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ABSTRACT

Pseudo-labeling is a popular semi-supervised learning technique to leverage un-
labeled data when labeled samples are scarce. The generation and selection of
pseudo-labels heavily rely on labeled data. Existing approaches implicitly assume
that the labeled data is gold standard and “perfect”. However, this can be violated
in reality with issues such as mislabeling or ambiguity. We address this overlooked
aspect and show the importance of investigating labeled data quality to improve
any pseudo-labeling method. Specifically, we introduce a novel data characteriza-
tion and selection framework called DIPS to extend pseudo-labeling. We select
useful labeled and pseudo-labeled samples via analysis of learning dynamics. We
demonstrate the applicability and impact of DIPS for various pseudo-labeling
methods across an extensive range of real-world tabular and image datasets. Addi-
tionally, DIPS improves data efficiency and reduces the performance distinctions
between different pseudo-labelers. Overall, we highlight the significant benefits of
a data-centric rethinking of pseudo-labeling in real-world settings.

1 INTRODUCTION

Machine learning heavily relies on the availability of large numbers of annotated training examples.
However, in many real-world settings, such as healthcare and finance, collecting even limited numbers
of annotations is often either expensive or practically impossible. Semi-supervised learning leverages
unlabeled data to combat the scarcity of labeled data (Zhu, 2005; Chapelle et al., 2006; van Engelen
& Hoos, 2019). Pseudo-labeling is a prominent semi-supervised approach applicable across data
modalities that assigns pseudo-labels to unlabeled data using a model trained on the labeled dataset.
The pseudo-labeled data is then combined with labeled data to produce an augmented training set. This
increases the size of the training set and has been shown to improve the resulting model. In contrast,
consistency regularization methods (Sohn et al., 2020) are less versatile and often not applicable to
settings such as tabular data, where defining the necessary semantic-preserving augmentations proves
challenging (Gidaris et al., 2018; Nguyen et al., 2022a). Given the broad applicability across data
modalities and competitive performance, we focus on pseudo-labeling approaches.

Labeled data is not always gold standard. Current pseudo-labeling methods focus on unlabeled
data selection. However, an equally important yet overlooked problem is around labeled data quality,
given the reliance of pseudo-labelers on the labeled data. In particular, it is often implicitly assumed
that the labeled data is “gold standard and perfect”. This “gold standard” assumption is unlikely to
hold in reality, where data can have issues such as mislabeling and ambiguity (Sambasivan et al.,
2021; Renggli et al., 2021; Jain et al., 2020; Gupta et al., 2021a;b; Northcutt et al., 2021a;b). For
example, Northcutt et al. (2021b) quantified the label error rate of widely-used benchmark datasets,
reaching up to 10%, while Wei et al. (2022a) showed this can be as significant as 20-40%. This
issue is critical for pseudo-labeling, as labeled data provides the supervision signal for pseudo-labels.
Hence, issues in the labeled data will affect the pseudo-labels and the predictive model (see Fig. 1).
Mechanisms to address this issue are essential to improve pseudo-labeling. It might appear possible to
manually inspect the data to identify errors in the labeled set. However, this requires domain expertise
and is human-intensive, especially in modalities such as tabular data where inspecting rows in a
spreadsheet can be much more challenging than reviewing an image. In other cases, updating labels
might be infeasible due to rerunning costly experiments in domains such as biology and physics, or
indeed impossible due to lack of access to either the underlying sample or equipment.
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Figure 1: (Left) Current pseudo-labeling formulations implicitly assume that the labeled data is
the gold standard. (Right) However, this assumption is violated in real-world settings. Mislabeled
samples lead to error propagation when pseudo-labeling the unlabeled data.

Extending the pseudo-labeling machinery. To solve this fundamental challenge, we propose a novel
framework to extend the pseudo-labeling machinery called Data-centric Insights for Pseudo-labeling
with Selection (DIPS). DIPS focuses on the labeled and pseudo-labeled data to characterize and
select the most useful samples. We instantiate DIPS based on learning dynamics — the behavior of
individual samples during training. We analyze the dynamics by computing two metrics, confidence
and aleatoric (data) uncertainty, which enables the characterization of samples as Useful or Harmful,
guiding sample selection for model training. Sec. 5 empirically shows that this selection improves
pseudo-labeling performance in multiple real-world settings.

Beyond performance, DIPS is also specifically designed to be a flexible solution that easily integrates
with existing pseudo-labeling approaches, having the following desired properties:

(P1) Plug & Play: applicable on top of any pseudo-labeling method (to improve it).
(P2) Model-agnostic data characterization: agnostic to any class of supervised backbone
models trained in an iterative scheme (e.g. neural networks, boosting methods).
(P3) Computationally cheap: minimal computational overhead to be practically usable.

Contributions: 1⃝ Conceptually, we propose a rethinking of pseudo-labeling, demonstrating the im-
portance of characterizing and systematically selecting data from both the labeled and pseudo-labeled
datasets, in contrast to the current focus only on the unlabeled data. 2⃝ Technically, we introduce
DIPS, a novel framework to characterize and select the most useful samples for pseudo-labeling.
This extends the pseudo-labeling machinery to address the unrealistic status quo of considering the
labeled data as gold standard. 3⃝ Empirically, we show the value of taking into account labeled data
quality, with DIPS’s selection mechanism improving various pseudo-labeling baselines, both in terms
of performance and data efficiency, which we demonstrate across 18 real-world datasets, spanning
both tabular data and images. This highlights the usefulness and applicability of DIPS.

2 RELATED WORK

Semi-supervised learning and pseudo-labeling methods. Semi-supervised learning leverages
unlabeled data to combat the scarcity of labeled data (Zhu, 2005; Chapelle et al., 2006; van Engelen
& Hoos, 2019; Iscen et al., 2019; Berthelot et al., 2019). As mentioned in Sec. 1, we focus on pseudo-
labeling approaches, given their applicability across data modalities and competitive performance.
Recent methods have extended pseudo-labeling by modifying the selection mechanism of unlabeled
data (Lee et al., 2013; Rizve et al., 2021; Nguyen et al., 2022a; Tai et al., 2021), using curriculum
learning (Cascante-Bonilla et al., 2020), or merging pseudo-labeling with consistency loss-focused
regularization (Sohn et al., 2020). A commonality among these works is a focus on ensuring the
correct selection of the unlabeled data, assuming a gold standard labeled data. In contrast, DIPS
addresses the question: “What if the labeled data is not gold standard?”, extending the aforementioned
approaches to be more performant.

Data-centric AI. Data-centric AI has emerged focused on developing systematic methods to improve
the quality of data (Liang et al., 2022). One aspect is to score data samples based on their utility for a
task, or whether samples are easy or hard to learn, then enabling the curation or sculpting of high-
quality datasets for training efficiency purposes (Paul et al., 2021) or improved performance (Liang
et al., 2022). Typically, the goal is to identify mislabeled, hard, or ambiguous examples, with methods
differing based on metrics including uncertainty (Swayamdipta et al., 2020; Seedat et al., 2022), logits
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(Pleiss et al., 2020), gradient norm (Paul et al., 2021), or variance of gradients (Agarwal et al., 2022).
We note two key aspects: (1) we draw inspiration from their success in the fully supervised setting
(where there are large amounts of labeled data) and bring the idea to the semi-supervised setting where
we have unlabeled data but scarce labeled data; (2) many of the discussed supervised methods are only
applicable to neural networks, relying on gradients or logits. Hence, they are not broadly applicable
to any model class, such as boosting methods which are predominant in tabular settings (Borisov
et al., 2021; Grinsztajn et al., 2022). This violates P2: Model-agnostic data characterization.

Learning with Noisy Labels (LNL). LNL typically operates in the supervised setting and assumes
access to a large amount of labeled data. This contrasts the semi-supervised setting, where labeled
data is scarce, and is used to output pseudo-labels for unlabeled data. Some LNL methods alter a loss
function, e.g. adding a regularization term (Cheng et al., 2021; Wei et al., 2022b). Other methods
select samples using a uni-dimensional metric, the most common being the small-loss criterion in the
supervised setting (Xia et al., 2021). DIPS contrasts these approaches by taking into account both
confidence and aleatoric uncertainty in its selection process. While the LNL methods have not been
used in the semi-supervised setting previously, we repurpose them for this setting and experimentally
highlight the value of the curation process of DIPS in Appendix C. Interestingly, pseudo-labeling can
also be used as a tool in the supervised setting to relabel points identified as noisy by treating them as
unlabeled (Li et al., 2019); however, this contrasts DIPS in two key ways: (1) data availability: these
works operate only on large labeled datasets, whereas DIPS operates with a small labeled and large
unlabeled dataset. (2) application: these works use pseudo-labeling as a tool for supervised learning,
whereas DIPS extends the machinery of pseudo-labeling itself.

3 BACKGROUND

We now give a brief overview of pseudo-labeling as a general paradigm of semi-supervised learning.
We then highlight that the current formulation of pseudo-labeling overlooks the key notion of labeled
data quality, which motivates our approach.

3.1 SEMI-SUPERVISED LEARNING VIA PSEUDO-LABELING

Semi-supervised learning addresses the scarcity of labeled data by leveraging unlabeled data. The
natural question it answers is: how can we combine labeled and unlabeled data in order to boost the
performance of a model, in comparison to training on the small labeled data alone?

Notation. Consider a classification setting where we have a labeled dataset Dlab = {(xi, yi)|i ∈
[nlab]} as well as an unlabeled dataset Dunlab = {x′

j |j ∈ [nunlab]}. We typically assume that
nlab ≪ nunlab. Moreover, the labels take values in {0, 1}C , where C is the number of classes. This
encompasses both binary (C = 2) and multi-label classification. Our goal is to learn a predictive
model f : x → y which leverages Dunlab in addition to Dlab, such that it performs better than a
model trained on the small labeled dataset Dlab alone. For all k ∈ [C], the k-th coordinate of f(x) is
denoted as [f(x)]k. It is assumed to be in [0, 1], which is typically the case after a softmax layer.

Pseudo-labeling. Pseudo-labeling (PL) is a powerful and general-purpose semi-supervised approach
which answers the pressing question of how to incorporate Dunlab in the learning procedure. PL
is an iterative procedure which spans T iterations and constructs a succession of models f (i), for
i = 1, ..., T . The result of this procedure is the last model f (T ), which issues predictions at test time.
The idea underpinning PL is to gradually incorporate Dunlab into Dlab to train the classifiers f (i). At
each iteration i of pseudo-labeling, two steps are conducted in turn. Step 1: The model f (i) is first
trained with supervised learning. Step 2: f (i) then pseudo-labels unlabeled samples, a subset of which
are selected to expand the training set of the next classifier f (i+1). The key to PL is the construction of
these training sets. More precisely, let us denote D(i)

train the training set used to train f (i) at iteration i.
D(i)

train is defined by an initial condition, D(1)
train = Dlab, and by the following recursive equation: for

all i = 1, ..., T − 1, D(i+1)
train = D(i)

train ∪ s(Dunlab, f
(i)), where s is a selector function. Alternatively

stated, f (i) outputs pseudo-labels for Dunlab at iteration i and the selector function s then selects a
subset of these pseudo-labeled samples, which are added to D(i)

train to form D(i+1)
train . Common heuristics

define s with metrics of confidence and/or uncertainty (e.g. greedy-PL (Lee et al., 2013), UPS (Rizve
et al., 2021)). More details are given in Appendix A regarding the exact formulation of s in those cases.
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3.2 OVERLOOKED ASPECTS IN THE CURRENT FORMULATION OF PSEUDO-LABELING

Having introduced the pseudo-labeling paradigm, we now show that its current formulation overlooks
several key elements which will motivate our approach.

First, the selection mechanism s only focuses on unlabeled data and ignores labeled data. This implies
that the labeled data is considered "perfect". This assumption is not reasonable in many real-world
settings where labeled data is noisy. In such situations, as shown in Fig. 1, noise propagates to the
pseudo-labels, jeopardizing the accuracy of the pseudo-labeling steps (Nguyen et al., 2022a). To see
why such propagation of error happens, recall that D(1)

train = Dlab. Alternatively stated, Dlab provides
the initial supervision signal for PL and its recursive construction of D(i)

train.

Second, PL methods do not update the pseudo-labels of unlabeled samples once they are incorporated
in one of the D(i)

train. However, the intuition underpinning PL is that the classifiers f (i) progressively
get better over the iterations, meaning that pseudo-labels computed at iteration T are expected to be
more accurate than pseudo-labels computed at iteration 1, since f (T ) is the output of PL.

Taken together, these two observations shed light on an important yet overlooked aspect of current
PL methods: the selection mechanism s ignores labeled and previously pseudo-labeled samples. This
naturally manifests in the asymmetry of the update rule D(i+1)

train = D(i)
train ∪ s(Dunlab, f

(i)), where
the selection function s is only applied to unlabeled data and ignores D(i)

train at iteration i+ 1.

4 DIPS: DATA-CENTRIC INSIGHTS FOR IMPROVED PSEUDO-LABELING

In response to these overlooked aspects, we propose a new formulation of pseudo-labeling, DIPS,
with the data-centric aim to characterize the usefulness of both labeled and pseudo-labeled samples.
We then operationalize this framework with the lens of learning dynamics. Our goal is to improve the
performance of any pseudo-labeling algorithm by selecting useful samples to be used for training.

4.1 A DATA-CENTRIC FORMULATION OF PSEUDO-LABELING

Motivated by the asymmetry in the update rule of D(i)
train, as defined in Sec. 3.1, we propose DIPS, a

novel framework which explicitly focuses on both labeled and pseudo-labeled samples. The key idea
is to introduce a new selection mechanism, called r, while still retaining the benefits of s. For any
dataset D and classifier f , r(D, f) defines a subset of D to be used for training in the current pseudo-
labeling iteration. More formally, we define the new update rule (Eq. 1) for all i = 1, ..., T − 1 as:{

D(i+1) = D(i) ∪ s(Dunlab, f
(i)) ▷ Original PL formulation

D(i+1)
train = r(D(i+1), f (i)) ▷ DIPS selection

(1)

Then, let D(1) = D(1)
train = r(Dlab, f

(0)), where f (0) is a classifier trained on Dlab only. The selector
r selects samples from D(i+1), producing D(i+1)

train , the training set of f (i+1).

This new formulation addresses the challenges mentioned in Sec. 3.2, as it considers both labeled and
pseudo-labeled samples. Indeed, r selects samples in Dlab at any iteration i, since r(Dlab, f

(0)) =
D(0) ⊂ D(i) for all i = 0, ..., T . Moreover, at any iteration j = 2, ..., T , r selects samples amongst
those pseudo-labeled at a previous iteration i < j, since s(Dunlab, f

(i−1)) ⊂ D(i) ⊂ D(j). We show
the value of considering both labeled and pseudo-labeled data for the selection in Appendix C.1.

Finally, notice that DIPS subsumes current pseudo-labeling methods via its selector r. To see that,
we note current pseudo-labeling methods define an identity selector r, selecting all samples, such
that for any D and function f , we have r(D, f) = D. Hence, DIPS goes beyond this status quo by
permitting a non-identity selector r.

4.2 OPERATIONALIZING DIPS USING LEARNING DYNAMICS

We now explicitly instantiate DIPS by constructing the selector r. Our key idea is to define r using
learning dynamics of samples. Before giving a precise definition, let us detail some context. Prior
works in learning theory have shown that the learning dynamics of samples contain a useful signal
about the nature of samples (and their usefulness) for a specific task (Arpit et al., 2017; Arora et al.,
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Figure 2: Stage 1 operationalizes DIPS by leveraging learning dynamics of individual labeled and
pseudo-labeled samples to characterize them as Useful or Harmful. Only Useful samples are then
kept for Stage 2, which consists of pseudo-labeling, using any off-the-shelf method.

2019; Li et al., 2020). Some samples may be easier for a model to learn, whilst for other samples, a
model might take longer to learn (i.e. more variability through training) or these samples might not
be learned correctly during the training process. We build on this insight about learning dynamics,
bringing the idea to the semi-supervised setting.

Our construction of r has three steps. First, we analyze the learning dynamics of labeled and pseudo-
labeled samples to define two metrics: (i) confidence and (ii) aleatoric uncertainty, which captures
the inherent data uncertainty. Second, we use these metrics to characterize the samples as Useful or
Harmful. Third, we select Useful samples for model training, which gives our definition of r.

For any i, we assume that the classifier f (i) at iteration i of PL is trained in an iterative scheme (e.g.
neural networks or XGBoost trained over iterations), which is ubiquitous in practice. This motivates
and makes it possible to analyze the learning dynamics as a way to characterize individual samples.
For clarity of presentation, we consider binary classification (C = 2) and denote f (i) = f .

At any pseudo-labeling iteration, f is trained from scratch and goes through e ∈ [E] different
checkpoints leading to the set F = {f1, f2, . . . , fE}, such that fe is the classifier at the e-th
checkpoint. Our goal is to assess the learning dynamics of samples over these E training checkpoints.
For this, we define H , a random variable following a uniform distribution UF over the set of
checkpoints F . Specifically, given H = h and a sample (x, y), where y is either a provided label
(x ∈ Dlab) or a pseudo-label (x ∈ Dunlab), we define the correctness in the prediction of H as a
binary random variable ŶF (x, y) with the following conditional: P (ŶF (x, y) = 1|H = h) = [h(x)]y
and P (ŶF (x, y) = 0|H = h) = 1− P (ŶF (x, y) = 1|H = h).

Equipped with a probabilistic interpretation of the predictions of a model, we now define our
characterization metrics: (i) average confidence and (ii) aleatoric (data) uncertainty, inspired by
(Kwon et al., 2020; Seedat et al., 2022).
Definition 4.1 (Average confidence). For any set of checkpoints F = {f1, ..., fE}, the average
confidence for a sample (x, y) is defined as the following marginal:

P̄F (x, y) := P (ŶF (x, y) = 1) = EH∼UF [P (ŶF (x, y) = 1|H)] =
1

E

E∑
e=1

[fe(x)]y (2)

Definition 4.2 (Aleatoric uncertainty). For any set of checkpoints F = {f1, ..., fE}, the aleatoric
uncertainty for a sample (x, y) is defined as:

val,F (x, y) := EH∼UF [V ar(ŶF (x, y)|H)] =
1

E

E∑
e=1

[fe(x)]y(1− [fe(x)]y) (3)

Intuitively, the aleatoric uncertainty for a sample x is maximized when [fe(x)]y = 1
2 for all check-

points fe, akin to random guessing. Recall aleatoric uncertainty captures the inherent data uncertainty,
hence is a principled way to capture issues such as mislabeling. This contrasts epistemic uncertainty,
which is model-dependent and can be reduced simply by increasing model parameterization (Hüller-
meier & Waegeman, 2021).

We emphasize that this definition of uncertainty is model-agnostic, satisfying P2: Model-agnostic
data characterization, and only relies on having checkpoints through training. Hence, it comes for
free, unlike ensembles (Lakshminarayanan et al., 2017). This fulfills P3: Computationally cheap.
Moreover, it is applicable to any iteratively trained model (e.g. neural networks and XGBoost) unlike
approaches such as MC-dropout or alternative training dynamic metrics using gradients (Paul et al.,
2021) or logits (Pleiss et al., 2020).
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4.3 DEFINING THE SELECTOR r: DATA CHARACTERIZATION AND SELECTION

Having defined sample-wise confidence and aleatoric uncertainty, we characterize both labeled and
pseudo-labeled samples into two categories, namely Useful and Harmful. Given a sample (x, y), a
set of training checkpoints F , and two thresholds τconf and τal, we define the category c(x, y,F) as
Useful if P̄F (x, y) ≥ τconf and val,F (x, y) < τal, and Harmful otherwise.

Hence, a Useful sample is one where we are highly confident in predicting its associated label and
for which we also have low inherent data uncertainty. In contrast, a harmful sample would have low
confidence and/or high data uncertainty. Finally, given a function f whose training led to the set of
checkpoints F , we can define r explicitly by r(D, f) = {(x, y)|(x, y) ∈ D, c(x, y,F) = Useful}.

4.4 COMBINING DIPS WITH any PSEUDO-LABELING ALGORITHM

Algorithm 1 Plug DIPS into any pseudo-labeler

1: Train a network, f (0), using the samples from Dlab.

2: Plug-in DIPS: set D(1)
train = D(1) = r(Dlab, f

(0))

3: for t = 1..T do
4: Initialize new network f (t)

5: Train f (t) using D(t)
train.

6: Pseudo-label Dunlab using f (t)

7: Define D(t+1) using the PL method’s selector s

8: Plug-in DIPS : Define D(t+1)
train = r(D(t+1), f (t)) ▷ Data

characterization and selection, Sec. 4.3
9: end for

10: return fT

We outline the integration of DIPS
into any pseudo-labeling algorithm as
per Algorithm 1 (see Appendix A). A
fundamental strength of DIPS lies in
its simplicity. Not only is computa-
tion almost for free (no extra model
training) – i.e. P3: Computationally
cheap, but also DIPS is easily inte-
grated into any pseudo-labeling algo-
rithm – i.e. P1: Plug & Play, making
for easier adoption.

5 EXPERIMENTS

We now empirically investigate multiple aspects of DIPS. We discuss the setup of each experiment
at the start of each sub-section, with further experimental details in Appendix B.
1. Characterization: Does it matter? Sec. 5.1 analyzes the effect of not characterizing and

selecting samples in all D(i)
train in a synthetic setup, where noise propagates from Dlab to Dunlab.

2. Performance: Does it work? Sec. 5.2 shows characterizing D(i)
train using DIPS improves

performance of various state-of-the-art pseudo-labeling baselines across 12 real-world datasets.
3. Narrowing the gap: Can selection reduce performance disparities? Sec. 5.2 shows that DIPS

also renders the PL methods more comparable to one other.
4. Data efficiency: Can similar performance be achieved with less labeled data? Sec. 5.3 studies

the efficiency of data usage of vanilla methods vs. DIPS on different proportions of labeled data.
5. Selection across countries: Can selection improve performance when using data from a

different country? Sec. 5.4 assesses the role of selection of labeled and pseudo-labeled samples
when Dlab and Dunlab come from different countries in a clinically relevant task.

6. Other modalities: Sec. 5.5 shows the potential to use DIPS in image experiments.

5.1 SYNTHETIC EXAMPLE: DATA CHARACTERIZATION AND UNLABELED DATA IMPROVE TEST
ACCURACY

Goal. To motivate DIPS, we demonstrate that: (1) label noise in the data harms pseudo-labeling (2)
characterizing and selecting data using DIPS consequently improves pseudo-labeling performance.

Setup. We consider a synthetic setup with two quadrants (Lee et al., 2023), as illustrated in Fig. 3b 1.
We sample data in each of the two quadrants from a uniform distribution, and each sample is equally
likely to fall in each quadrant. To mimic a real-world scenario of label noise in Dlab, we randomly
flip labels with varying proportions pcorrupt ∈ [0.1, 0.45]

Baselines. We compare DIPS with two baselines (i) Supervised which trains a classifier using the
initial Dlab (ii) Greedy pseudo-labeling (PL) (Lee et al., 2013) which uses both Dlab and Dunlab. We
use an XGBoost backbone for all the methods and we combine DIPS with PL for a fair comparison.

1Notice that the two quadrant setup satisfies the cluster assumption inherent to the success of semi-supervised
learning (Chapelle et al., 2006).
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Figure 3: (Left) The colored dots are an illustration of the selected labeled and pseudo-labeled
samples for the last iteration of PL and PL+DIPS, with 30% label noise. Grey dots are unselected
unlabeled samples. (Right) Characterizing and selecting data for the semi-supervised algorithm
yields the best results, as epitomized by PL+DIPS, and makes the use of unlabeled data impactful.

Results. Test performance over 20 random seeds with different data splits and nlab = 100, nunlab =
900 is illustrated in Fig. 3c, for varying pcorrupt. It highlights two key elements. First, PL barely
improves upon the supervised baseline. The noise in the labeled dataset propagates to the unlabeled
dataset, via the pseudo-labels, as shown in Fig. 3a. This consequently negates the benefit of using the
unlabeled data to learn a better classifier, which is the original motivation of semi-supervised learning.
Second, DIPS mitigates this issue via its selection mechanism and improves performance by around
+20% over the two baselines when the amount of label noise is around 30%. We also conduct an
ablation study in Appendix C to understand when in the pseudo-labeling pipeline to apply DIPS.

Takeaway. The results emphasize the key motivation of DIPS: labeled data quality is central to
the performance of the pseudo-labeling algorithms because labeled data drives the learning process
necessary to perform pseudo-labeling. Hence, careful consideration of Dlab is crucial to performance.

5.2 DIPS IMPROVES DIFFERENT PSEUDO-LABELING ALGORITHMS ACROSS 12 REAL-WORLD
TABULAR DATASETS.

Goal. We evaluate the effectiveness of DIPS on 12 different real-world tabular datasets with diverse
characteristics (sample sizes, number of features, task difficulty). We aim to demonstrate that
DIPS improves the performance of various pseudo-labeling algorithms. We focus on the tabular
setting, as pseudo-labeling plays a crucial role in addressing data scarcity issues in healthcare and
finance, discussed in Sec. 1, where data is predominantly tabular (Borisov et al., 2021; Shwartz-
Ziv & Armon, 2022). Moreover, enhancing our capacity to improve models for tabular data holds
immense significance, given its ubiquity in real-world applications. For perspective, nearly 79%
of data scientists work with tabular data on a daily basis, compared to only 14% who work with
modalities such as images (Kaggle, 2017). This underlines the critical need to advance pseudo-
labeling techniques in the context of impactful real-world tabular data.

Datasets. The tabular datasets are drawn from a variety of domains (e.g. healthcare, finance),
mirroring Sec. 1, where the issue of limited annotated examples is highly prevalent. It is important
to note that the vast majority of the datasets (10/12) are real-world data sets, demonstrating the
applicability of DIPS and its findings in practical scenarios. For example, Covid-19 (Baqui et al.,
2020), MAGGIC (Pocock et al., 2013), SEER (Duggan et al., 2016), and CUTRACT (PCUK, 2019)
are medical datasets. COMPAS (Angwin et al., 2016) is a recidivism dataset. Credit is a financial
default dataset from a Taiwan bank (Yeh & Lien, 2009). Higgs is a physics dataset (Baldi et al., 2014).
The datasets vary significantly in both sample size (from 1k to 41k) and number of features (from 12
to 280). More details on the datasets can be found in Table 1, Appendix B.

Baselines. As baselines, we compare: (i) Supervised training on the small Dlab, (ii) five state-of-the-
art pseudo-labeling methods applicable to tabular data: greedy-PL (Lee et al., 2013), UPS (Rizve
et al., 2021), FlexMatch (Zhang et al., 2021), SLA (Tai et al., 2021), CSA (Nguyen et al., 2022a).
For each of the baselines, we apply DIPS as a plug-in to improve performance.

Results We report results in Fig. 4 across 50 random seeds with different data splits with a fixed
proportion of Dlab : Dunlab of 0.1:0.9. We note several findings from Fig. 4 pertinent to DIPS.

■ DIPS improves the performance of almost all baselines across various real-world datasets.
We showcase the value of data characterization and selection to improve SSL performance. We
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Figure 4: DIPS consistently improves performance of all five pseudo-labeling methods across the 12
real-world datasets. DIPS also reduces the performance gap between the different pseudo-labelers.

demonstrate that DIPS consistently boosts the performance when incorporated with existing pseudo-
labelers. This illustrates the key motivation of our work: labeled data is of critical importance for
pseudo-labeling and calls for curation, in real-world scenarios.

■ DIPS reduces the performance gap between pseudo-labelers.
Fig. 4 shows the reduction in variability of performance across pseudo-labelers by introducing data
characterization. On average, we reduce the average variance across all datasets and algorithms from
0.46 in the vanilla case to 0.14 using DIPS. In particular, we show that the simplest method, namely
greedy pseudo-labeling (Lee et al., 2013), which is often the worst in the vanilla setups, is drastically
improved simply by incorporating DIPS, making it competitive with the more sophisticated alterna-
tive baselines. This result of equalizing performance is important as it directly influences the process
of selecting a pseudo-labeling algorithm. We report additional results in Appendix C.2 where we
replace the selector r with sample selectors from the LNL literature, highlighting the advantage of
using learning dynamics.

Takeaway. We have empirically demonstrated improved performance by DIPS across multiple
pseudo-labeling algorithms and multiple real-world datasets.

5.3 DIPS IMPROVES DATA EFFICIENCY
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Figure 5: DIPS improves data efficiency of vanilla methods,
achieving the same level of performance with 60-70% fewer la-
beled examples, as shown by the vertical dotted lines. The results
are averaged across datasets and show gains in accuracy vs. the
maximum performance of the vanilla method.

Goal. In real-world scenar-
ios, collecting labeled data is
a significant bottleneck, hence
it is traditionally the sole fo-
cus of semi-supervised bench-
marks. The goal of this experi-
ment is to demonstrate that data
quality is an overlooked dimen-
sion that has a direct impact
on data quantity requirements
to achieve a given test perfor-
mance for pseudo-labeling.

Setup. For clarity, we focus on
greedy-PL and UPS as pseudo-
labeling algorithms. To assess data efficiency, we consider subsets of Dlab with size p · |Dlab|, with p
going from 0.1 to 1.

Results. The results in Fig. 5, averaged across datasets, show the performance gain in accuracy for all
p compared to the maximum performance of the vanilla method (i.e. when p = 1). We conclude that
DIPS significantly improves the data efficiency of the vanilla pseudo-labeling baselines, between
60-70% more efficient for UPS and greedy-PL respectively, to reach the same level of performance.

Takeaway. We have demonstrated that data quantity is not the sole determinant of success in pseudo-
labeling. We reduce the amount of data needed to achieve a desired test accuracy by leveraging the
selection mechanism of DIPS. This highlights the significance of a multi-dimensional approach to
pseudo-labeling, where a focus on quality reduces the data quantity requirements.

5.4 DIPS IMPROVES PERFORMANCE OF CROSS-COUNTRY PSEUDO-LABELING

Goal. To further assess the real-world benefit of DIPS, we consider the clinically relevant task of
improving classifier performance using data from hospitals in different countries.
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Setup. We assess a setup using Prostate cancer data from the UK (CUTRACT (PCUK, 2019)) to
define (Dlab,Dtest), which is augmented by Dunlab, from US data (SEER (Duggan et al., 2016)).
While coming from different countries, the datasets have interoperable features and the task is to
predict prostate cancer mortality. We leverage the unlabeled data from the US to augment the small
labeled dataset from the UK, to improve the classifier when used in the UK (on Dtest).

Greedy-PL UPS

66
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70

A
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Figure 6: Curation of Dlab

permits us to better leverage
a cross-country Dunlab

Results. Fig. 6 illustrates that greedy-PL and UPS benefit from DIPS’s
selection of labeled and pseudo-labeled samples, resulting in improved
test performance. Hence, this result underscores that ignoring the labeled
data whilst also naively selecting pseudo-labeled samples simply using
confidence scores (as in greedy-PL) yields limited benefit. We provide
further insights into the selection and gains by DIPS in Appendix C.

Takeaway. DIPS’s selection mechanism improves performance when
using semi-supervised approaches across countries.

5.5 DIPS WORKS WITH OTHER DATA MODALITIES

Goal. While DIPS is mainly geared towards the important problem of pseudo-labeling for tabular
data, we explore an extension of DIPS to images, highlighting its versatility. Future work may
explore other modalities like text or speech.
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Figure 7: DIPS improves Fix-
Match on CIFAR-10N

Setup. We investigate the use of DIPS to improve pseudo-labeling
for CIFAR-10N (Wei et al., 2022a). With realism in mind, we specif-
ically use this dataset as it reflects noise in image data stemming
from real-world human annotations on M-Turk, rather than synthetic
noise models (Wei et al., 2022a). We evaluate the semi-supervised
algorithm FixMatch (Sohn et al., 2020) with a WideResNet-28
(Zagoruyko & Komodakis, 2016) for nlab = 1000 over three seeds.
FixMatch combines pseudo-labeling with consistency regularization,
hence does not apply to the previous tabular data-focused experi-
ments. We incorporate DIPS as a plug-in to the pseudo-labeling
component of FixMatch.

Results. Fig. 7 showcases the improved test accuracy for FixMatch+DIPS of 85.2% over vanilla
FixMatch of 82.6%. A key reason is that DIPS discards harmful mislabeled samples from Dlab,
with example images shown in Fig. 8b. Furthermore, Table 8a shows the addition of DIPS improves
time efficiency significantly, reducing the final computation time by 8 hours. We show additional
results for CIFAR-100N in Appendix C.4 and for other image datasets in Appendix C.4.4.

Takeaway. DIPS is a versatile framework that can be extended to various data modalities.

(a) DIPS improves the time effi-
ciency (hours reported on a v100
GPU) of FixMatch, by 1.5-4X for
the same performance. ↓ better

Test acc (%) FM + DIPS FixMatch (FM)
65 2.3 ± 0.4 8.0 ± 2.0

70 4.6 ± 0.5 16.4 ± 3.26

75 10.8 ± 0.7 26.5 ± 1.9

80 27.8 ± 0.8 35.8 ± 0.9

85 38.5 ± 0.3 N.A.

(b) Examples of mislabeled samples in CIFAR-10N discarded by
DIPS. We note the incorrect labels and ideal ground-truth labels.

Noisy label: automobile
True label:   airplane

Noisy label: deer
True label:  horse

Noisy label: dog
True label:  deer

Noisy label: truck
True label:  automobile

Figure 8: (Left) Time efficiency improvements (Right) Examples of harmful samples discarded

6 DISCUSSION

We propose DIPS, a plugin designed to improve any pseudo-labeling algorithm. DIPS builds on the
key observation that the quality of labeled data is overlooked in pseudo-labeling approaches, while it
is the core signal which renders pseudo-labeling possible. Motivated by real-world datasets and their
inherent noisiness, we introduce a cleaning mechanism which operates both on labeled and pseudo-
labeled data. We showed the value of taking into account labeled data quality – by characterizing and
selecting data we improve test performance for various pseudo-labelers across 18 real-world datasets
spanning tabular data and images. Future work could explore the impact of such insights for other
modalities, including NLP and speech.
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Appendix: Rethinking pseudo-labeling:
Data-centric insights improve
semi-supervised learning
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A ADDITIONAL DETAILS ON DIPS

A.1 DIPS ALGORITHM

We summarize how DIPS can be incorporated into any pseudo-labeling algorithm as per Algorithm
1. For clarity, we highlight in red how DIPS extends the current pseudo-labeling formulations.

Algorithm 2 Plug DIPS into any pseudo-labeler

1: Train a network, f (0), using the samples from Dlab.

2: Plug-in DIPS: set D(1)
train = D(1) = r(Dlab, f

(0)) ▷ Initialization of the training set
3: for t = 1..T do
4: Initialize new network f (t)

5: Train f (t) using D(t)
train.

6: Pseudo-label Dunlab using f (t)

7: Define D(t+1) using the PL method’s selector s

8: Plug-in DIPS : Define D(t+1)
train = r(D(t+1), f (t)) ▷ Data characterization and selection, Sec. 4.3

9: end for
10: return fT

We emphasize a key advantage of DIPS lies in its simplicity. Beyond getting the computation almost
for free (no additional models to train when instantiating DIPS with learning dynamics) - i.e. P3:
Computationally cheap, we can also plug DIPS into and augment any pseudo-labeling algorithm.
(i.e. P1: Plug & Play), which makes for easier adoption.

A.2 OVERVIEW OF PSEUDO-LABELING METHODS

As we described in Sec. 3.1, current pseudo-labeling methods typically differ in the way the selector
function s is defined. Note that s is solely used to select pseudo-labeled samples, among those which
have not already been pseudo-labeled at a previous iteration. The general way to define s for any set
D and function f is s(D, f) = {(x, [ŷ]k)|x ∈ D, ŷ = f(x), k ∈ [C], [m(x, f)]k = 1}, where m is
such that m(x, f) ∈ RC . Alternatively stated, a selector m outputs the binary decision of selecting x
and its associated pseudo-labels ŷ. Notice that we allow the multi-label setting, where C > 1, hence
explaining why the selector m’s output is a vector of size C. We now give the intuition of how widely
used PL methods construct the selector m, thus leading to specific definitions of s.

Greedy pseudo-labeling (Lee et al., 2013) The intuition of greedy pseudo-labeling is to select a
pseudo-label if the classifier is sufficiently confident in it. Given two positive thresholds τp and τn
with τn < τp, and a classifier f , m is defined by [m(x, f)]k = 1([f(x)]k ≥ τp) + 1([f(x)]k ≤ τn)
for k ∈ [C].

UPS (Rizve et al., 2021) In addition to confidence, UPS considers the uncertainty of the predic-
tion when selecting pseudo-labels. Given two thresholds κn < κp, UPS defines [m(x, f)]k =
1(u([f(x)]k) ≤ κp)1([f(x)]k ≥ τp) + 1(u([f(x)]k) ≤ κn)1([f(x)]k ≤ τn), where u is a proxy
for the uncertainty. One could compute u using MC-Dropout (for neural networks) or ensembles.

Flexmatch (Zhang et al., 2021) FlexMatch dynamically adjusts a class-dependent threshold for the
selection of pseudo-labels. The selection mechanism is defined by: [m(x, f)]k = 1(maxj [f(x)]j >
τt(argmaxi[f(x)]i)), i.e. at iteration t, an unlabeled point is selected if and only if the confidence of
the most probable class is greater than its corresponding dynamic threshold.

SLA (Tai et al., 2021) and CSA (Nguyen et al., 2022a) The fundamental intuition behind SLA and
CSA is to solve a linear program in order to assign pseudo-labels to unlabeled data, based on the
predictions f(x). The allocation of pseudo-labels considers both the rows (the unlabeled samples) and
the columns (the classes), hence contrasts greedy pseudo-labeling, and incorporates linear constraints
in the optimization problem. An approximate solution is found using the Sinkhorn-Knopp algorithm.
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A.3 LEARNING DYNAMICS PLOT

Key to our instantiation of DIPS is the analysis of learning dynamics. We illustrate in Fig. 9 for
a pseudo-labeling run in Sec. 5.5 the learning dynamics of 6 individual samples. DIPS uses these
dynamics to compute the metrics of confidence and aleatoric uncertainty, as explained in Sec. 4.2.
This then characterizes the samples as Useful or Harmful.
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Figure 9: DIPS uses learning dynamics to compute the metrics of confidence and aleatoric uncertainty.
It then characterizes labeled (and pseudo-labeled) samples based on these metrics. The y axis
represents the probability assigned to the true label by the current classifier h, which is P (ŶF (x, y) =
1|H = h).

The intuition is the following: a sample is deemed Useful if the classifiers at each checkpoint are
confident in predicting the associated (pseudo-)label of the sample, and the associated aleatoric
uncertainty is low. Failure to satisfy this criterion leads to a characterization as Harmful.

A.4 COMPARISON WITH SCHMARJE ET AL. (2022)

In what follows, we compare DIPS with DC3 (Schmarje et al., 2022). While both DIPS and DC3
handle the data-centric issue of issues in data and share similarities in their titles, they tackle different
data-centric problems which might arise in semi-supervised learning. The main differences are along
4 different dimensions:

1. Problem setup/Type of data-centric issue: DIPS tackles the problems of hard noisy labels
where each sample has a single label assigned in the labeled set which could be incorrect.
In contrast, DC3 deals with the problem of soft labeling where each sample might have
multiple annotations from different annotators which may be variable.

2. Label noise modeling: DIPS aims to identify the noisy labels, whereas DC3 models the
inter-annotator variability to estimate label ambiguity.

3. Integration into SSL: DIPS is a plug-in on top of any pseudo-labeling pipeline, selecting the
labeled and pseudo-labeled data. DC3 on the otherhand uses its ambiguity model (learned
on the multiple annotations) to either keep the pseudo-label or use a cluster assignment.

4. Dataset applicability: DIPS has lower dataset requirements as it can be applied to any
dataset with labeled and unlabeled samples, even if there is only a single label per sample.
It does not require multiple annotations. DC3 has higher dataset requirements as it relies
on having multiple annotations per sample to estimate inter-annotator variability and label
ambiguity. Without multiple labels per sample, it cannot estimate ambiguity and perform
joint classification and clustering. Consequently, DIPS is applicable to the standard semi-
supervised learning setup of limited labeled data and abundant unlabeled data, whereas DC3
targets the specific problem of ambiguity across multiple annotators.
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A.5 CONNECTION TO ACTIVE LEARNING

Active learning primarily focuses on the iterative process of selecting data samples that, when labeled,
are expected to most significantly improve the model’s performance. This selection is typically based
on criteria such as uncertainty sampling which focuses on epistemic uncertainty (Mussmann &
Liang, 2018; Houlsby et al., 2011; Kirsch et al., 2019; Nguyen et al., 2022b). The primary objective
is to minimize labeling effort while maximizing the model’s learning efficiency. In contrast, DIPS
does both labeled and pseudo-labeled selection and employs the term ’useful’ in a different sense.
Here, ’usefulness’ refers to the capacity of a data sample to contribute positively to the learning
process based on its likelihood of being correctly labeled. Our approach, which leverages training
dynamics based on aleatoric uncertainty and confidence, is designed to flag and exclude mislabeled
data. This distinction is critical in our methodology as it directly addresses the challenge of data
quality, particularly in scenarios where large volumes of unlabeled data are integrated into the training
process. In active learning, these metrics are used to identify data points that, if labeled, would yield
the most significant insights for model training. In our approach, they serve to identify and exclude
data points that could potentially deteriorate the model’s performance due to incorrect labeling.
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B EXPERIMENTAL DETAILS

B.1 BASELINES

In our experiments, we consider the following baselines for pseudo-labeling: Greedy-PL (Lee et al.,
2013), UPS (Rizve et al., 2021), Flexmatch (Zhang et al., 2021), SLA (Tai et al., 2021) and CSA
(Nguyen et al., 2022a). To assess performance of DIPS for computer vision, we use FixMatch (Sohn
et al., 2020).

Greedy-PL The confidence upper threshold is 0.8

UPS The confidence upper threshold is 0.8 and the threshold on the uncertainty is 0.2. The size of
the ensemble is 10.

FlexMatch The upper threshold is 0.9 (which is then normalized).

CSA and SLA The confidence upper threshold is 0.8. The size of the ensemble is 20.

We use the implementation of these algorithms provided in (Nguyen et al., 2022a).

FixMatch The threshold is set to 0.95 as in (Sohn et al., 2020).

B.2 DATASETS

We summarize the different datasets we use in this paper in Table 1. The datasets vary in number
of samples, number of features and domain. Recall, we use data splits with a proportion of Dlab :
Dunlab of 0.1:0.9.

Table 1: Summary of the datasets used

Name n samples n features Domain

Adult Income (Asuncion & Newman, 2007) 30k 12 Finance
Agarius lepiota (Asuncion & Newman, 2007) 8k 22 Agriculture
Blog (Buza, 2013) 10k 280 Social media
Compas (Angwin et al., 2016) 5k 13 Criminal justice
Covid-19 (Baqui et al., 2020) 7k 29 Healthcare/Medicine
Credit (Taiwan) (Yeh & Lien, 2009) 30k 23 Finance
CUTRACT Prostate (PCUK, 2019) 2k 12 Healthcare/Medicine
Drug (Fehrman et al., 2017) 2k 27 Healthcare/Medicine
German-credit (Asuncion & Newman, 2007) 1k 24 Finance
Higgs (Baldi et al., 2014) 25k 23 Physics
MAGGIC (Pocock et al., 2013) 41k 29 Healthcare/Medicine
SEER Prostate (Duggan et al., 2016) 20k 12 Healthcare/Medicine

For computer vision experiments, we use CIFAR-10N (Wei et al., 2022a). The dataset can be accessed
via its official release.2

B.3 IMPLEMENTATION DETAILS

The three key design decisions necessary for pseudo-labeling are:

1. Choice of backbone model (i.e. predictive classifier f )
2. Number of pseudo-labeling iterations — recall that it is an iterative process by repeatedly

augmenting the labeled data with selected samples from the unlabeled data.
3. Compute requirements.

We describe each in the context of each experiment. For further details on the experimental
setup and process, see each relevant section of the main paper.

2https://github.com/UCSC-REAL/cifar-10-100n
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First, let’s detail some general implementation details pertinent to all experiments.

■ Code: We will release code upon acceptance.

■ DIPS thresholds: Recall that DIPS has two thresholds τconf and τal. We set τconf = 0.8, in
order to select high confidence samples based on the mean of the learning dynamic. Note, τal is
bounded between [0,0.25]. We adopt an adaptive threshold for τal based on the dataset, such that
τal = 0.75 · (max(val(Dtrain))−min(val(Dtrain)))

B.3.1 SYNTHETIC EXAMPLE: DATA CHARACTERIZATION AND UNLABELED DATA IMPROVE
TEST ACCURACY

1. Backbone model: We use an XGBoost, with 100 estimators similar to (Nguyen et al., 2022a).
Note, XGBoost has been shown to often outperform deep learning methods on tabular
data (Borisov et al., 2021; Shwartz-Ziv & Armon, 2022). That said, our framework is not
restricted to XGBoost.

2. Iterations: we use T = 5 pseudo-labeling iterations, as in (Nguyen et al., 2022a).
3. Compute: CPU on a MacBook Pro with an Intel Core i5 and 16GB RAM.

B.3.2 TABULAR DATA EXPERIMENTS: SEC 5.2, 5.3, 5.4

1. Backbone model: Some of the datasets have limited numbers, hence we have the backbone
as XGBoost, with 100 estimators similar to (Nguyen et al., 2022a). Note, XGBoost has
been shown to often outperform deep learning methods on tabular data (Borisov et al., 2021;
Shwartz-Ziv & Armon, 2022). That said, our framework is not restricted to XGBoost.

2. Iterations: we use T=5, pseudo-labeling iterations, as in (Nguyen et al., 2022a).
3. Compute: CPU on a MacBook Pro with an Intel Core i5 and 16GB RAM.

For the tabular datasets we use splits with a proportion of Dlab : Dunlab of 0.1:0.9.

B.3.3 COMPUTER VISION EXPERIMENTS: SEC 5.5

1. Backbone model: we use a WideResnet-18 (Zagoruyko & Komodakis, 2016) as in (Sohn
et al., 2020).

2. Iterations: with Fixmatch we use T=1024k iterations as in (Sohn et al., 2020).
3. Data augmentations: Strong augmentation is done with RandAugment with random magni-

tude. Weak augmentation is done with a random horizontal flip.
4. Training hyperparameters: we use the same hyperparameters as in the original work (Sohn

et al., 2020)
5. Compute: Nvidia V100 GPU, 6-Core Intel Xeon E5-2690 v4 with 16GB RAM.

For the experiments on CIFAR-10N, we use Dlab = 1000 samples.
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C ADDITIONAL EXPERIMENTS

C.1 ABLATION STUDY

Goal. We conduct an ablation study to characterize the importance of the different components of
DIPS

Experiment. These components are:

• data characterization and selection for the initialisation of D(1): DIPS defines D(1) =

D(1)
train = r(Dlab, f

(0))

• data characterization and selection at each pseudo-labeling iteration: DIPS defines
D(i+1)

train = r(D(i+1), f (i))

Each of these two components can be ablated, resulting in four different possible combinations: DIPS
(data selection both at initialization and during the pseudo-labeling iterations), A1 (data selection
only at initialization), A2 (data selection only during the pseudo-labeling iterations), A3 (no data
selection). Note that A3 corresponds to vanilla pseudo-labeling, and not selecting data amounts to
using an identity selector.

We consider the same experimental setup as in Sec. 5.1, generating data in two quadrants with varying
proportions of corrupted samples.

Results. The results are reported in Fig. 10. As we can see, each component in DIPS is important
to improve pseudo-labeling: 1) the initialization of the labeled data D(1) drives the pseudo-labeling
process 2) data characterization of both labeled and pseudo-labeled samples is important.
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Figure 10: Ablation study: data characterization and selection is important both for the initialization
of the labeled data and during the pseudo-labeling iterations, which forms the basis of DIPS.

Takeaway. It is important to characterize and select data both for the initialization of the labeled data
and during the pseudo-labeling iterations.
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C.2 IMPACT OF THE SELECTOR FUNCTION r

Goal. We investigate variants of DIPS where we replace the selector function r with heuristics
used in the LNL literature. The most commonly used is the small-loss criterion (Xia et al., 2021).
Additionally, we assess Fluctuation (Wei et al., 2022b) and FINE (Kim et al., 2021) as alternative
sample selection approaches.

Experiments. We use the vanilla PL algorithm as the semi-supervised backbone. We consider three
different selectors in addition to the one presented in the main paper:

• Small-loss criterion (Xia et al., 2021): the quantity of interest is µ(x, y) =
1
E

∑E
e=1 l(x, y, fe) where l is a loss function and f1, ..., fE are the classifiers at the differ-

ent checkpoints. Intuitively, a sample with a high loss is more likely to present mislabeling
issues, since it is harder to learn.

• Fluctuation criterion (Wei et al., 2022b): the quantity of interest, for two checkpoints
e1 < e2 is β(x, y, e1, e2) = 1([fe1(x)]y > 1

2 )1([fe2(x)]y < 1
2 ), which is equal to one if the

sample is correctly classified at the checkpoint e1 and wrongly classified at e2, 0 otherwise.
Following (Wei et al., 2022b), we smooth this score with the confidence.

• FINE criterion (Kim et al., 2021): FINE creates a gram matrix of the representations in the
noisy training dataset for each class. Then, FINE computes an alignment using the square of
the inner product values between the representations and the first eigenvector of each gram
matrix. A Gaussian mixture model is then fit on these alignment values to find clean and
noisy instances.

The scores obtained by each approach are then used for sample selection, hence defining variants of
the selector r.

Results. We report the results for 12 different datasets in Table 2. As we can see, the DIPS approach
using learning dynamics outperforms the alternative LNL methods. This highlights the importance of
a multi-dimensional data characterization, where both confidence and aleatoric uncertainty are taken
into account to select samples. Moreover, the LNL methods typically operate under the assumption
of a large number of labeled samples, highlighting that our DIPS approach tailored for the pseudo-
labeling setting should indeed be preferred.

Table 2: DIPS outperforms heuristics used in the LNL setting by leveraging learning dynamics. Best
performing method in bold, statistically equivalent performance underlined.

DIPS
(OURS)

Small-Loss
(Xia et al., 2021)

Fluctuation
(Wei et al., 2022b)

FINE
(Kim et al., 2021)

adult 82.66 ± 0.10 79.52 ± 0.26 80.81 ± 0.20 24.22 ± 0.35
agaricus-lepiota 65.03 ± 0.25 64.45 ± 0.28 49.21 ± 1.48 35.96 ± 3.65
blog 80.58 ± 0.10 79.90 ± 0.28 80.05 ± 0.27 73.41 ± 1.66
credit 81.39 ± 0.07 78.46 ± 0.34 79.38 ± 0.29 64.58 ± 3.30
covid 69.97 ± 0.30 70.09 ± 0.36 69.03 ± 0.53 67.70 ± 0.84
compas 65.34 ± 0.25 62.76 ± 0.60 61.31 ± 0.64 60.20 ± 1.29
cutract 68.60 ± 0.31 66.33 ± 1.09 64.35 ± 1.49 61.98 ± 2.27
drug 78.16 ± 0.26 76.84 ± 0.61 75.66 ± 0.72 74.63 ± 1.98
German-credit 69.40 ± 0.46 69.80 ± 1.00 69.60 ± 1.19 69.70 ± 1.19
higgs 81.99 ± 0.07 81.08 ± 0.12 81.50 ± 0.09 73.82 ± 0.51
maggic 67.60 ± 0.08 65.57 ± 0.20 65.94 ± 0.20 62.28 ± 0.42
seer 82.74 ± 0.08 80.74 ± 0.26 82.28 ± 0.20 77.10 ± 0.76

Takeaway. A key component of DIPS is its sample selector based on learning dynamics, which
outperforms methods designed for the LNL setting.
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C.3 INSIGHTS INTO DATA SELECTION

Goal. We wish to gain additional insight into the performance improvements provided by DIPS when
added to the vanilla pseudo-labeling method. In particular, we examine the significant performance
gain attained by DIPS for cross-country augmentation, shown in Section 5.4.

Experiment. The DIPS selector mechanism is the key differentiator as compared to the vanilla
methods. Hence, we examine the samples selected samples from DIPS and vanilla. We then compare
the samples to Dtest. Recall, we select samples from Dunlab which come from US patients, whereas
Dlab and Dtest are from the UK. We posit that “matching” the test distribution as closely as possible
would lead to the best performance.

Results. We examine the most important features as determined by the XGBoost and compare their
distributions. We find that the following 4 features in order are the most important: (1) Treatment:
Primary hormone therapy, (2) PSA score, (3) Age, (4) Comorbidities. This is expected where the
treatment and PSA blood scores are important predictors of prostate cancer mortality. We then
compare these features in Dtest vs the final Dtrain when using DIPS selection and using vanilla
selection.

Fig. 11 shows that especially on the two most important features (1) Treatment: Primary hormone
therapy and (2) PSA score; that DIPS’s selection better matches Dtest — which explains the improved
performance.

DIPS Vanilla

Vanilla does 
not match 
Test well

DIPS 
matches  
Test well

Figure 11: DIPS improves performance as its selection for Dtrain better matches Dtest on the most
important features, whereas vanilla selects samples which are different to Dtest

Quantitatively, we then compute the Jensen-Shannon (JS) divergence between the data selected by
DIPS and vanilla as compared to Dtest. We find DIPS has a lower JSD of 0.0296 compared to vanilla
of 0.0317, highlighting we better match the target domain’s features through selection.

This behavior is reasonable, as samples that are very different will be filtered out by virtue of their
learning dynamics being more uncertain.

For completeness, we also include a radar chart with vanilla PL but without any data selection in Fig.
12.

Takeaway. A significant source of DIPS’s gain is that its selection mechanism selects samples that
closely approximate the distribution of Dtest. In particular, we see this holds true for the features which
are considered most important to the classifier — hence accounting for the improved downstream
model performance observed when using DIPS.
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Figure 12: DIPS is closer to the test data than vanilla PL.

C.4 ADDITIONAL EXPERIMENTS IN COMPUTER VISION

Goal. The goal of this experiment is to assess the benefit of DIPS in additional computer vision
settings, namely:
(i) when increasing the number of classes to 100 (CIFAR-100N), with FixMatch
(ii) when the size of Dlab (nlab) is small, with FixMatch and
(iii) when using a different pseudo-labeling algorithm — FreeMatch (Wang et al., 2023).

C.4.1 DIPS IMPROVES THE PERFORMANCE OF FIXMATCH ON CIFAR-100N

Goal. The goal of this experiment is to further demonstrate DIPS’s utility in a setting with an
increased number of classes.

Setup. We adopt the same setup as in Section 5.5, using the dataset CIFAR-100N (Wei et al., 2022a),
which has 100 classes.
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Figure 13: DIPS improves FixMatch on CIFAR-100N. We report both top-1 and top-5 accuracies.

Results. We show both top-1 and top-5 accuracies in Figure 13, for three different numbers of
iterations and 3 different seeds, which highlight the performance gains obtained by using DIPS with
FixMatch.

Takeaway. DIPS improves the performance of FixMatch on CIFAR-100N.

C.4.2 DIPS IMPROVES FIXMATCH FOR SMALLER nlab

Setup. We consider nlab = 200, and use the same setup as in Section 5.5, considering the dataset
CIFAR-10N.
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Figure 14: DIPS improves FixMatch with nlab = 200 on CIFAR-10N

Results. We report the test accuracy in Figure 14 for three different numbers of iterations over 3
different seeds, highlighting the performance gains with DIPS.

Takeaway. DIPS improves performance of FixMatch for different sizes of Dlab

C.4.3 DIPS IMPROVES THE PERFORMANCE OF FREEMATCH

Goal. The goal of this experiment is to further demonstrate DIPS’s utility in computer vision with
an alternative pseudo-labeling method, namely FreeMatch (Wang et al., 2023).

Setup. We adopt the same setup as in Section 5.5, using the dataset CIFAR-10N.
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Figure 15: DIPS improves FreeMatch on CIFAR-10N

Results. We show the test accuracy in Figure 15, for three different numbers of iterations and
highlight the performance gains by combining DIPS with FreeMatch to improve performance.

Takeaway. DIPS is versatile to other data modalities, improving the performance of FreeMatch on
CIFAR-10N with the inclusion of DIPS.

C.4.4 ADDITIONAL DATASETS

We present in Figure 16 results for 4 additional image datasets : satellite images from Eurosat Helber
et al. (2019) and medical images from TissueMNIST which form part of the USB benchmark Wang
et al. (2022). Additionally, we include the related OrganAMNIST, and PathMNIST, which are part of
the MedMNIST collection Yang et al. (2021). Given that these datasets are well-curated, we consider
a proportion of 0.2 of symmetric label noise added to these datasets. As is shown, DIPS consistently
improves the FixMatch baseline, demonstrating its generalizability.
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Figure 16: DIPS improves FixMatch on images datasets

C.5 DEPENDENCY BETWEEN LABEL NOISE LEVEL AND AMOUNT OF LABELED DATA

We conduct a synthetic experiment following a similar setup as in Section 5.1 in our manuscript
to investigate the dependency between label noise level and amount of labeled data. Note that the
experiment is synthetic in order to be able to control the amount of label noise. We considered
the same list of label noise proportions, ranging from 0. to 0.45. For each label noise proportion,
we consider nlab ∈ {50, 100, 1000}, and fix nunlab = 1000. For each configuration we conduct
the experiment 40 times. We report the results in Fig. 17. As we can see on the plots, PL+DIPS
consistently outperforms the supervised baselines in almost all the configurations. When the amount
of labeled data is low (nlab = 50) and the proportion of corrupted samples is high (0.45), PL is on
par with the supervised baseline. Hence pseudo-labeling is more difficult with a very low amount
of labeled samples (and a high level of noise). We note, though, that DIPS consistently improves
the PL baseline for reasonable amounts of label noise which we could expect in real-world settings
(e.g. 0.1). The performance gap between DIPS and PL is remarkably noticeable for nlab = 1000, i.e.
when the amount of labeled samples is high.
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Figure 17: DIPS consistently improves upon the PL and supervised baselines, across the different
label noise levels and amounts of labeled data.

C.6 ABLATION ON THE TEACHER-STUDENT PSEUDO-LABELING FRAMEWORK

In Section 3.1, we decided to describe the common teacher-student pseudo-labeling methodology
adopted in the tabular setting. As a consequence, we used the implementation provided by Nguyen
et al. (2022a), which grows the training set with pseudo-labels generated at the current iteration, thus
keeping old pseudo-labels in the training dataset in subsequent iterations. In addition to adopting
this practice, we investigated this choice experimentally, by comparing between two versions of
confidence-based pseudo-labeling:

• Version 1): with a growing set of pseudo-labels (as followed by the implementation of
Nguyen et al. (2022a) and our paper)

• Version 2): without keeping old pseudo-labels.

We evaluate these two methods in the synthetic setup described in Section 5.2, and report the test
accuracy in Fig. 18. The red line corresponds to Version 1) (the implementation we used in the
manuscript), while the green line corresponds to Version 2). As we can see, in this tabular setting,
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growing a training set by keeping the pseudo-labels generated at each iteration leads to the best
results, motivating our adoption of this pseudo-labeling methodology used in the tabular setting.
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Figure 18: Growing the training set with the pseudo-labels generated at every iteration yields the best
results

C.7 ABLATION ON THE WINDOW OF ITERATIONS FOR LEARNING DYNAMICS

We conduct an experiment to investigate the choice of the range of iterations used to compute the
learning dynamics. We consider ignoring the first 25%/50%/75% iterations, and use the remaining
iterations to compute the learning dynamics. Figure 19 shows the mean performance difference by
using the truncated iteration windows versus using all the iterations, and averages the results over
the 12 datasets used in Section 5.2. As we can see, it is better to use all the iterations window, as the
initial iterations carry some informative signal about the hardness of samples. This motivates our
choice of computing the learning dynamics over the whole optimization trajectory, a choice which
we adopt for all of our experiments.

Figure 19: Computing the learning dynamics over the whole window of iterations yields the best
results
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C.8 THRESHOLD CHOICES

We conduct an experiment in the synthetic setup where we vary the thresholds used for both the
confidence and the aleatoric uncertainty. In addition to our choice used in our manuscript (confidence
threshold = 0.8, and adaptive threshold on the aleatoric uncertainty), we consider two baselines:

• confidence threshold = 0.9 and uncertainty threshold = 0.1 (aggressive filtering)
• confidence threshold = 0.5 and uncertainty threshold = 0.2 (permissive filtering)

We show the test accuracy for these baselines in Figure 20. As we can see, our configuration achieves
a good trade-off between an aggressive filtering configuration (red line) and a permissive one (blue
line), which is why we adopt it for the rest of the experiments. We empirically notice in Section 5.2
that it performs well on the 12 real-world datasets we used.
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Figure 20: Our choice of thresholds performs better than an aggressive or a permissive filtering

C.9 COMPARISON TO VIME

We compare DIPS with VIME (Yoon et al., 2020), by evaluating the two methods in the same setting
as in Section 5.2. We report the results in Table 3. These results demonstrate that DIPS outperforms
VIME across multiple real-world tabular datasets.

Table 3: DIPS outperforms VIME. Best performing method in bold, statistically equivalent perfor-
mance underlined.

DIPS
(OURS)

VIME
(Yoon et al., 2020)

adult 82.66 ± 0.10 67.69 ± 0.10
agaricus-lepiota 65.03 ± 0.25 66.13 ± 0.01
blog 80.58 ± 0.10 73.52 ± 0.01
credit 81.39 ± 0.07 66.91 ± 0.02
covid 69.97 ± 0.30 68.28 ± 0.03
compas 65.34 ± 0.25 63.41 ± 0.02
cutract 68.60 ± 0.31 60.36 ± 0.04
drug 78.16 ± 0.26 74.47 ± 0.03
German-credit 69.40 ± 0.46 62.65 ± 0.05
higgs 81.99 ± 0.07 71.34 ± 0.03
maggic 67.60 ± 0.08 64.98 ± 0.01
seer 82.74 ± 0.08 80.12 ± 0.01

C.10 IMPORTANCE OF ALEATORIC UNCERTAINTY

We conduct an ablation study where we remove the aleatoric uncertainty in DIPS and only keep a
confidence-based selection (with threshold = 0.8). We term this confidence ablation to highlight if
there is indeed value to the aleatoric uncertainty component of DIPS. We report results in Table 4, for
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the 12 tabular datasets used in Section 5.2, which shows the benefit of the two-dimensional selection
criterion of DIPS. Of course, in some cases there might not be a large difference with respect to our
confidence ablation — however we see that DIPS provides a statistically significant improvement
in most of the datasets. Hence, since the computation is negligible, it is reasonable to use the 2-D
approach given the benefit obtained on the noisier datasets.

Table 4: Aleatoric uncertainty is a key component of DIPS

DIPS Confidence Ablation

adult 82.66 ± 0.10 82.13 ± 0.16
agaricus-lepiota 65.03 ± 0.25 64.38 ± 0.23
blog 80.58 ± 0.10 80.22 ± 0.33
credit 81.39 ± 0.07 79.76 ± 0.15
covid 69.97 ± 0.30 69.28 ± 0.40
compas 65.34 ± 0.25 64.69 ± 0.25
cutract 68.60 ± 0.31 66.32 ± 0.12
drug 78.16 ± 0.26 75.37 ± 0.71
higgs 81.99 ± 0.07 81.42 ± 0.16
maggic 67.60 ± 0.08 66.26 ± 0.18
seer 82.74 ± 0.08 82.02 ± 0.15
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D BROADER IMPACT

In this work, we delve into the essential yet often neglected aspect of labeled data quality in the appli-
cation of pseudo-labeling, a semi-supervised learning technique. Our key insights stem from a data-
centric approach that underscores the role of ’labeled data quality’ - a facet typically overlooked due
to the default assumption of labeled data being ’perfect’. In stark contrast to the traditional, algorithm-
centric pseudo-labeling literature which largely focuses on refining pseudo-labeling methods, we
accentuate the critical influence of the quality of labeled data on the effectiveness of pseudo-labeling.

By way of introducing the DIPS framework, our work emphasizes the value of characterization and
selection of labeled data, consequently improving any pseudo-labeling method. Moreover, akin to
traditional machine learning problems, focusing on labeled data quality in the context of pseudo-
labeling promises to lessen risks, costs, and potentially detrimental consequences of algorithm
deployment. This perspective opens up many avenues for applications in areas where labeled data is
scarce or expensive to acquire, including but not limited to healthcare, social sciences, autonomous
vehicles, wildlife conservation, and climate modeling scenarios. Our work underscores the need for a
data-centric paradigm shift in the pseudo-labeling landscape.
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