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Abstract

Sparse Autoencoders (SAEs) extract features from LLM internal activations, meant1

to correspond to single concepts. A core SAE training hyperparameter is L0:2

how many features should fire per token on average. Existing work compares3

SAE algorithms using sparsity–reconstruction tradeoff plots, implying L0 is a free4

parameter with no single correct value. In this work we study the effect of L0 on5

BatchTopK SAEs, and show that if L0 is not set precisely, the SAE fails to learn6

the underlying features of the LLM. If L0 is too low, the SAE will mix correlated7

features to improve reconstruction. If L0 is too high, the SAE finds degenerate8

solutions that also mix features. Further, we demonstrate a method to determine the9

correct L0 value for an SAE on a given training distribution, which finds the true10

L0 in toy models and coincides with peak sparse probing performance in LLMs.11

We find that most commonly used SAEs have an L0 that is too low. Our work12

shows that, to train SAEs with correct features, practitioners must set L0 correctly.13

1 Introduction14

Sparse autoencoders (SAEs) decompose the dense, polysemantic activations of LLMs into inter-15

pretable latent features [7, 2] using sparse dictionary learning [14]. SAEs have the advantage of16

being unsupervised, and can be scaled to millions of neurons in its hidden layer (hereafter called17

“latents”) [17, 10]. When training an SAE, practitioners must decide on the L0 of the SAE: that is,18

the sparsity; how many latents activate on average for a given input.1 L0 is typically considered a19

neutral design choice: most of the literature evaluates SAEs at a range of L0 values, referring to this20

as a “sparsity–reconstruction tradeoff” [10, 15], implying any L0 is equally valid.21

However, recent work shows the same trend: too low an L0 leads to worse SAE performance on22

downstream tasks [11, 4]. In this work, we explore the effect of L0 on SAEs. Starting by exploring a23

toy model with correlated features, we demonstrate that if the L0 is too low, the SAE can “cheat” by24

mixing together components of correlated features, achieving better reconstruction compared to an25

SAE with correct, disentangled features. We consider this to be a manifestation of feature hedging26

[6], where the SAE abuses feature correlations to compensate for insufficient resources to correctly27

model the underlying features. Furthermore, we show that if the L0 is too high, the SAE can learn28

degenerate mixtures of features. We show that it is possible to determine the correct L0 of an SAE by29

observing projection magnitude between the SAE decoder and training activations.30

We validate these findings on Gemma-2-2b [16], demonstrating that the same decoder patterns we31

observe in our toy model experiments also manifest in LLM SAEs. We further validate that the32

optimal L0 we find with our method in Gemma-2-2b matches with peak performance on sparse33

1TopK and BatchTopK SAEs [10, 3] set the L0 (K) directly, whereas L1 and JumpReLU [7, 2, 15] adjust it
via a coefficient in the loss. In any case, all SAE trainers must decide on the target L0.
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(a) SAE L0 = 5
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(b) SAE L0 = 11
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(c) SAE L0 = 18

Figure 1: SAE decoder cosine similarity with true features. True features L0 = 11.

probing tasks [11]. Our findings show that L0 must be set correctly for SAEs to learn correct features,34

and implies that most SAEs used by researchers today have too low an L0.35

2 Background36

Sparse autoencoders (SAEs). An SAE decomposes an input activation x ∈ Rd into a hidden state37

a consisting of h hidden neurons, called “latents”. An SAE is composed of an encoder Wenc ∈ Rh×d,38

a decoder Wdec ∈ Rd×h, a decoder bias bdec ∈ Rd, and encoder bias benc ∈ Rh, and a nonlinearity39

σ, typically ReLU or a variant like JumpReLU [15], TopK [10] or BatchTopK [3].40

a =σ(Wenc(x− bdec) + benc) (1)
x̂ =Wdeca+ bdec (2)

3 Toy model experiments41

We set up a toy model with 50 mutually orthogonal true features F = {f0, . . . , f49} ∈ R100. Each42

feature fi has firing probability Pi. We set P (f0) = 0.345, and we linearly decrease Pi to P49 = 0.05,43

so feature firing probability decreases with feature number. We randomly generate a correlation44

matrix, so the firings of each feature are correlated with other features. Features fire with magnitude45

∼ N (1.0, 0.15). We sampling true feature firings, and summing all firing features to create a training46

input for the SAE. The goal of the SAE, then, is to learn these true features despite only being trained47

on their summed activations. Since we have ground-truth knowledge, we know the true number of48

features firing on average. We call this the true L0, which is 11 for this toy model.49

Throughout this work, we use BatchTopK SAEs [3], as this architecture allows directly controlling50

L0 rather than controlling it indirectly via a L1 coefficient [7, 2] or L0 coefficient [15] in the loss. For51

these toy model experiments, we train SAEs on 15M synthetic samples using SAELens [1].52

We train SAEs with L0 that is too low (L0=5), exactly correct (L0=11), and too high (L0=18). Results53

are shown in Figure 1. When the SAE L0 matches the true L0 (Figure 1b), the SAE exactly learns the54

true features. When the SAE L0 is too low (Figure 1a), the SAE mixes components of correlated55

features together, especially breaking latents tracking high-frequency features. When SAE L0 is too56

high (Figure 1c), the SAE learns degenerate solutions that mix features together. The further the L057

is from the true L0, the more broken the SAE becomes. Interestingly, when L0 is too high the SAE58

still learns many correct latents, but when L0 is too low, every latent in the SAE is affected.59

3.1 MSE loss incentivizes low-L0 SAEs to learn incorrect features60

Why do SAEs with too low L0 not learn the true features? We take the correct SAE from Figure 1b61

and set L0=5, to match the SAE from Figure 1a. We then generate 100k training samples and calculate62

the Mean Square Error (MSE) of both these SAEs. The SAE with incorrect latents from Figure 1a63

achieves a MSE of 2.73, while the SAE with ground-truth correct latents achieves a much worse MSE64

of 4.88. Thus, MSE loss actively incentivizes low L0 SAEs to learn incorrect latents. Furthermore,65

this shows that using reconstruction error as a target, and thus the sparsity–reconstruction tradeoff66
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Figure 2: Nth decoder projection vs SAE L0 for N=12 (left) and N=20 (right) on our toy model SAEs.
The true L0, 11, is marked by a dotted line on the plots. Both settings of N are minimized at the true
L0, although the slopes of the metric are slightly different depending on N.

[10, 15, 7] is harmful: when the L0 is too low, the incorrect SAE achieves better reconstruction than67

the ground-truth correct SAE. We explore this further in Appendix A.2.68

3.2 Detecting the true L0 using the SAE decoder69

Figure 1 reveals that the SAE decoder latents contain mixes of underlying features, both when the70

L0 is too high and also when it is too low. As the SAE approaches the correct L0, each SAE latent71

has fewer components of multiple true features mixed in, becoming more monosemantic. Thus,72

we expect that when the SAE has the correct L0, most latents should have near zero projection on73

arbitrary training inputs, because they usually do not contain the feature being tracked by that latent.74

If we are far from the correct L0, then SAE latents contain components of many underlying features,75

and we expect latents to project unexpectedly strongly on arbitrary training inputs.76

We now define a metric we call Nth decoder projection score, or sdec
n , that we can minimize to find77

the optimal L0 of the SAE. Given SAE inputs x ∈ Rb×d where b is the batch size and d is the input78

dimension, we first compute the decoder projections for all latents:79

Z = (x− bdec)W
⊤
dec ∈ Rb×h (3)

where bdec ∈ Rd is the decoder bias and Wdec ∈ Rd×h is the decoder weight matrix with h latent80

dimensions. To aggregate across the batch, we flatten Z to obtain z ∈ Rbh and sort these values in81

descending order to get z↓. The Nth decoder projection is then defined as:82

sdec
n = z↓[n · b] (4)

where n ∈ {1, 2, . . . , h} indexes the latent by its ranking. The multiplication by b accounts for the83

batch dimension, effectively selecting the nth highest projection value when considering all samples84

in the batch. For this to work n should be sufficiently larger than a reasonable guess at the correct85

L0, as in a perfect SAE, the decoder for these latents should be uncorrelated with input activations.86

Empirically, picking n up to about h/2 seems to work well.87

We calculate sdec
n for n = 18 and n = 22, with SAE L0 ranging from 2 to 25 in Figure 2. We see that88

the metric is minimized at the true L0, 11, in both cases, although the slope of the metric changes89

depending on n. In both cases, the slope of sdec
n is flat when L0 is slightly higher than the true L0.90

4 LLM experiments91

Next, we train a series of BatchTopK SAEs [3] on Gemma-2-2b [16] layer 12 with different L092

values and calculate sdec
n for these SAEs. Each SAE is trained on 500M tokens from the Pile [9]93

using SAELens [1] with a learning rate of 3e−4. During training, we ensure that the decoder remains94

normalized with ||Wdec||2 = 1 so sdec
n calculations use the same scale for every latent. We train95

an SAE at each L0 from 10, 20, 30, . . . , 250. After L0=250, due to compute costs, we increase the96

spacing of the L0 of the SAEs up to L0=2500.97

We plot sdec
n vs L0 for Gemma-2-2b SAEs in Figure 3 for N=700 and N=10k (more plots in Appendix98

A.7). We see the same pattern for these SAEs as we saw in our toy model SAEs, namely that the99

metric is minimized at roughly the same L0, 200-250, despite the choice of N. As in the toy model100

SAEs case, using a higher N value results in a shallower slope leading up the the minimum sdec
n L0.101
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Figure 3: Nth decoder projection vs SAE L0 for N=700 (left) and N=10k (right) on Gemma-2-2b layer
12 SAEs with 32k width. Here as well, we see that sdec

n is minimized at the same point regardless of
the choice of N, but the slope and shape of the sdec

n curve varies depending on the choice of N. These
plots imply that the correct L0 for these SAEs is around 200-250, much higher than typically used.
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Figure 4: Sparse probing F1 score vs L0 for Gemma-2-2b layer 12 SAEs. Results are shown for k=1
(left) and k=16 (right). Both results are maximized at L0 around 200-250, matching our sdec

n findings.

We test these SAEs using the sparse probing benchmark from Kantamneni et al. [11], consisting of102

over 100 sparse probing tasks. We use the normal setting from this benchmark with k=1 and k=16103

sparse probes. Results are shown in Figure 4. The results closely match what the sdec
n metric predicts,104

showing that L0 around 200-250 yields the highest results on the sparse probing benchmark.105

5 Related work106

Chanin et al. [6] explores feature hedging, showing SAEs mix correlated features into latents if the107

SAE is too narrow. We consider our work a version of feature hedging due to low L0. Till [18] shows108

SAEs may increase sparsity by inventing features. Chanin et al. [5] discuss the problem of feature109

absorption, where SAEs can improve their sparsity score by mixing hierarchical features together.110

Engels et al. [8] investigates SAE errors and finds that SAE error may be pathological and non-linear.111

6 Discussion112

While most practitioners of SAEs understand that having too high of a L0 is problematic (at some113

point the sparse autoencoder is not sparse), our work shows that having too low of L0 is perhaps even114

worse. Our work has several important implications for the field. First, the L0 used by most SAEs is115

lower than it ideally should be, as a cursory search of open source SAEs on Neuronpedia [13] shows116

L0 less than 100 and even less than 50 is very common even for SAEs trained on large models (see117

Appendix A.5). Our work further shows that the framing of a sparsity–reconstruction tradeoff, as118

commonly discussed by most SAE papers [7, 10, 15], is a misleading metric: when L0 is too low,119

an SAE with a correct dictionary achieves worse reconstruction than an incorrect SAE that mixes120

components of correlated features (see Appendix A.2).121

While we expect that the correct L0 for a given SAE depends on the dataset used to train the SAE,122

we are also excited that our analysis may give us hints as to the true number of firing features in123

superposition in any given LLM activation.124

The next step in our work is use our sdec
n metric to located the correct L0 for an SAE during training.125

We discuss one such technique in Appendix A.4. We also hope to estimate how the correct L0 varies126

with SAE and model size and layer, and investigate more SAE architectures.127
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A Technical Appendices and Supplementary Material214

A.1 Toy model details215
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Figure 5: (left) random correlation matrix and (right) base feature firing probabilities for toy model.

A.2 Sparsity–reconstruction tradeoff in toy models216

It is common in previous SAE work to discuss a sparsity–reconstruction tradeoff[7, 10, 15], where217

the assumption is that having better reconstruction at a given sparsity is inherently better, and is a sign218

the SAE is correct. As we discussed in Section 3.1, when the L0 of the SAE is lower than optimal,219

the SAE can find ways to “cheat” and get a better MSE score by mixing components of correlated220

features together. This results in an SAE where the latents are no longer monosemantic, and do not221

track ground-truth features.222
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Figure 6: Sparsity (x) vs reconstruction (y) for learned SAEs and a ground-truth correct SAE at a
given L0 in our toy model. When L0 is lower than the true L0 of the toy model, the learned SAE
gets a higher reconstruction score than the ground-truth correct SAE, highlighting the problems with
optimizing for reconstruction as a proxy for the quality of the SAE.

We explore the sparsity–reconstruction tradeoff in SAEs trained on our toy model at various L0s.223

Since we have the ground-truth correct features in our toy model, we also construct a ground-truth224

SAE that perfectly represents these true features. We manually set the L0 of the ground truth SAE225

while leaving the encoder and decoder fixed at the correct features. We plot the variance explained vs226

L0 in Figure 6 for the learned and ground-truth SAEs. We see that when the L0 of SAE is lower than227

the true L0 of the toy model, the ground-truth correct SAE actually scores worse on reconstruction228

than the incorrect learned SAE! This highlights the problems with optimizing reconstruction as a229

proxy for SAE quality.230

We show the cosine similarity of the SAE decoder latents with the ground truth features for the231

SAEs learned with L0=1 and L0=2 compared with the ground-truth SAE in Figure 7c. Both these232

SAEs outperform the ground-truth SAE on variance explained by over 2x despite learning horribly233

polysemantic latents bearing little resemblance to the underlying true features of the model.234
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(b) Learned SAE L0 = 2
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Figure 7: SAE decoder cosine similarity with true features for the learned SAEs with L0=1 and
L0=2, compared with the ground-truth correct SAE. The learned SAEs score more than twice as a
high as the ground truth SAE on variance explained when L0=1 and L0=2, despite having extremely
corrupted, polysemantic latents.

A.3 Transitioning L0 during training235

We explore the effect of transitioning the L0 of the SAE during training using the toy model from236

Section 3. This toy model has a true L0 of 11. We train BatchTopK SAEs with a final L0 of 11, but237

starting with L0 either too high or too low, and linearly transitioning to the correct L0 over the first238

25k steps of training, leaving the SAE at the correct L0 for the final 5k steps of training. We use a239

starting L0 of 20 for the case where we start too high, and use a starting L0 of 2 for the case where240

we start too low. Results are shown in Figure 8.241
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Figure 8: Transitioning L0 from too low (left) and too high (right) to the correct L0 during training.
When the starting L0 is too high, the SAE still learns the correct features at the end of training.
However, when L0 is too low, the SAE cannot recover fully and still learns many incorrect features at
the end of training.

We see that decreasing the L0 of the SAE from a too high value to the correct value still results in the242

SAE learning correct features. However, when the SAE starts from a too low L0, the SAE cannot243

fully recover when the L0 is adjusted to the correct value later. It seems that the latents the SAE244

learns when L0 is too low is a local minimum that is difficult from the SAE to escape from even when245

the L0 is later corrected. This is likely because the latents learned when L0 is too low are optimized246

by gradient descent to achieve a higher MSE loss than is achievable by the correct latents under the247

same L0 constraint. However, when L0 is too high, there is no equivalent optimization pressure, and248

is thus less likely to be a local minimum.249

A.4 Automatically finding the correct L0 during training250

A natural next step of our finding that the correct L0 occurs when Nth decoder projection, sdec
n , metric251

is minimized is to use this to find the correct L0 automatically during training. This is a meta-learning252
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task, as the L0 is a hyperparameter of the training process. We find there are several challenges to253

directly using sdec
n as an optimization target:254

• Small gradients directly above correct L0 In our plots of sdec
n from both toy models and255

Gemma-2-2b, we find that the metric is relatively flat in a region start at the correct L0 and256

extending to higher L0 values. We thus need a way to traverse this flat region and stop once257

the metric starts to increase again.258

• The impact of changing L0 is delayed We find that it takes many steps after changing L0259

for sdec
n to also change, meaning it is easy to overshoot the target L0 or oscillate back and260

forth.261

• Dropping L0 too low can harm the SAE As we saw in Appendix A.3, if the L0 is too low262

the SAE can permanently end up in poor local minima. We thus want to avoid dropping263

below the correct L0, even temporarily, to avoid permanently breaking the SAE. We therefore264

need to start with L0 too high and slowly decrease it until we find the correct L0.265

• Noise during training We find that while sdec
n shows clear trends after training for many266

steps, it can be noisy on each training sample. So our optimization needs to be robust to this267

noise.268

Taking these requirements into account, we present an optimization procedure to find the L0 that269

minimizes sdec
n automatically during training. We first estimate the gradient of sdec

n , hereafter referred270

to as to as the metric, m, with respect to L0, dm/dL0. We first define an evaluation step t as a set271

number of training steps (we evaluate every 100 training steps). At t we change L0 by δL0
. At the272

next evaluation step, t+ 1, we evaluate m. We use a sliding average of sdec
n over the past 10 training273

steps to calculate m to help account for noise. We the estimate dm/dL0 as:274

dm

dL0
=

mt+1 −mt

δL0

Next, we add a small negative bias to this gradient estimate to encourage our estimate to push L0275

lower even if the loss landscape is relatively flat. We use a bias magnitude 0 < b < 1 that is multiplied276

by the magnitude of our gradient estimate, so that our biased estimate can never change the sign of277

the gradient estimate, but can gently nudge it to be more negative in flat, noisy regions of the loss278

landscape. We find b = 0.1 works well. Thus, our biased gradient estimate dmb/dL0 is calculated as279

below:280

dmb

dL0
=

dm

dL0
− b

∣∣∣∣ dmdL0
∣∣∣∣

We then provide this gradient to the Adam optimizer [12] with default settings, and allow it to change281

the L0 parameter.282

We add the following optional modifications to this algorithm. First, we clip the gradient estimates283
dm/dL0 to be between -1 and 1. We also set a minimum and maximum δL0

. The minimum is added284

to avoid the denominator of our gradient estimate being near 0, and the maximum is chosen to keep285

the L0 from changing too quickly. In practice, we find a minimum δL0 between 0 and 1 seems to286

work well, and a maximum δL0 between 1 and 5 seems to work well.287

We find that this optimization strategy works very well in toy models, but requires a lot of hyper-288

parameter tuning to work in real LLMs. The starting L0, n for sdec
n , b, learning rate for the Adam289

optimizer, and min and max δL0
values all have a big impact on how fast and how aggressively the290

optimization works. The slop of m around the correct L0 is shallow, so it is easy to overshoot. We291

also find that different values of n take more or less time to converge during training. We expect it is292

possible to further simplify and improve this process in future work.293

A.5 L0 of open-source SAEs on Neuronpedia294

We analyze common open-source SAEs as provided by Neuronpedia [13] and SAELens [1]. We295

include all SAEs cross-listed in both SAELens and Neuronpedia with an L0 reported in SAELens.296

We show the results as a histogram in Figure 9. Our analysis shows that for layer 12 of Gemma-2-2b,297
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Figure 9: L0 of SAEs on Neuronpedia with known L0 listed in SAELens.

the correct L0 should be around 200-250. However, we find that most open-source SAEs have L0298

below 100, much lower than our analysis expects to be ideal.299

A.6 Limitations300

We limit our investigated to Gemma-2-2b layer 12 due to the cost associated with training so many301

SAEs at different L0s. We investigate only BatchTopK SAEs, due to these SAEs allowing direct302

control over the L0 of the SAE without being moderated through a sparsity coefficient as in L1 SAEs303

[7, 2] or JumpReLU SAEs [15], but do not expect our findings to be meaningfully different for these304

other architectures.305
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A.7 Extended Gemma-2-2b Nth decoder projection plots306
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Figure 10: Extended Nth decoder projection plots. Gemma-2-2b, layer 12, 32k latents. Regardless of
the choice of N, all plots are minimized around the same L0 range, 200-250.
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