
Published as a conference paper at ICLR 2023

GREEDY ACTOR-CRITIC: A NEW CONDITIONAL
CROSS-ENTROPY METHOD FOR POLICY IMPROVEMENT

Samuel Neumann, Sungsu Lim, Ajin Joseph, Yangchen Pan, Adam White, Martha White
Department of Computing Science
University of Alberta
Edmonton, Alberta, Canada
{sfneuman,amw8,whitem}@ualberta.ca

ABSTRACT

Many policy gradient methods are variants of Actor-Critic (AC), where a value
function (critic) is learned to facilitate updating the parameterized policy (actor).
The update to the actor involves a log-likelihood update weighted by the action-
values, with the addition of entropy regularization for soft variants. In this work,
we explore an alternative update for the actor, based on an extension of the cross
entropy method (CEM) to condition on inputs (states). The idea is to start with a
broader policy and slowly concentrate around maximally valued actions, using a
maximum likelihood update towards actions in the top percentile per state. The
speed of this concentration is controlled by a proposal policy, that concentrates
at a slower rate than the actor. We first provide a policy improvement result in
an idealized setting, and then prove that our conditional CEM (CCEM) strategy
tracks a CEM update per state, even with changing action-values. We empirically
show that our GreedyAC algorithm, that uses CCEM for the actor update, performs
better than Soft Actor-Critic and is much less sensitive to entropy-regularization.

1 INTRODUCTION

Many policy optimization strategies update the policy towards the Boltzmann policy. This strategy
became popularized by Soft Q-Learning (Haarnoja et al., 2017) and Soft Actor-Critic (SAC) (Haarnoja
et al., 2018a), but has a long history in reinforcement learning (Kober & Peters, 2008; Neumann,
2011). In fact, recent work (Vieillard et al., 2020a; Chan et al., 2021) has highlighted that an even
broader variety of policy optimization methods can be seen as optimizing either a forward or reverse
KL divergence to the Boltzmann policy, as in SAC. In fact, even the original Actor-Critic (AC) update
(Sutton, 1984) can be seen as optimizing a reverse KL divergence, with zero-entropy.

The use of the Boltzmann policy underlies many methods for good reason: it guarantees policy
improvement (Haarnoja et al., 2018a). More specifically, this is the case when learning entropy-
regularized action-values Qπ

τ for a policy π with regularization parameter τ > 0. The Boltzmann
policy for a state is proportional to exp(Qπ

τ (s, a)τ
−1). The level of emphasis on high-valued actions

is controlled by τ : the higher the magnitude of the entropy level (larger τ), the less the probabilities
in the Boltzmann policy are peaked around maximally valued actions.

This choice, however, has several limitations. The policy improvement guarantee is for the entropy-
regularized MDP, rather than the original MDP. Entropy regularization is used to encourage explo-
ration (Ziebart et al., 2008; Mei et al., 2019) and improve the optimization surface (Ahmed et al., 2019;
Shani et al., 2020), resulting in a trade-off between improving the learning process and converging
to the optimal policy. Additionally, SAC and other methods are well-known to be sensitive to the
entropy regularization parameter (Pourchot & Sigaud, 2019). Prior work has explored optimizing
entropy during learning (Haarnoja et al., 2018b), however, this optimization introduces yet another
hyperparameter to tune, and this approach may be less performant than a simple grid search (see
Appendix D). It is reasonable to investigate alternative policy improvement approaches that could
potentially improve our actor-critic algorithms.

Code available at https://github.com/samuelfneumann/GreedyAC.

1

https://github.com/samuelfneumann/GreedyAC

Published as a conference paper at ICLR 2023

In this work we propose a new greedification strategy towards this goal. The basic idea is to iteratively
take the top percentile of actions, ranked according to the learned action-values. The procedure slowly
concentrates on the maximal action(s), across states, for the given action-values. The update itself
is simple: N ∈ N actions are sampled according to a proposal policy, the actions are sorted based
on the magnitude of the action-values, and the policy is updated to increase the probability of the
⌈ρN⌉ maximally valued actions for ρ ∈ (0, 1). We call this algorithm for the actor Conditional CEM
(CCEM), because it is an extension of the well-known Cross-Entropy Method (CEM) (Rubinstein,
1999) to condition on inputs1. We leverage theory for CEM to validate that our algorithm concentrates
on maximally valued actions across states over time. We introduce GreedyAC, a new AC algorithm
that uses CCEM for the actor.

GreedyAC has several advantages over using Boltzmann greedification. First, we show that our new
greedification operator ensures a policy improvement for the original MDP, rather than a different
entropy-regularized MDP. Second, we can still leverage entropy to prevent policy collapse, but only
incorporate it into the proposal policy. This ensures the agent considers potentially optimal actions
for longer, but does not skew the actor. In fact, it is possible to decouple the role of entropy for
exploration and policy collapse within GreedyAC: the actor could have a small amount of entropy
to encourage exploration, and the proposal policy a higher level of entropy to avoid policy collapse.
Potentially because of this decoupling, we find that GreedyAC is much less sensitive to the choice
of entropy regularizer, as compared to SAC. This design of the algorithm may help it avoid getting
stuck in a locally optimal action, and empirical evidence for CEM suggests it can be quite effective
for this purpose (Rubinstein & Kroese, 2004). In addition to our theoretical support for CCEM, we
provide an empirical investigation comparing GreedyAC, SAC, and a vanilla AC, highlighting that
GreedyAC performs consistently well, even in problems like the Mujoco environment Swimmer and
pixel-based control where SAC performs poorly.

2 BACKGROUND AND PROBLEM FORMULATION

The interaction between the agent and environment is formalized by a Markov decision process
(S,A,P,R, γ), where S is the state space, A is the action space, P : S × A × S → [0,∞) is the
one-step state transition dynamics, R : S×A× S→ R is the reward function, and γ ∈ [0, 1] is the
discount rate. We assume an episodic problem setting, where the start state S0 ∼ d0 for start state
distribution d0 : S→ [0,∞) and the length of the episode T is random, depending on when the agent
reaches termination. At each discrete timestep t = 1, 2, . . . , T , the agent finds itself in some state
St and selects an action At drawn from its stochastic policy π : S × A → [0,∞). The agent then
transitions to state St+1 according to P and observes a scalar reward Rt+1

.
= R(St, At, St+1).

For a parameterized policy πw with parameters w, the agent attempts to maximize the objective
J(w) = Eπw [

∑T
t=0 γ

tRt+1], where the expectation is according to start state distribution d0, tran-
sition dynamics P, and policy πw. Policy gradient methods, like REINFORCE (Williams, 1992),
attempt to obtain (unbiased) estimates of the gradient of this objective to directly update the policy.

The difficulty is that the policy gradient is expensive to sample, because it requires sampling return
trajectories from states sampled from the visitation distribution under πw, as per the policy gradient
theorem (Sutton et al., 1999). Theory papers analyze such an idealized algorithm (Kakade & Langford,
2002; Agarwal et al., 2021), but in practice this strategy is rarely used. Instead, it is much more
common to (a) ignore bias in the state distribution (Thomas, 2014; Imani et al., 2018; Nota & Thomas,
2020) and (b) use biased estimates of the return, in the form of a value function critic. The action-value
functionQπ(s, a)

.
= Eπ[

∑T−t
k=1 γ

tRt+k|St = s,At = a] is the expected return from a given state and
action, when following policy π. Many PG methods—specifically variants of Actor-Critic—estimate
these action-values with parameterized Qθ(s, a), to use the update Qθ(s, a)∇ lnπw(a|s) or one with
a baseline [Qθ(s, a) − V (s)]∇ lnπw(a|s) where the value function V (s) is also typically learned.
The state s is sampled from a replay buffer, and a ∼ πw(·|s), for the update.

1CEM has been used for policy optimization, but for two very different purposes. It has been used to directly
optimize the policy gradient objective (Mannor et al., 2003; Szita & Lörincz, 2006). CEM has also been used to
solve for the maximal action—running CEM each time we want to find max′

aQ(S′, a′)—for an algorithm called
QT-Opt (Kalashnikov et al., 2018). A follow-up algorithm adds an explicit deterministic policy to minimize a
squared error to this maximal action (Simmons-Edler et al., 2019) and another updates the actor with this action
rather than the on-policy action (Shao et al., 2022). We do not directly use CEM, but rather extend the idea
underlying CEM to provide a new policy update.

2

Published as a conference paper at ICLR 2023

There has been a flurry of work, and success, pursuing this path, including methods such as OffPAC
(Degris et al., 2012b), SAC (Haarnoja et al., 2018a), SQL (Haarnoja et al., 2017), TRPO (Schulman
et al., 2015) and many other variants of related ideas (Peters et al., 2010; Silver et al., 2014; Schulman
et al., 2016; Lillicrap et al., 2016; Wang et al., 2017; Gu et al., 2017; Schulman et al., 2017;
Abdolmaleki et al., 2018; Mei et al., 2019; Vieillard et al., 2020b). Following close behind are
unification results that make sense of this flurry of work (Tomar et al., 2020; Vieillard et al., 2020a;
Chan et al., 2021; Lazić et al., 2021). They highlight that many methods include a mirror descent
component—to minimize KL to the most recent policy—and an entropy-regularization component
(Vieillard et al., 2020a). In particular, these methods are better thought of as (approximate) policy
iteration approaches that update towards the Boltzmann policy, in some cases using a mirror descent
update. The Boltzmann policy BτQ(s, a) for a given Q is

BτQ(s, a) =
exp(Q(s, a)τ−1)∫

A
exp(Q(s, b)τ−1)db

(1)

for entropy parameter τ . As τ → 0, this policy puts all weight on greedy actions. As τ → ∞, all
actions are weighted uniformly. This policy could be directly used as the new greedy policy. However,
because it is expensive to sample from BτQ(s, a), typically a parameterized policy πw is learned
to approximate BτQ(s, a), by minimizing a KL divergence. As the entropy goes to zero, we get an
unregularized update that corresponds to the vanilla AC update (Chan et al., 2021).

3 CONDITIONAL CEM

Though using the Boltzmann policy has been successful, it does have some limitations. The primary
limitation is that it is sensitive to the choice of entropy (Pourchot & Sigaud, 2019; Chan et al., 2021).
A natural question is what other strategies we can use for this greedification step in these approximate
policy iteration algorithms, and how they compare to this common approach. We propose and
motivate a new approach in this section, and then focus the paper on providing insight into its benefits
and limitations, in contrast to using the Boltzmann policy.

Let us motivate our approach, by describing the well-known global optimization algorithm called the
Cross Entropy Method (CEM) (Rubinstein, 1999). Global optimization strategies are designed to find
the global optimum of a general function f(β) for some parameters β. For example, for parameters β
of a neural network, f may be the loss function on a sample of data. An advantage of these methods
is that they do not rely on gradient-based strategies, which are prone to getting stuck in local optima.
Instead, they use randomized search strategies, that have optimality guarantees in some settings (Hu
et al., 2012) and have been shown to be effective in practice (Peters & Schaal, 2007; Hansen et al.,
2003; Szita & Lörincz, 2006; Salimans et al., 2017).

CEM maintains a distribution p(β) over parameters β, iteratively narrowing the range of plausible
solutions. The algorithm maintain a current threshold ft, that slowly increases over time as it narrows
on the maximal β. On iteration t, N parameter vectors β1, . . . , βN are sample from pt; the algorithm
only keeps β∗

1 , . . . , β
∗
h where f(β∗

i) ≥ ft and discards the rest. The KL divergence is reduced
between pt and this empirical distribution Î = {β∗

1 , . . . , β
∗
h}, for h ≤ N . This step corresponds to

increasing the likelihood of the β in the set Î . Iteratively, the distribution over parameters pt narrows
around β with higher values under f . To make it more likely to find the global optimum, the initial
distribution p0 is a wide distribution, such as a Gaussian distribution with mean zero µ0 = 0 and a
diagonal covariance Σ0 of large magnitude.

Algorithm 1 Percentile Empirical
Distribution(N, ρ)

Evaluate and sort in descending order:
Qθ(St, ai1) ≥ . . . ≥ Qθ(St, aiN)

return Î(St) = {ai1 , . . . , aih}
(where h = ⌈ρN⌉)

CEM attempts to find the single-best set of optimal parame-
ters for a single optimization problem. The straightforward
use in reinforcement learning is to learn the single-best set
of policy parameters w (Szita & Lörincz, 2006; Mannor
et al., 2003). Our goal, however, is to (repeatedly) find
maximally valued actions a∗ conditioned on each state
for Q(s, ·). The global optimization strategy could be run
on each step to find the exact best action for each current
state, as in QT-Opt (Kalashnikov et al., 2018) and follows-ups (Simmons-Edler et al., 2019; Shao
et al., 2022), but this is expensive and throws away prior information about the function surface
obtained when previous optimizations were executed.

3

Published as a conference paper at ICLR 2023

We extend CEM to be (a) conditioned on state and (b) learned iteratively over time. The key
modification when extending CEM to Conditional CEM (CCEM), to handle these two key differences,
is to introduce another proposal policy that concentrates more slowly. This proposal policy is entropy-
regularized to ensure that we keep a broader set of potential actions when sampling, in case changing
action-values are very different since the previous update to that state. The main policy (the actor)
does not use entropy regularization, allowing it to more quickly start acting according to currently
greedy actions, without collapsing. We visualize this in Figure 1.

π̃ Proposal Policy

I∗ I∗ I∗

∇π̃(s) = ∇
∑
I∗

ln(π̃(a|s))

∇π(s) = ∇
∑
I∗

ln(π(a|s))

+∇H(π̃(·|s))Q(s, ·)

Q(s, ·)

π Actor Policy

Actions Actions Actions ππ̃

Ti
m

e

Figure 1: In the left figure we see multiple updates for both policies of the CCEM in a single state.
We use uniform policies, for interpretability. In the rightmost figure, we show an actual progression
of CCEM with Gaussian policies, when executed on the action-values depicted in the leftmost figure.
The Actor policy (in black) concentrates more quickly than the Proposal policy (in red).

The CCEM algorithm is presented in Algorithm 2. On each step, the proposal policy, π̃w′
t
(·|St), is

sampled to provide a set of actions a1, . . . , aN from which we construct the empirical distribution
Î(St) = {a∗1, . . . , a∗h} of maximally valued actions. The actor parameters wt are updated using
a gradient ascent step on the log-likelihood of the actions Î(St). The proposal parameters w′

t

are updated using a similar update, but with an entropy regularizer. To obtain Î(St), we select
a∗i ⊂ {a1, . . . , aN} where Q(St, a

∗
i) are in the top (1− ρ) quantile values. For example, for ρ = 0.2,

approximately the top 20% of actions are chosen, with h = ⌈ρN⌉. Implicitly, ft is Qθ(St, a
∗
h) for a∗h

the action with the lowest value in this top percentile. This procedure is summarized in Algorithm 1.

Greedy Actor-Critic, in Algorithm 3, puts this all together. We use experience replay, and the CCEM
algorithm on a mini-batch. The updates involve obtaining the sets Î(S) for every S in the mini-batch
B and updating with the gradient 1

|B|
∑

S∈B

∑
a∈Î(S)∇w lnπw(a|S). The Sarsa update to the critic

involves (1) sampling an on-policy action from the actor A′ ∼ πw(·|S′) for each tuple in the mini-
batch and (2) using the update 1

|B|
∑

(S,A,S′,R,A′)∈B(R + γQθ(S
′, A′) − Qθ(S,A))∇θQθ(S,A).

Other critic updates are possible; we discuss alternatives and connections to related algorithms in
Appendix A.

Algorithm 2 Conditional CEM for the Actor

Input: St and Qθ, N ∈ N, ρ ∈ (0, 1)
if actions discrete and |A| ≤ 1/ρ then
Î(St) = argmaxa∈A Qθ(St, a)

else
Sample N actions ai ∼ π̃w′(·|St)

Obtain Î(St) using Algorithm 1
end if
w ← w + αp,t

∑
a∈Î(St)

∇w lnπw(a|St)

w′←w′+αp,t[
∑

a∈Î(St)
∇w′ ln π̃w′(a|St)+

τ∇w′H(π̃w′(·|St))]

Algorithm 3 Greedy Actor-Critic

Initialize parameters θ,w,w′, replay buffer B
Obtain initial state S
while agent interacting with the environment
do

Take action A ∼ πw(·|S), observe R, S′

Add (S,A, S′, R) to the buffer B
Grab a random mini-batch B from buffer B
Update θ using Sarsa for policy πw on B
Update w,w′ using Algorithm 2 on B.

end while

CCEM for Discrete Actions. Although we can use the same algorithm for discrete actions, we can
make it simpler when we have a small number of discrete actions. Our algorithm is designed around

4

Published as a conference paper at ICLR 2023

the fact that it is difficult to solve for the maximal action for Qθ(St, a) for continuous actions; we
slowly identify this maximal action across states. For a small set of discrete actions, it is easy to get
this maximizing action. If |A| < 1/ρ, then the top percentile consists of the one top action (or the
top actions if there are ties); we can directly set Î(St) = argmaxa∈A Qθ(St, a) and do not need to
maintain a proposal policy. For this reason, we focus our theory on the continuous-action setting,
which is the main motivation for using CEM for the actor update.

4 THEORETICAL GUARANTEES

In this section, we motivate that the target policy underlying CCEM guarantees policy improvement,
and characterize the ODE underlying CCEM. We show it tracks a CEM update in expectation across
states and slowly concentrates around maximally valued actions even while the action-values are
changing.

4.1 POLICY IMPROVEMENT UNDER AN IDEALIZED SETTING

We first consider the setting where we have access to Qπ, as is typically done for characterizing
the policy improvement properties of an operator (Haarnoja et al., 2018a; Ghosh et al., 2020; Chan
et al., 2021) as well as for the original policy improvement theorem (Sutton & Barto, 2018). Our
update moves our policy towards a percentile-greedy policy that redistributes probability solely to the
(1− ρ)-quantile according to magnitudes under Q(s, a). More formally, let fρQ(π; s) be the threshold
such that

∫
{a∈A|Q(s,a)≥fρ

Q(π;s)} π(a|s)da = ρ, namely that gives the set of actions in the top 1− ρ
quantile, according to magnitudes under Q(s, ·). Then we can define the percentile-greedy policy as

πρ(a|s,Q, π) =

{
π(a|s)/ρ Q(s, a) ≥ threshfρQ(π; s)
0 else

(2)

where diving by ρ renormalizes the distribution. Computing this policy would be onerous; instead,
we only sample the KL divergence to this policy, using a sample percentile. Nonetheless, this
percentile-greedy policy represents the target policy that the actor updates towards (in the limit of
samples N for the percentile).

Intuitively, this target policy should give policy improvement, as it redistributes weight for low valued
actions proportionally to high-valued actions. We formalize this in the following theorem. We write
πρ(a|s) instead of πρ(a|s,Qπ, π), when it is clear from context.

Theorem 4.1. For a given policy π, action-value Qπ and ρ > 0, the percentile-greedy policy πρ in π
and Qπ is guaranteed to be at least as good as π in all states:∫

A

πρ(a|s,Qπ, π)Qπρ(s, a)da ≥
∫
A

π(a|s)Qπ(s, a)da

Proof. The proof is a straightforward modification of the policy improvement theorem. Notice that∫
A

πρ(a|s)Qπ(s, a)da =

∫
{a∈A|Q(s,a)≥fρ

Q(π;s)}

π(a|s)
ρ

Qπ(s, a)da ≥
∫
A

π(a|s)Qπ(s, a)da

by the definition of percentiles, for any state s. Rewriting
∫
A
π(a|s)Qπ(s, a)da = Eπ[Q

π(s,A)],

V π(s) = Eπ[Q
π(s,A)] ≤ Eπρ [Q

π(s,A)] = Eπρ [Rt+1 + γEπ[Q
π(St+1, At+1)|St = s]

≤ Eπρ
[Rt+1 + γEπρ

[Qπ(St+1, At+1)]|St = s]

≤ Eπρ
[Rt+1 + γRt+2 + γ2Eπ[Q

π(St+2, At+2)]|St = s]

. . .

≤ Eπρ
[Rt+1 + γRt+2 + γ2Rt+3 + . . . γT−1RT |St = s] = Eπρ

[Qπρ(s,A)] = V πρ(s)

This result is a sanity check to ensure the target policy is sensible in our update. Note that the
Boltzmann policy only guarantees improvement under the entropy-regularized action-values.

5

Published as a conference paper at ICLR 2023

4.2 CCEM TRACKS THE GREEDY ACTION

Beyond the idealized setting, we would like to understand the properties of the stochastic algorithm.
CCEM is not a gradient descent approach, so we need to reason about its dynamics—namely the
underlying ODE. We expect CCEM to behave like CEM per state, but with some qualifiers. First,
CCEM uses a parameterized policy conditioned on state, meaning that there is aliasing between the
action distributions per state. CEM, on the other hand, does not account for such aliasing. We identify
conditions on the parameterized policy and use an ODE that takes expectations over states.

Second, the function we are attempting to maximize is also changing with time, because the action-
values are updating. We address this issue using a two-timescale stochastic approximation approach,
where the action-values Qθ change more slowly than the policy, allowing the policy to track the
maximally valued actions. The policy itself has two timescales, to account for its own parameters
changing at different timescales. Actions for the maximum likelihood step are selected according to
older (slower) parameters w′, so that it is as if the primary (faster) parameters w are updated using
samples from a fixed distribution. These two policies correspond to our proposal policy (slow) and
actor (fast).

We show that the ODE for the CCEM parameters wt is based on the gradient

∇w(t)ES∼ν,A∼πw′ (·|S)

[
I{Qθ(S,A)≥fρ

θ (w
′;S)} lnπw(t)(A|S)

]
where θ and w′ are changing at slower timescales, and so effectively fixed from the perspective of the
faster changing wt. The term per-state is exactly the update underlying CEM, and so we can think of
this ODE as one for an expected CEM Optimizer, across states for parameterized policies. We say
that CCEM tracks this expected CEM Optimizer, because θ and w′ are changing with time.

We provide an informal theorem statement here for Theorem B.1, with a proof-sketch. The main
result, including all conditions, is given in Appendix B. We discuss some of the (limitations of the)
conditions after the proof sketch.

Informal Result: Let θt be the action-value parameters with stepsize αq,t, and wt be the policy
parameters with stepsize αa,t, with w′

t a more slowly changing set of policy parameters set to
w′

t = (1− α′
a,t)w

′
t + α′

a,twt for stepsize α′
a,t ∈ (0, 1]. Assume: (1) States St are sampled from a

fixed marginal distribution. (2)∇w lnπw(·|s) is locally Lipschitz w.r.t. w, ∀s ∈ S. (3) Parameters
wt and θt remain bounded almost surely. (4) Stepsizes are chosen for three different timescales: wt

evolves faster than w′
t and w′

t evolves faster than θt. Under these four conditions, the CCEM Actor
tracks the expected CEM Optimizer.

Proof Sketch: The stochastic update to the Actor is not a direct gradient-descent update. Each update
to the Actor is a CEM update, which requires a different analysis to ensure that the stochastic noise
remains bounded and is asymptotically negligible. Further, the classical results of CEM also do not
immediately apply, because such updates assume distribution parameters can be directly computed.
Here, distribution parameters are conditioned on state, as outputs from a parametrized function. We
identify conditions on the parametrized policy to ensure well-behaved CEM updates.

The multi-timescale analysis allows us to focus on the updates of the Actor wt, assuming the action-
value parameter θ and action-sampling parameter w′ are quasi-static. These parameters are allowed
to change with time—as they will in practice—but are moving at a sufficiently slower timescale
relative to wt and hence the analysis can be undertaken as if they are static.

The first step in the proof is to formulate the update to the weights as a projected stochastic recursion—
simply meaning a stochastic update where after each update the weights are projected to a compact,
convex set to keep them bounded. The stochastic recursion is reformulated into a summation involving
the mean vector field gθ(wt) (which depends on the action-value parameters θ), martingale noise,
and a loss term ℓθt that is due to having approximate quantiles. The key steps are then to show
almost surely that the mean vector field gθ is locally Lipschitz, the martingale noise is quadratically
bounded and that the loss term ℓθt decays to zero asymptotically. For the first and second, we identify
conditions on the policy parameterization that guarantee these. For the final case, we adapt the
proof for sampled quantiles approaching true quantiles for CEM, with modifications to account for
expectations over the conditioning variable, the state. ■

This result has several limitations. First, it does not perfectly characterize the CCEM algorithm that
we actually use. We do not use the update w′

t = (1 − α′
a,t)w

′
t + α′

a,twt, and instead use entropy

6

Published as a conference paper at ICLR 2023

regularization to make w′
t concentrate more slowly than wt. The principle is similar; empirically we

found entropy regularization to be an effective strategy to achieve this condition.

Second, the theory assumes the state distribution is fixed, and not influenced by πw. It is standard
to analyze the properties of (off-policy) algorithms for fixed datasets as a first step, as was done for
Q-learning (Jaakkola et al., 1994). It allows us to separate concerns, and just ask: does our method
concentrate on maximal actions across states? An important next step is to characterize the full
Greedy Actor-Critic algorithm, beyond just understanding the properties of the CCEM component.

5 EMPIRICAL RESULTS

We are primarily interested in investigating sensitivity to hyperparameters. This sensitivity reflects
how difficult it can be to get AC methods working on a new task—relevant for both applied settings
and research. AC methods have been notoriously difficult to tune due to the interacting time scales
of the actor and critic (Degris et al., 2012a), further compounded by the sensitivity in the entropy
scale. The use of modern optimizers may reduce some of the sensitivity in stepsize selection; these
experiments help understand if that is the case. Further, a very well-tuned algorithm may not be
representative of performance across problems. We particularly examine the impacts of selecting a
single set of hyperparameters across environments, in contrast to tuning per environment.

We chose to conduct experiments in small, challenging domains appropriately sized for extensive
experiment repetition. Ensuring significance in results and carefully exploring hyperparameter
sensitivity required many experiments. Our final plots required∼30,000 runs across all environments,
algorithms, and hyperparameters. Further, contrary to popular belief, classic control domains are
a challenge for Deep RL agents (Ghiassian et al., 2020), and performance differences in these
environments have been shown to extend to larger environments (Obando-Ceron & Castro, 2021).

5.1 ALGORITHMS

We focus on comparing GreedyAC to Soft Actor-Critic (SAC) both since this allows us to compare
to a method that uses the Boltzmann target policy on action-values and because SAC continues to
have the most widely reported success2. We additionally include VanillaAC as a baseline, a basic AC
variant which does not include any of the tricks SAC utilizes to improve performance, such as action
reparameterization to estimate the policy gradient or double Q functions to mitigate maximization
bias. For discrete actions, policies are parameterized using Softmax distributions. For continuous
actions, policies are parameterized using Gaussian distributions, except SAC which uses a squashed
Gaussian policy as per the original work. We tested SAC with a Gaussian policy, and it performed
worse. All algorithms use neural networks. Feedforward networks consist of two hidden layers of 64
units (classic control environments) or 256 units (Swimmer-v3 environment). Convolutional layers
consists of one convolutional layer with 3 kernels of size 16 followed by a fully connected layer of
size 128. All algorithms use the Adam optimizer (Kingma & Ba, 2014), experience replay, and target
networks for the value functions. See Appendix C.1 for a full discussion of hyperparameters.

5.2 ENVIRONMENTS

We use the classic versions of Mountain Car (Sutton & Barto, 2018), Pendulum (Degris et al., 2012a),
and Acrobot (Sutton & Barto, 2018). Each environment is run with both continuous and discrete
action spaces; states are continuous. Discrete actions consist of the two extreme continuous actions
and 0. All environments use a discount factor of γ = 0.99, and episodes are cut off at 1,000 timesteps,
teleporting the agent back to the start state (but not causing termination). To demonstrate the potential
of GreedyAC at scale, we also include experiments on Freeway and Breakout from MinAtar (Young
& Tian, 2019) as well as on Swimmer-v3 from OpenAI Gym (Brockman et al., 2016). On MinAtar,
episodes are cutoff at 2,500 timesteps.

In Mountain Car, the goal is to drive an underpowered car up a hill. State consists of the position
in [−1.2, 0.6] and velocity in [−0.7, 0.7]. The agent starts in a random position in [−0.6,−0.4] and
velocity 0. The action is the force to apply to the car, in [−1, 1]. The reward is -1 per step.

In Pendulum, the goal is to hold a pendulum with a fixed base in a vertical position. State consists
of the angle (normalized in [−π, π)) and angular momentum (in [−1, 1]). The agent starts with the
pendulum facing downwards and 0 velocity. The action is the torque applied to the fixed base, in
[−2, 2]. The reward is the cosine of the angle of the pendulum from the positive y-axis.

2See https://spinningup.openai.com/en/latest/spinningup/bench.html

7

https://spinningup.openai.com/en/latest/spinningup/bench.html

Published as a conference paper at ICLR 2023

In Acrobot, the agent controls a doubly-linked pendulum with a fixed base. The goal is to swing
the second link one link’s length above the fixed base. State consists of the angle of each link (in
[−π, π)) and the angular velocity of each link (in [−4π, 4π] and [−9π, 9π] respectively). The agent
starts with random angles and angular velocities in [−0.1, 0.1]. The action is the torque applied to
the joint between the two links, in [−1, 1]. The reward is -1 per step.

5.3 EXPERIMENTAL DETAILS

We sweep hyperparameters for 40 runs, tuning over the first 10 runs and reporting results using the final
30 runs for the best hyperparameters. We sweep critic step size α = 10x for x ∈ {−5,−4, . . . ,−1}.
We set the actor step size to be κ × α and sweep κ ∈

{
10−3, 10−2, 10−1, 1, 2, 10

}
. We sweep

entropy scales τ = 10y for y ∈ {−3,−2,−1, 0, 1}. For the classic control experiments, we used
fixed batch sizes of 32 samples and a replay buffer capacity of 100,000 samples. For the MinAtar
experiments, we used fixed batch sizes of 32 samples and a buffer capacity of 1 million. For the
Swimmer experiments, we used fixed batch sizes of 100 samples and a buffer capacity of 1 million.
For CCEM, we fixed ρ = 0.1 and sample N = 30 actions.

To select hyperparameters across environment, we must normalize performance to provide an
aggregate score. We use near-optimal performance as the normalizer for each environment, with
a score of 1 meaning equal to this performance. We only use this normalization to average scores
across environments. We report learning curves using the original unnormalized returns. For more
details, see Appendix C.2.

5.4 RESULTS

1000

550

100

Av
er

ag
e

Re
tu

rn

Acrobot

1000

550

100
Mountain Car

600

250

1000

Co
nt

in
uo

us

Pendulum

0 1Timesteps
(Hundreds of Thousands)

1000

550

100

Av
er

ag
e

Re
tu

rn

0 1Timesteps
(Hundreds of Thousands)

1000

550

100

0 1Timesteps
(Hundreds of Thousands)

600

250

1000

Di
sc

re
te

GreedyAC
SAC
VanillaAC

Figure 2: Learning curves when tuning hyperparameters per-
environment, averaged over 30 runs with standard errors.

Per-environment Tuning: We first
examine how well the algorithms can
perform when they are tuned per-
environment. In Figure 2, we see that
SAC performs well in Pendulum-CA
(continuous actions) and in Pendulum-
DA (discrete actions) but poorly in the
other settings. SAC learns slower than
GreedyAC and VanillaAC on Acrobot.
GreedyAC performs worse than SAC
in Pendulum-CA, but still performs
acceptably, nearly reaching the same
final performance. SAC performs
poorly on both versions of Mountain
Car. That AC methods struggle with Acrobot is common wisdom, but here we see that both GreedyAC
and VanillaAC do well on this problem. GreedyAC is the clear winner in Mountain Car.

1000

550

100

Av
er

ag
e

Re
tu

rn

Acrobot

1000

550

100
Mountain Car

600

250

1000

Co
nt

in
uo

us

Pendulum

0 1Timesteps
(Hundreds of Thousands)

1000

550

100

Av
er

ag
e

Re
tu

rn

0 1Timesteps
(Hundreds of Thousands)

1000

550

100

0 1Timesteps
(Hundreds of Thousands)

600

250

1000

Di
sc

re
te

GreedyAC
SAC
VanillaAC

Figure 3: Learning curves when tuning hyperparameters
across-environments, averaged over 30 runs with standard
errors.

Across-environment Tuning: We
next examine the performance of the
algorithms when they are forced to se-
lect one hyperparameter setting across
continuous- or discrete-action envi-
ronments separately, shown in Fig-
ure 3. We expect algorithms that are
less sensitive to their parameters to
suffer less degradation. Under this
regime, GreedyAC has a clear advan-
tage over SAC. GreedyAC maintains
acceptable performance across all en-
vironments, sometimes learning more
slowly than under per-environment
tuning, but having reasonable behavior. SAC performs poorly on two-thirds of the environments.
GreedyAC is less sensitive than VanillaAC under across-environment tuning and performs at least as
good as VanillaAC.

8

Published as a conference paper at ICLR 2023

Hyperparameter Sensitivity: We examine the sensitivity of GreedyAC and SAC to their entropy
scales, focusing on the continuous action environments. We plot sensitivity curves, with one plotted
for each entropy scale, with the stepsize on the x-axis and average return across all steps and all 40
runs on the y-axis. Because there are two stepsizes, we have two sets of plots. When examining
the sensitivity to the critic stepsize, we select the best actor stepsize. We do the same for the actor
stepsize plots. We provide the plots with individual lines in Appendix C.3 and here focus on a more
summarized view.

-1-2-3-4-5
1000

550

100

Av
er

ag
e

Re
tu

rn

Acrobot

-1-2-3-4-5
1000

550

100
Mountain Car

-1-2-3-4-5
1000

0

1000

Gr
ee

dy
AC

Pendulum

-1-2-3-4-5
Critic Step-Size (10)

1000

550

100

Av
er

ag
e

Re
tu

rn
-1-2-3-4-5

Critic Step-Size (10)
1000

550

100

-1-2-3-4-5
Critic Step-Size (10)

1000

0

1000

SA
C

Figure 4: A sensitivity region plot for entropy, for
GreedyAC (top row) and SAC (bottom row) in the continu-
ous action problems.

Figure 4 depicts the range of perfor-
mance obtained across entropy scales.
The plot is generated by filling in the
region between the curves for each en-
tropy scale. If this sensitivity region is
broad, then the algorithm performed
very differently across different en-
tropy scales and so is sensitive to the
entropy. SAC has much wider sensi-
tivity regions than GreedyAC. Those
of GreedyAC are generally narrow, in-
dicating that the stepsize rather than
entropy was the dominant factor. Fur-
ther, the bands of performance are
generally at the top of the plot. When SAC exhibits narrower regions than GreedyAC, those regions
are lower on the plot, indicating overall poor performance.

6 SCALING GREEDY-AC

(a) Pixel-based control on MinAtar

0 3Timesteps (Millions)
0

75

150

Av
er

ag
e

Re
tu

rn

Online
GreedyAC
SAC

0 3Timesteps (Millions)

Offline

(b) Learning curves on Swimmer over 10 runs, red
line denotes SAC’s final performance

Figure 5: Comparing GreedyAC and SAC in more challenging environments
We ran GreedyAC on two pixel-based control problems, Breakout and Freeway, from the MinAtar
suite (Young & Tian, 2019). Recent work has shown that MinAtar results are indicative of those in
much larger scale problems (Obando-Ceron & Castro, 2021). We set the actor step-size scale to 1.0
and a critic step-size of 10−3 for both GreedyAC and SAC—the defaults of SAC. We set the entropy
scale of SAC to 10−3 based on a grid search. Figure 5a above clearly indicates GreedyAC can learn a
good policy from high-dimensional inputs; comparable performance to DQN Rainbow.

Finally, we ran GreedyAC on Swimmer-v3 from OpenAI Gym (Brockman et al., 2016). We tuned
over one run and then ran the tuned hyperparameters for an additional 9 runs to generate Figure 5b.
We report online and offline performance. Offline evaluation is performed every 10,000 steps, for
10 episodes, where only the mean action is selected and learning is disabled. We report SAC’s final
performance on Swimmer from the SpinningUp benchmark3. GreedyAC is clearly not state-of-the-art
here—most methods are not—however, GreedyAC steadily improves throughout the experiment.

7 CONCLUSION

In this work, we introduced a new Actor-Critic (AC) algorithm called GreedyAC, that uses a new
update to the Actor based on an extension of the cross-entropy method (CEM). The idea is to (a) define
a percentile-greedy target policy and (b) update the actor towards this target policy, by reducing a KL
divergence to it. This percentile-greedy policy guarantees policy improvement, and we prove that our
Conditional CEM algorithm tracks the actions of maximal value under changing action-values. We
conclude with an in-depth empirical study, showing that GreedyAC has significantly lower sensitivity
to its hyperparameters than SAC does.

3See https://spinningup.openai.com/en/latest/spinningup/bench.html

9

https://spinningup.openai.com/en/latest/spinningup/bench.html

Published as a conference paper at ICLR 2023

REFERENCES

Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and Martin
Riedmiller. Maximum a posteriori policy optimisation. In International Conference on Learning
Representations, 2018.

Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. On the theory of policy
gradient methods: Optimality, approximation, and distribution shift. Journal of Machine Learning
Research, 22(98):1–76, 2021.

Zafarali Ahmed, Nicolas Le Roux, Mohammad Norouzi, and Dale Schuurmans. Understanding
the impact of entropy on policy optimization. In International Conference on Machine Learning,
2019.

Vivek S Borkar. Stochastic approximation with two time scales. Systems & Control Letters, 29(5),
1997.

Vivek S. Borkar. Stochastic Approximation: A Dynamical Systems Viewpoint. Cambridge University
Press, 2008.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Alan Chan, Hugo Silva, Sungsu Lim, Tadashi Kozuno, A. Rupam Mahmood, and Martha White.
Greedification operators for policy optimization: Investigating forward and reverse kl divergences.
In arXiv:2107.08285v1, 2021.

Thomas Degris, Patrick M Pilarski, and Richard S Sutton. Model-free reinforcement learning with
continuous action in practice. In American Control Conference, 2012a.

Thomas Degris, Martha White, and Richard S. Sutton. Off-policy actor-critic. In International
Conference on Machine Learning, 2012b.

Richard Durrett. Probability: Theory and Examples (Wadsworth and Brooks/Cole Statis-
tics/Probability Series). Wadsworth & Brooks/Cole Advanced Books & Software, 1991.

Amir-massoud Farahmand, Doina Precup, André MS Barreto, and Mohammad Ghavamzadeh.
Classification-based approximate policy iteration. IEEE Transactions on Automatic Control, 2015.

Sina Ghiassian, Banafsheh Rafiee, Yat Long Lo, and Adam White. Improving performance in
reinforcement learning by breaking generalization in neural networks. International Conference
on Autonomous Agents and Multiagent Systems, 2020.

Dibya Ghosh, Marlos C. Machado, and Nicolas Le Roux. An operator view of policy gradient
methods. In Advances in Neural Information Processing Systems, 2020.

Shixiang Gu, Timothy P. Lillicrap, Zoubin Ghahramani, Richard E. Turner, and Sergey Levine.
Q-prop: Sample-efficient policy gradient with an off-policy critic. In International Conference on
Learning Representations, 2017.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. In International Conference on Machine Learning, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Conference
on Machine Learning, 2018a.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft actor-critic algorithms
and applications. arXiv preprint arXiv:1812.05905, 2018b.

Nikolaus Hansen, Sibylle D. Müller, and Petros Koumoutsakos. Reducing the time complexity of
the derandomized evolution strategy with covariance matrix adaptation (cma-es). Evolutionary
Computation, 11(1), 2003.

10

Published as a conference paper at ICLR 2023

Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58(301), 1963.

Tito Homem-de Mello. A study on the cross-entropy method for rare-event probability estimation.
INFORMS Journal on Computing, 19(3), 2007.

Jiaqiao Hu, Michael C Fu, and Steven I Marcus. A model reference adaptive search method for
global optimization. Operations Research, 55(3), 2007.

Jiaqiao Hu, Ping Hu, and Hyeong Soo Chang. A stochastic approximation framework for a class of
randomized optimization algorithms. IEEE Transactions on Automatic Control, 57(1), 2012.

Ehsan Imani, Eric Graves, and Martha White. An off-policy policy gradient theorem using emphatic
weightings. In Advances in Neural Information Processing Systems, 2018.

Tommi Jaakkola, Michael I Jordan, and Satinder P Singh. On the convergence of stochastic iterative
dynamic programming algorithms. Neural computation, 6(6):1185–1201, 1994.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In
International Conference on Machine Learning, 2002.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, and Sergey Levine. Qt-opt:
Scalable deep reinforcement learning for vision-based robotic manipulation. In Conference on
Robot Learning, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2014.

Jens Kober and Jan R Peters. Policy search for motor primitives in robotics. In Advances in Neural
Information Processing Systems, 2008.

Harold J. Kushner and Dean S. Clark. Stochastic Approximation Methods for Constrained and
Unconstrained Systems. Springer Science & Business Media, 2012.

Michail G Lagoudakis and Ronald Parr. Reinforcement learning as classification: Leveraging modern
classifiers. In International Conference on Machine Learning, 2003.

Alessandro Lazaric, Mohammad Ghavamzadeh, and Rémi Munos. Analysis of a classification-based
policy iteration algorithm. In International Conference on Machine Learning, 2010.

Nevena Lazić, Botao Hao, Yasin Abbasi-Yadkori, Dale Schuurmans, and Csaba Szepesvári. Opti-
mization issues in kl-constrained approximate policy iteration. arXiv preprint arXiv:2102.06234,
2021.

Timothy P Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In
International Conference on Learning Representations, 2016.

Shie Mannor, Reuven Rubinstein, and Yohai Gat. The cross entropy method for fast policy search. In
International Conference on Machine Learning, 2003.

Jincheng Mei, Chenjun Xiao, Ruitong Huang, Dale Schuurmans, and Martin Müller. On princi-
pled entropy exploration in policy optimization. In International Joint Conference on Artificial
Intelligence, 2019.

Carl N Morris. Natural exponential families with quadratic variance functions. The Annals of
Statistics, 1982.

Gerhard Neumann. Variational inference for policy search in changing situations. In International
Conference on Machine Learning, 2011.

Chris Nota and Philip S. Thomas. Is the policy gradient a gradient? In International Conference on
Autonomous Agents and Multiagent Systems, 2020.

11

Published as a conference paper at ICLR 2023

Johan S Obando-Ceron and Pablo Samuel Castro. Revisiting rainbow: Promoting more insightful and
inclusive deep reinforcement learning research. In International Conference on Machine Learning,
2021.

Emilio Parisotto, Jimmy Lei Ba, and Ruslan Salakhutdinov. Actor-mimic: Deep multitask and
transfer reinforcement learning. In International Conference on Learning Representations, 2016.

Jan Peters and Stefan Schaal. Reinforcement learning by reward-weighted regression for operational
space control. In International Conference on Machine Learning, 2007.

Jan Peters, Katharina Mülling, and Yasemin Altün. Relative entropy policy search. In AAAI
Conference on Artificial Intelligence, 2010.

Aloı̈s Pourchot and Olivier Sigaud. Cem-rl: Combining evolutionary and gradient-based methods for
policy search. In International Conference on Learning Representations, 2019.

Herbert Robbins and Sutton Monro. A stochastic approximation method. In Herbert Robbins Selected
Papers. Springer, 1985.

Reuven Rubinstein. The cross-entropy method for combinatorial and continuous optimization.
Methodology And Computing In Applied Probability, 1(2), 1999.

Reuven Y Rubinstein and Dirk P Kroese. The cross-entropy method: a unified approach to com-
binatorial optimization, Monte-Carlo simulation, and machine learning, volume 133. Springer,
2004.

Reuven Y Rubinstein and Alexander Shapiro. Discrete Event Systems: Sensitivity Analysis and
Stochastic Optimization by the Score Function Method, volume 1. Wiley New York, 1993.

Tim Salimans, Jonathan Ho, Xi Chen, and Ilya Sutskever. Evolution strategies as a scalable alternative
to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International Conference on Machine Learning, 2015.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. International Conference on Learning
Representations, 2016.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv:1707.06347, 2017.

Pranab K Sen and Julio M Singer. Large Sample Methods in Statistics (1994): An Introduction with
Applications. CRC Press, 2017.

Lior Shani, Yonathan Efroni, and Shie Mannor. Adaptive trust region policy optimization: Global
convergence and faster rates for regularized mdps. In AAAI Conference on Artificial Intelligence,
2020.

Lin Shao, Yifan You, Mengyuan Yan, Shenli Yuan, Qingyun Sun, and Jeannette Bohg. Grac:
Self-guided and self-regularized actor-critic. In Conference on Robot Learning, 2022.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In International Conference on Machine Learning, 2014.

Riley Simmons-Edler, Ben Eisner, Eric Mitchell, Sebastian Seung, and Daniel Lee. Q-learning
for continuous actions with cross-entropy guided policies. In RL4RealLife Workshop at the
International Conference on Machine Learning, 2019.

Denis Steckelmacher, Hélène Plisnier, Diederik M Roijers, and Ann Nowé. Sample-efficient model-
free reinforcement learning with off-policy critics. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, 2019.

Wen Sun, Geoffrey J Gordon, Byron Boots, and J Bagnell. Dual policy iteration. Advances in Neural
Information Processing Systems, 31, 2018.

12

Published as a conference paper at ICLR 2023

Richard S. Sutton. Temporal Credit Assignment in Reinforcement Learning. PhD thesis, University
of Massachusetts Amherst, 1984.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT press, 2018.

Richard S. Sutton, David A. McAllester, Satinder P. Singh, and Yishay Mansour. Policy gradi-
ent methods for reinforcement learning with function approximation. In Advances in Neural
Information Processing Systems, 1999.

István Szita and András Lörincz. Learning tetris using the noisy cross-entropy method. Neural
Computation, 18(12), 2006.

Philip Thomas. Bias in natural actor-critic algorithms. In International Conference on Machine
Learning, 2014.

Manan Tomar, Lior Shani, Yonathan Efroni, and Mohammad Ghavamzadeh. Mirror descent policy
optimization. arXiv preprint arXiv:2005.09814, 2020.

Nino Vieillard, Tadashi Kozuno, Bruno Scherrer, Olivier Pietquin, Remi Munos, and Matthieu Geist.
Leverage the average: an analysis of kl regularization in reinforcement learning. In Advances in
Neural Information Processing Systems, 2020a.

Nino Vieillard, Olivier Pietquin, and Matthieu Geist. Deep conservative policy iteration. In AAAI
Conference on Artificial Intelligence, 2020b.

Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Remi Munos, Koray Kavukcuoglu, and
Nando de Freitas. Sample efficient actor-critic with experience replay. International Conference
on Learning Representations, 2017.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8(3-4), 1992.

Kenny Young and Tian Tian. Minatar: An atari-inspired testbed for thorough and reproducible
reinforcement learning experiments. arXiv preprint arXiv:1903.03176, 2019.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. Maximum entropy inverse
reinforcement learning. In AAAI Conference on Artificial Intelligence, 2008.

A RELATED POLICY OPTIMIZATION ALGORITHMS

As mentioned in the main text, there are many policy optimization algorithms that can be seen as
approximate policy iteration (API) rather than performing gradient descent on a policy objective.
An overview and survey are given by Vieillard et al. (2020a) and Chan et al. (2021). There, many
methods are shown to either minimize a forward or reverse KL-divergence to the Boltzmann policy.
Our approach similarly updates the actor using a KL-divergence to a target policy, but here that
target policy is the percentile-greedy policy. By doing a maximum likelihood update with actions
sampled under the percentile-greedy policy, we are reducing the forward KL-divergence to the
percentile-greedy policy in Equation 2.

Our CCEM update for the actor is new, but there are several approaches that resemble the idea,
particularly those that try to match an expert. This includes dual policy iteration methods (DPI)
(Parisotto et al., 2016; Sun et al., 2018; Steckelmacher et al., 2019) and RL as classification methods
(Lagoudakis & Parr, 2003; Lazaric et al., 2010; Farahmand et al., 2015). DPI has two policies, one
which is guiding the other. For example, one policy might be an expensive tree search and another
a learned neural network, trained to mimic the first (expert or guide) policy. CCEM, on the other
hand, uses two policies differently. Our actor does not imitate our proposal policy. Rather, the
proposal policy is used to improve the search over the nonconcave surface of Q. It samples actions
more broadly, to make it more likely to find a maximizing action. Further, the actor increases the
likelihood of only the top actions and does not imitate the proposal policy. In contrast, Bootstrap DPI
(Steckelmacher et al., 2019, Equation 5) uses an update based on Actor-Mimic (Parisotto et al., 2016),
where the policy increases likelihood of actions for the softmax policies it is trying to mimic. The

13

Published as a conference paper at ICLR 2023

resemblance arises from the fact that (Steckelmacher et al., 2019, Equation 5) can be seen as a sum
over forward KL divergences to softmax policies (for discrete actions), just like we have a forward
KL divergence but to the percentile-greedy policy (for discrete or continuous actions).

The other class of algorithms, RL as classification, also look similar due to using a forward KL
divergence. They reduce the problem to identifying “positive” actions in a state (producing maximal
returns) and “negative” actions in a state (producing non-maximal returns). If a cross-entropy loss is
used, then this corresponds to maximizing the likelihood of the positive actions and minimizing the
likelihood of the negative ones. More generally, other classification algorithms can be used that do
not involve maximizing likelihood (like SVMs). The RL as classifications algorithms primarily focus
on how to obtain these positive and negative actions, and otherwise look quite different from Greedy
AC, in addition to being restricted to a discrete set of actions.

Finally, we can also consider the connection to Conservative Policy Iteration (CPI) (Kakade &
Langford, 2002) and a generalization called Deep CPI (Vieillard et al., 2020b). CPI updates the policy
to be an interpolation between the greedy policy G(Q) and the current policy π, to get the new policy
π′ = (1−α)π+αG(Q) for α ∈ [0, 1]. Deep CPI extends this idea to parameterized policies, instead
minimizing a forward KL to this interpolation policy. Greedy AC could be seen as another way to
obtain a conservative update, because it does not move the actor all the way to the greedy policy.
Instead, it moves towards the percentile-greedy policy (in Equation 2), which shifts probability to
the upper percentile of actions. Similarly to the interpolation policy, this percentile-greedy policy
depends on the previous policy and on increasing probability for maximally valued actions. As yet,
Deep CPI has not been shown to enjoy the same theoretical guarantees as CPI: minimizing a forward
KL to the interpolation policy does not provide the same guarantees. It remains an open question
how to implement this conservative update in deep RL, and it would be interesting to understand if
the CCEM update could provide an alternative route to obtaining such guarantees.

B CONVERGENCE ANALYSIS OF THE ACTOR

We provided an informal proof statement and proof sketch in Section 4.2, to provide intuition for
the result. Here, we provide the formal proof in the following subsections. We first provide some
definitions, particularly for the quantile function which is central to the analysis. We then lay out the
assumptions, and discuss some policy parameterizations to satisfy those assumptions. We finally state
the theorem, with proof, and provide one lemma needed to prove the theorem in the final subsection.

B.1 NOTATION AND DEFINITIONS

Notation: For a set A, let Å represent the interior of A, while ∂A is the boundary of A. The
abbreviation a.s. stands for almost surely and i.o. stands for infinitely often. Let N represent the set
{0, 1, 2, . . . }. For a set A, we let IA to be the indicator function/characteristic function of A and is
defined as IA(x) = 1 if x ∈ A and 0 otherwise. Let Eg[·], Vg[·] and Pg(·) denote the expectation,
variance and probability measure w.r.t. g. For a σ-field F, let E [·|F] represent the conditional
expectation w.r.t. F. A function f : X → Y is called Lipschitz continuous if ∃L ∈ (0,∞) s.t.
∥f(x1)− f(x2)∥ ≤ L∥x1 − x2∥, ∀x1,x2 ∈ X . A function f is called locally Lipschitz continuous
if for every x ∈ X , there exists a neighbourhood U of X such that f|U is Lipschitz continuous. Let
C(X,Y) represent the space of continuous functions from X to Y . Also, let Br(x) represent an
open ball of radius r with centered at x. For a positive integer M , let [M]

.
= {1, 2 . . .M}.

Definition 1. A function Γ : U ⊆ IRd1 → V ⊆ IRd2 is Frechet differentiable at x ∈ U if there exists
a bounded linear operator Γ̂x : IRd1 → IRd2 such that the limit

lim
ϵ↓0

Γ(x+ ϵy)− x

ϵ
(3)

exists and is equal to Γ̂x(y). We say Γ is Frechet differentiable if Frechet derivative of Γ exists at
every point in its domain.

Definition 2. Given a bounded real-valued continuous functionH : IRd → IR withH(a) ∈ [Hl, Hu]
and a scalar ρ ∈ [0, 1], we define the (1−ρ)-quantile ofH(A) w.r.t. the PDF g (denoted as fρ(H, g))

14

Published as a conference paper at ICLR 2023

as follows:

fρ(H, g)
.
= sup

ℓ∈[Hl,Hu]

{Pg

(
H(A) ≥ ℓ

)
≥ ρ}, (4)

where Pg is the probability measure induced by the PDF g, i.e., for a Borel set A, Pg(A)
.
=∫

A
g(a)da.

This quantile operator will be used to succinctly write the quantile for Qθ(S, ·), with actions selected
according to πw, i.e.,

fρθ (w; s)
.
= fρ(Qθ(s, ·), πw(·|s)) = sup

ℓ∈[Qθ
l ,Q

θ
u]

{Pπw(·|s)
(
Qθ(s,A) ≥ ℓ

)
≥ ρ}. (5)

B.2 ASSUMPTIONS

Assumption 1. Given a realization of the transition dynamics of the MDP in the form of a sequence
of transition tuples O

.
= {(St, At, Rt, S

′
t)}t∈N, where the state St ∈ S is drawn using a latent

sampling distribution ν, while At ∈ A is the action chosen at state St, the transitioned state
S ∋ S′

t ∼ P (St, At, ·) and the reward IR ∋ Rt
.
= R(St, At, S

′
t). We further assume that the reward

is uniformly bounded, i.e., |R(·, ·, ·)| < Rmax <∞.

We analyze the long run behaviour of the conditional cross-entropy recursion (actor) which is defined
as follows:

wt+1
.
= ΓW

{
wt + αa,t

1

Nt

∑
A∈Ξt

I{Qθt (St,A)≥f̂ρ
t+1}
∇wt lnπw(A|St)

}
, (6)

where Ξt
.
= {At,1, At,2, . . . , At,Nt

} iid∼ πw′
t
(·|St).

w′
t+1

.
= w′

t + α′
a,t (wt+1 −w′

t) . (7)

Here, ΓW {·} is the projection operator onto the compact (closed and bounded) and convex set
W ⊂ IRm with a smooth boundary ∂W . Therefore, ΓW maps vectors in IRm to the nearest vectors
in W w.r.t. the Euclidean distance (or equivalent metric). Convexity and compactness ensure that the
projection is unique and belongs to W .
Assumption 2. The pre-determined, deterministic, step-size sequences {αa,t}t∈N, {α′

a,t}t∈N and
{αq,t}t∈N are positive scalars which satisfy the following:∑

t∈N

αa,t =
∑
t∈N

α′
a,t =

∑
t∈N

αq,t =∞∑
t∈N

(
α2
a,t + α′2

a,t + α2
q,t

)
<∞

lim
t→∞

α′
a,t

αa,t
= 0, lim

t→∞

αq,t

αa,t
= 0.

The first conditions in Assumption 2 are the classical Robbins-Monro conditions (Robbins & Monro,
1985) required for stochastic approximation algorithms. The last two conditions enable the different
stochastic recursions to have separate timescales. Indeed, it ensures the wt recursion is faster
compared to the recursions of θt and w′

t. This timescale divide is needed to obtain the desired
asymptotic behaviour, as we describe in the next section.
Assumption 3. The pre-determined, deterministic, sample length schedule {Nt ∈ N}t∈N is positive
and strictly monotonically increases to∞ and inft∈N

Nt+1

Nt
> 1.

Assumption 3 states that the number of samples increases to infinity and is primarily required to
ensure that the estimation error arising due to the estimation of sample quantiles eventually decays to
0. Practically, one can indeed consider a fixed, finite, positive integer for Nt which is large enough to
accommodate the acceptable error.

15

Published as a conference paper at ICLR 2023

Assumption 4. The sequence {θt}t∈N satisfies θt ∈ Θ, where Θ ⊂ IRn is a convex, compact set.
Also, for θ ∈ Θ, let Qθ(s, a) ∈ [Qθ

l , Q
θ
u], ∀s ∈ S, a ∈A.

Assumption 4 assumes stability of the Expert, and minimally only requires that the values remain in a
bounded range. We make no additional assumptions on the convergence properties of the Expert, as
we simply need stability to prove the Actor tracks the update.

Assumption 5. For θ ∈ Θ and s ∈ S, let PA∼πw′ (·|s) (Qθ(s,A) ≥ ℓ) > 0, ∀ℓ ∈ [Qθ
l , Q

θ
u] and

∀w′ ∈W .

Assumption 5 implies that there always exists a strictly positive probability mass beyond every
threshold ℓ ∈ [Qθ

l , Q
θ
u]. This assumption is easily satisfied when Qθ(s, a) is continuous in a and

πw(·|s) is a continuous probability density function.

Assumption 6.

sup
w,w′∈W,

θ∈Θ,ℓ∈[Qθ
l ,Q

θ
u]

EA∼πw′ (·|S)

[∥∥∥I{Qθ(S,A)≥ℓ}∇w lnπw(A|S)−

EA∼πw′ (·|S)

[
I{Qθ(S,A)≥ℓ}∇w lnπw(A|S)

∣∣S] ∥∥∥2
2

∣∣∣S] <∞ a.s.,

sup
w,w′∈W,

θ∈Θ,ℓ∈[Qθ
l ,Q

θ
u]

EA∼πw′ (·|S)

[∥∥∥I{Qθ(S,A)≥ℓ}∇w lnπw(A|S)
∥∥∥2
2

∣∣∣S] <∞ a.s.

Assumption 7. For s ∈ S,∇w lnπw(·|s) is locally Lipschitz continuous w.r.t. w.

Assumptions 6 and 7 are technical requirements that can be more easily characterized when we
consider πw to belong to the natural exponential family (NEF) of distributions.

Definition 3. Natural exponential family of distributions (NEF)(Morris, 1982): These probability
distributions over IRm are represented by

{πη(x)
.
= h(x)eη

⊤T (x)−K(η) | η ∈ Λ ⊂ IRd}, (8)

where η is the natural parameter, h : IRm −→ IR, while T : IRm −→ IRd (called the sufficient
statistic) and K(η)

.
= ln

∫
h(x)eη

⊤T (x)dx (called the cumulant function of the family). The space Λ
is defined as Λ .

= {η ∈ IRd| |K(η)| <∞}. Also, the above representation is assumed minimal.4
A few popular distributions which belong to the NEF family include Binomial, Poisson, Bernoulli,
Gaussian, Geometric and Exponential distributions.

We parametrize the policy πw(·|S) using a neural network, which implies that when we consider
NEF for the stochastic policy, the natural parameter η of the NEF is being parametrized by w. To
be more specific, we have {ψw : S → Λ|w ∈ IRm} to be the function space induced by the neural
network of the actor, i.e., for a given state s ∈ S, ψw(s) represents the natural parameter of the NEF
policy πw(·|s). Further,

∇w lnπw(A|S) = ln (h(A)) + ψw(St)
⊤T (A)−K(ψw(S))

= ∇wψw(S) (T (A)−∇ηK(ψw(S))) .

= ∇wψw(S)
(
T (A)− EA∼πw(·|S) [T (A)]

)
. (9)

Therefore Assumption 7 can be directly satisfied by assuming that ψw is twice continuously differen-
tiable w.r.t. w.

Assumption 8. For every θ ∈ Θ, s ∈ S and w ∈W , fρθ (w; s) (from Eq. equation 5) exists and is
unique.

The above assumption ensures that the true (1− ρ)-quantile is unique and the assumption is usually
satisfied for most distributions and a well-behaved Qθ.

4For a distribution in NEF, there may exist multiple representations of the form (8). However, for the
distribution, there definitely exists a representation where the components of the sufficient statistic are linearly
independent and such a representation is referred to as minimal.

16

Published as a conference paper at ICLR 2023

B.3 MAIN THEOREM

To analyze the algorithm, we employ here the ODE-based analysis as proposed in (Borkar, 2008;
Kushner & Clark, 2012). The actor recursions (Eqs. (6-7)) represent a classical two timescale
stochastic approximation recursion, where there exists a bilateral coupling between the individual
stochastic recursions (6) and (7). Since the step-size schedules {αa,t}t∈N and {α′

a,t}t∈N satisfy
α′

a,t

αa,t
→ 0, we have α′

a,t → 0 relatively faster than αa,t → 0. This disparity induces a pseudo-
heterogeneous rate of convergence (or timescales) between the individual stochastic recursions
which further amounts to the asymptotic emergence of a stable coherent behaviour which is quasi-
asynchronous. This pseudo-behaviour can be interpreted using multiple viewpoints. When viewed
from the faster timescale recursion— controlled by αa,t—the slower timescale recursion—controlled
by α′

a,t—appears quasi-static, i.e., almost a constant. Likewise, when observed from the slower
timescale, the faster timescale recursion seems equilibrated.

The existence of this stable long run behaviour under certain standard assumptions of stochastic
approximation algorithms is rigorously established in (Borkar, 1997) and also in Chapter 6 of
(Borkar, 2008). For our stochastic approximation setting (Eqs. (6-7)), we can directly apply this
appealing characterization of the long run behaviour of the two timescale stochastic approximation
algorithms—after ensuring the compliance of our setting to the pre-requisites demanded by the
characterization—by considering the slow timescale stochastic recursion (7) to be quasi-stationary
(i.e., w′

t ≡ w′, a.s., ∀t ∈ N), while analyzing the limiting behaviour of the faster timescale recursion
(6). Similarly, we let θt to be quasi-stationary too (i.e., θt ≡ θ, a.s., ∀t ∈ N). The asymptotic
behaviour of the slower timescale recursion is further analyzed by considering the faster timescale
temporal variable wt with the limit point so obtained during quasi-stationary analysis.

Define the filtration {Ft}t∈N, a family of increasing natural σ-fields, where

Ft
.
= σ ({wi,w

′
i, (Si, Ai, Ri, S

′
i),Ξi; 0 ≤ i ≤ t}) .

Theorem B.1. Let w′
t ≡ w′, θt ≡ θ,∀t ∈ N a.s. Let Assumptions 1-8 hold. Then the stochastic

sequence {wt}t∈N generated by the stochastic recursion (6) asymptotically tracks the ODE:

d

dt
w(t) = Γ̂W

w(t)

(
∇w(t)ES∼ν,A∼πw′ (·|S)

[
I{Qθ(S,A)≥fρ

θ (w
′;S)} lnπw(t)(A|S)

])
, t ≥ 0. (10)

In other words, limt→∞ wt ∈ K a.s., where K is set of stable equilibria of the ODE (10) contained
inside W .

Proof. Firstly, we rewrite the stochastic recursion (6) under the hypothesis that θt and w′
t are

quasi-stationary, i.e., θt ≡
a.s.

θ and w′
t ≡
a.s.

w′ as follows:

wt+1
.
= ΓW

{
wt + αa,t

1

Nt

∑
A∈Ξt

I{Qθ(St,A)≥f̂ρ
t+1}
∇w lnπw(A|St)

}
(11)

where fρθ (w
′;S)

.
= fρ(Qθ(S, ·), πw′(·|S)) and ∇wt

.
= ∇w=wt , i.e., the gradient w.r.t. w at wt.

Define

gθ(w)
.
= ESt∼ν,A∼πw′ (·|St)

[
I{Qθ(St,A)≥fρ

θ (w
′;St)}∇w lnπw(A|St)

]
. (12)

Mt+1
.
=

1

Nt

∑
A∈Ξt

I{Qθ(St,A)≥f̂ρ
t+1}
∇wt lnπw(A|St)−

E

[
1

Nt

∑
A∈Ξt

I{Qθ(St,A)≥f̂ρ
t+1}
∇wt

lnπw(A|St)
∣∣∣Ft

]
. (13)

ℓθt
.
= E

[
1

Nt

∑
A∈Ξt

I{Qθ(St,A)≥f̂ρ
t+1}
∇wt lnπw(A|St)

∣∣∣∣Ft

]
−

ESt∼ν,A∼πw′ (·|St)

[
I{Qθ(St,A)≥fρ

θ (w
′;St)}∇wt

lnπw(A|St)
]

(14)

17

Published as a conference paper at ICLR 2023

Then we can rewrite

equation 11 = ΓW

{
wt + αa,t

(
ESt∼ν,A∼πw′ (·|St)

[
I{Qθ(St,A)≥fρ

θ (w
′;St)}∇wt lnπw(A|St)

]
−

ESt∼ν,A∼πw′ (·|St)

[
I{Qθ(St,A)≥fρ

θ (w
′;St)}∇wt

lnπw(A|St)
]
+

E

[
1

Nt

∑
A∈Ξt

I{Qθ(St,A)≥f̂ρ
t+1}
∇wt

lnπw(A|St)

∣∣∣∣Ft

]
−

E

[
1

Nt

∑
A∈Ξt

I{Qθ(St,A)≥f̂ρ
t+1}
∇wt

lnπw(A|St)

∣∣∣∣Ft

]
+

1

Nt

∑
A∈Ξt

I{Qθ(St,A)≥f̂ρ
t+1}
∇wt lnπw(A|St)

)}
.

= ΓW
{
gθ(wt) +Mt+1 + ℓθt

}
, (15)

A few observations are in order:

B1. {Mt+1}t∈N is a martingale difference noise sequence w.r.t. the filtration {Ft}t∈N, i.e., Mt+1

is Ft+1-measurable and integrable, ∀t ∈ N and E [Mt+1|Ft] = 0 a.s., ∀t ∈ N.

B2. gθ is locally Lipschitz continuous. This follows from Assumption 7.

B3. ℓθt → 0 a.s. as t→∞. (By Lemma 2 below).

B4. The iterates {wt}t∈N is bounded almost surely, i.e.,

sup
t∈N

∥wt∥ <∞ a.s.

This is ensured by the explicit application of the projection operator ΓW {·} over the iterates
{wt}t∈N at every iteration onto the bounded set W .

B5. ∃L ∈ (0,∞) s.t. E
[
∥Mt+1∥2|Ft

]
≤ L

(
1 + ∥wt∥2

)
a.s.

This follows from Assumption 6 (ii).

Now, we rewrite the stochastic recursion (15) as follows:

wt+1
.
= wt + αa,t

ΓW
{
wt + ξt

(
gθ(wt) +Mt+1 + ℓθt

)}
−wt

αa,t

= wt + αa,t

(
Γ̂W
wt

(gθ(wt)) + Γ̂W
wt

(Mt+1) + Γ̂W
wt

(
ℓθt
)
+ o(αa,t)

)
, (16)

where Γ̂W is the Frechet derivative (Definition 3).

The above stochastic recursion is also a stochastic approximation recursion with the vector field
Γ̂W
wt

(gθ(wt)), the noise term Γ̂W
wt

(Mt+1), the bias term Γ̂W
wt

(
ℓθt
)

with an additional error term
o(αa,t) which is asymptotically inconsequential.

Also, note that ΓW is single-valued map since the set W is assumed convex and also the limit exists
since the boundary ∂W is considered smooth. Further, for w ∈ W̊ , we have

Γ̂W
w (u)

.
= lim

ϵ→0

ΓW {w + ϵu} −w

ϵ
= lim

ϵ→0

w + ϵu−w

ϵ
= u (for sufficiently small ϵ), (17)

18

Published as a conference paper at ICLR 2023

i.e., Γ̂W
w (·) is an identity map for w ∈ W̊ .

Now by appealing to Theorem 2, Chapter 2 of (Borkar, 2008) along with the observations B1-B5, we
conclude that the stochastic recursion (6) asymptotically tracks the following ODE almost surely:

d

dt
w(t) = Γ̂W

w(t)(g
θ(w(t))), t ≥ 0

= Γ̂W
w(t)

(
ES∼ν,A∼πw′ (·|S)

[
I{Qθ(S,A)≥fρ

θ (w
′;S)}∇w(t) lnπw(A|S)

])
= Γ̂W

w(t)

(
∇w(t)ES∼ν,A∼πw′ (·|S)

[
I{Qθ(S,A)≥fρ

θ (w
′;S)} lnπw(A|S)

])
. (18)

The interchange of expectation and the gradient in the last equality follows from dominated conver-
gence theorem and Assumption 7 (Rubinstein & Shapiro, 1993). The above ODE is a gradient flow
with dynamics restricted inside W . This further implies that the stochastic recursion (6) converges to
a (possibly sample path dependent) asymptotically stable equilibrium point of the above ODE inside
W .

B.4 PROOF OF LEMMA 2 TO SATISFY CONDITION 3

In this section, we show that ℓθt → 0 a.s. as t→∞, in Lemma 2. To do so, we first need to prove
several supporting lemmas. Lemma 1 shows that, for a given Actor and Expert, the sample quantile
converges to the true quantile. Using this lemma, we can then prove Lemma 2. In the following
subsection, we provide three supporting lemmas about convexity and Lipschitz properties of the
sample quantiles, required for the proof Lemma 1.

For this section, we require the following characterization of fρ(Qθ(s, ·),w′). Please refer Lemma 1
of (Homem-de Mello, 2007) for more details.

fρ(Qθ(s, ·),w′) = argmin
ℓ∈[Qθ

l ,Q
θ
u]

EA∼πw′ (·|s) [Ψ(Qθ(s,A), ℓ)], (19)

where Ψ(y, ℓ)
.
= (y − ℓ)(1− ρ)I{y≥ℓ} + (ℓ− y)ρI{ℓ≥y}.

Similarly, the sample estimate of the true (1− ρ)-quantile, i.e., f̂ρ .
= Q

(⌈(1−ρ)N⌉)
θ,s , (where Q(i)

θ,s is

the i-th order statistic of the random sample {Qθ(s,A)}A∈Ξ with Ξ
.
= {Ai}Ni=1

iid∼ πw′(·|s)) can be
characterized as the unique solution of the stochastic counterpart of the above optimization problem,
i.e.,

f̂ρ = argmin
ℓ∈[Qθ

l ,Q
θ
u]

1

N

∑
A∈Ξ
|Ξ|=N

Ψ(Qθ(s,A), ℓ). (20)

Lemma 1. Assume θt ≡ θ, w′
t ≡ w′, ∀t ∈ N. Also, let Assumptions 3-5 hold. Then, for a given

state s ∈ S,

lim
t→∞

f̂ρt = fρ(Qθ(s, ·),w′) a.s.,

where f̂ρt
.
= Q

(⌈(1−ρ)Nt⌉)
θ,s , (where Q

(i)
θ,s is the i-th order statistic of the random sample

{Qθ(s,A)}A∈Ξt with Ξt
.
= {Ai}Nt

i=1
iid∼ πw′(·|s)).

Proof. The proof is similar to arguments in Lemma 7 of (Hu et al., 2007). Since state s and expert
parameter θ are considered fixed, we assume the following notation in the proof. Let

f̂ρt|s,θ
.
= f̂ρt and fρ|s,θ

.
= fρ(Qθ(s, ·),w′), (21)

where f̂ρt and fρ(Qθ(s, ·),w′) are defined in Equations equation 19 and equation 20.

Consider the open cover {Br(ℓ), ℓ ∈ [Qθ
l , Q

θ
u]} of [Qθ

l , Q
θ
u]. Since [Qθ

l , Q
θ
u] is compact,

there exists a finite sub-cover, i.e., ∃{ℓ1, ℓ2, . . . , ℓM} s.t. ∪Mi=1Br(ℓi) = [Qθ
l , Q

θ
u]. Let

19

Published as a conference paper at ICLR 2023

ϑ(ℓ)
.
= EA∼πw′ (·|S) [Ψ(Qθ(s,A), ℓ)] and ϑ̂t(ℓ)

.
= 1

Nt

∑
A∈Ξt,|Ξt|=Nt,

Ξt
iid∼πw′ (·|s)

Ψ(Qθ(s,A), ℓ).

Now, by triangle inequality, we have for ℓ ∈ [Qθ
l , Q

θ
u],

|ϑ(ℓ)− ϑ̂t(ℓ)| ≤ |ϑ(ℓ)− ϑ(ℓj)|+ |ϑ(ℓj)− ϑ̂t(ℓj)|+ |ϑ̂t(ℓj)− ϑ̂t(ℓ)|

≤ Lρ|ℓ− ℓj |+ |ϑ(ℓj)− ϑ̂t(ℓj)|+ L̂ρ|ℓj − ℓ|

≤
(
Lρ + L̂ρ

)
r + |ϑ(ℓj)− ϑ̂t(ℓj)|, (22)

where Lρ and L̂ρ are the Lipschitz constants of ϑ(·) and ϑ̂t(·) respectively.

For δ > 0, take r = δ(Lρ + L̂ρ)/2. Also, by Kolmogorov’s strong law of large numbers (Theorem
2.3.10 of (Sen & Singer, 2017)), we have ϑ̂t(ℓ)→ ϑ(ℓ) a.s. This implies that there exists T ∈ N s.t.
|ϑ(ℓj)− ϑ̂t(ℓj)| < δ/2, ∀t ≥ T , ∀j ∈ [M]. Then from Eq. (22), we have

|ϑ(ℓ)− ϑ̂t(ℓ)| ≤ δ/2 + δ/2 = δ, ∀ℓ ∈ [Qθ
l , Q

θ
u].

This implies ϑ̂t converges uniformly to ϑ. By Lemmas 3 and 4, ϑ̂t and ϑ are strictly convex and
Lipschitz continuous, and so because ϑ̂t converges uniformly to ϑ, this means that the sequence
of minimizers of ϑ̂t converge to the minimizer of ϑ (see Lemma 5, Appendix B.6 for an explicit
justification). These minimizers correspond to f̂ρt and fρ(Qθ(s, ·),w′) respectively, and so
limNt→∞ f̂ρt = fρ(Qθ(s, ·),w′) a.s.

Now, for δ > 0 and r .
= δ(Lρ + L̂ρ)/2, we obtain the following from Eq. (22):

|ϑ(ℓ)− ϑ̂t(ℓ)| ≤ δ/2 + |ϑ(ℓj)− ϑ̂t(ℓj)|

⇔ {|ϑ(ℓj)− ϑ̂t(ℓj)| ≤ δ/2,∀j ∈ [M]} ⇒ {|ϑ(ℓ)− ϑ̂t(ℓ)| ≤ δ, ∀ℓ ∈ [Qθ
l , Q

θ
u]}

⇒ Pπw′

(
|ϑ(ℓ)− ϑ̂t(ℓ)| ≤ δ, ∀ℓ ∈ [Qθ

l , Q
θ
u]
)
≥ Pπw′

(
|ϑ(ℓj)− ϑ̂t(ℓj)| ≤ δ/2,∀j ∈ [M]

)
= 1− Pπw′

(
|ϑ(ℓj)− ϑ̂t(ℓj)| > δ/2,∃j ∈ [M]

)
≥ 1−

M∑
j=1

Pπw′

(
|ϑ(ℓj)− ϑ̂t(ℓj)| > δ/2

)
≥ 1−M max

j∈[M]
Pπw′

(
|ϑ(ℓj)− ϑ̂t(ℓj)| > δ/2

)
≥ 1− 2M exp

(
−2Ntδ

2

4(Qθ
u −Qθ

l)
2

)
, (23)

where Pπw′
.
= PA∼πw′ (·|s). And the last inequality follows from Hoeffding’s inequality (Hoeffding,

1963) along with the fact that Eπw′

[
ϑ̂t(ℓj)

]
= ϑ(ℓj) and sup

ℓ∈[Qθ
l ,Q

θ
u]

|ϑ(ℓ)| ≤ Qθ
u −Qθ

l .

Now, the sub-differential of ϑ(ℓ) is given by

∂ℓϑ(ℓ) =
[
ρ− PA∼πw′ (·|s) (Qθ(s,A) ≥ ℓ) , ρ− 1 + PA∼πw′ (·|s) (Qθ(s,A) ≤ ℓ)

]
. (24)

By the definition of sub-gradient we obtain

c|f̂ρt|s,θ − f
ρ
|s,θ| ≤ |ϑ(f̂

ρ
t|s,θ)− ϑ(f

ρ
|s,θ)|, c ∈ ∂ℓϑ(ℓ)

⇒ C|f̂ρt|s,θ − f
ρ
|s,θ| ≤ |ϑ(f̂

ρ
t|s,θ)− ϑ(f

ρ
|s,θ)|, (25)

20

Published as a conference paper at ICLR 2023

whereC .
= max

{
ρ− PA∼πw′ (·|s)

(
Qθ(s,A) ≥ fρ|s,θ

)
, ρ− 1 + PA∼πw′ (·|s)

(
Qθ(s,A) ≤ fρ|s,θ

)}
.

Further,

C|f̂ρt|s,θ − f
ρ
|s,θ| ≤ |ϑ(f̂

ρ
t|s,θ)− ϑ(f

ρ
|s,θ)|

≤ |ϑ(f̂ρt|s,θ)− ϑ̂t(f̂
ρ
t|s,θ)|+ |ϑ̂t(f̂

ρ
t|s,θ)− ϑ(f

ρ
|s,θ)|

≤ |ϑ(f̂ρt|s,θ)− ϑ̂t(f̂
ρ
t|s,θ)|+ sup

ℓ∈[Qθ
l ,Q

θ
u]

|ϑ̂t(ℓ)− ϑ(ℓ)|

≤ 2 sup
ℓ∈[Qθ

l ,Q
θ
u]

|ϑ̂t(ℓ)− ϑ(ℓ)|. (26)

From Eqs. (23) and (26), we obtain for ϵ > 0

Pw′

(
Nα

t |f̂
ρ
t|s,θ − f

ρ
|s,θ| ≥ ϵ

)
≤ Pw′

(
Nα

t sup
ℓ∈[Qθ

l ,Q
θ
u]

|ϑ̂t(ℓ)− ϑ(ℓ)| ≥
ϵ

2

)

≤ 2M exp

(
−2Ntϵ

2

16N2α
t (Qθ

u −Qθ
l)

2

)
= 2M exp

(
−2N1−2α

t ϵ2

16(Qθ
u −Qθ

l)
2

)
.

For α ∈ (0, 1/2) and inft∈N
Nt+1

Nt
≥ τ > 1 (by Assumption 3), then

∞∑
t=1

2M exp

(
−2N1−2α

t ϵ2

16(Qθ
u −Qθ

l)
2

)
≤

∞∑
t=1

2M exp

(
−2τ (1−2α)tN1−2α

0 ϵ2

16(Qθ
u −Qθ

l)
2

)
<∞.

Therefore, by Borel-Cantelli’s Lemma (Durrett, 1991), we have

Pw′

(
Nα

t

∣∣f̂ρt|s,θ − fρ|s,θ∣∣ ≥ ϵ i.o) = 0.

Thus we have Nα
t

(
f̂ρt|s,θ − f

ρ
|s,θ

)
→ 0 a.s. as Nt →∞.

Lemma 2. Almost surely,

ℓθt → 0 as Nt →∞.

Proof of Lemma 2: Consider

E

[
1

Nt

∑
A∈Ξt

I{Qθ(St,A)≥f̂ρ
t+1}
∇wt

lnπw(A|St)

∣∣∣∣Ft

]
=

E

[
EΞt

[
1

Nt

∑
A∈Ξt

I{Qθ(St,A)≥f̂ρ
t+1}
∇wt lnπw(A|St)

]∣∣∣∣St = s,w′
t

]
Notice that, because of the conditions on πw′(·|s), we know that the sample average converges with
an exponential rate in the number of samples, for arbitrary w′ ∈W . Namely, for ϵ > 0 and N ∈ N,
we have

P
Ξ

iid∼πw′ (·|s)

(∥∥∥ 1

N

∑
A∈Ξ

I{Qθ(s,A)≥fρ(Qθ(s,·),πw′ (·|s)}∇w lnπw(A|s)−

EA∼πw′ (·|s)

[
I{Qθ(s,A)≥f̂ρ(Qθ(s,·),πw′ (·|s)}∇w lnπw(A|s)

] ∥∥∥ ≥ ϵ) ≤ C1 exp (−c2N c3ϵc4),

∀θ ∈ Θ,w,w′ ∈W, s ∈ S,

where C1, c2, c3, c4 > 0.

Therefore, for α′ > 0, we have

P
(
Nα′

t

∥∥∥ 1

Nt

∑
A∈Ξt

I{Qθ(s,A)≥f̂ρ
θ,s}
∇wt

lnπw(A|s)− E
[
I{Qθ(s,A)≥f̂ρ

θ,s}
∇wt

lnπw(A|s)
] ∥∥∥ ≥ ϵ)

≤ C1 exp

(
−c2N

c3
t ϵc4

N c4α′

t

)
= C1 exp

(
−c2N c3−c4α

′

t ϵc4
)

≤ C1 exp
(
−c2τ (c3−c4α

′)tN c3−c4α
′

0 ϵc4
)
,

21

Published as a conference paper at ICLR 2023

where fρθ,s
.
= fρ(Qθ(s, ·), πw′(·|s)) and inft∈N

Nt+1

Nt
≥ τ > 1 (by Assumption 3).

For c3 − c4α′ > 0⇒ α′ < c3/c4, we have
∞∑
t=1

C1 exp
(
−c2τ (c3−c4α

′)tN c3−c4α
′

0 ϵc4
)
<∞.

Therefore, by Borel-Cantelli’s Lemma (Durrett, 1991), we have

P
(
Nα′

t

∥∥∥ 1

Nt

∑
A∈Ξt

I{Qθ(s,A)≥f̂ρ
θ,s}
∇wt

lnπw(A|s)− E
[
I{Qθ(s,A)≥f̂ρ

θ,s}
∇wt

lnπw(A|s)
] ∥∥∥ ≥ ϵ i.o.)

= 0.

This implies that

Nα′

t

∥∥∥ 1

Nt

∑
A∈Ξt

I{Qθ(s,A)≥f̂ρ
θ,s}
∇wt

lnπw(A|s)− E
[
I{Qθ(s,A)≥f̂ρ

θ,s}
∇wt

lnπw(A|s)
] ∥∥∥→ 0 a.s.

(27)

The above result implies that the sample average converges at a rate O(Nα′

t), where 0 < α′ < c3/c4
independent of w,w′ ∈W . By Lemma 1, we have the sample quantiles f̂ρt also converging to the
true quantile at a rate O(Nα

t) independent of w,w′ ∈ W . Now the claim follows directly from
Assumption 6 (ii) and bounded convergence theorem. ■

B.5 SUPPORTING LEMMAS FOR LEMMA 1

Lemma 3. Let Assumption 5 hold. For θ ∈ Θ, w′ ∈W , s ∈ S and ℓ ∈ [Qθ
l , Q

θ
u], we have

1. EA∼πw′ (·|s) [Ψ(Qθ(s,A), ℓ)] is Lipschitz continuous.

2. 1
N

∑
A∈Ξ
|Ξ|=N

Ψ(Qθ(s,A), ℓ) (with Ξ
iid∼ πw′(·|s)) is Lipschitz continuous with Lipschitz

constant independent of the sample length N .

Proof. Let ℓ1, ℓ2 ∈ [Qθ
l , Q

θ
u], ℓ2 ≥ ℓ1. By Assumption 5 we have PA∼πw′ (·|s)(Qθ(s,A) ≥ ℓ1) > 0

and PA∼πw′ (·|s)(Qθ(s,A) ≥ ℓ2) > 0. Now,

∣∣∣EA∼πw′ (·|s) [Ψ(Qθ(s,A), ℓ1)]− EA∼πw′ (·|s) [Ψ(Qθ(s,A), ℓ2)]
∣∣∣

=
∣∣∣EA∼πw′ (·|s)

[
(Qθ(s,A)− ℓ1)(1− ρ)I{Qθ(s,A)≥ℓ1} + (ℓ1 −Qθ(s,A))ρI{ℓ1≥Qθ(s,A)}

]
− EA∼πw′ (·|s)

[
(Qθ(s,A)− ℓ2)(1− ρ)I{Qθ(s,A)≥ℓ2} + (ℓ2 −Qθ(s,A))ρI{ℓ2≥Qθ(s,A)}

] ∣∣∣
=
∣∣∣EA∼πw′ (·|s)

[
(Qθ(s,A)− ℓ1)(1− ρ)I{Qθ(s,A)≥ℓ1} + (ℓ1 −Qθ(s,A))ρI{ℓ1≥Qθ(s,A)}

− (Qθ(s,A)− ℓ2)(1− ρ)I{Qθ(s,A)≥ℓ2} + (ℓ2 −Qθ(s,A))ρI{ℓ2≥Qθ(s,A)}

]∣∣∣
=
∣∣∣EA∼πw′ (·|s)

[
(1− ρ)(ℓ2 − ℓ1)I{Qθ(s,A)≥ℓ2} + ρ(ℓ1 − ℓ2)I{Qθ(s,A)≤ℓ1}+

+ (−(1− ρ)ℓ1 − ρℓ2 + ρQθ(s,A) + (1− ρ)Qθ(s,A)) I{ℓ1≤Qθ(s,A)≤ℓ2}

]∣∣∣
≤ (1− ρ)|ℓ2 − ℓ1|+ (2ρ+ 1) |ℓ2 − ℓ1|
= (ρ+ 2)|ℓ2 − ℓ1|.

Similarly, we can prove the later claim also. This completes the proof of Lemma 3.

Lemma 4. Let Assumption 5 hold. Then, for θ ∈ Θ, w′ ∈ W , s ∈ S and ℓ ∈ [Qθ
l , Q

θ
u], we

have EA∼πw′ (·|s) [Ψ(Qθ(s,A), ℓ)] and 1
N

∑
A∈Ξ
|Ξ|=N

Ψ(Qθ(s,A), ℓ) (with Ξ
iid∼ πw′(·|s)) are strictly

convex.

22

Published as a conference paper at ICLR 2023

Proof. For λ ∈ [0, 1] and ℓ1, ℓ2 ∈ [Ql, Qu] with ℓ1 ≤ ℓ2, we have

EA∈πw′ (·|S)

[
Ψ(Qθ(S,A), λℓ1 + (1− λ)ℓ2)

]
(28)

= EA∈πw′ (·|S)

[
(1− ρ)

(
Qθ(S,A)− λℓ1 − (1− λ)ℓ2

)
I{Qθ(S,A)≥λℓ1+(1−λ)ℓ2}

+ ρ
(
λℓ1 + (1− λ)ℓ2 −Qθ(S,A)

)
I{Qθ(S,A)≤λℓ1+(1−λ)ℓ2}

]
.

Notice that(
Qθ(S,A)− λℓ1 − (1− λ)ℓ2

)
I{Qθ(S,A)≥λℓ1+(1−λ)ℓ2}

=
(
λQθ(S,A)− λℓ1 + (1− λ)Qθ(S,A)− (1− λ)ℓ2

)
I{Qθ(S,A)≥λℓ1+(1−λ)ℓ2}

We consider how one of these components simplifies.

EA∈πw′ (·|S)

[(
λQθ(S,A)− λℓ1

)
I{Qθ(S,A)≥λℓ1+(1−λ)ℓ2}

]
= λEA∈πw′ (·|S)

[(
Qθ(S,A)− ℓ1

)
I{Qθ(S,A)≥λℓ1} −

(
Qθ(S,A)− ℓ1

)
Iλℓ1≤{Qθ(S,A)≤λℓ1+(1−λ)ℓ2}

]
≤ λEA∈πw′ (·|S)

[(
Qθ(S,A)− ℓ1

)
I{Qθ(S,A)≥λℓ1}

]
▷ −

(
Qθ(S,A)− ℓ1

)
≤ 0

for λℓ1 ≤ {Qθ(S,A) ≤ λℓ1 + (1− λ)ℓ2}
≤ λEA∈πw′ (·|S)

[(
Qθ(S,A)− ℓ1

)
I{Qθ(S,A)≥ℓ1}

]
▷
(
Qθ(S,A)− ℓ1

)
≤ 0 for Iλℓ1≤{Qθ(S,A)≤ℓ1}

Similarly, we get

EA∈πw′ (·|S)

[(
Qθ(S,A)− ℓ2

)
I{Qθ(S,A)≥λℓ1+(1−λ)ℓ2}

]
≤ EA∈πw′ (·|S)

[(
Qθ(S,A)− ℓ2

)
I{Qθ(S,A)≥ℓ2}

]
EA∈πw′ (·|S)

[(
ℓ1 −Qθ(S,A)

)
I{Qθ(S,A)≤λℓ1+(1−λ)ℓ2}

]
≤ EA∈πw′ (·|S)

[(
ℓ1 −Qθ(S,A)

)
I{Qθ(S,A)≤ℓ1}

]
EA∈πw′ (·|S)

[(
ℓ2 −Qθ(S,A)

)
I{Qθ(S,A)≤λℓ1+(1−λ)ℓ2}

]
≤ EA∈πw′ (·|S)

[(
ℓ2 −Qθ(S,A)

)
I{Qθ(S,A)≤ℓ2}

]
Therefore, for Equation equation 28, we get

equation 28 ≤ λ(1− ρ)EA∈πw′ (·|S)

[(
Qθ(S,A)− ℓ1

)
I{Qθ(S,A)≥ℓ1}

]
+ (1− λ)(1− ρ)EA∈πw′ (·|S)

[(
Qθ(S,A)− ℓ2

)
I{Qθ(S,A)≥ℓ2}

]
+ λρEA∈πw′ (·|S)

[(
ℓ1 −Qθ(S,A)

)
I{Qθ(S,A)≤ℓ1}

]
+ (1− λ)ρEA∈πw′ (·|S)

[(
ℓ2 −Qθ(S,A)

)
I{Qθ(S,A)≤ℓ2}

]
= λEA∈πw′ (·|S) [Ψ(Qθ(S,A), ℓ1)] + (1− λ)EA∈πw′ (·|S) [Ψ(Qθ(S,A), ℓ2)] .

We can prove the second claim similarly. This completes the proof of Lemma 4.

B.6 LEMMA 5

Lemma 5. Let {fn ∈ C(IR, IR)}n∈N be a sequence of strictly convex, continuous functions converg-
ing uniformly to a strict convex function f . Let x∗n = argminx fn(x) and x∗ = argminx∈IR f(x).
Then lim

n→∞
x∗n = x∗.

Proof. Let c = lim infn x
∗
n. We employ proof by contradiction here. For that, we assume x∗ > c.

Now, note that f(x∗) < f(c) and f(x∗) < f((x∗ + c) /2) (by the definition of x∗). Also, by the
strict convexity of f , we have f((x∗ + c)/2) < (f(x∗) + f(c)) /2 < f(c). Therefore, we have

f(c) > f((x∗ + c)/2) > f(x∗). (29)

Let r1 ∈ IR be such that f(c) > r1 > f((x∗ + c)/2). Now, since ∥fn − f∗∥∞ → 0 as n → ∞,
there exists an positive integer N s.t. |fn(c) − f(c)| < f(c) − r1, ∀n ≥ N and ϵ > 0. Therefore,
fn(c) − f(c) > r1 − f(c) ⇒ fn(c) > r1. Similarily, we can show that fn((x∗ + c)/2) > r1.
Therefore, we have fn(c) > fn((x

∗ + c)/2). Similarily, we can show that fn((x∗ + c)/2) > fn(x
∗).

Finally, we obtain

fn(c) > fn((x
∗ + c)/2) > fn(x

∗), ∀n ≥ N. (30)

Now, by the extreme value theorem of the continuous functions, we obtain that for n ≥ N , fn achieves
minimum (say at xp in the closed interval [c, (x∗ + c)/2]. Note that fn(xp) ≮ fn((x

∗ + c)/2) (if
so then fn(xp) will be a local minimum of fn since fn(x∗) < fn((x

∗ + c)/2)). Also, fn(xp) ̸=

23

Published as a conference paper at ICLR 2023

fn((x
∗ + c)/2). Therefore, fn achieves it minimum in the closed interval [c, (x∗ + c)/2] at the point

(x∗ + c)/2. This further implies that x∗n > (x∗ + c)/2. Therefore, lim infn x
∗
n ≥ (x∗ + c)/2⇒

c ≥ (x∗ + c)/2⇒ c ≥ x∗. This is a contradiction and implies

lim inf
n

x∗n ≥ x∗. (31)

Now consider gn(x) = fn(−x). Note that gn is also continuous and strictly convex. Indeed, for
λ ∈ [0, 1], we have gn(λx1+(1−λ)x2) = fn(−λx1− (1−λ)x2) < λf(−x1)+(1−λ)f(−x2) =
λg(x1) + (1− λ)g(x2). Applying the result from Eq. (31) to the sequence {gn}n∈N, we obtain that
lim infn(−x∗n) ≥ −x∗. This implies lim supn x

∗
n ≤ x∗. Therefore,

lim inf
n

x∗n ≥ x∗ ≥ lim sup
n

x∗n ≥ lim sup
n

x∗n.

Hence, lim infn x
∗
n = lim supn x

∗
n = x∗

C EXPERIMENTAL DETAILS

C.1 HYPERPARAMETER DETAILS

In this section, we outline the tuned hyperparameters for each algorithm on each environment in our
experiments. For each algorithm, hyperparameters were tuned over an initial 10 runs with different
random seeds. Each algorithm saw the same 10 initial random seeds. For a list of all hyperparameters
swept, see Section 5.3. In Table 1, we list the tuned hyperparameters for each algorithm when
tuning across continuous-action environments. In Table 2, we list the tuned hyperparameters for each
algorithm when tuning across discrete-action environments. In Tables 3, 4, and 5, we list the tuned
hyperparameters when tuning per-environment for GreedyAC, VanillaAC, and SAC respectively.
Finally, Table 6 outlines the hyperparamters used in the experiments on Swimmer.

Hyperparameter κ α τ
Greedy Actor-Critic 1.0 1e-3 1e-3
Vanilla Actor-Critic 2.0 1e-3 1e-3

Soft Actor-Critic 1.0 1e-3 1e-3

Table 1: Hyperparameters tuned across continuous-action environments for GreedyAC, VanillaAC,
and SAC.

Hyperparameter κ α τ
Greedy Actor-Critic 10.0 1e-3 -
Vanilla Actor-Critic 1e-1 1e-3 1e-2

Soft Actor-Critic 10 1e-5 10

Table 2: Hyperparameters tuned across discrete-action environments for GreedyAC, VanillaAC, and
SAC.

Hyperparameter κ α τ
Acrobot-CA 1e-1 1e-3 1e-2
Acrobot-DA 1e-1 1e-2 -

Mountain Car-CA 1.0 1e-3 10.0
Mountain Car-DA 2.0 1e-3 -

Pendulum-CA 1e-1 1e-2 10.0
Pendulum-DA 1.0 1e-3 -

Table 3: Hyperparameters tuned per-environment for GreedyAC.

24

Published as a conference paper at ICLR 2023

Hyperparameter κ α τ
Acrobot-CA 2.0 1e-3 1e-3
Acrobot-DA 1e-1 1e-2 1e-2

Mountain Car-CA 2.0 1e-3 1e-3
Mountain Car-DA 1.0 1e-3 1e-2

Pendulum-CA 1e-2 1e-2 1e-2
Pendulum-DA 2.0 1e-3 1.0

Table 4: Hyperparameters tuned per-environment for VanillaAC.

Hyperparameter κ α τ
Acrobot-CA 10.0 1e-5 10.0
Acrobot-DA 2.0 1e-5 10.0

Mountain Car-CA 1.0 1e-3 1e-3
Mountain Car-DA 1.0 1e-3 1e-2

Pendulum-CA 1e-1 1e-2 1e-1
Pendulum-DA 1.0 1e-3 1.0

Table 5: Hyperparameters tuned per-environment for SAC.

Hyperparameter κ α τ
Greedy Actor-Critic 1e-2 1e-4 1e-1

Table 6: Hyperparameters Chosen for GreedyAC on Swimmer.

C.2 NORMALIZATION APPROACH

For each environment, we find the best return achieved by any agent, across all runs, as a simple
approximation to a near-optimal return. Table 7 lists these returns for each environment. Then, to
obtain a normalized score, we use 1 − BestValue−AlgValue

|BestValue| , where the numerator is guaranteed to be
nonnegative. If AlgValue = BestValue we get the highest value of 1. If AlgValue is half of BestValue,
we get 0.5BestValue

|BestValue| = 0.5. If AlgValue is significantly worse than BestValue, the score is much lower.

The AlgValue that we normalize is the point depicted on the sensitivity plot. It corresponds to the
Average Return across timesteps and across runs for the algorithm, with that hyperparameter setting
in that environment.

For the experiments in Figure 3, where we tune across the complete set of discrete- or continuous-
action environments, we first compute the normalized scores just described. Then, we compute the
average normalized scores for each algorithm and hyperparameter setting across discrete-action and
continuous-action environments separately. We then choose the hyperparameter setting for each
algorithm for the discrete- and continuous-action environments based on the hyperparameter setting
which resulted in the highest normalized scores. The learning curves for these hyperparameters, for
each algorithm, are shown in Figure 3.

Environment Continuous Discrete
Acrobot -56 -56

Mountain Car -65 -83
Pendulum 930 932

Table 7: Approximate return achieved by an optimal policy. We approximate the return achievable by
a near-optimal policy on environment E by finding the highest return achieved over all runs of all
hyperparameters and all agents on environment E.

25

Published as a conference paper at ICLR 2023

C.3 SENSITIVITY PLOTS

We plot parameter sensitivity curves, which include a line for each entropy scale, with the stepsize on
the x-axis. Because there are two stepsizes, we have two sets of plots – one for the critic stepsize
and one for the actor stepsize. When examining the sensitivity to the critic stepsize, we select the
corresponding best actor stepsize. This means that for each point (critic stepsize, entropy scale) =
(α, τ) on the sensitivity plot for the critic stepsize, we find the best actor stepsize and report the
performance for that triplet averaged over all 40 runs. We do the same procedure when plotting the
actor stepsize on the x-axis, but maximizing over critic stepsize.

-1-2-3-4-5
1000

550

100

Av
er

ag
e

Re
tu

rn

Acrobot

-1-2-3-4-5
1000

550

100
Mountain Car

-1-2-3-4-5
1000

0

1000

Gr
ee

dy
AC

Pendulum

-1-2-3-4-5
Critic Step-Size

 (10)

1000

550

100 entropy 0.001
entropy 0.01
entropy 0.1
entropy 1.0
entropy 10.0

-1-2-3-4-5
Critic Step-Size

 (10)

1000

550

100

-1-2-3-4-5
Critic Step-Size

 (10)

1000

0

1000

SA
C

Figure 6: Sensitivity curves for the critic step-size hyperparameter α for GreedyAC and SAC, with
one line for each entropy scale tested. The critic step-size is plotted on a logarithmic scale on the
x-axis.

-3 -2 -1 0 1
1000

550

100

Av
er

ag
e

Re
tu

rn

Acrobot

-3 -2 -1 0 1
1000

550

100
Mountain Car

-3 -2 -1 0 1
1000

0

1000

Gr
ee

dy
AC

Pendulum

-3 -2 -1 0 1
Actor Step-Size Scale

 (10)

1000

550

100

Av
er

ag
e

Re
tu

rn

-3 -2 -1 0 1
Actor Step-Size Scale

 (10)

1000

550

100 entropy 0.001
entropy 0.01
entropy 0.1
entropy 1.0
entropy 10.0

-3 -2 -1 0 1
Actor Step-Size Scale

 (10)

1000

0

1000

SA
C

Figure 7: Sensitivity curves for the actor stepsize scale hyperparameter κ for both GreedyAC and
SAC, with one line for each entropy scale tested. The actor step-size scale is plotted on a logarithmic
scale on the x-axis.

26

Published as a conference paper at ICLR 2023

D ABLATION STUDY ON SAC

0 1Timesteps
(Hundreds of Thousands)

1000

650

300
Av

er
ag

e
Re

tu
rn

Acrobot

0 1Timesteps
(Hundreds of Thousands)

1000

525

50 Mountain Car

0 1Timesteps
(Hundreds of Thousands)

700

850

1000 Pendulum

SAC (Auto Entropy)
SAC

Figure 8: Learning curves over 40 runs for SAC and 10 runs for SAC (Auto Entropy) with shaded
regions denoting standard error. The entropy scale for SAC as well as the entropy scale step-size for
SAC (Auto Entropy) are tuned using a grid search.

Modern variants of SAC utilize a trick to automatically adapt the entropy scale hyperparameter
during training (Haarnoja et al., 2018b). In order to gauge which variant of SAC to use in this
work, we performed an ablation study where we studied SAC with and without automatic entropy
tuning. We ran SAC with automatic entropy tuning for 10 runs. Hyperparameters were swept in
the same sets as listed in Section 5.3. Additionally, we swept entropy scale step-sizes β = 10z for
in z ∈ {−4,−3,−2} for automatic entropy tuning. Figure 8 shows the learning curves of SAC
with automatic entropy tuning, over 10 runs, and SAC without automatic entropy tuning over the
40 runs conducted for the experiments in the main text. As can be seen in the figure, performing a
grid search over the entropy scale hyperparameter never degrades performance compared to using
automatic entropy tuning, and in some cases results in better performance than when using automatic
entropy tuning. Because of this, we decided to use manual entropy tuning through a grid search in our
experiments, which also allows us to characterize the sensitivity of SAC’s performance with respect
to the entropy scale hyperparameter.

27

	Introduction
	Background and Problem Formulation
	Conditional CEM
	Theoretical Guarantees
	Policy Improvement under an Idealized Setting
	CCEM Tracks the Greedy Action

	Empirical Results
	Algorithms
	Environments
	Experimental Details
	Results

	Scaling Greedy-AC
	Conclusion
	Related Policy Optimization Algorithms
	Convergence Analysis of the Actor
	Notation and Definitions
	Assumptions
	Main Theorem
	Proof of Lemma 2 to satisfy Condition 3
	Supporting Lemmas for Lemma 1
	Lemma 5

	Experimental Details
	Hyperparameter Details
	Normalization Approach
	Sensitivity Plots

	Ablation Study on SAC

