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Abstract: Behavior cloning (BC) currently stands as a dominant paradigm for
learning real-world visual manipulation. However, in tasks that require locally
corrective behaviors like multi-part assembly, learning robust policies purely from
human demonstrations remains challenging. Reinforcement learning (RL) can
mitigate these limitations by allowing policies to acquire locally corrective be-
haviors through task reward supervision and exploration. This paper explores the
use of RL fine-tuning to improve upon BC-trained policies in precise manipula-
tion tasks. We analyze and overcome technical challenges associated with using
RL to directly train policy networks that incorporate modern architectural com-
ponents like diffusion models and action chunking. We propose training residual
policies on top of frozen BC-trained diffusion models using standard policy gra-
dient methods and sparse rewards. Our experimental results demonstrate that this
residual learning framework can significantly improve success rates beyond the
base BC-trained models in high-precision assembly tasks by learning corrective
actions. We also show that by combining our residual learning approach with
teacher-student distillation and visual domain randomization, our method can en-
able learning real-world policies for robotic assembly directly from RGB images.
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1 Introduction

Despite significant advancements in robot learning, autonomous systems still struggle with manip-
ulation tasks requiring high precision, robustness to a wide array of initial conditions, and operation
directly from RGB sensors. An example of such a challenging scenario is autonomous assembly,
where a robot is presented with a set of multiple parts to pick up and precisely fit together. Such
systems typically utilize engineered fixtures for consistent initial part positioning, making assembly
robots expensive and impractical to adapt across diverse tasks. Learning to perform these tasks from
vision can improve the adaptability and robustness of such systems, but the high-precision, contact-
rich nature of such tasks poses substantial challenges for current robotic learning frameworks.

Behavior cloning (BC), has re-emerged as a popular technique for acquiring manipulation control
policies [1, 2, 3, 4, 5, 6]. This is largely due to the ease of directly specifying complex tasks by pro-
viding demonstrations. However, BC requires large amounts of costly demonstration data to enable
generalization to different scene configurations [5]. BC-trained policies are also often limited by the
nature of human demonstrations that directly achieve the task. This can mean such policies never
learn to perform corrective actions that recover from deviations that inevitably occur during deploy-
ment. Reinforcement learning (RL) offers a complementary paradigm, wherein locally corrective
behavior can be learned by exploring and discovering action sequences that lead to downstream task
success.



Although RL offers appealing advantages, many of its successes in robotics depend on carefully
crafted reward functions that may sacrifice generality across tasks [7, 8, 9]. A common mitigation
is to bootstrap the RL process by starting with a small set of demonstrations [10, 11, 12] — by ini-
tializing with a policy that occasionally solves the task, supervision from simple sparse rewards can
be enough for RL to progress effectively. However, naively trained BC policies may fail to achieve
any meaningful success with a small number of demonstrations in complex tasks like assembly [13].
Innovations in policy design, such as diffusion models [14] and action chunking [6], can alleviate
some of this difficulty and enable non-zero success rates for challenging tasks using a modest num-
ber of demonstrations [13, 15]. However, introducing these modern architectural components makes
it difficult to perform fine-tuning with RL. For instance, training diffusion with RL can require com-
plex reformulation of the de-noising process to enable policy gradient estimation [16]. We also find
that action chunking tends to make direct RL fine-tuning harder and unstable due to the expanded
action space dimension induced by chunking.

In this paper, we propose adaptations to the BC + RL pipeline that facilitate its application to com-
plex tasks like furniture assembly [15]. Our key contribution is to enable RL fine-tuning to work
with modern advancements like diffusion policies and chunked action predictions. We first provide
an analysis and empirical evidence supporting the need for action chunking and expressive policy
architectures for achieving success rates that are high enough to bootstrap RL. We then propose
training residual policies [17, 18, 19] with on-policy RL and sparse task rewards to improve upon
pure BC. These residual models learn to predict corrective actions that more reliably achieve high
precision. In this way, we side-step the aforementioned challenges of directly altering the base pol-
icy with RL, while improving overall task success. Finally, by distilling behaviors learned with RL
into a large synthetic dataset of trajectories and combining them with a limited set of real-world
demonstrations, we showcase the benefits of our residual learning approach in enabling real-world
assembly policies that operate directly from RGB images.

2 Problem Setup and Approach Overview

Our goal is to develop a pipeline that enables robots to perform precise manipulation tasks without
requiring massive amounts of manual human effort. While our pipeline can be applied to many
tasks, we focus on applications to the domain of multi-step assembly directly from RGB images.
Here, we introduce the specific assumptions of our problem setup and detail the main ideas of the
pipeline that we propose.

Assumptions and System Components We assume an assembly task is specified to the robot via
a mid-sized (~50-90) set of expert demonstrations. The tasks each have an underlying success cri-
terion depending on a set of required alignments between the parts. Each task consists of a fixed set
of rigid object parts for which we have access to CAD models, such that both the parts and the entire
assembly process can be accurately simulated. Each task may have long horizons (~750-1000 steps)
and require sequencing of behaviors such as corner alignment, 6-DoF grasping, reorientation, inser-
tion, and screwing. Multi-part assembly interactions are simulated using the SDF-based collision
geometry representations featured in the Factory [20] extension of NVIDIA’s Isaac Gym simulator.
We use the tasks one_leg, round_table, and lamp from the FurnitureBench [15] task suite.

Preliminaries. We formulate the robot’s task as a discrete-time sequential decision-making prob-
lem. In each time step ¢, the robot receives either an observation o, € O if it operates in the real
world or the state of the system s; € S if it operates in simulation. After receiving it, the agent
produces an action a; to execute in the environment. The action space in both simulation and the
real world is the desired end-effector pose T4 € SE(3). We use a differential inverse kinemat-
ics controller to convert the desired end-effector pose commands into joint position targets, which
are tracked with a low-level PD controller. The real world observation space O contains the robot
end-effector pose T € SE(3), robot end-effector spatial velocity V' € R, the gripper width We,
and RGB images from a fixed front-view camera (/" ¢ R"*®x3) and a wrist-mounted camera
a wrist thwXB)’ each with unknown camera poses. In the simulated task variants, the system
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Figure 1: Pipeline overview. (1) Beginning with a policy trained with BC in simulation, (2) we train
residual policies to improve task success rates with RL and sparse rewards. (3) We then distill the
resulting behaviors to a policy that operates on RGB images. (4) By combining synthetic data with
a small set of real demonstrations, (5) we deploy assembly policies that operate from RGB images
in the real world.

states space S contains the same end-effector pose T, spatial velocity V, and gripper width wg,
along with the 6-DoF poses of all the parts in the environment {TP¥% }2"1-"“® n addition to the
state/observation, the simulated agent receives a binary reward signal from the environment, indi-
cating whether two parts of the assembly have achieved their required geometric alignment.

BC + RL Teacher-Student Distillation Pipeline The pipeline’s high-level goal is to leverage a
small amount of human demonstrations and the availability of a simulator to develop a vision-based
manipulation policy. To this end, the pipeline consists of two phases:

* Phase one: We train an agent to perform the task in a simulated environment using RL. To over-
come the need for manual reward engineering, we start with an initial policy pretrained with
behavior cloning on a limited set of demonstrations collected in the simulation. We then fine-tune
the policy with RL, with only a sparse reward signal provided upon successful task completion.

* Phase two: Next, we distill the fine-tuned RL expert policy into a dataset of high-quality RGB
image observations and corresponding actions for vision-based policy distillation (using BC). This
dataset is combined with a small set of real-world task demonstrations, which helps bridge the
simulation-to-reality gap for the final vision-based manipulation policy.

3 Methods

3.1 Imitation Learning

The first step in the pipeline is to use a small number of human demonstrations to train a “base”
policy that serves as the starting point for RL training. For each task, we collect a dataset of 50
demonstrations in simulation, Dgy,. This dataset contains trajectories, e.g., D = {71, ..., Tx }, where
each trajectory contains the system states s;, and robot actions ay, i.e., 7; = {(s¢, a1), ..., (sT,ar)},
with T" being the trajectory length. We obtain these trajectories by teleoperating the simulated robot
to complete the task.

Using the simulation dataset Dgjy,, we train the base policy 7pase With Behavior Cloning (BC), i.e.,
we maximize the likelihood of the data by optimizing max, E(,, s,)~p,, [log7(a:|s:)]. We use
Diffusion Policy [14] as the base model, which has shown strong empirical performance in handling
difficult manipulation tasks with relatively small datasets [13]. Consistent with recent advance-
ments [14, 6, 13], our policy framework enhances its performance by predicting multiple future
actions in chunks, as opposed to individual actions at each timestep. We denote the length of future



action sequences predicted by the policy as Ty, the output as a; = [ay, ..., as11,]. When predicting
an action chunk ay, of length T}, we only execute a subset [ay, ..., ai+1.,..], With execution horizon
TCXCC S T(L‘

3.2 Online Reinforcement Learning with Residual Policies

Given the initial base policy 7y, We aim to improve it using RL. However, directly fine-tuning
diffusion models with RL is an active area of research [21, 22, 16, 23], made difficult because
of the multi-step inference process and unavailability of the policy action log-probabilities. An-
other category of methods upweight high-quality model outputs via importance sampling, return
conditioning, or augmenting the original de-noising objective with a loss term for maximizing a
Q-function [24, 25, 26, 27, 28]. However, these methods mainly enable better extraction of high-
quality behavior in the data, while we are more concerned with learning new, corrective behaviors.
Action chunks can also make optimization with policy gradients more difficult. This is partly due
to chunking increasing the effective action space (e.g., chunks of 8 actions increase the dimension
by x8), which we find to increase RL training instability (see Sec. 4.1). This means fine-tuning
other popular BC architectures, like the Action-Chunked Transformer (ACT) [6], also brings tech-
nical challenges. Furthermore, recent work has shown that fine-tuning large pre-trained models can
lead to forgetting of capabilities if the agent does not visit states seen during pre-training frequently
enough [29].

We side-step these complications by training a residual @ 5 )
ase

Gaussian MLP policy mes. This policy takes as input S 1 action
both the system state and the action predicted by the diffu- t > ((hasg=> I chunk

sion policy mpase and produces an “action correction” that |5 ery T, timesteps a?ase ag
modifies the action as a; = a?®° + o - @}, withaw < 1 %

being a coefficient controlling what scale the residual pol- §
icy operates on. We denote the resulting combined policy
7. This decoupling has several advantages. First, we can
regard the diffusion model as a black box and not change
its parameters [17]'. This also allows the use of different
prediction horizons T, for the two policies. This flexi- Every timestep S,
bility in action horizon is helpful as most RL algorithms ~ \.'— O Ta e
optimize single-action policies. It also removes the need Figure 2: Per-timestep residual policies
to explicitly regularize the fine-tuned policy to stay near trained with PPO to locally correct ac-
the pre-trained policy, which is often necessary to achieve  tion chunks predicted by a BC-trained
stable optimization [30, 31]. diffusion policy.
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Given the above, we train the w5 using standard

PPO [32] with the alternation that we augment the state space with the base action. The base
model observes the current state s; and outputs a chunk of actions a;. For each action in the
chunk, we concatenate it with the current observation s}, = [s;44,a}%], and predict the cor-
rection a;; ~ 7(-|s}%;) fori = 0,...,T, — 1. Besides the technical convenience, one can look
at residual policy as a way to incorporate an inductive bias that the policy should only learn locally
corrective actions [18]. This is motivated by our qualitative observations that most of the base BC
policy failures are due to slight imprecision near “bottleneck” transitions when performing skills

like grasping and insertion (see Fig. 3).

3.3 Distillation for RGB-based Visual Policy

Once the RL training has converged, the policy typically exhibits significantly higher success
rates compared to the initial base policy. Our objective is to distill this enhanced performance

'This decoupling also implies that the ACT or any other strong BC or offline RL method can straightfor-
wardly serve as the base model without changing anything else in the pipeline, an advantage of residual policy
learning emphasized by other prior work in robotics [17, 18].



from the state-based policy into a vision-based policy that operates solely on RGB images. Fol-
lowing the established teacher-student distillation paradigm [9, 33, 7], we generate a dataset of
successful trajectories, Dgynpn, Where the environment’s observations, oy, replace the states, i.e.,
Dyynin = {Toynth,15 s Toynih, N } and Toynn s = {(01,a1), ..., (o7, ar)}. We utilize this dataset to
train a final image-conditioned diffusion policy with BC.

For real-world transfer, we enhance the synthetic dataset Dy, by re-rendering its trajectories in
Isaac Sim. This process improves image quality and introduces variability in environmental condi-
tions such as object and table colors, textures, lighting, and camera perspectives, many of which can-
not easily be done with standard image augmentation techniques. We denote this refined dataset as
Diynth-render- 10 €ase the difficulty of zero-shot sim-to-real with RGB images, we opt for a co-training
approach, integrating the synthetic dataset with a small set of real-world task demonstrations, Dyeyj,
which similarly comprises only environmental observations without ground truth poses. This com-
bined dataset, Dreal U Dyynih-render> 18 used to train the final student policy through BC. While loss
reweighting or upsampling may be helpful given the imbalanced dataset sizes, we find that simply
mixing the two datasets still provides performance improvement beyond training purely with real
data (see Fig. 2).

4 Experiments and Results

In Sec. 4.1, we investigate the requirement of complex BC methods and the impact of our residual
reinforcement learning approach on improving the success rates of policies trained with imitation
learning. Next, in Sec. 4.2, we study the performance of downstream distillation from synthetic
RL data, examining the relationship between the quantity and quality of the data and the resulting
performance of the distilled vision-based policies. Finally, in Sec. 4.3 we demonstrate our approach
enabling precise assembly tasks on a physical robot directly from vision.

4.1 Improving Imitation Learning with Online Residual Learning

Why Action Chunking and Diffusion Policies? Sim- Common BC policy failures

ple feed-forward MLPs of modest size have shown im-
pressive performance in many domains when trained with

L [7, 33, 34], and offer a natural starting point for
RL fine-tuning after BC pre-training. However, we find il e
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that MLP policies trained to predict single actions (MLP-

S) completely fail across all tasks we consider. There-

fore, we also trained MLP policies with action chunk- ‘

ing (MLP-C). When we introduce chunking, MLP per- ' ‘ . —

formance improves drastically. However, we also find
that the more complex diffusion policy architecture gen-
erally outperforms MLPs, especially in tasks of interme-  Fjgure 3: Representative failures from
diate difficulty. For example, an improvement from 10% BC policies. RL-trained residual poli-
success rate to 29% for the one_leg task on medium cies dramatically improve succcess rate
randomness, making subsequent fine-tuning far easier. by correcting for these errors.

In one case, lamp on low randomness, MLP-C outper-

formed DP. In qualitative evaluations, we find that DP has smoother and faster actions, which gener-
ally is beneficial, but in this case, seems to hurt performance, as it tends to retract before the gripper
closes. We also find that all methods struggle for the hardest tasks, i.e., on which MLP-C and DP
both achieve less than 5% success rate, indicating that there is still a need for stronger BC methods.

hnd grasp for insertion

Online Policy Fine-Tuning Comparison Next, we investigate the effectiveness of our residual
RL approach in improving the performance of policies trained with BC. We train residual policies
using PPO [32] on top of the diffusion policy and compare it to two baselines — (1) directly fine-tune
the MLP-C with PPO while regarding every action chunk as one concatenated action. (2) Using the



recently proposed IDQL algorithm [24] where one samples multiple times from the diffusion policy
and chooses which action chunk to execute based on its Q-value. We have found that learning a
good Q-value estimator from offline data alone, as proposed in IDQL, is challenging with only 50
demonstrations. Therefore, we learn it in on-policy matter similar to [35].

The results in Tab. 1 show that our residual RL approach significantly improves success rates over
BC and outperforms alternative RL fine-tuning methods. For tasks with lower initial randomization,
such as the one_leg task, the residual policy increases the success rate from 55% to 95%. However,
for tasks with higher part randomization, we observe performance saturates at lower success rates.
We hypothesize this is because the residual policy is limited by the performance of the base model.

100-

Methods One Leg Round Table Lamp R
Low Med Low Med Low Med 80~
IL “0-
MLP-S 0 0 0 0 0 0
MLP-C 45 10 5 2 8 1
DP 54 29 12 4 7 2 40
RL 20-
MLP-C + PPO 70 28 38 6 32 2
DP + IDQL 52 13 18 3 11 1
DP + Residual PPO 95 68 55 10 60 8 0 DP DP + residual PPO

Table 1: Top BC-trained MLPs without chunking (MLP-S) cannot Figure 4: Comparison of
perform any of the tasks, and Diffusion Policies (DP) generally outper- distilled performance from
form MLPs with chunking (MLP-C). Bottom Training our proposed BC and RL-based teacher.
residual policies with RL on top of frozen diffusion policies performs

the best among all evaluated fine-tuning techniques.

Fig. 3 shows qualitative examples of common failure modes made by BC policies that are regularly
corrected by the RL policy. For instance, a common BC policy error is to push down before the leg is
aligned with the hole. This often results in a shift of the object in the grasp, which causes the policy to
diverge due to the out-of-distribution grasp pose. We observe the residual policy regularly corrects
these errors by performing small sideways translations while canceling out premature downward
motions, typically only allowing the leg to be inserted once its properly above the hole. We also find
the residual policy is better at performing initial grasps that allow accurate downstream alignment
between the grasped object and the receptacle. The BC policies, on the other hand, more often grasp
the object at angles that make insertion more difficult.

In addition to improved success rates, we also observed quite different training dynamics across each
method. First, direct MLP-C fine-tuning proved unstable and required KL-regularization to avoid
collapse. Second, the trained DP produced actions with low variance, even with 7 = 1 in the DDIM
sampler [36], inhibiting Q-learning and constraining the potential for policy improvement. Finally,
residual policy training was quite stable, likely because it is constrained to operate on a local scale,
which prevents large deviations that can make RL unstable [37, 38].

4.2 Distillation Performance from Synthetic RL Data

Next, we study how synthetic RL data quantity and quality impact the performance of distilled
vision-based policies. First, we find that distilling trajectories from the RL agent performs better
than training directly on the 50 demonstrations. The RL-distilled vision-based policy reached 73%,
outperforming the 50% achieved by training the vision policy directly on human demos. However,
we also observe a performance gap between the RL-trained teacher (95%) and distilled student
policy (73%). We consider whether this gap may be caused by training the student to operate on
images. Upon examination, we find that distilling the same number of teacher rollouts into an
image-based student and a state-based student results in comparable performance.



This leads us to conclude that the change in modality is ~ 100-_
not the primary source of the performance gap. There-

fore, we also examine the impact of the distillation dataset 75 -
size. Here, we scale up the number of state-based rollouts
from the trained RL policy and distill these to a state- 50T T T T
based student. In Fig. 5, we see that performance in- .
X . == == RL policy success rate
creases with more data but still does not reach the per- B .
25 - === BC policy success rate

formance achieved by the teacher policy, with a gap of 18
percentage points between the best student policy (77% O~ o
success rate) and the teacher policy (95% success rate) 102 103 104
at 10k trajectories. Nevertheless, the improved perfor- Number of Demonstrations
mance obtained by training with more data highlights the Figure 5: BC distillation scaling with
advantage of using simulation for obtaining large-scale dataset size.

synthetic datasets.

=0 Distilled policy success rate

4.3 Real-World Performance

Finally, we evaluate the real-world performance of a sim-to-real policy trained on a mixture of a few
(10/40) real-world demonstrations and simulation data generated by the trained residual RL policy.
We compare the co-trained policy to a baseline model trained solely on real-world demonstrations.
We compare the success rates achieved by each policy on two sets of 10 trials for the one_leg task.
In the first set, we randomize part poses, while in the second set, we randomize obstacle poses.

The results, presented in Tab. 2, show that incorporating simulation data improves real-world perfor-
mance (e.g., increasing task completion rate from 20-30% to 50-60%). Qualitatively, the sim-to-real
policy exhibits smoother behavior and makes fewer erratic movements that might exceed the robot’s
physical limits. Fig. 6 shows examples of successful and unsuccessful task attempts, and more
examples of real-world task execution can be found in the supplementary video.

Traini Corner Grasp Insert Screw Complete
raining data
Part Obs Part Obs Part Obs Part Obs Part Obs
10 Real 5/10 5/10 5/10 7/10 2/10 3/10 0/10 2/10 0/10 2/10
10 Real + 350 Sim  9/10  9/10 7/10  &/10 0/10 3/10 0/10 3/10 0/10 3/10
40 Real 10/10  8/10 9/10 8/10 6/10 3/10 2/10 3/10 2/10 3/10

40 Real + 350 Sim  10/10  10/10  9/10 10/10 6/10 7/10 5/10 6/10 5/10 6/10

Table 2: We compare the impact of combining real-world demonstrations with simulation trajecto-
ries obtained by rolling our RL-trained residual policies. We find that co-training with both real and
synthetic data leads to improved motion quality and success rate on the one_leg task.

5 Related Works

Training diffusion models with reinforcement learning The approach in [16, 22] studied how
to cast diffusion de-noising as a Markov Decision Process, enabling preference-aligned image gen-
eration with policy gradient RL. However, this method is unstable and hard to tune. Other ways
to combine diffusion architectures with RL include Q-function-based importance sampling [24],
advantage weighted regression [25], or changing the objective into a supervised learning problem
with return conditioning [26, 27, 39]. Some have also explored augmenting the de-noising training
objective with a Q-function maximization objective [28] and iteratively changing the dataset with Q-
functions [40]. Recent work developed techniques for training diffusion policies from scratch [23],
leveraging combinations of unsupervised clustering and Q-learning to encourage multi-modal be-
havior discovery. Our method avoids such complexity involved with directly optimizing diffusion



Figure 6: (A) Examples of successful real world assembly from RGB. Co-training with simulation
data reduces jerkiness and improves insertion robustness, due to data from simulation containing
higher diversity of initial part poses and insertion locations (see Table 2). (B) Representative fail-
ures, primarily due to overfitting to a particular corner location and difficulty adjusting the insertion
angle/position when grasps lead to unfamiliar in-hand part poses.

models by instead using standard PPO to train simple residual policies that locally correct for errors
made by the base policy.

Residual learning in robotics Learning corrective residual components in conjunction with
learned or non-learned “base” models has seen widespread success in robotics. Common frame-
works include learning residual policies that correct for errors made by a nominal behavior pol-
icy [17, 18, 41, 19, 42] and combining learned components to correct for inaccuracies in analytical
models for physical dynamics [43, 44, 45] or sensor observations [46]. Residual policies have been
used in insertion applications [47] and recent work has applied residual policy learning to the same
FurnitureBench task suite we study in this paper [8]. Their approach uses the residual component
to model online human-provided corrections via supervised learning, whereas we train our residual
policy from scratch with RL using task rewards in simulation.

6 Limitations and Conclusion

Limitations The local nature of our residual policies is not well suited for learning the macro-level
corrective behaviors that are required to recover from large-scale deviations like dropped parts and
out-of-distribution in-hand object poses. Furthermore, despite showcasing the advantage of incorpo-
rating simulation data, we have yet to achieve high absolute success rates in the real world. Finally,
our proposed pipeline struggles in regimes with very high initial scene randomness, as both the base
policies and actions produced via RL exploration struggle to deal with out-of-support initial part
poses. Exciting future investigations may include better sim-to-real transfer techniques, exploration
mechanisms for discovering how to correct large-scale execution errors and incorporating inductive
biases that help with generalization to much broader initial state distributions.

Conclusion This work presents an approach for fine-tuning BC-trained policies for precise ma-
nipulation tasks using sparse rewards. We use RL to train residual policies that produce locally
corrective actions on top of base models with architecture components that complicate RL, such
as diffusion models and chunked action predictions. Our results show the proposed method out-
performs alternative techniques for fine-tuning imitation-learned assembly policies with RL. We
furthermore show that through teacher-student distillation and sim-to-real co-training techniques,
the precise behaviors acquired by our residual learner can be distilled into a real-world assembly
policy that operates directly from RGB images.
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7 Appendix

7.1 Code and Data

Our code is attached to the supplementary materials. All code and data will be open-sourced upon
publication.

7.2 Implementation Details
7.2.1 Training Hyperparameters

State-based behavior cloning We provide a detailed set of hyperparameters used for training.
General hyperparameters for all models can be found in Tab. 3, while specific hyperparameters for
the diffusion models are in Tab. 4, and those for the MLP baseline are in Tab. 5.

Table 3: Training hyperparameters shared for all state-based BC models

Parameter Value
Control mode Absolute end-effector pose
Action space dimension 10
Proprioceptive state dimension 16
Orientation Representation 6D [48]
Max LR 101
LR Scheduler Cosine
Warmup steps 500
Weight Decay 1076
Batch Size 256
Max gradient steps 400k

Table 4: State-based diffusion pre-training hyperparameters

Parameter Value
U-Net Down dims [256, 512, 1024]
Diffusion step embed dim 256
Kernel size 5

N groups 8
Parameter count 66M
Observation Horizon T, 1
Prediction Horizon T}, 32
Action Horizon T, 8
DDPM Training Steps 100
DDIM Inference Steps 4

Table 5: State-based MLP pre-training hyperparameters

Parameter Value
Residual Blocks 5
Residual Block Width 1024
Layers per block 2
Parameter count 11M
Observation Horizon T, 1
Prediction Horizon T}, (S / C) 1/8
Action Horizon T, (S/C) 1/8
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State-based reinforcement learning Below, we list the hyperparameters used for online rein-
forcement learning fine-tuning. The parameters that all state-based RL methods methods shared
are in Tab. 6. Method-specific hyperparameters for training the different methods are in the tables
below, direct fine-tuning of the MLP in Tab. 7, online IDQL in Tab. 8, and the residual policy in
Tab. 9. The different methods were tuned independently, but the same hyperparameters were used
for all tasks within each method.

Table 6: Hyperparameters shared for all online fine-tuning approaches

Parameter Value
Control mode Absolute end-effector pose
Action space dimension 10
Proprioceptive state dimension 16
Orientation Representation 6D [48]
Num parallel environments 1024
Max environment steps 500M
Critic hidden size 256
Critic hidden layers 2
Critic activation ReLU
Critic last layer activation Linear
Critic last layer bias initialization 0.25
Discount factor 0.999
GAE [49] lambda 0.95
Clip € 0.2
Max gradient norm 1.0
Target KL 0.1
Num mini-batches 1
Episode length, one_leg 700
Episode length, 1amp/round_table 1000
Normalize advantage true

Table 7: Hyperparameters for direct fine-tuning of MLP

Parameter Value
Update epochs 1
Learning rate actor 1074
Learning rate critic 10~*
Value function loss coefficient 1.0
KL regularization coefficient 0.5
Actor Gaussian initial log st.dev. -4.0

Table 8: Hyperparameters for training value-augmented diffusion sampling (IDQL)

Parameter Value
Update epochs 10
Learning rate Q-function 1074
Learning rate scheduler Cosine
Num action samples 20
Actor added Gaussian noise, log st.dev. —4
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Table 9: Hyperparameters for residual PPO training

Parameter Value
Residual action scaling factor 0.1
Update epochs 50
Learning rate actor 3-1074
Learning rate critic 5-1073
Learning rate scheduler Cosine
Value function loss coefficient 1.0
Actor Gaussian initial log st.dev. -1.5

Image-based real-world distillation For the real-world experiments, we use a separate set of
hyperparameters, presented in Tab. 10. The main difference is that we found in experimentation
that the transformer backbone in [14] worked better than the UNet for real-world experiments.
These models are also operating from RGB observations instead of privileged states, and we provide
parameters for the image augmentations applied to the front camera in Tab. 11 and the wrist camera
in Tab. 12.

Table 10: Training hyperparameters for real-world distilled policies

Parameter Value
Control mode Absolute end-effector pose
Action space dimension 10
Proprioceptive state dimension 16
Orientation Representation 6D [48]
Max policy LR 10~*
Max encoder LR 1075
LR Scheduler (both) Cosine
Policy scheduler warmup steps 1000
Policy scheduler warmup steps 5000
Weight decay 1073
Batch size 256
Max gradient steps 500k

Image size input

Image size encoder

Vision Encoder Model

Encoder Weights

Encoder Parameters

Encoder Projection Dim
Diffusion backbone architecture

2 x 320 x 240 x 3
2 x 224 x 224 x 3
ResNet18 [50]
R3M [51]

2 x 11 million

128

Transformer (similar to [14])

Transformer num layers 8
Transformer num heads 4
Transformer embedding dim 256
Transformer embedding dropout 0.0
Transformer attention dropout 0.3
Transformer causal attention true
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Table 11: Parameters for front camera image augmentation

Parameter Value
Color jitter (all parameters) 0.3
Gaussian blur, kernel size 5

Gaussian blur, sigma (0.01,1.2)
Random crop area 280 x 240
Random crop size 224 x 224
Random erasing, fill value random
Random erasing, probability 0.2
Random erasing, scale (0.02,0.33)
Random erasing, ratio (0.3,3.3)

Table 12: Parameters for front camera image augmentation

Parameter Value

Color jitter (all parameters) 0.3

Gaussian blur, kernel size 5

Gaussian blur, sigma (0.01,1.2)

Random crop Not used

Image resize 320 x 240 — 224 x 224

7.2.2 Action and State-Space Representations

Action space The policies predict 10-dimensional actions consisting of absolute poses in the robot
base frame as the actions and a gripper action. In particular, the first 3 dimensions predict the
desired end-effector position in the workspace, the next 6 predict the desired orientation using a 6-
dimensional representation described below. The final dimension is a gripper action, 1 to command
closing gripper and -1 for opening.

Proprioceptive state space The policy receives a 16-dimensional vector containing the current
end-effector state and gripper width. In particular, the first 3 dimensions is the current position in
the workspace, the next 6 the current orientation in the base frame (the same 6D representation), the
next 3 the current positional velocity, the next 3 the current roll, pitch, and yaw angular velocity, and
finally the current gripper width.

Rotation representation We use a 6D representation to represent all orientations and rotations
for the predicted action, and proprioceptive end-effector pose orientation [48, 52]. The poses of the
parts in state-based environments are represented with unit quaternions. While this representation
contains redundant dimensions, it is continuous, meaning that small changes in orientation lead to
small changes in the representation values, which can make learning easier[48, 52, 53]. This is
not generally the case for Euler angles and quaternions. The 6D representation is constructed by
taking two arbitrary 3D vectors and performing Gram-Schmidt orthogonalization to obtain a third
orthogonal vector to the first two. The resulting three orthogonal vectors form a rotation matrix that
represents the orientation. The end-effector rotation angular velocity is still encoded as roll, pitch,
and yaw values.

Action and State-Space Normalization All dimensions of the action, proprioceptive state, and
parts pose (for state-based environments), were independently scaled to the range [-1, 1]. That
is, we did not handle orientation representations (quaternions/6D [48]) in any particular way. The
normalization limits were calculated over the dataset at the start of behavior cloning training. They
were stored in the actor with the weights and reused as the normalization limits when training with
reinforcement learning. The normalization used here follows the same approach as in previous
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works such as [54, 14]. This normalization method is widely accepted for diffusion models. In
[54], the input was standardized to have a mean of 0 and a standard deviation of 1, instead of using
min-max scaling to the range of [0, 1]. This approach was not tested in our experiments.

7.2.3 Image Augmentation

During training, we apply image augmentation and random cropping to both camera views. Specifi-
cally, only the front camera view undergoes random cropping. We also apply color jitter with a hue,
contrast, brightness, and saturation set to 0.3. Additionally, we apply Gaussian blur with a kernel
size of 5 and sigma between 0.1 and 5 to both camera views.

At inference time, we statically center-crop the front camera image from 320x240 to 224x224 and
resize the wrist camera view to the same dimensions. For both the random and center crops, we
resized the image to 280x240 to ensure that essential parts of the scene are not cropped out due to
excessive movement.

The specific values mentioned above were chosen based on visual assessment to strike a balance
between creating adversarial scenarios and keeping essential features discernible. We have included
examples of these augmentations below.
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Figure 7: Left: Examples of augmentations of the wrist camera view, consisting of color jitter and
Gaussian blur. Right: Examples of augmentations for the front view also consist of color jitter and
Gaussian blur augmentations, as well as random cropping.

7.3 Sim2Real Transfer

Visualization of overlap in action space in real and sim For data from the simulation to be
useful for increasing the support of the policy for real-world deployment, we posit that it needs to
cover the real-world data. We visualize the distributions of actions in the training data in Fig. 8.
Since actions are absolute poses in the robot base frame, we can take the x, y, z coordinates for all
actions from simulation and real-world demonstration data and plot them. Each of the 3 plots is a
different cross-section of the space, i.e., a view from top-down, side, and front. In general, we see
that the simulation action distribution is more spread out and mostly covers real-world actions.

Visual Domain randomization In addition to randomizing part poses and the position of the
obstacle, we randomize parts of the rendering which is not easily randomized by simple image
augmentations, like light placement (changing shadows), camera pose, and individual part colors.
See Fig. 9 for examples of front-view images obtained from our domain randomization and re-
rendering procedure.
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Figure 8: Plots of the x, y, z action coordinates in the demo datasets for the one_leg task in the real
world and the simulator. That is, each dot represents one action from one of the 40/50 trajectories.
Red is from real-world demos, and blue is from the simulator. Left: Top-down view, showing the
x, y positions in the workspace visited. In the top right, the insertion point is shown, where we see
that the simulator has a wider distribution but could have covered better in the positive y-direction.
Middle: Side-view of the actions taken in the x, z plane. The insertion point is to the right in the
plot; again, we see more spread in the simulation data. Right: Front view of the y, z actions.

Figure 9: Examples of the randomization applied when rendering out the simulation trajectories
used for co-training for the real-world policies.

7.4 Tasks and Environment

Tasks details and reward signal We detail a handful of differentiating properties for each of the
three tasks we use in Tab. 13. one_leg involves assembling 2 parts, the tabletop and one of the 4
table legs. The assembly is characterized as successful if the relative poses between the parts are
close to a predefined assembled relative pose. When this pose is achieved, the environment returns
areward of 1. That is, for the one_leg task, the policy received a reward of 1 only at the very end of
the episode. For round_table and lamp, which consists of assembling 3 parts together, the policy
receives a reward signal of 1 for each pair of assembled parts. E.g. for the 1lamp task, when the bulb
is fully screwed into the base, the first reward of 1 is received, and the second is received when the
shade is correctly placed.
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Table 13: Task Attribute Overview
One Leg Round Table Lamp

Mean episode length ~500 ~700 ~600
# Parts to assemble
Num rewards
Dynamic bbject

# Precise insertions

# Screwing sequences
Precise grasping
Insertion occlusion

R Sl Ll )
NN XD W
N X == W

Details on randomization scheme The “low” and “medium” randomness settings we used for
data collection and evaluation reflect how much the initial part poses may vary when the environment
is reset. We tuned these conditions to mimic the levels of randomness introduced in the original
FurnitureBench suite [15]. However, we found that their method of directly sampling random poses
often leads to initial part configurations that collide with each other, requiring expensive continued
sampling to eventually find an initial layout where all parts do not collide with each other.

Our modified randomization scheme instead initializes parts to a single pre-specified set of feasi-
ble configurations and then applies a randomly sampled force and torque to each part (where the
force/torque magnitudes are tuned for each part and scaled based on the desired level of random-
ness). This scheme allows the physics simulation to ensure parts stay out of collision while still
providing a controlled amount of variation in the initial scene randomness.

The second way we modified the randomization scheme was to randomize the position of the U-
shaped obstacle fixture and the parts (the obstacle fixture was always kept in a fixed position in [15]).
Our reasoning was that, for visual sim-to-real without known object poses, we could only imper-
fectly and approximately align the obstacle location in the simulated and real environment. Rather
than attempting to make this alignment perfect, we instead trained policies to cover some range of
possible obstacle locations, hoping that the real-world obstacle position would fall within the dis-
tribution the policies have seen in simulation. Fig. 10 shows examples of our different randomness
levels for each task in simulation.

Additional adjustments to FurnitureBench simulation environments In addition to our mod-
ified force-based method of controlling the initial randomness, we introduced multiple other mod-
ifications to the original FurnitureBench environments proposed in [15] to enable the environment
to run fast enough to be feasible for online RL training. With these changes, we were able to run at
a total ~4000 environment steps per second across 1024 parallel environments. The main changes
are listed below:

1. Vectorized reward computation, done check, robot, part, and obstacle resets, and differen-
tial inverse kinematics controller.

2. Removed April tags from 3D models to ensure vision policies would not rely on tags to
complete the tasks. We tried to align with the original levels of randomness, but only to an
approximation.

3. Deactivate camera rendering when running the environment in state-only mode.

4. Correct an issue where the physics was not stepped a sufficient amount of time for sim
time to run at 10Hz, and subsequently optimize calls to fetch simulation results, stepping
of graphics, and refreshing buffers.

5. Artificially constrained bulb from rolling on the table until robot gripper is nearby as the
rolling in the simulator was exaggerated compared to the real-world parts.
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Figure 10: Examples of initial scene layouts for one_leg, lamp, and round_table with different
levels of initial part pose and obstacle fixture randomness
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7.5 Real-World Results

Screw (5/10)  Success

Insert (6 / 10)
Corner (10/10) | |Grasp (9/10) L]

Failure

Figure 11: Sankey diagram for the success rate and failure points for the real-world rollouts with 40
real and 350 simulation demos.

The diagram in Fig. 11 shows how successful and failed completion of individual sub-skills along the
one_leg task amount to our overall final success rates reported in Tab. 2 (bottom row, corresponding
to “40 real + 350 sim” with random initial part poses and a fixed obstacle pose).

8 Expanded Related Work

Learning robotic assembly skills Robotic assembly has been used by many as a problem setting
for various behavior learning techniques [55, 56, 18, 57, 58]. Enabling assembly that involves multi-
skill sequencing (e.g., fixturing — grasping — insertion — screwing) directly from RGB images has
remained challenging, especially without explicitly defining sub-skill-specific boundaries and super-
vision. Concurrent work [8] explores a similar framework to ours on FurnitureBench tasks [15], but
instead supervises learned policies on a per-skill basis and incorporates 3D point clouds. Indus-
tReal [55] also leverages RL in simulation to train high-precision skills for tight-tolerance part in-
sertion in the real world. However, they train their RL policies from scratch using carefully-designed
shaped rewards and curricula, whereas we bootstrap RL from BC pre-training, which enables RL to
operate with simple sparse rewards for achieving the desired assembly.

Complementary combinations of behavior cloning and reinforcement learning Various com-
binations of learning from demonstrations/behavior cloning and reinforcement learning have begun
maturing into standard tools in the learning-based control development paradigm [12, 10]. For
instance, demonstrations are often used to support RL in overcoming exploration difficulty and im-
proving sample efficiency [59, 34, 60]. RL can also act as a robustification operator to improve upon
base BC behaviors [12, 34], paralleling the RL fine-tuning paradigm that has powered much of the
recent advancement in other areas like NLP [61] and vision [16]. Additionally, many successful
robotics deployments [9, 33, 7] have been powered by the “teacher-student distillation” paradigm,
wherein perception-based “student” policies are trained to clone behaviors produced by a state-based
“teacher” policy, which is typically trained via RL in simulation. We demonstrate that our residual
RL approach for fine-tuning modern diffusion policy architectures can allow each of these comple-
mentary ways to combine BC and RL to come together and enable precise manipulation directly
from RGB images.
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