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Abstract

Despite significant progress in enhancing adversarial robustness, achieving a satisfactory
level remains elusive, with a notable gap persisting between natural and adversarial ac-
curacy. Recent studies have focused on mitigating inherent vulnerabilities in deep neural
networks (DNNs) by augmenting existing methodologies with additional data or reweighting
strategies. However, most reweighting strategies often perform poorly against stronger at-
tacks, and generating additional data often entails increased computational demands. Our
work proposes an enhancement strategy that complements the cross-entropy loss with a
margin-based loss for generating adversarial samples used in training and in the training
loss function of promising methodologies. We suggest regularizing the training process by
minimizing the discrepancy between the Exponential Moving Average (EMA) of adversar-
ial and natural logits. Additionally, we introduce a novel training objective called Logits
Moving Average Adversarial Training (LMA-AT). Our experimental results demonstrate the
efficacy of our proposed method, which achieves a more favorable balance between natural
and adversarial accuracy, thereby reducing the disparity between the two.

1 Introduction

Our reliance on technology continues to grow, as evidenced by the undeniable progress in three essential
computer vision tasks: object detection, face recognition, and image segmentation. Despite these advance-
ments, deep neural networks (DNNs) (He et al., 2016b; Huang et al., 2017; Zagoruyko & Komodakis, 2016b;
Szegedy et al., 2016) remain vulnerable to adversarial examples (Goodfellow et al., 2014; Szegedy et al.,
2013; Yin et al., 2022; Mu et al., 2023). These adversarial examples are carefully crafted versions of the
original input that appear visually identical to natural examples but can drastically mislead the model with
high confidence (Athalye et al., 2018; Qin et al., 2019). Ensuring the robustness and adaptability of deployed
models to diverse input perturbations is therefore crucial. In response to the vulnerability of DNNs, two
primary approaches have emerged: adversarial detection and adversarial defense. Adversarial detection aims
to identify malicious samples before they are fed to the model (Li & Li, 2017; Feinman et al., 2017; Xu
et al., 2018). Adversarial defense, on the other hand, can be classified into two subgroups: certified and
empirical defenses. Certified defenses (Cohen et al., 2019; Zhang et al., 2020a; Kumar & Narayan, 2022)
aim to provide a provable guarantee of adversarial robustness to norm-bounded attacks. Empirical defenses
have shown significant progress, particularly adversarial training (AT) (Goodfellow et al., 2015). Various
variants have been proposed, including those by (Madry et al., 2018; Zhang et al., 2019; Wang et al., 2020;
Ding et al., 2020; Wang et al., 2020; Fakorede et al., 2023a; Xie et al., 2020; Atsague et al., 2021; 2023), and
(Li et al., 2021). More details on existing works in section 2.2. Formally, (Madry et al., 2018) formulated
the adversarial training procedure as a min-max optimization problem, aiming to find the optimal network
parameters θ that minimize the following risk:

min
θ

1
n

n∑
i=1

l(fθ(x′
i), yi), (1)
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where l(.) is a loss function, fθ(xi) is the prediction of the neural network with parameters θ given an input
xi, and yi is the class label. In (1), the standard adversarial training (AT)(Madry et al., 2018) generates
the adversarial example x′

i using x′
i = arg maxx′∈Bϵ[xi] g′

i(fθ(x′), yi), which are then used to train the model.
g′

i(.) is the loss used to generate adversary examples , and Bϵ[x] = {x′| ∥x′ − x∥p < ϵ} is a neighborhood of
x. While the cross-entropy loss is widely used for generating adversarial examples, alternative methods exist.
For example, in the loss function g′

i(.), TRADES (Zhang et al., 2019) adopts the Kullback-Leibler Divergence.
On the other hand, FAT (Zhang et al., 2020b) considers the cross-entropy but employs a misclassification-
aware criterion, hence generating adversarial using x′

i = arg maxx′∈Bϵ[xi] g′
i(fθ(x′), yi) s.t. g′

i(fθ(x′), yi) −
miny∈Y g′

i(fθ(x′), y) ≥ ρ where ρ > 0 is a margin such that adversarial data are misclassified with a certain
amount of confidence. The objective in generating adversarial examples is to find the worst-case input, also
known as the optimal adversarial example x′ ∈ Bϵ[xi]. Searching for the optimal adversarial used for training
can be done in multiple ways; our work adopts the projected gradient descent (PGD) (Madry et al., 2018).
Assuming a starting point x(0) referring to natural data perturbed by a small Gaussian or Uniformly random
noise, i.e., x(0) = xi + Gaussian/Uniform and is in the input feature space with distance metric ||x−x′||∞.
Let t ∈ N. PGD generates adversarial examples using the following update rule:

x(t+1) =
∏

B[xi]

(x(t) + α · sign(∇x(t)g′
i(fθ(x(t)), yi))) (2)

In (2), α is a step size,
∏

B[xi](.) is the projection function, x(t) is the adversarial example at step t, and
g′

i(.) is the loss used to generate the adversarial used for training. In this work, g′
i(.) = CE(.) + L(.) where

L(.) is a margin-based loss (more details in Section 4.2). Certain studies focus on refining loss functions
and regularization techniques within the spectrum of adversarial training. Some of these methods aim
to reduce the disparity between the output probabilities of adversarial examples and their corresponding
natural counterparts. However, this strategy can hinder the learning process, especially if a natural example
is misclassified (Dong et al., 2023). Despite the promising results of adversarial training and its variations,
a significant gap remains between the natural and adversarial accuracy. Recent approaches have focused
on refining existing methodologies to further enhance model performance. These improvements include
perturbing network weights (Wu et al., 2020), weighting losses during training (Zhang et al., 2020c), and
augmenting datasets with unlabeled and/or additional labeled data (Carmon et al., 2019; Zhai et al., 2019;
Alayrac et al., 2019), among other strategies. Other approaches (Izmailov et al., 2018) explore model weight-
averaging. In this approach, the weights are computed using the exponential moving average of the model
parameters (θ′ ← τ ∗θ′+(1−τ)∗θ), where the parameter θ′ replaces the model parameter θ during evaluation
time. (Gowal et al., 2020) discovered that model weight averaging can significantly enhance robustness across
different models and datasets. Inspired by their observation, we hypothesize that averaging the logits could
enhance adversarial robustness. Hence, a regularization technique was introduced aimed at minimizing the
disparity between natural and adversarial examples through the averaging of logits (more details in section
4.3). Extensive experiments demonstrate that we can build a more robust model by minimizing the disparity
between the moving average of natural and adversarial logits. Many classification tasks widely adopt the
Softmax function, which has also been used intensively in the adversarial machine-learning context, mainly
due to its simplicity and probabilistic interpretation. Together with the cross-entropy loss, they form arguably
one of the most commonly used components in CNN architectures (Liu et al., 2016).

We explored the adversarial class predictions using a ResNet-18 model trained on CIFAR-10. For this
investigation, the adversarial examples were generated using the PGD-20 method, and the cross-entropy
loss was employed for both training and adversarial data generation. For each input pair (xi, x′

i) where xi

and x′
i are the natural and adversarial examples, respectively, we assume the second through tenth positions

represent, in order, the most probable incorrect classes when xi is classified by a model trained under regular
training. If x′

i is wrongly classified, we track the class to which it is wrongly classified; it could be wrong
classified to the 2nd, 3rd, ..., or the 10th most probable false class when xi is classified under normal training.
We consider both PGD-20 and CW attacks to fool the model and record our findings in Fig 1, which indicates
that when wrongly classified, most adversarial examples are wrongly classified into the 2nd, the 3rd, then
the 4th, and 5th most probable false classes. A similar observation was made in (Li et al., 2021). Based on
this observation, (Li et al., 2021) introduced a novel training objective called Probabilistically Compact (PC)
loss with logit constraints to enhance adversarial robustness. However, a drawback of this approach is that
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Figure 1: 2nd, 3rd, 4th,. . . .correspond to the order of the most probable false classes under normal training
(with natural input). The plot indicates the frequency of adversarial data points incorrectly classified in
each class by the model trained on adversarial with the CE loss.

it entirely replaces the cross-entropy (CE) loss with the margin-based loss. It is not designed to compete
with adversarial training methods but rather to be combined with them to improve robustness further.
Consequently, this method requires further exploration to achieve true adversarial robustness compared to
other promising adversarial training approaches. While the CE loss primarily focuses on the probability that
the input is assigned to its ground-truth class without placing constraints on other class probabilities, we
hypothesize that both maximizing the probability gaps between the actual class and the most probable false
classes and ensuring that the input is correctly classified are crucial for improving model robustness against
adversarial inputs. The phenomena in Fig 1 is expected. We postulate that the most probable misclassified
classes are those that share the most features with the input. For instance, a model trained to recognize
a jaguar might mistakenly classify it as a cheetah or leopard during an attack, as these species have many
overlapping characteristics. This issue arises from the close proximity of predicted class probabilities. By
incorporating a margin-based loss into our improvement strategy, we widen the separation between classes
in the feature space, making it more difficult for adversarial attacks with small perturbations to mislead
the model. Therefore, we need to maximize the probability gaps between the true and most probable false
classes and increase the likelihood that the perturbed/natural input is classified correctly. In summary, we
aim to satisfy the following conditions.

1. Maximize the adversarial probability gaps between the true and most probable false classes.

2. Increase the probability that the perturbed/natural input is assigned to its ground-truth class.

To satisfy the aforementioned criteria, we augmented the cross-entropy loss with a margin-based loss. Our
experiments suggest that integrating these criteria into the generation of adversarial examples during train-
ing enhances the model’s resilience against adversarial attacks. Consequently, we combined the cross-entropy
loss with the margin-based loss for generating adversarial examples used in training. Furthermore, includ-
ing the moving average of logits in the regularization process further enhances model performance. Our
experiments illustrate that these techniques improve the model’s ability to generalize on clean data while
maintaining robustness against adversarial examples, notably narrowing the accuracy gap between natural
and adversarial samples. Empirically, we demonstrate that this strategy effectively defends against common
attacks and achieves a more favorable balance between natural accuracy and adversarial robustness. Our
main contributions are summarized as follows:

∗ Unlike previous methods (Kannan et al., 2018; Atsague et al., 2021; 2023) that regulated train-
ing by focusing on natural and adversarial logits, we are pioneering a new approach. In our
method, we leverage both the current logits and those from the previous iteration through a
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moving average calculation. This approach allows us to capture valuable comparative insights
from the early stages of training. Furthermore, we provide a theoretical justification in Ap-
pendix A.1, demonstrating how applying the moving average of logits effectively incorporates
information from earlier stages.

∗ We augmented the cross-entropy loss with a margin-based loss, applying this approach both in
generating the adversarial samples for training (inner maximization) and in the outer minimiza-
tion to complement existing training losses. Building on enhancement strategies from previous
research, we introduce a streamlined and highly efficient training objective called Logits Moving
Average Adversarial Training (LMA-AT).

∗ Appendix A.2 provides a theoretical justification demonstrating that adversarial training of
deep neural networks with margin loss and cross-entropy enhances adversarial robustness.
Through extensive experimentation, we validate that our proposed method consistently im-
proves the adversarial robustness of state-of-the-art techniques, achieving significant gains in
specific attack scenarios.

2 Existing works

The vulnerability of deep learning has attracted significant attention, prompting efforts to mitigate this
issue. These efforts include generating complex adversarial examples, developing defensive techniques, and
establishing evaluation methodologies.

2.1 Adversarial attacks

A spectrum of attacks has been proposed to assess machine learning vulnerability and can be classified into
two main categories: White-box attacks and Black-box attacks
White-box attacks: This list includes the Fast Gradient Sign Method (FGSM)(Goodfellow et al., 2014),
which generates adversarial examples with a single normalized gradient step. It exploits the gradient sign
at every pixel to determine which direction to change the corresponding pixel value. This attack is fast
and simple; hence, it can be easily implemented. On the other hand, Projected Gradient Descent (PGD)
(Madry et al., 2018) introduces a random starting point at each iteration in FGSM within a specified l∞
norm-ball to intensify the attack effect. In other words, it is an optimization procedure used to search norm-
bounded perturbations. CW attack (Carlini & Wagner, 2017) consists of finding adversarial perturbations
by introducing auxiliary variables which incorporate the pixel value constraint. In addition, we have Fast-
Minimum-Norm (FMN) Attack (Pintor et al., 2021). FMN iteratively finds the sample misclassified with
maximum confidence within an lp-norm constraint of size ϵ, while adapting ϵ to minimize the distance of the
current sample to the decision boundary.
Black-box attacks: This list includes SQUARE attack (Andriushchenko et al., 2020), which is based on
the randomized search scheme, does not rely on the local gradient information, and thus is unaffected by
gradient masking. Hence, SQUARE attack is one of the best Black box attack assessment approaches. Along
the same line, SPSA attack (Uesato et al., 2018) is a gradient-free method that approximates gradient to
generate adversarial. In addition to commonly used attacks (SQUARE and SPSA), other black box attacks
exist (Chen et al., 2017; 2020; Chen & Gu, 2020; Ma et al., 2021; Shukla et al., 2021).
AutoAttack (Croce & Hein, 2020b) combines both black-box and white-box attacks. It is an ensemble
of parameter-free attacks that combine two parameter-free versions of PGD, APGD-CE (Croce & Hein,
2020b), and APGD-T (Croce & Hein, 2020b), with two existing complementary attacks, FAB-T (Croce &
Hein, 2020a) and SQUARE attack.

2.2 Adversarial defenses

Various defensive techniques have emerged to bolster model robustness against adversarial attacks, cate-
gorized into certified and empirical defenses. Empirical defense considered the most successful approach,
integrates adversarial data into the training process (Madry et al., 2018; Kannan et al., 2018; Cai et al.,
2018; Zhang et al., 2019; Wang et al., 2019; 2020; Ding et al., 2020; Atsague et al., 2021; Rice et al., 2020;

4



Under review as submission to TMLR

Atsague et al., 2023). To further enhance adversarial robustness, contemporary works incorporate extra
unlabeled data (Carmon et al., 2019; Deng et al., 2021; Rebuffi et al., 2021); some incorporate synthetic data
(Gowal et al., 2021; Wang et al., 2023). For example, (Sehwag et al., 2022) leverages additional data from
proxy distributions learned by advanced generative models. Another research direction explores reweight-
ing (Liu et al., 2021; Zhang et al., 2020c; Fakorede et al., 2023b), where the training samples are treated
unequally. As a result, various reweighting schemes have been proposed to assign different weights to the
robust losses of individual examples in the training set based on specific conditions. Conversely, some re-
searchers suggest that a single model lacks the capability to defend against all possible adversarial attacks,
resulting in suboptimal robustness. Consequently, an emerging line of research has focused on developing
ensembles of neural networks to enhance defense against adversarial attacks (Sen et al., 2020; Pang et al.,
2019; Zhang et al., 2022). Our work aligns with existing efforts to improve adversarial robustness but signif-
icantly diverges from data augmentation, ensembling, and reweighting techniques. While reweighting shows
promise against specific attacks, it performs poorly against stronger ones. We do not add additional data
or incorporate a reweighting strategy on specific loss components of benchmark adversarial training to en-
hance adversarial robustness. Instead, we introduce a margin loss to constrain the probability that a data
point is not assigned to its true class (further elaborated in Section 4). Additionally, we regularized the
training by minimizing the disparity between the moving averages of the natural and adversarial logits. Be-
fore delving into our enhancement strategy, let’s briefly discuss benchmark adversarial training approaches.
(Madry et al., 2018) employ the standard cross-entropy loss. Adversarial Logit Pairing (ALP) (Kannan
et al., 2018) introduces a regularization term that minimizes the mean square error loss between two logits
(natural and adversarial logits). MIMAE-AT (Atsague et al., 2021) proposes two regularization terms: the
mutual information between the probabilistic predictions of the natural example and its adversarial version,
and the mean absolute error between their logits. TRADES (Zhang et al., 2019) theoretically characterizes
the trade-off between accuracy and robustness of classification problems and suggests a regularization term
that balances adversarial robustness against accuracy. Conversely, instead of enhancing adversarial training
using a set perturbation magnitude, Max-Margin Adversarial (MMA) training (Ding et al., 2020) rethinks
adversarial robustness through a margin-focused lens. It advocates for "direct" input margin maximization,
aiming to maximize the margins computed for each data point to achieve optimal robustness. On the other
hand, MART (Wang et al., 2020) introduces a regularization term that explicitly distinguishes between mis-
classified and correctly classified examples. WAT (Zeng et al., 2021) Proposed a formulation that considers
the importance of the weights of different adversarial examples and focuses adaptively on examples that
are wrongly classified or at higher risk of being classified incorrectly. Under this formulation, If the margin
of the generated adversarial example during training x′

training is large, the adversarial example x′
training

is considered a weak attack, and thus its importance weight should be smaller. A persistent limitation in
existing works is the well-known trade-off between accuracy on clean images and adversarial robustness,
as mentioned in (Tsipras et al., 2018). Additionally, methods that rely on additional data often increase
the computational costs. However, our proposed method does not require extra data, making it suitable
for resource-limited tasks. To address this issue, we supplemented the cross-entropy loss with the margin
loss. We hypothesize that integrating the margin loss with cross-entropy loss can enhance robustness against
adversarial attacks. The margin loss promotes greater class separation, helping the model resist adversarial
perturbations, while the cross-entropy loss ensures accurate classification. This combination may improve
robustness without significantly compromising the natural accuracy, as observed in the experimental results.
Additionally, regularizing with the mHuber loss between the natural and adversarial moving averages of
logits stabilizes the training by mitigating the effect of outliers and reducing the variance between natu-
ral and adversarial logits. As observed in the experimental section, our method improves robust accuracy
while compromising less on the model’s performance on clean samples than existing approaches, effectively
addressing the trade-off between natural and adversarial accuracy better than other methods. Among the
methods mentioned, our enhancement strategy is most compatible with Vanilla AT (Madry et al., 2018),
TRADES (Zhang et al., 2019), and MART (Wang et al., 2020). Therefore, these methods will serve as the
baseline for improvement.
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3 Notations and preliminaries

Consider a classification problem over the data set D = {(xi, yi)}n
i=1 where xi is a natural input example

associated with the label yi ∈ Y = {1, ......, C} where C is the number of classes. Let fc(xi, θ) be the
logit output of the deep neural network with model parameters θ corresponding to class c and pc(xi, θ) =
efc(xi,θ)/

∑C
c′=1 efc′ (xi,θ) represent the probability that the network predicts class c given the input example

xi. Let fθ(xi) represent the class prediction of the network. We denote by l(.) and E[l(.)] the loss and
expected loss, respectively. The loss of the network over the dataset D is defined by

E[l(.)] = 1
n

n∑
i=1

l(fθ(xi), yi). (3)

mHuber Loss: As defined in (Atsague et al., 2023), consider two vectors u = [u1, ..., un] and v = [v1, ..., vn].
The element-wise subtraction is u − v = [u1 − v1, ..., un − vn], and |u − v| = [|u1 − v1|, ..., |un − vn|].
Let c = [c1, .., cn] such that ci is True if |ui − vi|/α ≤ π/2, and False otherwise. In addition, let
A = [A1, . . . , An] = α2(1−cos((u−v)/α)) , B = [B1, . . . , Bn] = α|u−v|+(1− π

2 )α2, and H = [H1, ..., Hn] such
that Hi = Ai if ci is True, and Hi = Bi if ci is False. Then mHuber(u, v, α) = mean(H) ≡ (H1+. . .+Hn)/n.

In the formulation, above, Ai = α2(1 − cos((ui − vi)/α) , Bi = α|ui − vi| + (1 − π
2 )α2, and ci determine

whether Bi or Ai is applied based on the condition |ui − vi|/α ≤ π/2. In adversarial training, minimizing
errors between logits as a regularization term is widely used, with mean absolute error (MAE) and mean
square error (MSE) being popular choices in the literature. Each of these methods has its advantages and
drawbacks. The MSE is highly sensitive to outliers, which can result in unpredictable outcomes (Liano, 1996),
whereas the MAE is more robust to outliers but lacks differentiability at zero. The mHuber loss function’s
smooth second derivative makes it particularly suitable for scenarios where stability during training is crucial.
The smooth second-order derivative improves robustness to outliers and noisy data, as demonstrated in (Guo
et al., 2021). By mitigating the instability issues associated with the standard Huber loss, the mHuber loss
ensures that gradient-based optimization methods can proceed more reliable, resulting in a more stable and
potentially more accurate model. This can be especially important in applications where small changes in
the errors can lead to large impacts on the final model performance, such as in high-precision regression tasks
or in adversarial settings where robustness is critical. When applied to logits, The cosine term is applied to
slight logit differences, which smooths the loss function and ensures a continuous second derivative. Which
helps avoid the instability issues of the standard Huber loss.

4 Proposed Defense Method

4.1 Empirical Risk Formulation

There are inherent risks associated with inadequately trained models. A properly designed and trained
model should accurately classify natural and adversarial inputs. Therefore, minimizing the risks associated
with misclassifying both natural and adversarial inputs is imperative. To reduce the natural risk across the
dataset D, we aim to minimize

Risknat(fθ(.)) = 1
n

n∑
i=1

1(fθ(xi) ̸= yi), (4)

where 1(.) is the indicator function. When it comes to the adversarial risk, we consider the adversarial risk
formulation of (Madry et al., 2018; Zhang et al., 2019) on the classifier fθ(.) with the 0-1 loss over the dataset
D = {(xi, yi)}n

i=1 formulated as

Riskadv(fθ(.)) = 1
n

n∑
i=1

max
x′

i
∈Bϵ[xi]

1(fθ(x′
i) ̸= yi), (5)

Most existing works (Madry et al., 2018; Zhang et al., 2019; Wang et al., 2020; Atsague et al., 2021; 2023)
minimized the adversarial Risk in Equation 5. The problem with the risk formulation above is that they
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only care that the adversarial input needs to be assigned to the correct class and neglect how the assignment
is done. The finding of Fig. 1 indicates that when the adversarial examples are wrongly classified, most are
wrongly classified in the 2nd, 3rd, 4th, and 5th most probable false classes when classifying under normal
training. Given the clean input pair (xi, yi), let Sp = {pj(xi, θ)}C

j=1 represent the set of class probabilities
when predicting under natural training, and Pi(xi, θ) = max(Sp) represents the predicted class probability.
Let yk represent the 2nd, 3rd, 4th, 5th , ..., or the qth most probable false classes, where q < |C|. Instead
of minimizing the risk Riskadv defined in Equation 5, we constrain the adversarial risk to the following
formulation:

Riskadv(fθ(.)) = 1
n

n∑
i=1

max
x′

i
∈Bϵ[xi]

1(fθ(x′
i) = yk); (6)

Where yk represents the 2nd, 3rd, 4th, 5th , ..., or the qth most probable false classes. Given our goal of
enhancing the most promising adversarial training methods, we focus on providing a risk formulation that
aligns with our improvement strategy. We consider Vanilla AT (Madry et al., 2018), TRADES (Zhang et al.,
2019), and MART (Wang et al., 2020). In the latter two methods, a regularization term minimizes 1(fθ(x′i) ̸=
fθ(xi)), promoting consistency in classification decisions between natural and adversarial examples. Our
objective is for the model to accurately classify both types of examples. Hence, minimizing the risk of
misclassifying natural and adversarial examples is crucial. In conclusion, our improvement strategy for
Vanilla AT, MART, and TRADES involves minimizing both Riskadv in Equation 6 and Risknat in Equation
4.

4.2 Surrogate losses

Directly minimizing the empirical risks Risknat(fθ(.)) in Equation 4, Riskadv(fθ(.)) in Equation 6 and
1(fθ(x′

i) ̸= fθ(xi)) with 0-1 loss is intractable. An appropriate convex surrogate loss usually replaces the 0-1
loss. TRADES (Zhang et al., 2019) minimizes the natural risk (Equation 4) in which the 1(fθ(xi) ̸= yi) term
is replaced by the cross-entropy (CE) loss. However, TRADES does not explicitly minimize the adversarial
risk defined in Equation 6. On the other hand, the Vanilla AT, and MART minimize the adversarial risk
defined in Equation 5, in which the 1(fθ(x′

i) ̸= yi) is replaced by the CE loss under Vanilla AT and by the
boosted cross-entropy (BCE) loss under MART. Formally, the boosted cross-entropy (BCE) loss is formulated
as

BCE(p(x′
i, θ), yi) = − log pyi

(x′
i, θ)− log(1−max

k ̸=yi

pk(x′
i, θ)); (7)

which is built on the cross-entropy (CE) loss defined as

CE(p(x′
i, θ), yi) = − log pyi

(x′
i, θ), (8)

where pyi
(x′

i, θ) is the probability that the network predicts class yi given the input example x′
i. However, the

CE loss only focuses on the probability that the input is assigned to its ground-truth class and does not place
any constraint on the probability that the data point is assigned to a class other than its ground-truth class;
hence, it does not specifically minimize the Riskadv (Equation 6). To motivate our choice for the proposed
surrogate loss to be used in Equation 6, we consider a multi-class hinge loss developed for SVMs (Crammer
& Singer, 2001) and the vector of class scores denoted by f(x′

i, θ) is the logit output of the network, then
f(x′

i, θ) = (f1(x′
i, θ), f2(x′

i, θ), ......, fC(x′
i, θ)) and sj = fj(θ, x′) represents the score of the j-th class. The

multi-class SVM loss (hinge loss) for the i-th example is formalized as

li =
∑
j ̸=yi

max(0, sj − syi + δ). (9)

Example: Suppose there are three classes, and the vectors of classes’ scores s = [12,−6, 11]; scores associated
with "cat," "dog," and "ship," respectively. For illustration, let us assume the true class is "cat" (score is 12,
i.e., yi = 0). In addition, we assume our desired margin δ is 8.

Under our assumption, li = max(0,−6− 12 + 8) + max(0, 11− 12 + 8) = 0 + 7. Since the correct class score
of 12 was greater than the incorrect class score of −6 by at least the margin of 8, we got zero loss on the
first term. The second term max(0, 11− 12 + 8) = 7. Even though the correct class had a higher score than
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the incorrect class (12 > 11), it was not greater by the desired margin of 8. 7 represents how much higher
the difference would have to be to meet the margin. This example illustrates the benefit of the margin loss
in assessing the gap between the true class and other classes.

To penalize violated margins more strongly, we consider

l′
i =

∑
j ̸=yi

max(0, sj − syi
+ δ)2. (10)

The illustrative example of the Multi-class SVM encourages the correct class’s score to be higher than all
other scores by at least a margin of δ, imposing a margin gap between the true class and the other false classes’
score. We can extend this formulation to a more complex setting. We exploit the multi-class classification
hinge loss (margin-based loss) proposed for SVM (Crammer & Singer, 2001) to formulate a criterion that
optimizes a multi-class classification hinge loss between the input fθ(x′

i) tensor and the output yi. For each
input, we minimize the loss:

Li =
∑
j ̸=yi

max(0, (fj(θ, x′)− fyi(θ, x′) + δ)) (11)

A robust classifier should correctly classify adversaries. For any input pair (xi, yi), the corresponding ad-
versarial pair (x′

i, yi) should be classified correctly. We expect that if our classifier loss is minimized, then
so is δ − fyi(θ, x′) + fj(θ, x′) for yi ̸= j. This quantity is positive for all yi as long as the output of the
classifier conditioned on the correct label is larger by at least δ than the classifier output conditioned on the
rest of the labels. Therefore, we minimize Li to explicitly enforce this margin. Instead of focusing solely on
the possibility of the model misclassifying the adversarial into the 2nd, 3rd, 4th, or fifth most probable false
class, we consider a relaxed version that incorporates more classes (2nd, 3rd, 4th, 5th, up to the qth most
probable false classes where q < |C|). This relaxed version considers the first several most probable classes,
making our adversarial risk formulation (Equation 6) less restrictive in terms of yk. Under the relaxed version
of the adversarial risk (Equation 6), (Li et al., 2021) minimizes

∑
j ̸=yi

max(0, (Pj(θ, x′) − Pyi
(θ, x′) + δ)).

However, based on our discussion on SVM loss, we consider the logits and penalize the violated margin
strongly. Hence, to minimize the adversarial Riskadv (Equation 6), we minimize the loss

L′
i =

∑
j ̸=yi

max(0, (fj(θ, x′)− fyi
(θ, x′) + δ))2. (12)

Equation 12 maximizes the adversarial probability gaps between the true and most probable false classes
by applying a margin constraint, thus fulfilling the first condition outlined in the introduction. Conversely,
our baseline losses rely on the cross-entropy loss, which prioritizes the probability that the input is assigned
to its ground truth, thereby satisfying the second condition. Consequently, all the conditions (Conditions
1 and 2) enumerated in the introduction are met. It is important to note that the margin loss function
significantly impacts a model’s robustness to adversarial attacks. Increasing the margin encourages the
model to create a greater separation between classes in the feature space. This larger separation helps
make it more difficult for adversarial perturbations to push an input across the decision boundary and into a
different class, thereby enhancing the model’s robustness. Conversely, a smaller margin reduces the separation
between classes, making the model more susceptible to adversarial attacks since less perturbation is needed
to cause misclassification. While a more significant margin can boost robustness, it may also decrease natural
accuracy if the margin becomes too large, as the model might prioritize robustness overfitting the training
data effectively. Therefore, a careful selection of the margin parameter is crucial.

4.3 Exponential Moving Average (EMA) of logits

Various strategies have emerged to enhance model generalization, with one notable method being the weight
averaging of model parameters (Polyak & Juditsky, 1992; Oord et al., 2018; Athiwaratkun et al., 2018;
Izmailov et al., 2018). Recently, this approach has found application in GAN training (Yaz et al., 2018), and
in bolstering adversarial robustness (Gowal et al., 2020). Our research introduces a novel weight-independent
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approach using logit averaging. We propose that reducing the discrepancy between the moving averages of
natural and adversarial logits in the regularization term enhances adversarial robustness while maintaining
reasonable natural accuracy. This approach minimizes the gap between natural and adversarial accuracy.
The process involves computing the moving average of logits logitt ← τ ∗logit(t−1)+(1−τ)∗logit, where logit
denotes the current logit value, logit(t−1) represents the exponential moving average at previous stages, and
logitt is the logit used in the regularization term. While (Atsague et al., 2023) minimize the disparity between
natural and adversarial logits by employing the modified Huber (mHuber) model, which has demonstrated
greater robustness to outliers and noisy data compared to the original Huber (Guo et al., 2021), we opt for the
modified Huber loss to minimize the difference between the moving averages of natural and adversarial logits.
By incorporating current and previous iteration logits through a moving average calculation, we gain valuable
comparative insights from the early stages of training. The moving average integrates information from both
natural and adversarial examples over time (shown in Appendix A), providing a more stable estimate of the
model’s predictions. Therefore, we minimize mHuber(logit′

t, logitt, α) where logit′
t and logitt represent the

adversarial and natural moving averages of logits, respectively. we experimented on different values of τ and
recorded our best performance when τ = 0.2 (See Table 3 and 4).

4.4 Improvement Strategy

For illustration, we consider the vanilla AT(Madry et al., 2018) and TRADES (Zhang et al., 2019). The
vanilla AT minimizes the cross-entropy (CE) loss defined by

CE(p(x′
i, θ), yi) = − log pyi

(x′
i, θ); (13)

In this scenario, adversarial examples used for training are generated using the CE losses. However, to
enhance the vanilla AT, the CE loss is complemented with the margin-based loss. Consequently, the adver-
sarial examples used for training are generated using the loss L′

i + CE (inner maximization). For the outer
minimization, we aim to minimize the loss

CE(p(x′
i, θ), yi) + L′

i + β ∗mHuber(logit′
t, logitt, α) (14)

Where logit′
t and logitt represent the adversarial and natural moving averages logit’s, respectively. The

improvement strategy adopted for the Vanilla AT can be expanded to other variants. For instance, TRADES
minimize

CE(p(xi, θ), yi) + 1
λ

.KL(p(xi, θ)||p(x′
i, θ)). (15)

To improve TRADES, we generate the adversarial examples using the loss L′
i + CE, and for training, we

minimize the loss

L′
i + CE(p(xi, θ), yi) + 1

λ
KL(p(xi, θ)||p(x′

i, θ)) + β ∗mHuber(logit′
t, logitt, α). (16)

Moreover, drawing inspiration from effective enhancement strategies proposed and implemented in previous
studies, notably, the methodology detailed in PMHR-AT (Atsague et al., 2023), we introduce a streamlined
yet remarkably effective training approach called Logits Moving Average Adversarial Training (LMA-AT),
described in detail below.

L′
i + BCE(p(x′

i, θ), yi) + β ∗mHuber(logit′
t, logitt, α) (17)

A notable difference between our proposed LMA-AT and existing methods, such as PMHR-AT, is that
we regularize the adversarial loss by minimizing the disparity between the moving average of natural and
adversarial logits. In contrast, PMHR-AT considered the logits, applied the l2 penalty to the network weights,
and reduced the gap between natural and adversarial accuracy by adjusting the strength of the regularization
term based on the similarity between the predicted natural and adversarial class probability distributions.
We do not use l2 regularization on the network weights as this may be computationally intense or vary
the regularization strength. Instead, we utilize the moving average of logits and the margin-based loss,
resulting in better generalization and a reduced gap between natural and adversarial accuracy. We term the
improved training objectives, Equation 14 and Equation 16, Standard AT+Ours and TRADES+Ours

9
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respectively. Similarly, in the following sections, MART+Ours refers to the improved version of MART.
See Table 1 for additional details. Algorithm 1 illustrates the training strategy of LMA-AT. a similar
approach is adopted under Standard AT+Ours, TRADES+Ours and MART+Ours.

Table 1: This table provides an overview of the enhanced versions of the baseline losses. The terms highlighted
in bold represent the improvement strategies incorporated.

Method Improved Losses
Standard AT+Ours L′

i + CE(p(x′
i, θ), yi) + β ∗mHuber(logit′

t, logitt, α)
TRADES+Ours L′

i + CE(p(xi, θ), yi) + 1
λ KL(p(xi, θ)||p(x′

i, θ)) + β ∗mHuber(logit′
t, logitt, α)

MART+Ours L′
i + BCE(p(x′

i, θ), yi) + λ ·KL(p(xi, θ)||p(x′
i, θ)) · (1− pyi(xi, θ)) + β ∗mHuber(logit′

t, logitt, α)
LMA-AT(Ours) L′

i + BCE(p(x′
i, θ), yi) + β ∗mHuber(logit′

t, logitt, α)

Algorithm 1: Training procedure of LMA-AT
Input: Training data D = {xi, yi}n

i=1, step size µ1 and µ2 for the inner and the outer optimization
respectively, the batch size m, the number of outer iteration T , the number of inner iteration K, the
moving average parameter τ = 0.2, α, and the regularization parameter β.

Initialization:
Instantiate and initialize a model fθ

logit0 = 0
logit′

0 = 0
for t = 1, 2, ...., T do

At random, uniformly sample a mini-batch of training data B(t) = {x1, ..., xm}
for each xi ∈ B(t) do

x
′

i = xi + 0.001× k; k ∼ N (0, I)
for k = 1, 2, ...., K do

x
′

i =
∏

Bϵ[xi](x
′

i+µ1sgn(∇x
′
i
[L′

i + CE(p(x′
i, θ), yi)])

end
end
logit′

t ← τ ∗ logit′
t−1 + (1− τ) ∗ f(x′

i, θ)
logitt ← τ ∗ logitt−1 + (1− τ) ∗ f(xi, θ)
L′

i =
∑

j ̸=yi
max(0, (fj(θ, x′)− fyi

(θ, x′) + δ))2

θ = θ − µ2
m

∑m
i=1∇θ[L′

i + BCE(p(x′
i, θ), yi) + β ∗mHuber(logit′

t, logitt, α)]
logit′

t−1 = logit′
t

logitt−1 = logitt

end
Output: fθ

In Algorithm 1, L′
i(p(x′

i, θ), yi)) =
∑

j ̸=yi
max(0, (fj(θ, x′)− fyi

(θ, x′) + δ))2.

In summary, the Cross-entropy loss is a common choice in adversarial training (AT) for measuring the dif-
ference between predicted probabilities and true labels. In conventional AT, adversarial examples are often
generated using techniques like PGD. While cross-entropy loss effectively maintains natural accuracy, its
ability to improve robustness against adversarial attacks can be limited, particularly when facing highly
optimized attacks. The Margin-Aware loss introduces a new approach by emphasizing confidence calibration
and robustness. It enforces a margin between the logits of the correct class and those of incorrect classes,
prompting the model to differentiate between correct and incorrect classifications more clearly. This mech-
anism helps push adversarial examples away from the decision boundary, improving robustness to subtle
perturbations. A key innovation of our approach is the combination of Cross-Entropy Loss and Margin Loss,
incorporating the moving average of logits as part of the regularization term. This method leverages the
cross-entropy loss to maintain high natural accuracy while using the margin loss to bolster resilience against
adversarial attacks. The margin size is a crucial hyperparameter chosen based on dataset complexity and the
strength of the adversarial attacks. By integrating the moving average of logits into the regularization, we
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capture valuable information from the previous iteration, which helps to improve model robustness further.
Our approach aims to balance natural accuracy and robust accuracy, unlike methods such as TRADES
or MART, which may significantly compromise clean accuracy for enhanced robustness. This balance is
essential for real-world applications, where models must perform effectively on clean and adversarial inputs.

5 Experiments

We conducted a series of experiments and compared our method with the state-of-the-art defenses on bench-
mark datasets CIFAR-10 (Krizhevsky & Hinton, 2009), CIFAR-100 (Krizhevsky & Hinton, 2009), and Tiny-
ImageNet (Deng et al., 2009). We tested on two model architectures: ResNet-18 (He et al., 2016a) and a
larger capacity network, WideResNet-34-10 (Zagoruyko & Komodakis, 2016a).
Baselines: We compare our approach with Vanilla AT (Madry et al., 2018) and the top-performing variants
of adversarial training defenses to date: PMHR-AT(Atsague et al., 2023), TRADES (Zhang et al., 2019), and
MART (Wang et al., 2020). Additionally, we benchmark our work against other margin-based approaches
such as MMA (Ding et al., 2020), GAIRA (Zhang et al., 2020c), MAIL (Liu et al., 2021), and WAT (Zeng
et al., 2021).

5.1 Training settings

The parameters are optimized using the Ray Tune hyperparameter search tool, as proposed in (Liaw et al.,
2018). For each model and dataset, specific search ranges are defined. The parameter β is searched over
integers in the range [1, 100], while weight decay is explored within the range (0, 0.2]. For τ and δ, the
search range spans [0, 1] with increments of 0.1, resulting in candidate values of 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9, and 1. Lastly, the parameter α is searched over integers in the range [1, 10].

Our optimal parameters are as follows: For ResNet-18, the parameter α is set to 6 for TinyImageNet and
5 for CIFAR-10 and CIFAR-100. For WRN-34-10, α is set to 5. For TRADES, 1

λ is set to 6.0, and λ is
5.0 for MART, as specified in their original articles. We use the parameters defined in their original papers
for other baselines. All models are trained using SGD for 130 epochs with a momentum of 0.9 and a batch
size of m = 100. The initial learning rate is 0.01 and is decayed by a factor of 10 at the 75th epoch and
again at the 90th epoch. A 3.5 × 10−3 weight decay is applied. The best regularization parameter β is 96
for TinyImageNet, 88 for CIFAR-100, and 86 for CIFAR-10.

Adversarial training data are generated using PGD with a random start. The maximum perturbation ϵ is
set to 8/255, the step size is 2/255, and the number of steps is 10. The best performance is achieved when
the margin δ is set to 0.9.

5.2 Evaluation details

We evaluated our method under White-box attack threats including the L∞ PGD-20/100 (Madry et al.,
2018), FGSM (Goodfellow et al., 2014), CW (PGD optimized with CW loss, confidence level K=50) (Carlini
& Wagner, 2017), and on Ensemble of Attacks such as AutoAttack (Croce & Hein, 2020b), which consisting
of APGD-CE (Croce & Hein, 2020b), APGD-T (Croce & Hein, 2020b), FAB-T (Croce & Hein, 2020a), and
Square (a black-box attack). Under White-box attack, The perturbation size is set to ϵ=8/255, and the
step size is 1/255. Additionally, we evaluated on strong Black-box attacks SQUARE (Andriushchenko
et al., 2020) and SPSA (Uesato et al., 2018) with the perturbation size of 0.001 (for gradient estimation),
sample size of 100, 20 iterations, and learning rate 0.01.

5.3 Experimental results

5.3.1 Sensitivity of the mHuber Hyperparameter α

A comprehensive set of experiments was conducted to evaluate the sensitivity of the hyperparameter τ
in our proposed loss function, Logits Moving Average Adversarial Training (LMA-AT). These experiments
were designed to investigate how varying τ influences the balance between natural accuracy and adversarial
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robustness. The results provide valuable insights into the role of τ in regulating the moving average of logits
and its impact on overall model performance.

Table 2: Assessing performance across various values of our modified Huber parameter, α, under CIFAR-10
with ResNet18 architecture.

α Natural PGD-20 PGD-100 CW SPSA AA
1 83.66±0.021 56.22±0.023 54.37±0.021 52.43±0.022 60.12±0.012 48.73±0.022

2 83.23±0.033 56.44±0.026 54.61±0.027 52.05±0.026 60.56±0.005 48.51±0.034

3 83.55±0.015 56.54±0.030 54.93±0.012 52.52±0.051 60.45±0.002 48.86±0.012

4 83.32±0.023 56.58±0.034 55.04±0.071 52.09±0.016 60.46±0.001 48.37±0.032

5 83.84±0.022 56.64±0.021 54.88±0.016 52.60±0.023 60.16±0.032 49.12±0.011

6 83.14±0.65 56.58±0.044 54.89±0.012 52.10±0.002 59.77±0.011 48.38±0.027

In Table 2, comparing the model performance with α = 1 to that with α = 5, we observe an improvement
in adversarial robustness. However, the robustness declines as α increases from 5 to 6, suggesting that when
regularizing the adversarial training loss with the Modified Huber loss between natural and adversarial
logits, the parameter α is critical in balancing the sensitivity of the loss function to small versus large
errors, thereby directly influencing the model’s robustness. When α is small, the Modified Huber loss
becomes highly sensitive to minor differences between the moving averages of natural and adversarial logits.
This heightened sensitivity can lead to more aggressive penalization of small adversarial perturbations,
prompting the model to focus on reducing even minor deviations. Conversely, larger values of α reduce this
sensitivity, causing the loss function to overlook small logit differences and concentrate on more significant
adversarial discrepancies. While this shift may enhance the model’s defense against stronger attacks, it
could also weaken its robustness against subtle perturbations. Therefore, a carefully chosen α can help the
model resist subtle and strong adversarial attacks, improving the overall robustness.

5.3.2 Sensitivity to moving average Hyperparameter τ

We conducted a series of experiments to assess the effectiveness of using the moving average of logits to
improve model performance. In this experiment, we consider our proposed loss: Logits Moving Average
Adversarial Training (LMA-AT). By varying the moving average parameter 0 ≤ τ < 1, we adjusted the
contribution of the moving average throughout the training process. This process involves computing the
moving average of logits, logitt ← τ logit(t−1) + (1 − τ) ∗ logit, where logit denotes the current logit value,
logit(t−1) represents the exponential moving average from previous stages, and logitt is the logit used in the
regularization term. Increasing τ increases the influence of the moving average on the overall performance.

Table 3: Assessing performance across various values of our moving average parameter, τ , under CIFAR-10
with ResNet18 architecture. α = 5

τ Natural PGD-20 PGD-100 CW SPSA AA
0.0 79.44±0.024 56.73±0.030 55.84±0.012 51.89±0.033 58.74±0.022 48.44±0.021

0.1 83.97±0.022 56.43±0.023 54.67±0.013 52.74±0.031 60.10±0.011 48.68±0.022

0.2 83.84±0.021 56.64±0.021 54.88±0.016 52.60±0.023 60.16±0.032 49.12±0.01

0.3 83.56±0.033 57.05±0.021 56.15±0.066 52.47±0.011 59.23±0.020 48.94±0.022

0.4 83.12±0.021 57.18±0.063 56.02±0.026 52.49±0.031 59.11±0.041 48.96±0.013

0.5 83.33±0.013 57.22±0.01 56.15±0.071 52.48±0.021 59.14±0.021 48.93±0.021

0.6 81.82±0.034 57.26±0.012 56.32±0.031 52.12±0.031 59.14±0.010 48.98±0.032

0.7 81.19±0.036 57.52±0.061 56.09±0.032 52.19±0.011 59.21±0.022 49.10±0.026

0.8 81.25±0.032 57.41±0.033 56.12±0.032 52.24±0.023 59.23±0.044 49.13±0.021
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Table 4: Assessing performance across various values of our moving average parameter, τ , under CIFAR-100
with ResNet18 architecture. α = 5

τ Natural PGD-20 PGD-100 CW SPSA AA
0.0 51.33±0.012 32.86±0.055 32.25±0.014 28.49±0.082 31.98±0.013 26.40±0.022

0.1 59.66±0.018 32.18±0.011 31.05±0.012 28.87±0.014 34.96±0.011 25.48±0.015

0.2 58.96±0.042 32.85±0.024 31.87±0.011 29.44±0.032 34.10±0.061 26.19±0.071

0.3 56.67±0.071 32.97±0.013 32.13±0.060 29.38±0.033 33.78±0.011 26.22±0.021

0.4 56.61±0.022 32.89±0.033 32.55±0.010 29.32±0.043 33.67±0.012 26.25±0.024

0.5 56.59±0.012 33.04±0.041 32.46±0.023 29.29±0.051 33.56±0.011 26.61±0.021

0.6 55.78±0.033 33.18±0.023 32.59±0.011 29.32±0.041 33.64±0.010 26.69±0.011

0.7 53.98±0.008 33.48±0.003 32.83±0.006 29.31±0.003 32.78±0.001 26.84±0.002

0.8 53.52±0.021 33.47±0.023 32.89±0.011 29.35±0.020 31.97±0.011 26.79±0.033

In Table 3 and Table 4, we experimented with different values of τ and highlighted the τ values that yielded
our overall best performance in bold. The overall best performance is recorded for τ = 0.2 (This best
parameter is recorded using Ray Tune as described in Section 5.1).

The results presented in 3 and 4 demonstrate that significant changes occur when the moving average
parameter τ is varied. For example, in both tables, comparing the results with τ = 0.1 to those with τ = 0.9
reveals a consistent improvement in robust accuracy under PGD-20/100 and AutoAttack, accompanied by a
notable drop in natural accuracy. A higher α (closer to 1) places greater emphasis on recent logits, potentially
leading to less historical data retention. In this scenario, information gain primarily concentrates on recent
logits, which may overlook long-term patterns. Conversely, a lower α (closer to 0) assigns more weight to
past logits, depending on how much of the previous information we want to consider, that can significantly
impact the model’s robustness and lead to poor trade-off between natural and robust accuracy. The choice
of α represents a trade-off between adapting to new data and preserving historical information. Identifying
the optimal α is essential, as it determines the extent of information retained over time and the model’s
ability to adapt to changing patterns. Varying the moving average parameter α influences information gain
by adjusting the emphasis on recent versus past data. This balance is crucial, as it impacts both natural
and adversarial accuracy, making the selection of the best α value vital to achieving adversarial robustness
and batter trade-off between natural and adversarial accuracy.

5.3.3 Sensitivity to the regularization Hyperparameter β

To assess the impact of the regularization hyperparameter β on the performance of our proposed loss function
(LMA-AT), we conducted experiments using the training and evaluation setups detailed in Sections 5.1 and
5.2. A range of β values was explored to evaluate their influence on adversarial robustness and natural
accuracy. The results of these experiments are summarized in Tables 5 and 6, which highlight the trade-offs
between robustness and accuracy for different β values. Additionally, further experimental results conducted
on the TinyImageNet dataset using a ResNet-18 architecture are included in Appendix B.0.1 to provide a
broader perspective on the sensitivity of β in diverse settings.

Table 5: Assessing performance across various values of the parameter, β, under CIFAR-10 with
ResNet18 architecture. α = 5 and τ = 0.2

β Natural PGD-20 PGD-100 CW AA
80 83.43±0.021 56.26±0.033 54.60±0.011 51.88±0.002 48.29±0.022

82 83.34±0.031 56.86±0.043 55.36±0.044 52.49±0.037 48.76±0.034

84 83.69±0.053 54.97±0.042 54.97±0.055 52.15±0.042 48.39±0.063

86 83.84±0.022 56.64±0.021 54.88±0.016 52.60±0.023 49.12±0.011

88 83.60±0.023 57.10±0.021 55.29±0.043 52.39±0.032 48.81±0.031

90 83.56±0.044 56.65±0.026 55.09±0.052 52.28±0.013 48.59±0.047

92 83.93±0.024 56.98±0.067 55.31±0.073 52.34±0.042 48.71±0.033
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Table 6: Assessing performance across various values of the parameter, β, under CIFAR-100 with
ResNet18 architecture. α = 5 and τ = 0.2

β Natural PGD-20 PGD-100 CW AA
80 58.77±0.033 32.30±0.026 31.32±0.035 28.80±0.027 25.57±0.066

82 59.12±0.044 32.07±0.035 31.03±0.057 28.70±0.044 25.42±0.023

84 59.15±0.023 32.27±0.066 31.16±0.011 28.96±0.024 25.86±0.022

86 59.16±0.033 32.23±0.035 32.19±0.041 29.13±0.024 25.74±0.041

88 58.96±0.042 32.85±0.024 31.87±0.011 29.44±0.032 26.19±0.071

90 58.96±0.029 32.28±0.022 31.30±0.053 28.91±0.052 25.84±0.047

92 58.98±0.044 31.95±0.052 31.08±0.031 28.81±0.022 25.48±0.082

Let’s discuss the impact of the hyperparameter β on model robustness. As expected, increasing the regu-
larization parameter leads to improved robust accuracy. For example, using ResNet18 on CIFAR-10, when
β was increased from 80 to 86, we observed increases in robust accuracy of 0.38%, 0.72%, and 0.83% under
PGD-20, CW, and AA, respectively. These improvements were achieved while maintaining a reasonable
natural accuracy. Our optimal parameter setting (β = 86) provided a better trade-off between natural
accuracy and adversarial robustness than existing AT-based defense methods. For CIFAR-100, comparing
the results obtained with our best parameter setting β = 88 to those with β = 80, we observed a consistent
pattern of improvement in robust accuracy. Specifically, robust accuracy increased by 0.55%, 0.55%, 0.64%,
and 0.62% under PGD-20, PGD-100, CW, and AA attacks, respectively. These hyperparameter values were
heuristically determined based on our optimal parameter selection process.

Additional experiments on TinyImageNet are reported in Appendix B.0.1. Since the regularization parame-
ter β controls the impact of the regularization term on the training process, a larger β places more emphasis
on minimizing the disparity between the moving averages of natural and adversarial logits, thereby reducing
the gap between them. This encourages the model to produce similar predictions for both types of inputs,
ensuring that adversarial examples have less impact on the final prediction. As a result, the model becomes
less sensitive to small perturbations, reducing the effectiveness of adversarial attacks and enhancing adver-
sarial robustness. Additionally, minimizing the difference between the logits acts as a regularizer, promoting
smoothness in the model’s decision boundary. A smoother decision boundary implies that the model is less
likely to be swayed by adversarial examples close to natural examples in the input space.

5.3.4 Effectiveness of our proposed method

Table 7 presents the results for CIFAR-10 using the ResNet-18 model. Tables 8 and 11 show the results for
CIFAR-10 using the WideResNet-34-10 model. Additionally, we evaluated the ResNet-18 model on CIFAR-
100 and TinyImageNet datasets, with the results reported in Tables 9 and 10, respectively. Furthermore,
we analyzed the effectiveness of our method under varying perturbation sizes to assess its robustness across
different threat levels. These results are comprehensively reported in Appendix B.0.2, providing deeper
insights into the adaptability of our approach.

Table 7: Clean and robust accuracy on ResNet-18 and Under CIFAR-10. We perform six runs and report
the average performance with 95% confidence intervals. The ‘Clean’ column represents accuracy on natural
examples. α = 5 , τ = 0.2

Method Clean FGSM PGD-20 PGD-100 CW AA SQUARE SPSA
vanillaAT 85.80±0.001 57.87±0.0023 52.05±0.003 49.28±0.0022 51.08±0.001 46.62±0.004 55.69±0.0014 56.17±0.001

TRADES 82.46±0.0012 58.26±0.0030 54.78±0.0010 53.45 ±0.0032 51.65±0.0021 49.08±0.0031 55.64±0.0011 56.50±0.0020

MART 81.30 ±0.003 58.06±0.001 54.73±0.006 53.28±0.005 51.86±0.0031 49.01±0.0020 55.66±0.0031 56.15±0.0040

PMHR AT 83.12±0.0022 60.34±0.0010 56.13±0.0021 54.45±0.0031 52.16±0.0010 49.42±0.0020 56.54±0.00021 57.16±0.0003

vanillaAT + Ours 82.76±0.055 59.84±0.022 56.24±0.044 54.80±0.026 52.20±0.052 48.47±0.031 57.19±0.032 60.30±0.011

TRADES + Ours 83.97±0.062 59.52±0.035 56.39±0.033 54.92±0.018 52.23±0.021 49.65±0.045 58.21±0.026 59.49±0.044

MART + Ours 83.66±0.034 60.89±0.028 56.66±0.022 54.94±0.036 51.56±0.061 48.17±0.033 58.37±0.035 61.16±0.056

LMA AT(Ours) 83.84±0.022 61.39±0.023 56.64±0.021 54.88±0.016 52.60±0.023 49.12±0.011 58.34±0.031 60.16±0.032
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Table 8: Clean and robust accuracies on WRN-34-10 and Under CIFAR-10. We perform six runs and
report the average performance with 95% confidence intervals. The ‘Clean’ column represents accuracy on
natural examples. α = 5 , τ = 0.2

Method Clean FGSM PGD-20 PGD-100 CW AA SQUARE SPSA
vanillaAT 86.46±0.0013 61.62±0.0021 56.75±0.002 54.72 ±0.001 55.63±0.0012 51.06±0.0023 59.68±0.0012 60.66±0.002

TRADES 84.58±0.0021 60.60±0.001 57.71±0.0012 56.69±0.002 55.01±0.0013 52.57±0.002 59.45±0.0024 61.09±0.0023

MART 84.25±0.001 62.03±0.00 58.29±0.0032 55.56±0.0011 54.82±0.00 51.40±0.00 58.21±0.00 59.87±0.00

PMHR AT 84.87±0.0020 63.05±0.0010 59.26±0.0021 57.60±0.0031 56.36±0.0010 53.58±0.002 59.67±0.0021 61.18±0.001

vanillaAT + Ours 85.76±0.044 63.17±0.014 59.96±0.022 58.72±0.071 56.28±0.062 52.97±0.011 60.04±0.044 63.76±0.033

TRADES + Ours 86.05±0.032 63.42±0.033 59.47±0.011 58.27±0.025 55.80±0.024 53.14±0.021 59.91±0.032 63.96±0.028

MART + Ours 85.16±0.032 63.66±0.055 60.14±0.022 58.89±0.011 55.29±0.025 52.14±0.023 59.20±0.052 63.27±0.032

LMA AT(Ours) 85.52±0.022 64.17±0.063 60.57±0.071 59.27±0.032 56.30±0.011 53.16±0.044 60.09±0.025 64.12±0.028

The results of Table 7 and Table 8 demonstrate that our proposed method significantly improves the vanilla
AT, TRADES, and MART. For instance, under ResNet-18 and WRN-34-10, respectively, the Vanilla AT
improved by 4.19% and 3.21% on PGD-20, 5.52% and 4% on PGD-100, 1.12% and 0.65% on CW, 1.85% and
1.91% on AA, 1.5% and 0.36% on SQUARE, and 4.13% and 3.1% on SPSA. MART improves by 2.36% on
clean accuracy under ResNet-18. Under ResNet-18 and WRN-34-10, respectively, MART improved by 1.93%
and 1.85% on PGD-20, 1.66% and 3.33% on PGD-100, 2.71% and 0.99% on SQUARE, and 5.01% and 3.4%
on SPSA. In addition, on AA, MART improves by 0.74% on AA under WRN-34-10. On the other hand, the
improvement of TRADES is more visible on ResNet-18 with a 1.51% increase in Clean accuracy, 1.26% on
FGSM, 1.61% on PGD-20, 1.47% on PGD-100, 2.57% on SQUARE, and 2.99% on SPSA. On WRN-34-10,
TRADES improves by 1.47% on Clean accuracy, 2.82% on FGSM, 1.76% on PGD-20, 1.58% on PGD-100
and 2.87% SPSA. The overall best performance is recorded under our proposed method LMA-AT with a
good balance between natural and adversarial accuracy.
A closer examination shows that both ’TRADES + Ours’ and ’MART + Ours’ enhance adversarial robustness
while also improving natural accuracy. Overall, our proposed method achieves a superior balance between
natural and adversarial accuracy compared to existing approaches. Additional experiments conducted under
varying perturbation sizes are presented in Appendix B.0.2. These results offer deeper insights into the
adaptability and effectiveness of our proposed approach across different threat levels.

Table 9: Clean and robust accuracies on ResNet-18 and Under CIFAR-100. We perform six runs and
report the average performance with 95% confidence intervals. The ‘Clean’ column represents accuracy on
natural examples. α = 5 , τ = 0.2

Method Clean FGSM PGD-20 PGD-100 CW AA SQUARE SPSA
vanillaAT 56.87±0.0031 31.21±0.021 29.33 ±0.010 28.46 ±0.010 26.33±0.030 23.69±0.012 30.06±0.030 31.63±0.040

TRADES 57.16±0.0010 31.45±0.021 30.32±0.021 29.48±0.021 25.16±0.031 25.18±0.031 30.46±0.022 32.06±0.014

MART 54.02 ±0.0013 32.81±0.020 31.13±0.014 30.14±0.011 26.98 ±0.010 24.83±0.012 31.17 ±0.016 32.45±0.014

PMHR AT 57.55±0.021 34.33±0.0031 32.25±0.021 31.35±0.014 27.78±0.011 25.96±0.031 31.32±0.015 32.60±0.04

vanillaAT + Ours 60.65±0.11 33.73±0.022 31.22±0.024 29.77±0.032 28.93±0.044 25.19±0.022 33.04±0.067 34.47±0.081

TRADES + Ours 59.44±0.053 34.10±0.022 31.85±0.024 31.20±0.039 27.96±0.042 25.33±0.011 31.54±0.071 33.38±0.015

MART + Ours 55.67±0.011 34.80±0.032 32.88±0.030 32.33±0.012 28.66±0.025 26.15±0.061 31.38±0.031 33.60±0.011

LMA AT(Ours) 58.96±0.042 34.83±0.063 32.85±0.024 31.87±0.011 29.44±0.032 26.19±0.071 33.27±0.033 34.10±0.061

The results in Tables 7, 8, and 9 demonstrate a consistent improvement in robust accuracy across different
models and datasets when compared to baselines such as vanilla AT, TRADES, MART, and PMHR-AT.
Although vanilla AT attains higher clean accuracy, it does so at the cost of significantly lower adversarial
accuracy. The results demonstrate that our method not only outperforms other adversarial training (AT)
variants in clean accuracy but also surpasses existing methods in most attack scenarios. Our proposed
loss function consistently outperforms these baselines under various attacks, including FGSM, PGD-20,
PGD-100, SQUARE, and SPSA. Additionally, despite the increase in robust accuracy, the reduction in
natural accuracy remains minimal, indicating that the trade-off between natural and adversarial accuracy
is effectively managed. Notably, on the more challenging CIFAR-100 dataset (as reported in Table 9),
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our method surpasses all baselines in both natural and adversarial accuracy, maintaining a better balance
between robustness and accuracy, highlighting the superior performance of our proposed method, LMA-AT.

Table 10: Clean and robust accuracies on TinyImageNet, ResNet-18 . We perform six runs and report
the average performance with 95% confidence intervals. The ‘Clean’ column represents accuracy on natural
examples.

Method Clean PGD-20 CW AA
TRADES 49.56±0.001 22.90±0.0021 19.70±0.0011 16.78±0.001

MART 45.94 ±0.003 26.02±0.002 21.87±0.001 19.20 ±0.002

TRADES + Ours 50.68±0.023 24.91±0.033 20.88±0.012 18.33±0.034

MART + Ours 46.83±0.035 26.70±0.021 22.33±0.022 19.78±0.062

LMA AT(Ours) 49.23±0.031 26.54±0.031 22.38±0.012 18.44±0.022

For a more challenging task of classifying TinyImageNet, as presented in Table 10, our method outperforms
both TRADES and MART under PGD-20 and CW attacks while maintaining a natural accuracy comparable
to TRADES. However, TRADES exhibits lower robust accuracy compared to our method. Although MART
achieves decent robust accuracy on PGD-20 and AA, it comes at the expense of a significant drop in natural
accuracy. In contrast, our method achieves a better balance between robustness and accuracy.

Table 11: Clean and robust accuracies of different margin-based methods on CIFAR-10 using the WRN-34-
10 model. Results are based on six runs, with the average performance reported along with 95% confidence
intervals. The ’Clean’ column indicates the accuracy of unperturbed examples.

Method Clean PGD-20 CW AA SPSA
MMA 86.21±0.003 57.17±0.0021 57.52±0.011 44.57±0.0011 59.87±0.011

WAT 85.16±0.003 56.69±0.002 54.06±0.014 49.87±0.021 60.78±0.002

MAIL 86.82±0.003 60.38±0.012 51.48±0.001 47.15±0.001 59.23±0.032

GAIRAT 85.39±0.005 60.59±0.016 45.08±0.014 42.30±0.007 52.32±0.004

vanillaAT + Ours 85.76±0.044 59.96±0.022 56.28±0.062 52.97±0.011 63.76±0.033

TRADES + Ours 86.05±0.032 59.47±0.011 55.80±0.024 53.14±0.021 63.96±0.028

MART + Ours 85.16±0.032 60.14±0.022 55.29±0.025 52.14±0.023 63.27±0.032

LMA AT(Ours) 85.52±0.022 60.57±0.071 56.30±0.011 53.16±0.044 64.12±0.028

The results of 9 and 10 show that our proposed LMA-AT method significantly outperforms the vanilla AT,
TRADES, MART, and PMHR-AT. On CIFAR-100, TRADES + Ours improve TRADES by 2.28% on Clean
accuracy, 2.65% on FGSM, 1.53% on PGD-20, 1.72% on PGD-100, 2.8% on CW, 1.08% on SQUARE, and
1.32% on SPSA. On the other hand, MART + Ours improve MART by 1.65% on clean accuracy, 1.99%
on FGSM, 1.2% on PGD-20, 2.19% on PGD-100, 1.68% on CW, 1.32% on AA, and 1.15% on SPSA. Fur-
thermore, our method was evaluated on TinyImageNet, where Table 10 illustrates substantial enhancements
over TRADES and MART in Clean accuracy, PGD-20, CW, and AA metrics. Our LMA-AT method,
demonstrating its efficacy, achieves a minimal gap between natural and adversarial accuracy. Additionally,
our comparison with other margin-based approaches, detailed in Table 11, reveals that LMA-AT strikes a
better balance between natural accuracy and adversarial robustness than these existing methods. Notably,
our method outperforms other margins-based defenses by significant margins, such as GAIRAT by 10.86%,
MAIL by 6.01%, WAT by 3.29%, and MMA by 8.59% on AA.

6 Ablation Studies

First, to evaluate the impact of the moving average of logits on the overall adversarial robustness, we consider
our proposed loss: Logits Moving Average Adversarial Training (LMA-AT). We varied the moving average
parameter τ and recorded the results in Tables 3 and 4, where τ = 0.0 represents no moving average
applied. Both tables show poor performance under this condition. For instance, in Table 3, compared to the
performance without the moving average, when τ = 0.2, the improvement gap is 4.44% in natural accuracy,
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0.71% in CW, 1.42% in SPSA, and 0.68% in AA. In Table 4, applying the moving average of logits (τ = 0.2)
resulted in an accuracy increase of 7.63% under natural accuracy, 0.95% on CW, and 2.12% on SPSA, while
maintaining comparable performance against other attacks.

Such an increase confirms the contribution of the moving average of logits to the overall robustness, providing
a better trade-off between natural and adversarial accuracy. We also included Option E in 12 to evaluate
the effect of the moving average on our proposed method, LMA-AT. Additionally, we examined the impact
of the margin-based loss on two critical aspects: the generation of adversarial samples for training and the
loss function utilized during training. The options are summarized in the table below.

Table 12: This table offers an overview of different training settings, enabling the assessment of margin loss
during both training and the generation of adversarial examples used in training.

Options Adversarial Loss Training Loss
A CE L′

i + CE(p(x′
i, θ), yi) + β ∗mHuber(logit′

t, logitt, α)
B L′

i + CE BCE(p(x′
i, θ), yi) + β ∗mHuber(logit′

t, logitt, α)
C L′

i + CE L′
i + BCE(p(x′

i, θ), yi) + β ∗mHuber(logit′
t, logitt, α)

D L′
i + CE L′

i + BCE(p(x′
i, θ), yi)

E L′
i + CE L′

i + BCE(p(x′
i, θ), yi) + β ∗mHuber(logit′, logit, α)

Under option A, the cross-entropy loss (CE) is used to generate the adversarial samples for training, and the
margin loss is incorporated into the loss function used to train the model. In contrast, under option B, the
cross-entropy loss is supplemented with the margin-based loss for generating the adversarial samples used
for training, but the margin loss is not included in the training loss function. Under option C, the margin
loss contributes to both the adversarial data generation and the training processes. Finally, in Option D, we
combined the cross-entropy loss with the margin loss to generate the adversarial examples used for training
(inner maximization). The training loss is similar to option C. Still, we excluded the mHube regularization
term, meaning no moving average was applied, allowing us to directly assess the impact of the mHuber
regularization on the moving average of logits and its effect on model robustness.

Table 13: Clean and robust accuracy on ResNet-18 and Under CIFAR-10. We perform six runs and
report the average performance with 95% confidence intervals. The ‘Clean’ column represents accuracy on
natural examples.

Method Clean FGSM PGD-20 PGD-100 CW AA SQUARE SPSA
A 83.77±0.021 60.56±0.022 56.36±0.016 54.65±0.057 52.05±0.011 48.44±0.021 56.91±0.026 59.87±0.012

B 82.62±0.011 60.56±0.014 56.70±0.013 54.82±0.031 52.51±0.043 48.65±0.012 56.19±0.011 60.53±0.018

C 83.84±0.022 61.39±0.023 56.64±0.021 54.88±0.016 52.60±0.023 49.12±0.011 58.34±0.031 60.16±0.032

D 84.42±0.0024 60.65±0.004 55.77±0.012 54.27±0.014 52.03±0.001 48.08±0.004 58.65±0.006 59.10±0.025

E 79.44±0.024 61.80±0.012 56.73±0.030 55.84±0.012 51.89±0.033 48.74±0.021 56.10±0.076 59.70±0.051

A comparison between option A and option C in Table 13 highlights the impact of incorporating the margin-
based loss alongside the cross-entropy loss on model performance. Specifically, this combination resulted in
improvements across various attack scenarios: a 0.83% increase in FGSM accuracy, 0.28% in PGD-20, 0.23%
in PGD-100, 0.55% in CW, 1.43% in SQUARE, and 0.68% in AA. These results underscore the advantage of
utilizing margin-based loss to generate worst-case adversarial samples, which in turn contributes to developing
more robust models capable of defending against diverse attack methods.

We further compare Option B with Option C, both utilizing the margin-based loss alongside the cross-
entropy loss to generate worst-case adversarial samples for training. The results in Table 13 reveal that
incorporating the margin-based loss in the outer minimization (i.e., the loss function used during training)
led to performance improvements, including a 1.22% increase in natural accuracy, 0.83% in FGSM accuracy,
2.15% in SQUARE accuracy, and 0.47% in AA accuracy. When comparing Option C to Option D, we
observe that Option C achieves the best overall performance, particularly excelling against stronger attacks
such as CW and AA while maintaining high natural accuracy. This demonstrates the effectiveness of the
moving average of logits, which captures valuable information from previous iterations, as further validated
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in Appendix B. The significance of the moving average is also evident when comparing Option E (no moving
average applied) to Option C (moving average applied). The latter consistently delivers superior results,
reflecting enhanced model robustness and improved natural accuracy facilitated by the moving average
mechanism.

To further elaborate on the individual contribution of the margin loss to model robustness, we augmented
the cross-entropy loss with the margin loss, omitting the mHuber regularization and the moving average of
logits. The findings are documented in Table 15 below.

Table 14: This table provides an overview of the enhanced versions of the baseline losses (Standard AT,
TRADES, and MART). The terms highlighted in bold represent the improvement strategies incorporated.

Method Improved Losses
Standard AT+L′

i L′
i + CE(p(x′

i, θ), yi)
TRADES+L′

i L′
i + CE(p(xi, θ), yi) + 1

λ KL(p(xi, θ)||p(x′
i, θ))

MART+L′
i L′

i + BCE(p(x′
i, θ), yi) + λ ·KL(p(xi, θ)||p(x′

i, θ)) · (1− pyi(xi, θ))

Table 15: Clean and robust accuracy on ResNet-18 and Under CIFAR-10. We perform six runs and
report the average performance with 95% confidence intervals. The ‘Clean’ column represents accuracy on
natural examples.

Method Clean PGD-20 PGD-100 CW AA
vanillaAT 85.80±0.001 52.05±0.003 49.28±0.0022 51.08±0.001 46.62±0.004

TRADES 82.46±0.0012 54.78±0.0010 53.45 ±0.0032 51.65±0.0021 49.08±0.0031

MART 81.30 ±0.003 54.73±0.006 53.28±0.005 51.86±0.0031 49.01±0.0020

vanillaAT + L’i 84.80±0.003 54.79±0.0012 53.32±0.0023 51.96±0.003 48.13±0.001

TRADES + L’i 84.15±0.0013 56.03±0.017 54.84±0.0022 51.90±0.021 49.16±0.0034

MART + L’i 82.65±0.032 57.44±0.012 56.00±0.002 51.87±0.012 48.90±0.012

The results in Table 15 show that applying the margin loss to TRADES and MART significantly enhances
model performance on both natural and adversarial examples, particularly under PGD-20 and PGD-100
while maintaining comparable accuracy on CW and AA. When the margin loss is applied to vanilla AT, we
observe an improvement in adversarial robustness under PGD-20, PGD-100, CW, and AA, confirming the
benefits of the margin loss in enhancing model robustness against adversarial attacks. This improvement is
expected, as the margin loss is designed to push the decision boundary further from the training samples,
making it harder for adversarial perturbations to cause misclassification, as more significant perturbations
would be required for the sample to cross the decision boundary.

7 Conclusion

This paper introduces an enhancement strategy addressing scientists’ concerns regarding deep learning mod-
els’ vulnerability. Our method involves augmenting the cross-entropy loss with a margin-based loss to bolster
the model’s resilience against adversarial inputs. Furthermore, we introduce a novel training objective termed
Logits Moving Average Adversarial Training (LMA-AT), which leverages the moving average of logits to regu-
larize our model training process. Experimental results illustrate the effectiveness of our approach, achieving
a better trade-off between natural accuracy and adversarial robustness than existing works. Integrating the
margin loss with cross-entropy loss could provide a more robust defense against adversarial attacks. The
margin loss encourages greater class separation, which can help the model resist adversarial perturbations,
while cross-entropy loss ensures accurate classification. This combination may improve robustness without
sacrificing too much natural accuracy. In addition, regularizing with the mHuber between the natural and
adversarial moving averages of logits can stabilize the training by mitigating the impact of outliers and re-
ducing the variance between natural and adversarial logits. This could lead to better generalization on both
clean and adversarial data. Regarding scalability, the combined approach may scale well to large datasets
and complex models, as the margin loss and cross-entropy losses can be adapted to various architectures.
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This adaptability can make it feasible to apply the technique to real-world problems involving large-scale
data and models. Additionally, the method could be effective across various tasks and domains, such as
image classification, natural language processing, and more. It may help develop more resilient models to
maintain performance across different applications. When it comes to future work, we are interested in
future research that could focus on optimizing the balance between the margin loss, cross-entropy loss, and
mHuber regularization. Investigating how different values for these parameters affect model performance
and robustness will be crucial.
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A Appendix A

A.1 Theoretical Justification for Information Retention in the Moving Average of logits

To theoretically illustrate that the Exponential Moving Average (EMA) of logits contains valuable informa-
tion from previous iterations, we wil analyze the properties of the EMA and its ability to reflect historical
information and trends in a time series of logits. Let logitt be the logit at epoch t, and EMAt−1 represents
the exponential moving average from the previous epoch. According to the definition of the moving average,
The EMA is defined recursively as:

EMAt = τ · logitt + (1− τ) · EMAt−1 (18)

where 0 < τ ≤ 1. We expand the recursive definition to show that this formula retains information from
previous stages. According to the recursive definition of the moving average, the EMA at epoch t, EMAt−1
is as follows:

EMAt−1 = τ · logitt−1 + (1− τ) · EMAt−2 (19)
Substitute equation (19) into the original equation (18) and we get:

EMAt = τ · logitt + (1− τ) (τ · logitt−1 + (1− τ) · EMAt−2) (20)

Further simplification of the expression results in the following:

EMAt = τ · logitt + τ · (1− τ) · logitt−1 + (1− τ)2 · EMAt−2 (21)
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We continue this expansion for EMAt−2:

EMAt−2 = τ · logitt−2 + (1− τ) · EMAt−3 (22)

Substituting equation (22) into (21) and expanding yields

EMAt = τ · logitt + τ · (1− τ) · logitt−1 + τ · (1− τ)2 · logitt−2 + (1− τ)3 · EMAt−3 (23)

Generalizing, we get:

EMAt =
t∑

i=0
τ · (1− τ)i · logitt−i (24)

This series shows that the EMA at epoch t is a weighted sum of all previous logits logitk (for k = 0, 1, . . . , t),
with the weights τ · (1− τ)i decreasing exponentially as we go further back in time. The weights ensure that
while recent logits significantly influence the current EMA, information from earlier logits is also retained,
although with progressively lesser impact. Therefore, the EMA retains information from all previous stages,
with the degree of retention controlled by the smoothing factor τ .

A.2 Theoretical Justification that adversarial training of deep neural networks with margin loss and
cross-entropy improves adversarial robustness

To demonstrate that combining margin loss with cross-entropy loss improves adversarial robustness, we
break down the key components of the problem and illustrate how these training techniques enhance
resistance to adversarial attacks.
Let P (x) represent the probability density function of the input images, describing the likelihood of different
images appearing in the dataset. Denote the output of a deep neural network for a given image x as f(x),
and let y be the true class label. Now, consider an adversarial perturbation ϵ, which is a small change
added to the input image x, resulting in a perturbed image x′ = x + ϵ. This perturbation is specifically
crafted to cause the model to misclassify x′, i.e., f(x′) ̸= y. The objective is to minimize the probability of
misclassification under adversarial perturbation with noise ϵ.

A.2.1 Adversarial robustness in the context of cross-entropy loss

For a given image x and true label y, the cross-entropy loss is defined as:

LCE(f(x), y) = − log P (y|x) (25)

where P (y|x) is the predicted probability that the model assigns to the true label y given the input image
x. In the context of adversarial robustness, the goal is to understand how this loss function behaves when
the input image x is subjected to adversarial perturbations ϵ. If x′ = x + ϵ is the perturbed image, the
cross-entropy loss for x′ would be:

LCE(f(x′), y) = − log P (y|x′) (26)

Adversarial robustness aims to ensure that this loss does not significantly increase under perturbation,
meaning that the model’s confidence in the true label y remains high even when the input is adversarially
modified. The Cross-entropy loss encourages the model to maximize P (y | x) and P (y | x′), making the
model more confident in its predictions. The change in the model’s output when a small perturbation ϵ is
applied can be approximated by:

P (y | x + ϵ) ≈ P (y | x) +∇xP (y | x) · ϵ. (27)

during the training process, the Cross-entropy minimizes the gradient ∇xP (y | x), making the model less
sensitive to small perturbations, which improves robustness.
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A.2.2 Adversarial Robustness in the Context of the Margin Loss

Consider the margin δ(x), which is the distance from the input image x to the decision boundary. A larger
margin means that x is farther from the boundary, making it less likely that a small perturbation will result
in misclassification. The Margin loss is designed to increase δ(x), effectively pushing the decision boundary
away from the training samples. For a specific input x, the probability that a perturbation ϵ will cause a
misclassification depends on whether the perturbation is large enough to push x across the decision boundary.
Formally, this probability is given by:

P (misclass | x, ϵ) = P (∥ϵ∥ ≥ δ(x)). (28)

Increasing the margin δ(x) decreases the likelihood that a small perturbation ϵ will cause misclassification,
thereby enhancing robustness.

A.2.3 Joint Impact of Cross-Entropy and Margin Loss on Model Robustness

The Cross-entropy loss increases the model’s confidence, reducing the sensitivity to small perturbations ϵ.
While the Margin loss increases the margin δ(x), reducing the probability that a perturbation ϵ will cross the
decision boundary. Integrating Over All Possible Inputs x, To determine the overall probability of misclas-
sification P (misclass | x), we need to account for all possible inputs x according to their distribution P (x).
This requires integrating the misclassification probability over all inputs. Hence, The overall probability of
misclassification under an adversarial perturbation ϵ can be expressed as:

P (misclass, ϵ) =
∫

x

P (misclass | x, ϵ)P (x) dx =
∫

x

P (∥ϵ∥ ≥ δ(x))P (x) dx, (29)

Now, let’s analyze the joint effect. Using the margin loss helps us to increase the margin δ(x). The
region where ∥ϵ∥ ≥ δ(x) shrinks, reducing the misclassification probability. The Cross-entropy reduces
P (misclass | x, ϵ) by making the model less sensitive to perturbations, further decreasing the overall misclas-
sification probability. Together, these losses in adversarial training improve the adversarial robustness of deep
neural networks in image classification by minimizing the probability of misclassification under adversarial
perturbations.

B Appendix B

In this section, we conducted additional experiments on benchmark datasets (CIFAR-10 and TinyImageNet)
to evaluate the impact of the regularization parameter β and the mHuber parameter α on the proposed
LMA-AT loss. All experiments were performed using ResNet18 with a learning rate of 0.01, stochastic
gradient descent (SGD) optimization with a momentum of 0.9, and a weight decay of 3.5e-3. Adversarial
data used in training were generated using PGD with a random start, a maximum perturbation ϵ set to
8/255, a step size of 2/255, and the number of steps is 10, consistent with the settings described in Section 5.1.

B.0.1 Sensitivity of the regularization parameter β

We evaluate the impact of the regularization parameter β on our proposed method on TinyImageNet, ResNet-
18.
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Table 16: Clean and robust accuracies on TinyImageNet, ResNet-18 . We perform six runs and report
the average performance with 95% confidence intervals. The ‘Clean’ column represents accuracy on natural
examples.

β Clean PGD-20 CW
90 49.23±0.011 25.14±0.033 21.40±0.043

92 49.34±0.031 26.12±0.011 22.33±0.011

94 49.21±0.011 25.81±0.021 22.13±0.042

96 49.23±0.031 26.54±0.031 22.38±0.012

98 48.83±0.013 26.23±0.013 22.30±0.011

B.0.2 Evaluating the effectiveness of our proposed method across varying perturbation sizes

To further evaluate the effectiveness of our proposed method, we conducted an additional set of experiments
based on the previous section’s analysis. These experiments were designed to assess the robustness of the
proposed method under varying levels of perturbation. Specifically, we retained the experimental settings
outlined in the earlier section, including the dataset (CIFAR-10) and the model architecture (WRN-34-
10). However, we systematically varied the perturbation sizes in this experiment when generating the
adversarial used for testing. The results, detailed in the tables below, comprehensively compare our method’s
performance across different perturbation levels.

Table 17: Clean and robust accuracy on WRN-34-10 and Under CIFAR-10. The ‘Clean’ column repre-
sents accuracy on natural examples.

Method Clean PGD-20 PGD-100 CW AA
TRADES(ϵ 0.011) 84.57 76.71 76.68 75.77 75.68

MART(ϵ 0.011) 84.26 75.59 67.60 67.42 73.64
LMA AT(ϵ 0.011) 85.48 80.08 80.07 76.43 76.20

TRADES(ϵ 0.021) 84.57 66.87 66.72 65.43 64.80
MART(ϵ 0.021) 84.26 67.60 67.42 64.95 63.49

LMA AT(ϵ 0.021) 85.48 69.47 69.29 66.01 64.87

TRADES(ϵ 0.031) 84.26 57.71 56.68 55.02 52.56
MART(ϵ 0.031) 84.25 58.28 55.56 54.82 51.40

LMA AT(ϵ 0.031) 85.52 60.57 59.28 56.30 53.16

The results in Table 17 demonstrate that our proposed method consistently outperformed existing adver-
sarial training approaches TRADES and MART, across various perturbation sizes. Specifically, under more
minor perturbations, our method achieved higher robust accuracy, indicating its ability to effectively de-
fend against subtle adversarial manipulations. Our approach maintained superior performance at larger
perturbation sizes, showcasing its robustness in handling more vigorous and challenging adversarial attacks.
These improvements highlight the adaptability and effectiveness of our method in managing varying levels
of adversarial noise, setting it apart from traditional strategies like TRADES and MART.
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