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Abstract

Sparse Autoencoders (SAEs) extract features from LLM internal activations, meant
to correspond to interpretable concepts. A core SAE training hyperparameter is L0:
how many SAE features should fire per token on average. Existing work compares
SAE algorithms using sparsity–reconstruction tradeoff plots, implying L0 is a free
parameter with no single correct value aside from its effect on reconstruction. In
this work we study the effect of L0 on SAEs, and show that if L0 is not set correctly,
the SAE fails to disentangle the underlying features of the LLM. If L0 is too low,
the SAE will mix correlated features to improve reconstruction. If L0 is too high,
the SAE finds degenerate solutions that also mix features. Further, we present a
proxy metric that can help guide the search for the correct L0 for an SAE on a
given training distribution. We show that our method finds the correct L0 in toy
models and coincides with peak sparse probing performance in LLM SAEs. We
find that most commonly used SAEs have an L0 that is too low. Our work shows
that L0 must be set correctly to train SAEs with correct features.

1 Introduction

Sparse autoencoders (SAEs) decompose the dense, polysemantic activations of LLMs into inter-
pretable latent features [8, 2] using sparse dictionary learning [17]. SAEs have the advantage of
being unsupervised, and can be scaled to millions of neurons in its hidden layer (hereafter called
“latents”) [20, 13]. When training an SAE, practitioners must decide on the L0 of the SAE: that is,
the sparsity; how many latents activate on average for a given input.1 L0 is typically considered a
neutral design choice: most of the literature evaluates SAEs at a range of L0 values, referring to this
as a “sparsity–reconstruction tradeoff” [13, 18], implying any L0 is equally valid.

However, recent work shows the same trend: too low an L0 leads to worse SAE performance on
downstream tasks [14, 4]. In this work, we explore the effect of L0 on SAEs. Starting by exploring a
toy model with correlated features, we demonstrate that if the L0 is too low, the SAE can “cheat” by
mixing together components of correlated features, achieving better reconstruction compared to an
SAE with correct, disentangled features. We consider this to be a manifestation of feature hedging
[6], where the SAE abuses feature correlations to compensate for insufficient resources to correctly
model the underlying features. Furthermore, we show that if the L0 is too high, the SAE can learn
degenerate mixtures of features. We show that it is possible to determine the correct L0 of an SAE by
observing projection magnitude between the SAE decoder and training activations.

We validate these findings on Gemma-2-2b [19] and Llama-3.2-1b [9], demonstrating that the same
decoder patterns we observe in our toy model experiments also manifest in LLM SAEs. We further
validate that the optimal L0 we find with our method in Gemma-2-2b matches with peak performance

1TopK and BatchTopK SAEs [13, 3] set the L0 (K) directly, whereas L1 and JumpReLU [8, 2, 18] adjust it
via a coefficient in the loss. In any case, all SAE trainers must decide on the target L0.
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(a) SAE L0 = 5
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(b) SAE L0 = 11
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(c) SAE L0 = 18

Figure 1: SAE decoder cosine similarity with true features. True features L0 = 11.

on sparse probing tasks [14]. Our findings show that L0 must be set correctly for SAEs to learn
correct features, and implies that most SAEs used by researchers today have too low an L0.

Code is available at https://github.com/chanind/sparse-but-wrong-paper.

2 Background

Sparse autoencoders (SAEs). An SAE decomposes an input activation x ∈ Rd into a hidden state
a consisting of h hidden neurons, called “latents”. An SAE is composed of an encoder Wenc ∈ Rh×d,
a decoder Wdec ∈ Rd×h, a decoder bias bdec ∈ Rd, and encoder bias benc ∈ Rh, and a nonlinearity
σ, typically ReLU or a variant like JumpReLU [18], TopK [13] or BatchTopK [3].

a =σ(Wenc(x− bdec) + benc) (1)
x̂ =Wdeca+ bdec (2)

3 Toy model experiments

We set up a toy model with 50 mutually orthogonal true features F = {f0, . . . , f49} ∈ R100. Each
feature fi has firing probability Pi. We set P (f0) = 0.345, and we linearly decrease Pi to P49 = 0.05,
so feature firing probability decreases with feature number. We randomly generate a correlation
matrix, so the firings of each feature are correlated with other features. Features fire with magnitude
∼ N (1.0, 0.15). We sampling true feature firings, and summing all firing features to create a training
input for the SAE. The goal of the SAE, then, is to learn these true features despite only being trained
on their summed activations. Since we have ground-truth knowledge, we know the true number of
features firing on average. We call this the true L0, which is 11 for this toy model.

Throughout this work, we use BatchTopK SAEs [3], as this architecture allows directly controlling
L0 rather than controlling it indirectly via a L1 coefficient [8, 2] or L0 coefficient [18] in the loss. For
these toy model experiments, we train SAEs on 15M synthetic samples using SAELens [1].

We train SAEs with L0 that is too low (L0=5), exactly correct (L0=11), and too high (L0=18). Results
are shown in Figure 1. When the SAE L0 matches the true L0 (Figure 1b), the SAE exactly learns the
true features. When the SAE L0 is too low (Figure 1a), the SAE mixes components of correlated
features together, especially breaking latents tracking high-frequency features. When SAE L0 is too
high (Figure 1c), the SAE learns degenerate solutions that mix features together. The further the L0
is from the true L0, the more broken the SAE becomes. Interestingly, when L0 is too high the SAE
still learns many correct latents, but when L0 is too low, every latent in the SAE is affected.

3.1 MSE loss incentivizes low-L0 SAEs to learn incorrect features

Why do SAEs with too low L0 not learn the true features? We take the correct SAE from Figure
1b and set L0=5, to match the SAE from Figure 1a. We then generate 100k training samples and
calculate the Mean Square Error (MSE) of both these SAEs. The SAE with incorrect latents from
Figure 1a achieves a MSE of 2.73, while the SAE with ground-truth correct latents achieves a much
worse MSE of 4.88. Thus, MSE loss actively incentivizes low L0 SAEs to learn incorrect latents.
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3.2 The sparsity–reconstruction tradeoff

SAE architectures are commonly evaluated using a sparsity–reconstruction tradeoff plot [8, 13, 18],
where the assumption is that having better reconstruction at a given sparsity is inherently better, and
indicates that the SAE is correct. Afterall, we train SAEs to reconstruct inputs, so surely an SAE that
has better reconstruction must therefore be a better SAE than one that has lower reconstruction?

Sadly, this is not the case. As we discussed in Section 3.1, when the L0 of the SAE is lower than
optimal, the SAE can find ways to “cheat” by engaging in feature hedging [6], and get a better MSE
score by mixing components of correlated features together. This results in an SAE where the latents
are not monosemantic, and do not track ground-truth features.
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Figure 2: Sparsity (L0, lower is better) vs reconstruction (variance explained, higher is better) for
learned SAEs and a ground-truth SAE. When L0 is less than the true L0 of the toy model (the dotted
line), the trained SAE gets better reconstruction than the ground-truth SAE. Sparsity–reconstruction
plots like this lead us to the incorrect conclusion that the ground-truth SAE is a worse SAE.

We next explore the sparsity–reconstruction tradeoff by training SAEs on our toy model at various
L0s. Since we know the ground-truth features in our toy model, we construct a ground-truth SAE
that perfectly represents these features. We vary the L0 of the ground truth SAE while leaving the
encoder and decoder fixed at the correct features. We plot the variance explained vs L0 in Figure 2
for both SAEs. When the SAE L0 is lower than the true L0 of the toy model, the ground-truth SAE
scores worse on reconstruction than the trained SAE! If we had an SAE training technique that gave
us the ground truth correct SAE for a given LLM, sparsity–reconstruction plots would cause us to
discard the correct SAE in favor of an incorrect SAE that mixes features together.

We show the cosine similarity of the SAE decoder latents with the ground truth features for the
SAEs learned with L0=1 and L0=2 compared with the ground-truth SAE in Figure 3. Both these
SAEs outperform the ground-truth SAE on variance explained by over 2x despite learning horribly
polysemantic latents bearing little resemblance to the underlying true features of the model.

3.3 Detecting the true L0 using the SAE decoder

Figure 1 reveals that the SAE decoder latents contain mixes of underlying features, both when the
L0 is too high and also when it is too low. As the SAE approaches the correct L0, each SAE latent
has fewer components of multiple true features mixed in, becoming more monosemantic. Thus, we
expect that the closer the SAE is to the correct L0, the more latents should be orthogonal relative to
each other, as there are fewer components of shared correlated features mixed into latents. If we are
far from the correct L0, then SAE latents contain components of many underlying features, and thus
we expect latents to have higher cosine similarity with each other.

We call this metric decoder pairwise cosine similarity, cdec, and define it as below:

cdec =
1(
h
2

) h−1∑
i=1

h∑
j=i+1

| cos(Wdec,i,Wdec,j)| (3)

where
(
h
2

)
= h(h−1)

2 is the total number of distinct pairs of latents in the SAE decoder.
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Figure 3: SAE decoder cosine similarity with true features for the learned SAEs with L0=1 (left) and
L0=2 (middle), compared with the ground-truth SAE (right). The learned SAEs score much better
than the ground truth SAE on variance explained, despite their corrupted, polysemantic latents.

If SAE decoder latents are mixing lots of positive and negative components of correlated and anti-
correlated features, then each SAE latent should become less orthogonal to each other SAE latent, as
many latents will likely mix together similar features. This should mean that the absolute value of the
cosine similarity between arbitrary latents should also increase the worse this mixing becomes.

We calculate pairwise calculate similarity cdec for each of the BatchTopK SAEs we trained on toy
models from Section 3.3. Results are shown in Figure 4. We see that pairwise cosine similarity is
minimized at the true L0.

0 5 10 15 20 25

SAE L0

0.0

0.1

c d
e
c

Decoder Pairwise Cosine Similarity

Figure 4: Decoder pairwise cosine similarity cdec evaluated on 5 seeds of toy model SAEs. The true
L0 is indicated with a dotted line at 11. Shaded area is 1 stdev. cdec is minimized at the true L0.

We explore alternative metrics in Appendix A.9. Further toy model experiments are shown in
Appendix A.7. Pytorch code implementing cdec is provided in Appendix A.16. We provide formal
theoretical justification for the cdec metric in Appendix A.10.

4 LLM experiments

We train a series of BatchTopK SAEs [3] with h = 32768 on Gemma-2-2b [19] and Llama-3.2-1b
[9] varying L0 and calculate cdec. Each SAE is trained on 500M tokens from the Pile [12] using
SAELens [1]. We also calculate k-sparse probing performance for these SAEs using the benchmark
from Kantamneni et al. [14], consisting of over 100 sparse probing tasks. Results are shown in Figure
5.

The Llama SAE cdec plot looks very similar to the toy model, with a clear minimum point. The
Gemma-2-2b layer 5 SAEs also show a sharp increase in cdec at low L0 as we saw in toy models, but
has a long shallow region with the global minimum actually appearing in that shallow region. In both
cases, the “elbow” in the cdec plots just before the jump due to low L0 is around L0 200, and this also
corresponds to peak sparse probing performance. More plots and analysis of cdec curves are shown in
Appendix A.14.
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Figure 5: Decoder pairwise cosine similarity vs SAE L0 and K-sparse probing F1 vs L0 with 3 seeds
per L0. (left) Gemma-2-2b layer 5 BatchTopK results. (right) Llama-3.2-1b layer 7 BatchTopK SAEs.
In both cases, peak sparse probing performance occurs in the elbow just before cdec jumps due to low
L0, although the shapes of the cdec plots vary at high L0.

5 Related work

Chanin et al. [6] explores feature hedging, showing SAEs mix correlated features into latents if the
SAE is too narrow. We consider our work a version of feature hedging due to low L0. Till [21]
shows SAEs may increase sparsity by inventing features. Chanin et al. [5] discuss the problem of
feature absorption, where SAEs can improve their sparsity score by mixing hierarchical features
together. Engels et al. [10] investigates SAE errors and finds that SAE error may be pathological and
non-linear.

6 Discussion

While most practitioners of SAEs understand that having too high L0 is problematic, our work shows
that having too low of L0 is perhaps even worse. Our work has several implications for the field.
First, the L0 used by most SAEs is lower than it ideally should be, as a cursory search of open source
SAEs on Neuronpedia [16] shows L0 less than 100 is very common even for SAEs trained on large
models (see Appendix A.12). We further show that the sparsity–reconstruction tradeoff, as commonly
discussed by most SAE papers [8, 13, 18], is misleading: when L0 is too low, an SAE with a correct
dictionary achieves worse reconstruction than an incorrect SAE that mixes correlated features.

We presented a metric based on the correlation between the SAE decoder and input activations, cdec,
that can give us hints about the correct L0 for a given SAE. However, we do not view this as a perfect
guide. As we saw in our results, while low L0 SAEs consistently have very high cdec, the metric is
not always high at high L0 (although it usually is). Still, we feel that this metric is a useful guide to
avoid L0 that is clearly too low, and we hope this investigation into correlation-based SAE quality
metrics can be built on further in future work.

While our metric currently requires training a sweep over L0 to optimize, we are hopeful that it may
be possible to optimize this metric automatically during training (steps towards this are discussed in
Appendix A.11). We further encourage anyone implementing ideas from this work to also experiment
with our alternative metric, decoder pairwise cosine similarity, discussed in Appendix A.9.
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Figure 6: (left) random correlation matrix and (right) base feature firing probabilities for toy model.

A Technical Appendices and Supplementary Material

A.1 SAE training architecture definitions

In this work we focus on JumpReLU [7, 18] and BatchTopK [3] SAEs. For BatchTopK SAEs, there
is no sparsity penalty as sparsity is enforced by the BatchTopK function. The auxiliary loss LP for
BatchTopK is as follows, where e is the SAE training error residual, and ê is a reconstruction using
the top kaux dead latents (meaning the latents have not fired in more than ndead steps during training).

Lp = ∥e− ê∥22

We follow the JumpReLU training setup from Conerly et al. [7], which involves both a sparsity loss
Ls and a pre-activation loss for reviving dead latents, Lp. Ls is defined as below, where c is a scalar
scaling factor:

Ls =
∑
i

tanh(c ∗ |ai|∥Wdec,i∥2)

The pre-activation loss Lp adds a small penalty for all dead features, where apre refers to the pre-
activation of the SAE passed into the JumpReLU:

Lp =
∑
i

ReLU(τi − apre,i)∥Wdec,i∥2

The JumpReLU defines a pseudo-gradient relative to the threshold τ as follows, where ϵ is the
bandwidth of the estimator:

∂JumpReLU(x, τ)

∂τ
=

{− τ
ϵ if − 1

2 < x−τ
ϵ < 1

2

0 otherwise

A.2 Toy model SAE training details

We train on 15M samples with a batch size of 1024 for all toy model experiments, and a learning rate
of 3e-4. We do not use any learning rate warm-up or decay. For all SAE latents vs true feature cosine
similarity plots, we re-arrange the SAE latents so the latent indices match the feature indices in the
plots, as this makes interpreting the plots easier without any loss of generality.

For the large toy model experiments in Section 3, we use a randomly generated correlation matrix
and linearly decreasing feature firing probabilities, both shown in Figure 6.
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Figure 7: (left) Toy model feature correlation matrix showing positive correlations between features.
(middle) SAE decoder cosine similarities with true feature when SAE L0 = 2, matching the true L0 of
the toy model. (right) SAE decoder cosine similarities with true features when SAE L0 = 1.8. When
L0 is too low, the SAE mixes components of features based on their firing correlations.

0 1 2 3 4

Feature

0
1

2
3

4

Fe
at

ur
e

Feature correlation matrix

−1.0

−0.5

0.0

0.5

1.0

0 1 2 3 4

True feature

0
1

2
3

4

SA
E

L
at

en
t

−1

0

1

co
s

si
m

SAE L0 = True L0

0 1 2 3 4

True feature

0
1

2
3

4

SA
E

L
at

en
t

−1

0

1

co
s

si
m

SAE L0 < True L0

Figure 8: (left) Toy model feature correlation matrix showing negative correlations between features.
(middle) SAE decoder cosine similarities with true feature when SAE L0 = 2, matching the true L0
of the toy model. (right) SAE decoder cosine similarities with true features when SAE L0 = 1.8,.
When L0 is too low, the SAE mixes negative components of anti-correlated features.

A.3 LLM SAE training details

For BatchTopK SAEs, we ensure that the decoder remains normalized with ||Wdec||2 = 1 so sdec
n

calculations use the same scale for every latent. We use a learning rate of 3e−4 with no warmup or
decay.

For JumpReLU SAEs, we broadly follow the training procedure laid out by Conerly et al. [7].
However, we do not apply learning rate decay, and only warm λs for 100M tokens to avoid the
sparsity penalty changing throughout the majority of training. We use a learning rate of 2e−4, c = 4,
λp = 3e− 6 and bandwidth ϵ = 2.0 as recommended by [7].

A.4 Small toy models: low L0 SAEs mix correlated and anti-correlated features

We begin with a small toy model with 5 true features (g = 5) in an input space of d = 20. We set
each pi = 0.4 such that on average 2 features are active per input, for a true L0 of 2. We begin with
a simple correlation pattern between features, where f0 is positively correlated with every feature
f1 through f4, but otherwise there are no other correlations. We then train an SAE with L0 = 2,
matching the true L0 of the model, and an SAE with slightly lower value of L0 = 1.8 (BatchTopK
SAEs permit setting fractional L0). For the L0 = 1.8 SAE, we initialize it to the ground-truth
solution, ensuring that the result of training is due to gradient pressure rather than just being a local
minimum. We show the toy model feature correlation matrix as well as decoder cosine similarity
plots with the true features for both SAEs in Figure 7.

When the SAE L0 matches the true L0, we see that the SAE perfectly learns the underlying true
features. However, when SAE L0 is smaller than the true L0, the resulting SAE latents mix feature
components together based on the correlation matrix. The latents tracking features f1 through f4 all
mix in a positive component of f0, but they have no components of each other.

Next, we invert the correlation, i.e. each feature f1 through f4 is negatively correlated with f0 instead,
while keeping everything else unchanged. We show the correlation matrix and SAE decoder cosine
similarity with true features plots in Figure 8.
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Now, we see the same pattern as with positive correlations except inverted. The latents tracking
features f1 through f4 mix in a negative component of f0, but have no component of each other.

This pattern is problematic because it means that if our L0 is too low, every SAE latent will con-
tain positive components of every positively correlated feature, and negative components of every
negatively correlated feature in the model. Negative correlations are particularly bad, as negative
correlations are prevalent throughout language. For instance, we may expect a nonsensical negative
component of “Harry Potter” to appear in the latent for “French poetry”, since Harry Potter has
nothing to do with French poetry. This will result in highly polysemantic and noisy SAE latents.

A.5 Transitioning L0 during training

We explore the effect of transitioning the L0 of the SAE during training using the toy model from
Section 3. This toy model has a true L0 of 11. We train BatchTopK SAEs with a final L0 of 11, but
starting with L0 either too high or too low, and linearly transitioning to the correct L0 over the first
25k steps of training, leaving the SAE at the correct L0 for the final 5k steps of training. We use a
starting L0 of 20 for the case where we start too high, and use a starting L0 of 2 for the case where
we start too low. Results are shown in Figure 9.
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Figure 9: Transitioning L0 from too low (left) and too high (right) to the correct L0 during training.
When the starting L0 is too high, the SAE still learns the correct features at the end of training.
However, when L0 is too low, the SAE cannot recover fully and still learns many incorrect features at
the end of training.

We see that decreasing the L0 of the SAE from a too high value to the correct value still results in the
SAE learning correct features. However, when the SAE starts from a too low L0, the SAE cannot
fully recover when the L0 is adjusted to the correct value later. It seems that the latents the SAE
learns when L0 is too low is a local minimum that is difficult from the SAE to escape from even when
the L0 is later corrected. This is likely because the latents learned when L0 is too low are optimized
by gradient descent to achieve a higher MSE loss than is achievable by the correct latents under the
same L0 constraint. However, when L0 is too high, there is no equivalent optimization pressure, and
is thus less likely to be a local minimum.

A.6 JumpReLU SAE toy model experiments

So far, we have only investigated BatchTopK SAES due to their ease of setting L0. We now validate
that these same conclusions apply to JumpReLU SAEs. We train JumpReLU saes with a range of λs

to control the sparsity of the SAEs. We show plots of λs vs L0 nth decoder projection vs L0 for these
SAEs in Figure 10. We see that nth decoder projection vs L0 broadly follows the same pattern as we
saw for BatchTopK SAEs, and is minimized at and slightly above the correct L0.

Interestingly, we see that the L0 does not change linearly with λs, but instead “sticks” near the correct
L0. This is a testament to Anthropic’s JumpReLU SAE training method [7], as a wide range of
sparsity coefficients λs cause the SAE to naturally find the correct L0.
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A.7 Extended large toy model experiments

In this section, we build on the results from the 50-latent toy model from Section 3.

A.7.1 Superposition noise

We now modify the large toy model to have superposition noise, as this is a more realistic setting
for an LLM SAE to operate in. We reducing the dimensionality of the space to 40, lower than the
number of features in the toy model (50). This forces each feature to slightly overlap other features in
the space. The resulting feature cosine similarities are shown in Figure 11 (left).

We train 5 seeds of SAEs at a range of L0s on this superposition toy model, and calculate cdec in
Figure 11 (right). We see that decoder pairwise cosine similarity is still roughly minimized at the true
L0 of the toy model.

A.8 Proof: Low L0 incentivizes feature mixing

We now provide a theoretical proof that when SAE L0 is less than the true L0 of the underlying
features, MSE loss directly incentivizes the SAE to mix features together.

Theorem 1. Consider a toy model with two orthonormal features f1, f2 ∈ Rd where f1 · f2 = 0 and
∥f1∥2 = ∥f2∥2 = 1. Let f1 fire alone with probability P1, f2 fire alone with probability P2, and both
fire together with probability P12, where P1 +P2 +P12 ≤ 1. Consider a tied SAE with 2 latents (i.e.,
Wenc = WT

dec) and no biases that can fire at most 1 latent per input (L0 = 1). We assume this is less
than the true L0 of the data (i.e., E[active features] = P1 + P2 + 2P12 > 1), which occurs whenever
features co-occur (P12 > 0). Then the SAE that minimizes expected MSE will have latents that mix f1
and f2, rather than learning them separately.

Proof. We define our SAE with decoder Wdec = [l1, l2] ∈ Rd×2 where l1, l2 are the two latent
directions. Since the SAE is tied and has no biases, the reconstruction of an input x using a single

13



active latent li (selected via Top-1 projection) is:

x̂ = (li · x)li (4)

The reconstruction loss for a single sample is:

L(x) = ∥x− x̂∥22 = ∥x− (li · x)li∥22 (5)

Parameterization. We parameterize the latents as:

l2 = f2 (6)

l1 =
αf1 + (1− α)f2√
α2 + (1− α)2

(7)

where 0 ≤ α ≤ 1 controls the mixture. When α = 1, l1 = f1 (the correct, disentangled solution).
When 0 ≤ α < 1, l1 mixes both features.

Case analysis. We analyze the four possible cases:

Case 1: Only f1 fires (probability P1). The input is x = m1f1 where m1 > 0 is the magnitude.
Latent l1 activates (since it has the largest projection). The reconstruction loss is:

L1(α) = ∥m1f1 − (l1 ·m1f1)l1∥22 (8)

=

∥∥∥∥∥m1f1 −
m1α√

α2 + (1− α)2
· αf1 + (1− α)f2√

α2 + (1− α)2

∥∥∥∥∥
2

2

(9)

=

∥∥∥∥m1f1 −
m1α

2

α2 + (1− α)2
f1 −

m1α(1− α)

α2 + (1− α)2
f2

∥∥∥∥2
2

(10)

= m2
1

[(
1− α2

α2 + (1− α)2

)2

+

(
α(1− α)

α2 + (1− α)2

)2
]

(11)

Simplifying using α2 + (1− α)2 = 1− 2α(1− α):

L1(α) = m2
1

[(
(1− α)2

α2 + (1− α)2

)2

+

(
α(1− α)

α2 + (1− α)2

)2
]

(12)

= m2
1 ·

(1− α)2[α2 + (1− α)2]

[α2 + (1− α)2]2
(13)

= m2
1 ·

(1− α)2

α2 + (1− α)2
(14)

Case 2: Only f2 fires (probability P2). The input is x = m2f2. Latent l2 = f2 activates, giving
perfect reconstruction:

L2 = 0 (15)

Case 3: Both f1 and f2 fire (probability P12). The input is x = m1f1 +m2f2. Since L0 = 1, only
one latent can activate. The SAE will choose l1 if |l1 · x|2 > |l2 · x|2. We have:

|l1 · x|2 =

(
m1α+m2(1− α)√

α2 + (1− α)2

)2

=
(m1α+m2(1− α))2

α2 + (1− α)2
(16)

|l2 · x|2 = m2
2 (17)

For simplicity, we assume m1 ≥ m2 > 0, so l1 will activate when α is sufficiently large (e.g., for
α = 1, |l1 · x|2 = m2

1 > m2
2). Assuming l1 activates, the reconstruction loss is:

L3(α) = ∥m1f1 +m2f2 − (l1 · (m1f1 +m2f2))l1∥22 (18)

=

∥∥∥∥∥m1f1 +m2f2 −
m1α+m2(1− α)√

α2 + (1− α)2
· αf1 + (1− α)f2√

α2 + (1− α)2

∥∥∥∥∥
2

2

(19)
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Let c = m1α+m2(1−α)
α2+(1−α)2 . Then:

L3(α) = ∥m1f1 +m2f2 − cαf1 − c(1− α)f2∥22 (20)

= (m1 − cα)2 + (m2 − c(1− α))2 (21)

Expanding and simplifying (see detailed algebra below):

L3(α) =
[m1(1− α)−m2α]

2

α2 + (1− α)2
(22)

Note that when m1 = m2 = m, this simplifies to:

L3(α) =
m2(1− 2α)2

α2 + (1− α)2
(23)

which equals 0 when α = 0.5 (perfect reconstruction when features are equally mixed) and equals
m2 when α = 1 (complete failure to reconstruct f2).

Case 4: Neither feature fires (probability P0 = 1 − P1 − P2 − P12). Perfect reconstruction with
L4 = 0.

Expected loss. The expected loss is:

E[L(α)] = P1Em1 [L1(α)] + P2Em2 [L2(α)] + P12Em1,m2 [L3(α)] (24)

Assuming l1 activates in Case 1 and l2 in Case 2 (which holds for α > 0.5):

E[L(α)] = P1Em1

[
m2

1

(1− α)2

α2 + (1− α)2

]
+ P12Em1,m2

[
[m1(1− α)−m2α]

2

α2 + (1− α)2

]
(25)

Concrete example demonstrating feature mixing. To make this concrete, suppose m1 = m2 = 1
(both features have equal magnitude when they fire). Assume equal probabilities P1 = P12 = 0.4,
which implies P2 = 0 (or is negligible) and P0 = 0.2.

For the disentangled solution (α = 1, so l1 = f1):

L1(α = 1) = 0 (perfect reconstruction when only f1 fires) (26)

L3(α = 1) =
m2(1− 2)2

12 + 02
= m2 = 1 (cannot reconstruct f2 component) (27)

Expected loss: E[L(α = 1)] = (0.4× 0) + (0.4× 1) = 0.4

For a mixed solution (α = 0.6):

L1(α = 0.6) = 12 · (1− 0.6)2

0.62 + 0.42
=

0.16

0.52
≈ 0.308 (28)

L3(α = 0.6) = 12 · (1− 2× 0.6)2

0.62 + 0.42
=

(−0.2)2

0.52
=

0.04

0.52
≈ 0.077 (29)

Expected loss: E[L(α = 0.6)] = (0.4× 0.308) + (0.4× 0.077) ≈ 0.1232 + 0.0308 = 0.154

The mixed solution achieves E[L(α = 0.6)] ≈ 0.154 < 0.4 = E[L(α = 1)], demonstrating that
MSE loss directly incentivizes feature mixing when L0 is constrained below the true L0.

Optimal mixing coefficient. More generally, for the case m1 = m2 = m, the expected loss is:

E[L(α)] = m2

α2 + (1− α)2
[
P1(1− α)2 + P12(1− 2α)2

]
(30)

At the boundaries:

• At α = 1 (disentangled): E[L(1)] = P12m
2
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• At α = 0.5 (maximally mixed): E[L(0.5)] = P1m
2(0.5)2

0.52+0.52 = P1m
2(0.25)
0.5 = P1m

2

2

When P12 > P1/2, we have E[L(0.5)] < E[L(1)], showing that mixing reduces loss when both
features frequently co-occur. For instance, with P1 = P12 = 0.5 and m = 1:

E[L(α = 1)] = 0.5 (31)
E[L(α = 0.5)] = 0.25 (32)

This demonstrates that when features frequently co-occur (P12 is large), the MSE-optimal solution
involves substantial feature mixing (α∗ < 1) rather than learning them disentangled (α = 1),
completing the proof.

Detailed algebra for Case 3. Starting from:

L3(α) = (m1 − cα)2 + (m2 − c(1− α))2 (33)

where c = m1α+m2(1−α)
α2+(1−α)2 .

Expanding:

L3 = m2
1 − 2m1cα+ c2α2 +m2

2 − 2m2c(1− α) + c2(1− α)2 (34)

= m2
1 +m2

2 + c2[α2 + (1− α)2]− 2c[m1α+m2(1− α)] (35)

Note that c[α2 + (1− α)2] = m1α+m2(1− α) by definition of c. Therefore:

L3 = m2
1 +m2

2 + c[m1α+m2(1− α)]− 2c[m1α+m2(1− α)] (36)

= m2
1 +m2

2 − c[m1α+m2(1− α)] (37)

= m2
1 +m2

2 −
[m1α+m2(1− α)]2

α2 + (1− α)2
(38)

Further simplification:

L3 =
(m2

1 +m2
2)[α

2 + (1− α)2]− [m1α+m2(1− α)]2

α2 + (1− α)2
(39)

The numerator expands to:

(m2
1 +m2

2)[α
2 + (1− α)2]− [m2

1α
2 + 2m1m2α(1− α) +m2

2(1− α)2] (40)

= m2
1α

2 +m2
1(1− α)2 +m2

2α
2 +m2

2(1− α)2 −m2
1α

2 − 2m1m2α(1− α)−m2
2(1− α)2

(41)

= m2
1(1− α)2 +m2

2α
2 − 2m1m2α(1− α) (42)

= [m1(1− α)−m2α]
2 (43)

We can verify this factorization:

[m1(1− α)−m2α]
2 = m2

1(1− α)2 − 2m1m2α(1− α) +m2
2α

2 (44)

This matches. Therefore:

L3(α) =
[m1(1− α)−m2α]

2

α2 + (1− α)2
(45)

A.9 Alternative metric: nth decoder projection

Figure 1 reveals that the SAE decoder latents contain mixes of underlying features, both when the
L0 is too high and also when it is too low. As the SAE approaches the correct L0, each SAE latent
has fewer components of multiple true features mixed in, becoming more monosemantic. Thus, we
expect that when the SAE is at the correct L0, most latents should have near zero projection on
arbitrary training inputs, because they usually do not contain the feature being tracked by that latent.
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Figure 12: Idealized histogram of decoder projections on input activations demonstrating the intuition
behind our nth decoder projection metric, sdec

n . For an arbitrary input, most latents should be non-
active and thus have low projection. When SAE latents are monosemantic, meaning they do not mix
components of many features, we expect non-active latents to have a near-zero projection on arbitrary
input activations. However, if SAE latents mix positive and negative components of many underlying
features, then those latents will have larger projections on arbitrary inputs that contains those features.
By picking an N less than h/2 (corresponding roughly to the origin), a smaller sdec

n means latents
have smaller projection on arbitrary inputs and thus are more monosemantic.
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Figure 13: nth decoder projection vs SAE L0 for n = 12 (left) and n = 18 (right) on our toy model
SAEs. The true L0, 11, is marked by a dotted line on the plots. Both settings of n are minimized at
the true L0, but the slopes of the metric change depending on N. The shaded area is 1 stdev.

If we are far from the correct L0, then SAE latents contain components of many underlying features,
and we expect latents to project more strongly on arbitrary training inputs.

We now define a metric we call nth decoder projection score, or sdec
n , that we can use to find the

optimal L0 of the SAE. Given SAE inputs x ∈ Rb×d where b is the batch size and d is the input
dimension, we first compute the decoder projections for all latents:

Z = (x− bdec)W
⊤
dec ∈ Rb×h (46)

where bdec ∈ Rd is the decoder bias and Wdec ∈ Rd×h is the decoder weight matrix with h latent
dimensions. To aggregate across the batch, we flatten Z to obtain z ∈ Rbh and sort these values in
descending order to get z↓. The nth decoder projection is then defined as:

sdec
n = z↓[n · b] (47)

where [n · b] corresponds to selecting the element at index n · b. The multiplication by b accounts
for the batch dimension, effectively selecting the nth highest projection value when considering all
samples in the batch. For this to work n should be sufficiently larger than a reasonable guess at
the correct L0, as in a perfect SAE, the decoder for these latents should be uncorrelated with input
activations. Picking any n up to h/2 should work, as the majority of latents should have low projection
on arbitrary input activations, so h/2 intuitively corresponds to 0 expected projection. The intuition
behind sdecn is shown visually in Figure 12, and is formalized in Appendix A.15.

We calculate sdec
n for n = 12 and n = 18, varying SAE L0 from 2 to 25 with 5 seeds per L0 in Figure

13. The metric is minimized at the true L0, 11, in both cases, although the shape changes depending
on n. In both cases, the slope of sdec

n is flat when L0 is slightly higher than the true L0.
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A.9.1 LLM SAE results

Next, we sdec
n for each LLM SAE we evaluated in the paper along with k=16 sparse probing results.

Gemma-2-2b layer 5 and Llama-3.2-1b layer 7 results are shown in Figure 14. The results roughly
match what we saw with cdec.
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Figure 14: nth decoder projection and k=16 sparse probing results for BatchTopK SAEs trained on
Gemma-2-2b layer 5 (left) and Llama-3.2-1b layer 7 (right). The metric is roughly minimized near
peak sparse-probing performance. The shaded area is 1 stdev.
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Figure 15: nth decoder projection and sparse probing results for BatchTopK and JumpReLU SAEs
trained on Gemma-2-2b layer 12. The metric seems to align less well with k=16 sparse probing
results.

BatchTopK and JumpReLU results for Gemma-2-2b layer 12 are shown in Figure 15. The results
look similar to what we saw for cdec.

A.9.2 Which metric is better?

We choose to focus on cdec as it is a simpler metric both to understand and implement as it has no
hyperparameters. However, we expect that when an SAE is near the correct L0, there are likely many
indicators that all should point to similar results. Any metric which can detect correlated features
being mixed into SAE latents should give roughly similar results.
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A.10 Theoretical Justification for cdec Metric

We provide a theoretical justification for why the decoder pairwise cosine similarity metric, cdec,
serves as a proxy for detecting feature mixing in SAEs.

Theorem 2. Consider two SAEs with identical dictionary size h, where SAE 1 learns disentangled
features and SAE 2 mixes a correlated feature into its latents. Let the underlying true features
{f1, . . . , fh,g} be an orthonormal set in Rd, where fi are unique features and g is a dense or frequent
feature correlated with multiple fi. We model the decoder weights Wdec,i (normalized to unit length)
for the two SAEs as:

SAE 1 (Disentangled): W
(1)
i = fi (48)

SAE 2 (Mixed): W
(2)
i =

√
1− γ2

i fi + γig (49)

where γi ∈ [−1, 1] represents the mixing coefficient for latent i. Assume there exists a subset of
latents S ⊆ {1, . . . , h} with |S| ≥ 2 such that for all i ∈ S, γi ̸= 0. Then, the expected pairwise
cosine similarity is strictly greater for SAE 2 than SAE 1:

cdec(SAE 2) > cdec(SAE 1) (50)

Proof. Recall the definition of decoder pairwise cosine similarity:

cdec =
1(
h
2

) h−1∑
i=1

h∑
j=i+1

| cos(Wdec,i,Wdec,j)| (51)

Since the decoder weights are normalized, cos(Wdec,i,Wdec,j) = W⊤
dec,iWdec,j .

Case 1: SAE 1 (Disentangled). For any distinct pair i ̸= j, the weights are W
(1)
i = fi and

W
(1)
j = fj . Since the underlying features are orthonormal:

W
(1)⊤
i W

(1)
j = f⊤i fj = 0 (52)

Thus, for SAE 1:
cdec(SAE 1) = 0 (53)

Case 2: SAE 2 (Mixed). Consider the dot product for a distinct pair i, j:

W
(2)⊤
i W

(2)
j = (

√
1− γ2

i fi + γig)
⊤(
√
1− γ2

j fj + γjg) (54)

=
√
(1− γ2

i )(1− γ2
j )(f

⊤
i fj) + γj

√
1− γ2

i (f
⊤
i g)

+ γi

√
1− γ2

j (g
⊤fj) + γiγj(g

⊤g) (55)

Using the orthonormality of the set {f1, . . . , fh,g}:

• f⊤i fj = 0

• f⊤i g = 0 and g⊤fj = 0

• g⊤g = 1

The expression simplifies to:
cos(W

(2)
i ,W

(2)
j ) = γiγj (56)

The metric cdec is the average of absolute cosine similarities:

cdec(SAE 2) =
1(
h
2

) ∑
i<j

|γiγj | (57)
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Since we assumed there exists a subset S where γi ̸= 0, there exists at least one pair (i, j) where
|γiγj | > 0. All other terms are non-negative. Therefore:

cdec(SAE 2) > 0 = cdec(SAE 1) (58)

This confirms that mixing a shared feature component into multiple latents strictly increases the cdec
metric.

Remark 1. In real-world scenarios with superposition noise, the baseline orthogonality f⊤i fj is not
exactly zero but follows a distribution with mean zero and variance ≈ 1/d. However, systematic
feature mixing introduces a structured non-zero component (γiγj) that typically dominates the random
superposition noise, causing a measurable rise in cdec as observed in Figure 4 and Figure 5.

A.11 Automatically finding the correct L0 during training

A natural next step of our finding that the correct L0 occurs when Nth decoder projection, sdec
n , metric

is minimized is to use this to find the correct L0 automatically during training. This is a meta-learning
task, as the L0 is a hyperparameter of the training process. We find there are several challenges to
directly using sdec

n as an optimization target:

• Small gradients directly above correct L0 In our plots of sdec
n from both toy models and

Gemma-2-2b, we find that the metric is relatively flat in a region start at the correct L0 and
extending to higher L0 values. We thus need a way to traverse this flat region and stop once
the metric starts to increase again.

• The impact of changing L0 is delayed We find that it takes many steps after changing L0
for sdec

n to also change, meaning it is easy to overshoot the target L0 or oscillate back and
forth.

• Dropping L0 too low can harm the SAE As we saw in Appendix A.5, if the L0 is too low
the SAE can permanently end up in poor local minima. We thus want to avoid dropping
below the correct L0, even temporarily, to avoid permanently breaking the SAE. We therefore
need to start with L0 too high and slowly decrease it until we find the correct L0.

• Noise during training We find that while sdec
n shows clear trends after training for many

steps, it can be noisy on each training sample. So our optimization needs to be robust to this
noise.

Taking these requirements into account, we present an optimization procedure to find the L0 that
minimizes sdec

n automatically during training. We first estimate the gradient of sdec
n , hereafter referred

to as to as the metric, m, with respect to L0, dm/dL0. We first define an evaluation step t as a set
number of training steps (we evaluate every 100 training steps). At t we change L0 by δL0 . At the
next evaluation step, t+ 1, we evaluate m. We use a sliding average of sdec

n over the past 10 training
steps to calculate m to help account for noise. We the estimate dm/dL0 as:

dm

dL0
=

mt+1 −mt

δL0

Next, we add a small negative bias to this gradient estimate to encourage our estimate to push L0
lower even if the loss landscape is relatively flat. We use a bias magnitude 0 < b < 1 that is multiplied
by the magnitude of our gradient estimate, so that our biased estimate can never change the sign of
the gradient estimate, but can gently nudge it to be more negative in flat, noisy regions of the loss
landscape. We find b = 0.1 works well. Thus, our biased gradient estimate dmb/dL0 is calculated as
below:

dmb

dL0
=

dm

dL0
− b

∣∣∣∣ dmdL0
∣∣∣∣

We then provide this gradient to the Adam optimizer [15] with default settings, and allow it to change
the L0 parameter.

We add the following optional modifications to this algorithm. First, we clip the gradient estimates
dm/dL0 to be between -1 and 1. We also set a minimum and maximum δL0

. The minimum is added
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Figure 16: L0 of SAEs on Neuronpedia with known L0 listed in SAELens.

to avoid the denominator of our gradient estimate being near 0, and the maximum is chosen to keep
the L0 from changing too quickly. In practice, we find a minimum δL0 between 0 and 1 seems to
work well, and a maximum δL0 between 1 and 5 seems to work well.

We find that this optimization strategy works very well in toy models, but requires a lot of hyper-
parameter tuning to work in real LLMs, limiting its utility. The starting L0, n for sdec

n , b, learning
rate for the Adam optimizer, and min and max δL0

values all have a big impact on how fast and how
aggressively the optimization works. The slope of m around the correct L0 is shallow, so it is easy to
overshoot. We also find that different values of n take more or less time to converge during training.
We expect it is possible to further simplify and improve this process in future work.

A.12 L0 of open-source SAEs on Neuronpedia

We analyze common open-source SAEs as provided by Neuronpedia [16] and SAELens [1]. We
include all SAEs cross-listed in both SAELens and Neuronpedia with an L0 reported in SAELens.
We show the results as a histogram in Figure 16. Our analysis shows that for layer 12 of Gemma-2-2b,
the correct L0 should be around 200-250. However, we find that most open-source SAEs have L0
below 100, much lower than our analysis expects to be ideal.

A.13 Limitations

We limited the scope of our investigation to features satisfying the linear representation hypothesis, and
do not investigate how SAEs react if the underlying features are actually non-linear [11]. However, we
do not feel that non-linear features are necessary for SAEs to fail to work properly, as we demonstrate
in this paper. We also do not consider the nuances of how unbalanced correlations impact the SAE,
as simple correlations are already enough to cause problems. However, we do expect that different
sorts of correlations may affect SAEs differently, and would encourage future work to look into this.
Finally, we only investigated a few layers of popular LLMs, as running sweeps of SAE training at
every layer of the LLM was too prohibitively expensive for this work. Nevertheless, we have no
reason to expect any meaningfully different behavior in decoder projection at other LLM layers.

21



0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000

L0

0.020

0.025

0.030

0.035

0.040

C
os

in
e

Si
m

ila
ri

ty

Pairwise Decoder Cosine Similarity

BatchTopK
JumpReLU

−20 −10 0 10 20 30 40

Decoder Projection Value

0.000

0.005

0.010

0.015

0.020

Pr
ob

ab
ili

ty
D

en
si

ty

BatchTopK Decoder Projection Histogram

L0=10
L0=200
L0=750
L0=2000

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000

L0

0.78

0.80

0.82

0.84

F1
Sc

or
e

k=16 Sparse Probing

BatchTopK
JumpReLU

−20 −10 0 10 20 30 40

Decoder Projection Value

10−6

10−5

10−4

10−3

10−2

Pr
ob

ab
ili

ty
D

en
si

ty
(l

og
) BatchTopK Decoder Projection (Log Scale)

Gemma-2-2B Layer 12

Figure 17: Gemma-2-2b layer 12, with (left) decoder pairwise cosine similarity and K-sparse probing
F1 for BatchTopK and JumpReLU SAEs, and (right) normalized decoder projection histograms for
BatchTopK SAEs. Histograms are truncated to -20 and 40 to highlight projections near the origin.

A.14 Extended LLM SAE results

A.14.1 JumpReLU vs BatchTopK SAEs

We next explore how JumpReLU and BatchTopK SAEs compare with decoder pairwise cosine
similarity plots. We train a suite of SAEs on 1B tokens on Gemma-2-2b layer 12. We plot cdec for a
range N values as well as k-sparse probing results for JumpReLU and BatchTopK SAEs in Figure 17
(left).

JumpReLU and BatchTopK SAEs behave similarly at low L0, with the high cdec at low L0 corre-
sponding to poor sparse-probing performance. However, we see notable differences at high L0. The
BatchTopK SAEs have a global cdec minimum around 200, but JumpReLU SAEs cdec minimum
appears closer to 250-300. As we saw in Figure 5 as well, using the “elbow” of the plots just before
cdec jumps due to low L0 seems to roughly correspond to peak k-sparse probing performance.

For JumpReLU SAEs, we see that cdec rises much less than BatchTopK SAEs at high L0, and indeed,
JumpReLU SAEs also perform much better than BatchTopK SAEs at sparse probing when L0 is
high. We suspect this is due to JumpReLU SAEs being able to “stick” near the correct threshold per
latent like we saw in our toy models section. We investigate the differences in learned SAEs between
JumpReLU and BatchTopK further in Appendix A.14.2.

A.14.2 JumpReLU vs BatchTopK dynamics in LLMs

We begin by comparing the encoder bias between JumpReLU and BatchTopK in Figure 18. We see
that BatchTopK SAEs rely much more heavily on the encoder bias than JumpReLU SAEs seem to,
with a much wider variance in values and a sharper decrease compared to JumpReLU. We expect this
is because BatchTopK cannot coordinate the cutoff threshold with the encoder directly as JumpReLU
can, since there is no gradient available to directly change the threshold of BatchTopK SAEs.

Next, we inspect the threshold values between JumpReLU and BatchTopK in Figure 19. Here as
well, we see dramatic differences between BatchTopK and JumpReLU SAEs. The threshold for
BatchTopK is much higher than it is for JumpReLU, and the threshold decreases as L0 increses.
This makes sense, since using a lower cutoff means more latents can fire. However, JumpReLU
seems to unintuitively have the opposite trend, with the threshold actually increasing with L0. We
saw in Figure 18 that the encoder bias for JumpReLU (and BatchTopK) SAEs increases as well as
L0 increases, so perhaps this increase in threshold for JumpReLU SAEs with increasing L0 is just
to offset that trend somewhat. We also notice that the variance in JumpReLU SAE thresholds also
increases as L0 increases, supporting our hypothesis that one of the reasons JumpReLU SAEs seem
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to handle high L0 better than BatchTopK is because the thresholds are able to dynamically adjust to
near the correct cutoff point per latent, aleviating the situation we saw in BatchTopK SAEs where we
can be at both too high and too low L0 at the same time (Section A.14.3).
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Figure 19: Threshold vs L0 for JumpReLU and BatchTopK SAEs. Shaded area in plots corresponds
to 1 stdev. Interestingly, JumpReLU threshold is much lower than the BatchTopK threshold, and
actually increases as L0 increases. We plot just JumpReLU on its own (right) since it is otherwise
difficult to see these trends, as the threshold is so much smaller than BatchTopK.

A.14.3 Can L0 be both too low and too high simultaneously?

In Figure 17 (right), we plot decoder histogram projection plots for BatchTopK SAEs on Gemma-2-2b
layer 12 with L0 10, 200, 750, and 2000. As we expected from Figure 12, when L0 is very low (10)
or very high (2000), we see a wide gaussian around 0, indicating that decoder latents are mixing
correlated features together. At L0=200, we see a much more narrow distribution around 0, as we
expect when near the correct L0. However, at L0=750, we see an interesting phenomenon, where
there is an even narrower distribution than at L0=200, but also a large hump starting at projection
above 10 (more visible in the log plot).

We suspect this indicates at L0=750, some latents become more monosemantic while other latents
mix underlying features becoming less monosemantic. This likely means that the L0 is too high for
some latents while simultaneously being too low for other latents. There is no reason why every
latent has the same optimal L0 threshold, so there is likely a range of L0s where some latents are
firing more than they ideally should while other latents are firing less than they ideally should. We
also suspect this is part of why JumpReLU SAEs seem to perform much better at high L0, since
JumpReLU SAEs can adjust firing threshold per-latent while BatchTopK SAEs cannot.

A.14.4 Extended Nth decoder projection plots

In this section we document nth decoder projection plots for multiple values of N for each sweep
of L0 we performed. We show Llama-3.2-1b layer 7 plots in Figure 22, Gemma-2-2b layer 5 in
Figure 20, and Gemma-2-2b layer 12 in Figure 21. We note that in all cases, low L0 behavior is
similar: no matter the value of N, sdec

n increases dramatically at low L0. However, the high L0
behavior is less consistent. We always see a similar “elbow” in the plots at roughly the same place
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regardless of N, but sometimes this elbow corresponds to a clear global minimum, and sometimes the
high L0 behavior is very shallow. We find that using a N near h/2 ( 16k in our cases) seems to give
the best results.
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Figure 20: Extended Nth decoder projection plots. Gemma-2-2b, layer 5, 32k latents. These plots
never have a clear global minimum at the “elbow” point, but the “elbow” is always at the same point
regardless of choice of N.

A.15 Theoretical Justification for sdec
n Metric

We provide a theoretical justification for why the nth decoder projection metric, sdec
n , successfully

identifies when SAE latents are mixing correlated features.
Theorem 3. Consider two SAEs with identical dictionary sizes h and input dimension d, where SAE
1 has greater feature mixing than SAE 2. Specifically, let the decoder projections onto a feature f for
non-active latents follow:

SAE 1: z
(1)
i ∼ N (0, σ2

0 + σ2
1) (59)

SAE 2: z
(2)
i ∼ N (0, σ2

0 + σ2
2) (60)

where σ2
0 represents the base variance from superposition noise, and σ2

1 > σ2
2 represents the variance

from feature mixing. Then for n < h/2, we have E[sdec
n ] is larger for SAE 1 than SAE 2.

Proof. Let f ∈ Rd be an underlying true feature with ∥f∥2 = 1. Consider an SAE with decoder
Wdec ∈ Rd×h and decoder bias bdec ∈ Rd. For an input activation x ∈ Rd, the projection of latent i
onto the input is:

zi = (x− bdec)
⊤Wdec,i (61)

Decomposition of decoder latents. We decompose each decoder latent Wdec,i into three compo-
nents:

Wdec,i = αif + βigi + ϵi (62)
where:

• αif is the component aligned with feature f (the intended feature for latent i if i is the
correct latent, or mixing if i is incorrect)
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Figure 21: Extended Nth decoder projection plots. Gemma-2-2b, layer 12, 32k latents for both
JumpReLU and BatchTopK. For BatchTopK, regardless of the choice of N, all plots are minimized
around the same L0 range, 200-250. For JumpReLU, there is a clear “elbow” at roughly the same L0,
but this elbow is only a clear minimum at N=16k.

• βigi represents components of other correlated/anti-correlated features mixed into latent i,
where gi is orthogonal to f

• ϵi represents superposition noise, also orthogonal to f

Distribution of projections for non-active latents. Consider latents that should not activate for
feature f (i.e., latents i where αi should ideally be near zero). For an input x containing feature f
with magnitude mf , we can write:

x− bdec = mff + r (63)

where r contains all other feature contributions orthogonal to f .

The projection of latent i becomes:

zi = (mff + r)⊤(αif + βigi + ϵi) = mfαi + r⊤(βigi + ϵi) (64)

For non-active latents in a well-trained SAE, we expect:

• αi ≈ 0 for the intended feature component

• βigi represents unintended mixing of correlated features

• ϵi represents superposition noise

Modeling as Gaussian mixtures. Under the assumptions that:

1. Feature magnitudes mf and residual components r vary across the input distribution

2. The number of latents h is large

3. Feature mixing coefficients βi arise from optimization pressure to compensate for insufficient
L0
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Figure 22: Extended Nth decoder projection plots. Llama-3.2-1b, layer 7, 32k latents. The plots begin
to have a sharp minimum around N=14k, but the “elbow” of the plots before the decoder projection
increases at low L0 is always around the same location.

By the Central Limit Theorem, the distribution of projections zi for non-active latents approximately
follows:

zi ∼ N (0, σ2
base + σ2

mix) (65)

where:

• σ2
base captures variance from superposition noise (ϵi)

• σ2
mix captures variance from feature mixing (βigi)

Comparing two SAEs. Consider two SAEs:

• SAE 1 (high feature mixing): z(1)i ∼ N (0, σ2
base + σ2

1) where σ2
1 is large

• SAE 2 (low feature mixing): z(2)i ∼ N (0, σ2
base + σ2

2) where σ2
2 is small

with σ2
1 > σ2

2 .

Computing sdec
n . For a batch of size b, we have bh projection values. After sorting in descending

order, the nth decoder projection is:
sdec
n = z↓[n · b] (66)

This corresponds to the (n · b)/(bh) = n/h quantile of the distribution. For n < h/2, this is the
(n/h)th quantile on the positive side of the distribution.

Quantile comparison. For a standard normal distribution Z ∼ N (0, 1) and σ1 > σ2 > 0, the pth

quantile satisfies:

Qp(N (0, σ2
1)) = σ1 ·Qp(N (0, 1)) > σ2 ·Qp(N (0, 1)) = Qp(N (0, σ2

2)) (67)

for p > 0.5 (corresponding to positive quantiles).
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Since n < h/2 implies p = n/h < 0.5, we are actually looking at the (1− p)th quantile on the right
tail due to descending sort. This gives us:

E[sdec
n ]SAE 1 > E[sdec

n ]SAE 2 (68)

Therefore, SAEs with greater feature mixing (larger σ2
mix) will have larger values of sdec

n , justifying
its use as a metric for detecting feature mixing.

Remark 2. The choice of n ≈ h/2 in practice corresponds to sampling from a region where the
distribution is sensitive to changes in variance (roughly near the median), while being sufficiently
far from the extreme tails to maintain statistical stability. Values of n too close to 0 would sample
from the extreme right tail where variance is high, while n too close to h would sample from regions
dominated by active latents rather than the non-active latents we wish to characterize.

Remark 3. This theoretical analysis assumes that decoder projections follow approximately Gaussian
distributions. While this is a simplification, our empirical results in both toy models (where we
have full control) and LLM SAEs support this assumption, as evidenced by the decoder projection
histograms in Figure 17.

A.16 Pytorch pseudocode for metrics

def pairwise_decoder_cosine_similarity(sae):
norm_dec = torch.nn.functional.normalize(sae.W_dec, dim=1)
dec_sims = torch.mm(norm_dec, norm_dec.T)
triu_mask = torch.triu(

torch.ones_like(dec_sims),
diagonal=1,

).bool()
return dec_sims[triu_mask].abs().mean()

Figure 23: Pytorch pseudocode for decoder pairwise cosine similarity

def nth_decoder_projection(input_acts, sae, n):
dec_proj = (input_acts - sae.b_dec) @ sae.W_dec.T
sorted_dec_proj = dec_proj.flatten().sort(descending=True)
index = n * dec_proj.shape[0]
return sorted_dec_proj.values[index]

Figure 24: Pytorch pseudocode for nth decoder projection

We present Pytorch pseudocode for nth decoder projection in Figure 24 and decoder pairwise cosine
similarity in Figure 23.
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