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Abstract

Sparse Autoencoders (SAEs) extract features from LLM internal activations, meant
to correspond to single concepts. A core SAE training hyperparameter is LO:
how many features should fire per token on average. Existing work compares
SAE algorithms using sparsity—reconstruction tradeoff plots, implying LO is a free
parameter with no single correct value. In this work we study the effect of LO on
BatchTopK SAEs, and show that if LO is not set precisely, the SAE fails to learn
the underlying features of the LLM. If LO is too low, the SAE will mix correlated
features to improve reconstruction. If LO is too high, the SAE finds degenerate
solutions that also mix features. Further, we demonstrate a method to determine the
correct LO value for an SAE on a given training distribution, which finds the true
L0 in toy models and coincides with peak sparse probing performance in LLMs.
We find that most commonly used SAEs have an LO that is too low. Our work
shows that, to train SAEs with correct features, practitioners must set LO correctly.

1 Introduction

Sparse autoencoders (SAEs) decompose the dense, polysemantic activations of LLMs into inter-
pretable latent features [[7, [2]] using sparse dictionary learning [14]. SAEs have the advantage of
being unsupervised, and can be scaled to millions of neurons in its hidden layer (hereafter called
“latents”) [17,[10]. When training an SAE, practitioners must decide on the L.O of the SAE: that is,
the sparsity; how many latents activate on average for a given input[] LO is typically considered a
neutral design choice: most of the literature evaluates SAEs at a range of L0 values, referring to this
as a “sparsity—reconstruction tradeoff” [[10} [15]], implying any LO is equally valid.

However, recent work shows the same trend: too low an LO leads to worse SAE performance on
downstream tasks [11} 4]. In this work, we explore the effect of LO on SAEs. Starting by exploring a
toy model with correlated features, we demonstrate that if the LO is too low, the SAE can “cheat” by
mixing together components of correlated features, achieving better reconstruction compared to an
SAE with correct, disentangled features. We consider this to be a manifestation of feature hedging
[6], where the SAE abuses feature correlations to compensate for insufficient resources to correctly
model the underlying features. Furthermore, we show that if the LO is too high, the SAE can learn
degenerate mixtures of features. We show that it is possible to determine the correct LO of an SAE by
observing projection magnitude between the SAE decoder and training activations.

We validate these findings on Gemma-2-2b [16], demonstrating that the same decoder patterns we
observe in our toy model experiments also manifest in LLM SAEs. We further validate that the
optimal LO we find with our method in Gemma-2-2b matches with peak performance on sparse

1TopK and BatchTopK SAE:s [10} 3] set the LO (K) directly, whereas L1 and JumpReLU [7, 2, 15] adjust it
via a coefficient in the loss. In any case, all SAE trainers must decide on the target LO.
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Figure 1: SAE decoder cosine similarity with true features. True features LO = 11.

probing tasks [[11]. Our findings show that LO must be set correctly for SAEs to learn correct features,
and implies that most SAEs used by researchers today have too low an LO.

2 Background

Sparse autoencoders (SAEs). An SAE decomposes an input activation x € R into a hidden state
a consisting of / hidden neurons, called “latents”. An SAE is composed of an encoder W, € R**¢,
a decoder Wy € R4*", a decoder bias bgec € R?, and encoder bias be,. € R”, and a nonlinearity
o, typically ReLLU or a variant like JumpReL U [15]], TopK [10] or BatchTopK [3].

a :U(Wenc (X - bdec) + benc) (1
ple :Wdeca + bdec (2)

3 Toy model experiments

We set up a toy model with 50 mutually orthogonal true features F' = {fy, ..., fi0} € R, Each
feature f; has firing probability P;. We set P(fy) = 0.345, and we linearly decrease P; to P49 = 0.05,
so feature firing probability decreases with feature number. We randomly generate a correlation
matrix, so the firings of each feature are correlated with other features. Features fire with magnitude
~ N (1.0,0.15). We sampling true feature firings, and summing all firing features to create a training
input for the SAE. The goal of the SAE, then, is to learn these true features despite only being trained
on their summed activations. Since we have ground-truth knowledge, we know the true number of
features firing on average. We call this the frue LO, which is 11 for this toy model.

Throughout this work, we use BatchTopK SAEs [3]], as this architecture allows directly controlling
LO rather than controlling it indirectly via a L1 coefficient [7, 2] or LO coefficient [15] in the loss. For
these toy model experiments, we train SAEs on 15M synthetic samples using SAELens [1]].

We train SAEs with LO that is too low (L0=5), exactly correct (LO=11), and too high (L0O=18). Results
are shown in Figure[T] When the SAE L0 matches the true LO (Figure[Ib), the SAE exactly learns the
true features. When the SAE LO is too low (Figure [Ia)), the SAE mixes components of correlated
features together, especially breaking latents tracking high-frequency features. When SAE L0 is too
high (Figure[Ic), the SAE learns degenerate solutions that mix features together. The further the LO
is from the true L0, the more broken the SAE becomes. Interestingly, when LO is too high the SAE
still learns many correct latents, but when L0 is too low, every latent in the SAE is affected.

3.1 MSE loss incentivizes low-L0 SAEs to learn incorrect features

Why do SAEs with too low LO not learn the true features? We take the correct SAE from Figure[Tb]
and set LO=>5, to match the SAE from Figure[Ta] We then generate 100k training samples and calculate
the Mean Square Error (MSE) of both these SAEs. The SAE with incorrect latents from Figure [Ta]
achieves a MSE of 2.73, while the SAE with ground-truth correct latents achieves a much worse MSE
of 4.88. Thus, MSE loss actively incentivizes low LO SAEs to learn incorrect latents. Furthermore,
this shows that using reconstruction error as a target, and thus the sparsity—reconstruction tradeoff
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Figure 2: N decoder projection vs SAE L0 for N=12 (left) and N=20 (right) on our toy model SAEs.
The true LO, 11, is marked by a dotted line on the plots. Both settings of N are minimized at the true
L0, although the slopes of the metric are slightly different depending on N.

[10, {15} [7]] is harmful: when the LO is too low, the incorrect SAE achieves better reconstruction than
the ground-truth correct SAE. We explore this further in Appendix

3.2 Detecting the true L0 using the SAE decoder

Figure[I|reveals that the SAE decoder latents contain mixes of underlying features, both when the
LO is too high and also when it is too low. As the SAE approaches the correct LO, each SAE latent
has fewer components of multiple true features mixed in, becoming more monosemantic. Thus,
we expect that when the SAE has the correct L0, most latents should have near zero projection on
arbitrary training inputs, because they usually do not contain the feature being tracked by that latent.
If we are far from the correct LO, then SAE latents contain components of many underlying features,
and we expect latents to project unexpectedly strongly on arbitrary training inputs.

We now define a metric we call N”* decoder projection score, or s‘}fc, that we can minimize to find
the optimal LO of the SAE. Given SAE inputs x € R?*? where b is the batch size and d is the input
dimension, we first compute the decoder projections for all latents:

Z = (X — bgee) W, € RP*" 3)

where bge. € R? is the decoder bias and W, € R?*" is the decoder weight matrix with h latent
dimensions. To aggregate across the batch, we flatten Z to obtain z € R*" and sort these values in
descending order to get z;. The N™ decoder projection is then defined as:

s =z [n - b “)

where n € {1,2,...,h} indexes the latent by its ranking. The multiplication by b accounts for the
batch dimension, effectively selecting the n' highest projection value when considering all samples
in the batch. For this to work n should be sufficiently larger than a reasonable guess at the correct
L0, as in a perfect SAE, the decoder for these latents should be uncorrelated with input activations.
Empirically, picking n up to about /2 seems to work well.

We calculate 59¢ for n = 18 and n = 22, with SAE L0 ranging from 2 to 25 in Figure We see that
the metric is minimized at the true LO, 11, in both cases, although the slope of the metric changes
depending on n. In both cases, the slope of 9 is flat when L0 is slightly higher than the true LO.

4 LLM experiments

Next, we train a series of BatchTopK SAEs [3] on Gemma-2-2b [[16] layer 12 with different LO
values and calculate sffc for these SAEs. Each SAE is trained on 500M tokens from the Pile [9]]
using SAELens [1]] with a learning rate of 3e~*. During training, we ensure that the decoder remains
normalized with |[Wgec||2 = 1 so s%¢ calculations use the same scale for every latent. We train
an SAE at each LO from 10, 20, 30, ..., 250. After L0=250, due to compute costs, we increase the
spacing of the LO of the SAEs up to L0=2500.

We plot s8¢ vs LO for Gemma-2-2b SAEs in Figurefor N=700 and N=10k (more plots in Appendix
[A.7). We see the same pattern for these SAEs as we saw in our toy model SAEs, namely that the
metric is minimized at roughly the same L0, 200-250, despite the choice of N. As in the toy model
SAEs case, using a higher N value results in a shallower slope leading up the the minimum s%¢ L0.
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Figure 3: N decoder projection vs SAE L0 for N=700 (left) and N=10k (right) on Gemma-2-2b layer
12 SAEs with 32k width. Here as well, we see that s9 is minimized at the same point regardless of
the choice of N, but the slope and shape of the si curve varies depending on the choice of N. These
plots imply that the correct LO for these SAEs is around 200-250, much higher than typically used.
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Figure 4: Sparse probing F1 score vs LO for Gemma-2-2b layer 12 SAEs. Results are shown for k=1
(left) and k=16 (right). Both results are maximized at L0 around 200-250, matching our s3° findings.

We test these SAEs using the sparse probing benchmark from Kantamneni et al. [[11]], consisting of
over 100 sparse probing tasks. We use the normal setting from this benchmark with k=1 and k=16
sparse probes. Results are shown in Figure@ The results closely match what the 9 metric predicts,
showing that LO around 200-250 yields the highest results on the sparse probing benchmark.

5 Related work

Chanin et al. 6] explores feature hedging, showing SAEs mix correlated features into latents if the
SAE is too narrow. We consider our work a version of feature hedging due to low LO. Till [18] shows
SAEs may increase sparsity by inventing features. Chanin et al. S]] discuss the problem of feature
absorption, where SAEs can improve their sparsity score by mixing hierarchical features together.
Engels et al. [8]] investigates SAE errors and finds that SAE error may be pathological and non-linear.

6 Discussion

While most practitioners of SAEs understand that having too high of a L0 is problematic (at some
point the sparse autoencoder is not sparse), our work shows that having too low of L0 is perhaps even
worse. Our work has several important implications for the field. First, the LO used by most SAEs is
lower than it ideally should be, as a cursory search of open source SAEs on Neuronpedia [[13]] shows
L0 less than 100 and even less than 50 is very common even for SAEs trained on large models (see
Appendix [A.5). Our work further shows that the framing of a sparsity—reconstruction tradeoff, as
commonly discussed by most SAE papers [7, [10, [15], is a misleading metric: when LO is too low,
an SAE with a correct dictionary achieves worse reconstruction than an incorrect SAE that mixes
components of correlated features (see Appendix [A.2).

While we expect that the correct LO for a given SAE depends on the dataset used to train the SAE,
we are also excited that our analysis may give us hints as to the true number of firing features in
superposition in any given LLM activation.

The next step in our work is use our s metric to located the correct LO for an SAE during training.

We discuss one such technique in Appendix [A.4] We also hope to estimate how the correct L0 varies
with SAE and model size and layer, and investigate more SAE architectures.
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A Technical Appendices and Supplementary Material

A.1 Toy model details
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Figure 5: (left) random correlation matrix and (right) base feature firing probabilities for toy model.

A.2 Sparsity-reconstruction tradeoff in toy models

It is common in previous SAE work to discuss a sparsity—reconstruction tradeoff[7, [10} [T5], where
the assumption is that having better reconstruction at a given sparsity is inherently better, and is a sign
the SAE is correct. As we discussed in Section[3.1] when the LO of the SAE is lower than optimal,
the SAE can find ways to “cheat” and get a better MSE score by mixing components of correlated
features together. This results in an SAE where the latents are no longer monosemantic, and do not
track ground-truth features.

Sparsity vs reconstruction tradeoff

-
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ee]
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learned SAE
ground-truth SAE
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Figure 6: Sparsity (x) vs reconstruction (y) for learned SAEs and a ground-truth correct SAE at a
given LO in our toy model. When L0 is lower than the true LO of the toy model, the learned SAE
gets a higher reconstruction score than the ground-truth correct SAE, highlighting the problems with
optimizing for reconstruction as a proxy for the quality of the SAE.

We explore the sparsity—reconstruction tradeoff in SAEs trained on our toy model at various LOs.
Since we have the ground-truth correct features in our toy model, we also construct a ground-truth
SAE that perfectly represents these true features. We manually set the LO of the ground truth SAE
while leaving the encoder and decoder fixed at the correct features. We plot the variance explained vs
L0 in Figure 6] for the learned and ground-truth SAEs. We see that when the LO of SAE is lower than
the true LO of the toy model, the ground-truth correct SAE actually scores worse on reconstruction
than the incorrect learned SAE! This highlights the problems with optimizing reconstruction as a
proxy for SAE quality.

We show the cosine similarity of the SAE decoder latents with the ground truth features for the
SAEs learned with LO=1 and LO=2 compared with the ground-truth SAE in Figure Both these
SAEs outperform the ground-truth SAE on variance explained by over 2x despite learning horribly
polysemantic latents bearing little resemblance to the underlying true features of the model.
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Figure 7: SAE decoder cosine similarity with true features for the learned SAEs with LO=1 and
L0=2, compared with the ground-truth correct SAE. The learned SAEs score more than twice as a
high as the ground truth SAE on variance explained when LO=1 and L0O=2, despite having extremely
corrupted, polysemantic latents.

A.3 Transitioning L0 during training

We explore the effect of transitioning the LO of the SAE during training using the toy model from
Section[3] This toy model has a true LO of 11. We train BatchTopK SAEs with a final LO of 11, but
starting with LO either too high or too low, and linearly transitioning to the correct LO over the first
25k steps of training, leaving the SAE at the correct LO for the final 5k steps of training. We use a
starting LO of 20 for the case where we start too high, and use a starting LO of 2 for the case where
we start too low. Results are shown in Figure[§]
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Figure 8: Transitioning LO from too low (left) and too high (right) to the correct LO during training.
When the starting LO is too high, the SAE still learns the correct features at the end of training.
However, when L0 is too low, the SAE cannot recover fully and still learns many incorrect features at
the end of training.

We see that decreasing the LO of the SAE from a too high value to the correct value still results in the
SAE learning correct features. However, when the SAE starts from a too low L0, the SAE cannot
fully recover when the LO is adjusted to the correct value later. It seems that the latents the SAE
learns when L0 is too low is a local minimum that is difficult from the SAE to escape from even when
the LO is later corrected. This is likely because the latents learned when L0 is too low are optimized
by gradient descent to achieve a higher MSE loss than is achievable by the correct latents under the
same LO constraint. However, when L0 is too high, there is no equivalent optimization pressure, and
is thus less likely to be a local minimum.

A.4 Automatically finding the correct L0 during training

A natural next step of our finding that the correct LO occurs when Nth decoder projection, s9, metric
is minimized is to use this to find the correct LO automatically during training. This is a meta-learning



253
254

255
256
257

259
260
261

262
263
264
265

266
267
268

270
271
272
273
274

275
276
277
278
279
280

281
282

283
284
285
286
287

288

289

291
292
293

294

296
297

task, as the LO is a hyperparameter of the training process. We find there are several challenges to
directly using 54 as an optimization target:

* Small gradients directly above correct L0 In our plots of si from both toy models and
Gemma-2-2b, we find that the metric is relatively flat in a region start at the correct LO and
extending to higher LO values. We thus need a way to traverse this flat region and stop once

the metric starts to increase again.

» The impact of changing L0 is delayed We find that it takes many steps after changing LO
for s%¢ to also change, meaning it is easy to overshoot the target LO or oscillate back and
forth.

¢ Dropping L0 too low can harm the SAE As we saw in Appendix if the LO is too low
the SAE can permanently end up in poor local minima. We thus want to avoid dropping
below the correct L0, even temporarily, to avoid permanently breaking the SAE. We therefore
need to start with LO too high and slowly decrease it until we find the correct LO.

* Noise during training We find that while s shows clear trends after training for many

steps, it can be noisy on each training sample. So our optimization needs to be robust to this
noise.

Taking these requirements into account, we present an optimization procedure to find the LO that
minimizes si°° automatically during training. We first estimate the gradient of s4°, hereafter referred
to as to as the metric, m, with respect to LO, dm/qro. We first define an evaluation step ¢ as a set
number of training steps (we evaluate every 100 training steps). At ¢ we change LO by dr,,. At the
next evaluation step, ¢ + 1, we evaluate m. We use a sliding average of si over the past 10 training
steps to calculate m to help account for noise. We the estimate 4m/dro as:

dﬂ My — My
dLO — dro

Next, we add a small negative bias to this gradient estimate to encourage our estimate to push LO
lower even if the loss landscape is relatively flat. We use a bias magnitude 0 < b < 1 that is multiplied
by the magnitude of our gradient estimate, so that our biased estimate can never change the sign of
the gradient estimate, but can gently nudge it to be more negative in flat, noisy regions of the loss
landscape. We find b = 0.1 works well. Thus, our biased gradient estimate 4ms/dro is calculated as
below:

dmy, _ dm | dm
dLO ~ dLO dL0

We then provide this gradient to the Adam optimizer [12] with default settings, and allow it to change
the LO parameter.

We add the following optional modifications to this algorithm. First, we clip the gradient estimates
dm/qr0 to be between -1 and 1. We also set a minimum and maximum ¢,,. The minimum is added
to avoid the denominator of our gradient estimate being near 0, and the maximum is chosen to keep
the LO from changing too quickly. In practice, we find a minimum Jz,, between 0 and 1 seems to
work well, and a maximum Jr,, between 1 and 5 seems to work well.

We find that this optimization strategy works very well in toy models, but requires a lot of hyper-
parameter tuning to work in real LLMs. The starting L0, n for 54, b, learning rate for the Adam
optimizer, and min and max dr,, values all have a big impact on how fast and how aggressively the
optimization works. The slop of m around the correct LO is shallow, so it is easy to overshoot. We
also find that different values of n take more or less time to converge during training. We expect it is

possible to further simplify and improve this process in future work.

A.5 LO of open-source SAEs on Neuronpedia

We analyze common open-source SAEs as provided by Neuronpedia [[13]] and SAELens [1]. We
include all SAEs cross-listed in both SAELens and Neuronpedia with an LO reported in SAELens.
We show the results as a histogram in Figure[9} Our analysis shows that for layer 12 of Gemma-2-2b,
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Figure 9: LO of SAEs on Neuronpedia with known LO listed in SAELens.

the correct LO should be around 200-250. However, we find that most open-source SAEs have LO
below 100, much lower than our analysis expects to be ideal.

A.6 Limitations

We limit our investigated to Gemma-2-2b layer 12 due to the cost associated with training so many
SAEs at different LOs. We investigate only BatchTopK SAEs, due to these SAEs allowing direct
control over the LO of the SAE without being moderated through a sparsity coefficient as in L1 SAEs
[7,2]] or JumpReLU SAEs [13]], but do not expect our findings to be meaningfully different for these
other architectures.
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A.7 Extended Gemma-2-2b Nth decoder projection plots
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Figure 10: Extended Nth decoder projection plots. Gemma-2-2b, layer 12, 32k latents. Regardless of
the choice of N, all plots are minimized around the same LO range, 200-250.
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