)) aim to ensure the learned policy 7 primarily operates within a region close to the
behavioral policy 7. Assumption [A.T|formalizes this by bounding the KL divergence.

(i1) In this regularized regime, the KL term primarily acts to constrain exploration and prevent
significant deviation from the data distribution. The fundamental trade-offs and convergence dynamics
related to balancing expected rewards and costs are still governed by the NPG updates on these value
estimations. Thus, the analysis, while idealized, sheds light on the core learning dynamics concerning
reward maximization under cost constraints.

Assumption A.2. Given an offline dataset D* = {(s;, a;, 85, i, ¢;)} N1 of size |D*| = N, let the
value function class be F and define the model class as G = {T flf e F } We assume:

* Realizability: The critic function Q*, learned by optimizing Eq. ({I6), Eq. (I7), and Eq. (I8),
belongs to the function class F, and T Q* resides in the model class G. Moreover, we assume

G=F

* Dataset Diversity: The offline dataset is diverse enough to ensure accurate offline policy evaluation.

Specifically, we assume that:
1
N=0O (Cn(]:|/5)4> ’ (33)
€ofine(1 =)

where €gine is the desired accuracy, and ¢ is the failure probability.

By invoking |Chen and Jiang| [2019, Theorem 3], we can show that under Assumption [A.2] with
probability at least 1 — d, the following bounds hold:

HQ: - Q:7* ‘ < €offline; HQZ:T - Qg’* | < €Eoffline- (34

Then, by |Gu et al.|[2024b, Lemma A.2], we can show that the policy update with gradient manipula-
tion satisfies that:

* For all t € S, the bound on the reward function is given by:

VI (p) = Vi (p) < ]Eswd”s* [Dxw(mo- (-[5) 7o, (1)) — Drw (7o~ (-]5) 176, (5))]

(35)
277|S||-A|M2 + (1+77M HQﬂst . 7T9t||
(I—9)? (1- 2
* Similarly, for all ¢ € Sumafe, the bound on the cost function is:
VI (p) = Ve (p) < ES gror [Dru(me-(13)||ms, (+|s)) — Dxw(me-(13)l|ma, ., (]5))]
36
ISIADE 30430 _ o
(I—7)? (1- 2
* For t € Saign, We have the combined bound for reward and cost as:
1 To* u 1 T+ ™
5 (V7 (p) = Vi (p)) + 5 (V" (p) = V™ (p))
1 2nM?|S|| A
< #ESNdﬂe* (Dxr(mo- (-]8) |70, (-]5)) — Dxcr.(me- (-]5) 7o, (]5))) + - 6D
3(1—|—’I7M ﬂ’Qt o, H 1 H o, AT, H
Ao [2HQ — Qs+ 5 Q" (s a) — Q" (s 0]
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* Finally for ¢ € Scongiict, it holds that

U $9190)\ (yrmen () _ o 1 (9800 (pmee oy _ v
(3 S 0 0=y + ) e ()= v )

2||gtlI?
< %Eswd;e* (Dk(mo- ([5)lI7, (-]s)) — Diw(mo- (-|3)llma, ., (-]s)))

2o (- 4 - ) 1814 >
(1—9)?
3(1 + T]M 7T9t ATTo, ‘ﬂ'et ATO
| Fl0r n.0) = QF e, + 3 ool
Summing the four equations, Eq. (33), Eq. (36), Eq. (37), and Eq. (38), we obtain that
To* oy 1 To* o,
D (VI ) = VE () 5 D (V) =V ()
t€ Sunsafe t€ Salign
1 <gf~792>) o
+{5- (VI (p) = Ve (p) 39)
(2 5f) ¢ )
1 2n|S||A|M?T
S By Dt (o= (-[5)[|ma, (-]5)) + T-p e
where e is the accumulated weighted critic error, defined as:
3(1+ ?7M T _ G 3(1+ nM o, _ e
co= 3 A gr -+ 3 XD o - g,
tE€ Saate tE Sunsate
3(1 + ﬂM 7rgt AT, ‘ﬂ'et AT,
o 3 D e (50 - Q7 s, + 07 = (s.0)],
tesalign (40)
1+77M {( g,g )H o o
+ - — == Qr t Qr ¢ (Sa a)H
2 i [ g :
conﬂlc[
1 O ) o T
(- i ler o= ez, )
2 2|gl? 2
Now, we need to upper bound the weighted critic error eg. We assume that there exists a positive
3CT(1+nM)

constant C' such that eg with =)z Coffline - According to |Gu et al.|[2024b, Lemma A.6], by
choosing reasonably large values for ™ and 4 ~, we can ensure that:
|Sunsafe| + |Salign| + ‘Sconﬂict| Z T/2

For example, by setting it = 2,/ 4205 (g + 4M? + 6M) and h™ = 0, this condition holds.

Now, we define the weighted policy 7 as follows
Sz wim(als)
23:1 Wt

where the policy weights are assigned based on the categories of iterations: 1. Weight w; = 1 for
t € Sgafe, 2. Weight wy = 0 for t € Sypsafe,

7(als) = ) 41)

3. Weight w, = 5 — <Hg§£"|]“t;> for t € Sconfiict- Under the weighted policy 7, the following bound holds

true for the reward value function:
. . 1 /1 2n|S||A|M3T
Ve = VE < i (3B Dia e (1), (1) + ZISIET o )
55 \7 ’ (1—7) (42)
o4 1 2n|S||A|M?T 3CT(1+77M)€ '
=T n dist (1 — 7)3 (1 — 7)2 offline
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Now, by choosing 7 = \/Gdlst 1—7)3/(2n|S||A|M? + 3CTnM (1 — ¥)€offine ), We can ensure that

- \/32 2mIS||AIM2 + 3(1 + nM)(1 — 7)eotine) . 3C€oftine
-V <=

v +
(1—=7) (1—=7)?
(43)
[SIIA]
=0 O (€offline ) -
( (1= ) Olcomne)
Finally, the safety bound is given as:
chr (p) -
4 - 1 o, 1 (ge.90) o,
D IURU RS D SN GIURU R R =3I SRV R
| t€ Sate tE€ Salign 9e t € Seonflict
4 ~ g, 1 ~ g, 1 g, gt -7,
Sr | X ey 3 e -n (5o S ¥ @ -
tE€ Ssate <—h- t € Saign <ht Ye 1€ Sconflict ht
4 iy DT iy T T T
t3 Y V() =V () + D (VI () = VI (o) + D (VT (p) = Ve ()
t€ Ssate t€ Salign t € Sconflict
S| A|
<2n* 2€offline = offline |7 . 44
< + 2e€ofn O(€oft )+O< (= )T (44)
This completes the proof of Theorem [3.1] O

B Supplemental Materials for Algorithm 1|

B.1 Clarification for the Main Body

Inconsistency in critic update. In the training process, we specifically adopt a conservative esti-
mation for the cost critic, the differing update strategies for Q)7 and ()7 are intentional and reflect
their distinct roles in our framework. The cost critic )7 plays a critical role in enforcing safety,
so we adopt a pessimistic update to penalize uncertain or unsafe state-action pairs—particularly in
low-coverage areas—consistent with prior work on conservative critics in offline RL.

In contrast, the reward critic Q7 guides policy optimization within the safe region. Applying
pessimism here may lead to overly conservative behavior, reducing performance. We therefore use
a standard update to maintain a balance between safety and reward. Our gradient manipulation
mechanism relies on ()7 to modulate the influence of each objective, making a pessimistic cost critic
essential for reliable safety adaptation. We appreciate the concern about value overestimation and
will explore robust reward estimation techniques in future work.

Pretraining stage. We pretrain the diffusion model to accurately capture the behavioral policy from
the offline dataset, enabling it to serve as a stable regularizer for the Gaussian policy during training.
Unlike diffusion-based planning methods, our approach uses the diffusion model’s score function to
penalize out-of-distribution actions, improving stability.

After pretraining, the diffusion model remains fixed. However, updating the critics during training
is crucial, as they guide the gradient manipulation mechanism to balance reward maximization and
safety. This separation ensures effective and stable policy optimization throughout training.

Gradient Manipulation Stage. the gradient manipulation method employed in our approach
differs fundamentally from the naive weighted average of the two objectives. Specifically, we
dynamically adjust gradient weights based on the extent of safety constraint violations, guided by
slack variables. When the safety threshold is significantly violated, parameter updates are driven
primarily by the gradient of the safety objective. Conversely, when the current policy strictly adheres
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to safety constraints, updates are performed using only the gradient of the performance objective. In
intermediate scenarios, we judiciously combine both gradients.

To address the potential instability , our approach carefully assigns weights according to the angle
between gradients, as detailed in Equation (I2)) of the main body. Instability typically arises when the
angle between gradients exceeds 90°. Our weighting strategy effectively mitigates gradient conflicts,
preventing gradient degradation and enhancing the stability and reliability of the optimization process.
Additionally, our method does not require the reward and cost critics to share parameters. Instead, we
temporarily freeze and save the policy parameters to implement gradient manipulation. For example,
given two separate critics, ()7 and Q)7, we first store the initial parameters of the policy 7. We
then independently compute updates using each critic. By comparing the updated policy parameters
with the initial parameters, we obtain the gradient values required for manipulation. Through this
scenario-based approach to parameter updates, we effectively ensure training stability.

B.2 Safety Adaptation Step

We outline the Safe Adaptation step in Algorithm [T} specifically detailed in Algorithm[2] Our main
theorem (Theorem [3.1)) is derived based on the safety adaptation procedure described in Algorithm 2]
Our diffusion regularization method is compatible with both CRPO [Xu et al.| [2021]] and the gradient
manipulation method |Gu et al| [2024a]], as implemented in Algorithm [2} Both algorithms aim to
switch dynamically between reward optimization and cost optimization.

The key distinction lies in their approach to handling scenarios where the cost is close to the cost
limit threshold. In Algorithm Algorithm [2|incorporates gradient manipulation in these scenarios,
further stabilizing the training process by addressing conflicts between the objectives. Theorem
specifically considers the diffusion regularization algorithm equipped with the safe adaptation
procedure outlined in Algorithm[2] The fundamental difference between the two algorithms lies in
the criteria for switching between reward and cost optimization objectives.

Algorithm 2 Gradient Manipulation Adaptation

Require: Dataset D¥
Require: Slack variable h*, h~ and cost limit /
Procedure: SafeAdaptation(mg, €y, Q°, QT h™, h™)
if QTUCB(p) <1 — h~ then
Optimize reward by solving Eq. (I9)
else if QTYB(p) <[+ h™ then
Compute g, and g. with Eq. 1)
Gradient manipulation to obtain g with Eq. (12))

else
Ensure safety by solving Eq.
end if

end procedure

B.3 Hybrid Extension

Hybrid Agents. The assumption of the offline reinforcement learning setting can be extended by
allowing the agent to incorporate partial online interactions during the training episode. This extension
enables further updates to the critic function, enhancing its ability to evaluate safety conditions with
greater accuracy. Since the problem remains within the scope of offline reinforcement learning, we
restrict hybrid access to two specific types:

* Access to a simulator for evaluating the cost values V.

* Access to a limited number of trajectories collected by the current policy, which can be used to
update the critics and policies, thereby partially mitigating the impact of distributional shift.

With the hybrid assumption, We propose two distinct approaches for evaluating costs: Offline
Evaluation and Online Evaluation. For the whole offline setting, we only use the critic functions
learned from the offline dataset to evaluate the cost constraints, while for the hybrid agent we allow
for online trajectory access.
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Offline Evaluation
For the hybrid agents discussed in section |A] we consider two distinct forms of hybrid access to
environment data.

In the fully offline setting, we estimate the cost value V. (p) by randomly sampling a batch of states
B, from the static dataset. We assume that the state distribution in the dataset s ~ D* is sufficiently
close to the target distribution p. The cost estimator is defined as:

VE) = g X VI

seBs

To avoid hyperparameter tuning and additional budget constraints on the value function, we transform
the value function into an estimated episodic cost. Since the value function V" can be expressed as:

1

‘/cﬂ-(p) - mESNd;’,aNW('\S) [r(s,a)],

we define the estimated episodic cost as VC’T (1 —+)L, where L represents the episodic length.

Online Evaluation

* Agents are allowed to collect a limited number of trajectories to evaluate the safety of the current
policy. Based on this evaluation, the agent determines whether to prioritize optimizing the reward,
jointly optimizing reward and cost, or exclusively optimizing the cost. This process serves as a
performance assessment of the learned policy during each episode.

» Agents can roll out a predefined number of trajectories to update the critic function in each
episode. To ensure the setting remains consistent with offline reinforcement learning, the number
of trajectories is strictly limited; otherwise, it would replicate a fully online reinforcement learning
setting. By leveraging this partial online data, the agent mitigates overestimation errors in the critic
function, thereby improving its ability to evaluate and optimize the policy effectively.

B.4 Further Discussion on Safe Reinforcement Learning

In this section, we discuss on the difference between the hard constraint and soft constraint in safe
reinforcement learning.

Hard Constraints. Existing works focusing on hard constraints allow no violation on safety
conditions, i.e.

c(se,ar) =0,V > 0. (45)

Soft Constraints. A variety of works focus on the soft constraint setting, the safe constraint restricts
the cost limit below a certain limit /, either within an episode or being step wise. Which can either
can be episodic limit as

T T
E lz c(shat)] <l or E Zwtc(st,at)] <, (46)
t=0 t=0
or be the stepwise limit as
Ele(se, ar)] < l,ap ~ 7(+|st). 47)

Still this type of problem allow for certain degree of safety violations as in Xu et al.[[2022], Lin et al.
[2023]], but the soft constraints also allow for broader potential policy class to further explore higher
reward. We choose the soft constraint as it allows for exploration to search for higher rewards.

B.5 Discussion on Settings

Comparison with Offline Reinforcement Learning. In the context of safe reinforcement learning,
simply pretraining the critic before extracting the policy is insufficient for learning an optimal policy.
This contrasts with approaches such as those in|Chen et al.[[2024, [2023]], where pretraining a reward
critic Q4 (s, a) under the behavioral policy 7, using IQL [Kostrikov et al.|[2021] is sufficient. These
methods do not require further updates to the critic during policy extraction.
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In safe reinforcement learning, however, optimization involves the reverse KL divergence term:
1
Esonpn | Qo(s,0) = 2 Dxcr(m([s)[u(-1s))] (48)

where p(+|s) represents the behavioral policy used to collect the offline dataset. The optimal policy
;, for Eq. is given by:
mo-(als) o p(als) exp(BQy(s, a)). (49)

Essentially, offline reinforcement learning algorithms aim to extract a policy 7y that adheres to
the energy-based form presented in Eq. (49). However, in the safe reinforcement learning setting,
the optimal reward critic, when unconstrained, cannot be directly used for optimizing the reward
objective. Therefore, it must be updated during the safety adaptation stage.

Comparison with Constrained Reinforcement Learning. While most safe reinforcement learning
literature focuses on the online setting, the offline setting presents unique challenges for policy
extraction. In the offline scenario, the agent’s only access to the environment is through an offline
dataset D*, which consists of transition tuples. Ideally, these transition tuples can be utilized to
construct estimators for the transition dynamics P(s’|s, a), the reward function #(s, a), and the cost
function ¢(s, a).

However, Markov decision processes (MDPs) are highly sensitive to even small changes in the
reward function, requiring efficient exploitation of the offline dataset through conservative inference
and penalization of out-of-distribution (OOD) actions. To address these challenges, our approach
constrains the policy to remain within a defined neighborhood of the behavioral policy 7, and
adopts a pessimistic estimation of the cost critic function, effectively mitigating the risk of unsafe
implementations.

C Details of Experiments

C.1 Further Ablation Study

Temperature Parameter 3. We explore two different types of 3 schedules to regulate the trade-off
between policy exploration and adherence to the behavioral policy.

* Constant $ Values. In this approach, 3 is maintained as a constant throughout all epochs. A low 3
value enforces conservative Q-learning by constraining the learned policy to remain close to the
behavioral policy . This setting prioritizes stability and minimizes divergence from the offline
dataset.

* Variant S Values. Here, we employ a monotonic sequence of increasing [ values over different
epochs. Following the pretraining phase, the weight on optimizing the reward critic is progressively
increased, or the weight on minimizing the cost critic is reduced. This dynamic adjustment
encourages the policy to explore diverse strategies, allowing it to optimize returns or reduce costs
effectively while gradually relaxing the conservativeness enforced during earlier stages of training.

In the initial training phase, we set 3 to a low value (starting at 0.04) to ensure the policy remains close
to the behavioral policy, facilitating a stable foundation and minimizing out-of-distribution actions.
As training progresses, we gradually increase /3, eventually reaching 1.0, to place greater emphasis
on optimizing the critics. This linear scheduling allows for a smooth transition from imitation to
optimization, balancing exploration and exploitation effectively. Improper tuning of 5 can impact
performance:

- If B increases too rapidly: The policy may deviate prematurely from the behavioral policy, leading
to instability and potential safety violations due to insufficient grounding in safe behaviors.

- If B increases too slowly: The policy may remain overly conservative, limiting performance
improvements and resulting in suboptimal reward outcomes.

Therefore, a carefully planned (5 schedule is crucial to balance safety and performance. Our linear
approach has demonstrated effectiveness across various tasks.
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Figure 3: Training Curve Under Different Schedules. We compare the training performance of three
different 8 schemes, under the square root growth we have the highest normalized reward with high
stability.

Choice of Slack Variable. We set slack bounds relative to the normalized cost so that reward
maximization applies when Viormaiized < 1 — A~ and cost minimization triggers when Vjormalized >
1 + h™. During training, both h~ and h™ are linearly decayed from 0.2 to zero. An ablation
study on the impact of slack values is shown in Figure ] We tested on different initial values for
ht =h~=he€{0.1,0.3,0.5,0.7}.
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Figure 4: Slack Ablation

Choice of cost limit. We evaluated our algorithm on 0fflineCarRun-vO0 using three cost limits
(I € {10,20,30}) with five random seeds each. Figure presents the normalized reward and cost.
The normalized reward remains consistent across different limits, and the learned policy reliably
keeps the cost below the safety threshold.

We present the general hyperparameter setting in Table 2] For hyperparameters that do not apply to
the corresponding algorithm, we use the back slash symbol “\” to fill the blank.

Remark C.1. In Table[2} the update steps refer to the total number of gradient descent updates
performed. The evaluation steps indicate the frequency of policy evaluation, measured in terms of
gradient descent steps. The actor architecture (MLP) is specified as a list representing the hidden
layers, where the input corresponds to the state s and the output is an action a = w(s). Similarly, the
critic architecture (MLP) is represented as a list defining the hidden layers, with the input being the
state-action pair and the output being a scalar value. The parameter T represents the update rate
between the target critic and the critic in double-Q learning.

30



Cost Limit Ablation: Reward Cost Limit Ablation: Cost

— scale=10 — scale=10
scale=20 scale=20
— scale=30 15 — scale=30

Eval Reward
Eval Cost

Step Step

Figure 5: Cost Limit Ablation

Table 2: Summary of hyperparameter configurations for different algorithms.

Hyperparameters BC-Safe BEARL BCQ-Lag CPQ COptiDICE  CDT CAPS CCAC Ours
Device Cuda Cuda Cuda Cuda Cuda Cuda Cuda Cuda Cuda
Batch Size 512 512 512 512 512 2048 512 512 256
Update Steps 100000 300000 100000 100000 100000 100000 100000 100000 2050
Eval Steps 2500 2500 2500 2500 2500 2500 2500 2500 1025
Threads 4 4 4 4 4 6 4 4 4
Num workers 8 8 8 8 8 8 8 8 8
Actor Architecture(MLP)  [256,256] [256,256] [256,256] [256,256] [256,256] \ [256,256]  [256,256] [256,256]
Critic Architecture(MLP) \ [256,256] [256,256] [256,256] [256,256] \ [256,256]  [256,256] [256,256]
Actor Learning rate .001 .001 .001 .001 .001 .001 .001 .001 .0006
Critic Learning rate \ .001 .001 .001 .001 \ .001 .001 .0006
Episode Length 1000 1000 1000 1000 1000 1000 1000 1000 1000

5 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

T .005 .005 .005 .005 .005 .005 .005 .005 .005
ht \ \ \ \ \ \ \ \ 2

h \ \ \ \ \ \ \ \ 2
PID \ [.1,.003,.001] [.1,.003,.001] \ \ \ \ \ [.1,.003,.001]
E \ \ \ \ \ \ \ \ 4

k \ \ \ \ \ \ \ \ 2.0

@ \ \ \ \ \ \ \ \ 2

C.2 Choice of Policy Class

» Standard Gaussian Policy Class: IT = {a ~ N (myg(s),Xg(s))}, usually the covariance ¥4(s)
matrix is a diagonal matrix.

« Gaussian Policy Class with constant variance: I1 = {a ~ N (mg(s),0%I)}, here the covariance
matrix 021 is state-independent.

* Dirac Policy family: II = {a = my(s)}, we can approximate this as a Gaussian policy with
variance close to 0.

C.3 Training Details

As illustrated in Figure[f] our experiments are conducted in Safety—Gym environments and Bullet-
Gymnasium environments. In this section, we present the training curves for each task. For every
task, we run five independent seeds and plot, at each training step, the mean and standard deviation
of both reward and cost.
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