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Abstract

How do score-based generative models (SBMs) learn the data distribution supported
on a low-dimensional manifold? We investigate the score model of a trained SBM
through its linear approximations and subspaces spanned by local feature vectors.
During diffusion as the noise decreases, the local dimensionality increases and
becomes more varied between different sample sequences. Importantly, we find
that the learned vector field mixes samples by a non-conservative field within the
manifold, although it denoises with normal projections as if there is an energy
function in off-manifold directions. At each noise level, the subspace spanned by
the local features overlap with an effective density function. These observations
suggest that SBMs can flexibly mix samples with the learned score field while
carefully maintaining a manifold-like structure of the data distribution.

1 Introduction

score-model g: nonconservative within-manifold
energy-like off-manifold 

data distribution q0: conserved vector field

Figure 1: Schematic of our findings.

Score-based generative models (SBM)
have achieved great success in learn-
ing natural data distributions [7,
8], which according to the man-
ifold hypothesis are supported on
low-dimensional manifolds. Unlike
decoder-based methods such as VAEs
and GANs, most SBMs do not explicitly construct distributions on low-dimensional manifolds with a
compressed representation. Then, how do SBMs approximate distributions on manifold?

Given a dataset {x(i)} drawn i.i.d. from an unknown data density q0 on Rd, a score model gσt
(·) :

Rd → Rd estimates the score function of the noisy data distribution ∇x log qσt
(x), where σt is the

standard deviation of the additive Gaussian noise at time t, and t ∈ [0, 1]. Typically, as t decreases,
σt decreases towards zero, and q1(x) is almost identical to a Gaussian. The estimated score function
can then be used to define a stochastic or deterministic process to generate samples close to q0(x) by
initialising from Gaussian samples. This procedure forms the basic methodology of SBM.

Fig. 1 summarises our main finding. The left two panels are two rotated views of the example data
density q0 (blue-orange) on a 2D manifold in a 3D ambient space. The density implies a conserved
vector field. The right two panels show the vector field of a score model g which approximates the
score of q0 but is not guaranteed to be conservative. We find that, in this score model, the vector field
is non-conservative only within the manifold; whereas the field in directions normal to the manifold
remains close to the conservative score field of the noisy data distribution, constraining the samples
to stay around the data manifold. Further, the local features of g span the same local subspace of an
effective density function that is consistent with g in the sense we clarify soon.
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2 Local orthogonal features of approximate score functions

A local approximation of the score gσ(x) ≈ gσ(x0) +∇xgσ(x)|x0
(x− x0) around x0 involves the

score Jacobian, so we use its singular value decomposition (SVD) to analyse gσ locally:

∇xgσ(x) =

d∑
i=1

ui(x)si(x)v
⊺
i (x), (1)

where the features ui(x), vi(x) and si(x) ≥ 0 are, respectively, the i’th left singular vector, right
singular vector, and singular value of ∇xgσ(x), ordered so that si < sj for i < j. If gσ is the score
of a density function, then gσ is conservative, ∇xgσ(x) is symmetric (or normal), and ui = ±vi for
all i. To build more intuitions about score Jacobians, consider the multivariate Gaussian N (x;µ,Σ)
which has a constant score Jacobian −Σ−1. Each pair of its singular vectors have opposite signs. In
particular, the singular value of rank i is equal to the inverse variance along the i’th singular vector.

Now, suppose that the data distribution q0 is a low-dimensional Gaussian supported on a subspace
of Rd. After adding a small additive Gaussian noise on Rd, the SVD of the score Jacobian shows
interpretable properties of the data distribution: large singular values or small variances appear
along directions with abrupt changes in the score, reflecting steep curvatures along the off-manifold
directions. Conversely, small singular values or large variances are associated with on-manifold
directions along which the data density varies smoothly. This pattern generalises to curved manifolds
as long as the noise is small compared to the local curvature. In practice, the Jacobian of a learned
score estimator ∇xgσ(x) may not be symmetric as that of the Gaussian, but we can compare it to an
effective conservative (energy-based) score field.
Proposition 1. Given a model score gσt

(x), there exists a conservative field g̃σt
(x) such that for

every path x1:t from gσt
, the likelihood of xt computed under gσt

and g̃σt
are identical.

Proof. Suppressing the subscripts for brevity, we decompose ∇g as the sum of a symmetric compo-
nent ∇g̃ := 0.5(∇g+∇⊺g) and a skew-symmetric component H := 0.5(∇g−∇⊺g). By Poincaré’s
Lemma, the symmetric ∇g̃ implies the existence of a conservative field g̃. Given a sample path x1:t,
the likelihood of xt depends on g through its divergence or the trace of the score Jacobian Tr(∇g̃) [7,
eqn. 39]. Then, we have Tr(∇g) = Tr(∇g̃+H) = Tr(∇g̃)+Tr(H) = Tr(∇g̃)+0 = Tr(∇g̃).

This means that, given a sample path, g̃σ is a valid score of an (unknown) density function equivalent
to gσ in terms of xt’s likelihood. Similar to but unlike the SVD of ∇xgσ(x), the eigendecomposition
of the symmetric ∇xg̃σ(x) reveals the local features of the equivalent density: following the intu-
ition of the Gaussian distributions, we see that the eigenvectors with negatively large eigenvalues
correspond to off-manifold directions (−Σ−1 is negative semi-definite); eigenvectors with small-in-
magnitude eigenvalues indicate on-manifold directions. Positively large eigenvalues indicate positive
curvature, and we find that they exhibit on-manifold features as shown in our experiments.

3 Experiments

We now empirically compare the SVD of ∇xgσ(x) and the eigendecomposition of ∇xg̃σ(x) to
discover local geometries of a learned score model. For ease of visualisation, we used an SBM
trained on MNIST digits [4], so d = 28× 28 = 784. The model is based on a U-net, adapted from
the model of Song et al. [8]. More details are in Appendix A. For a given generated x at noise level
σ, we denote the (minor) left and right singular vectors corresponding to the smallest singular value
of ∇xgσ(x) as u− and v−, respectively, and the (major) vectors to the largest singular value as u+

and v+. For the “symmetrised” score ∇xg̃σ(x), we denote the minor and major eigenvectors as w−
and w+, respectively, and the eigenvector with smallest-in-magnitude eigenvalue as w0.

3.1 Local principal directions

Fig. 2 shows the generated samples at five time steps in the first column and their feature vectors in the
other columns. Vectors v−, u− and w0 reflect more general distortions of the strokes at higher noise
levels, and more localised changes at lower noise levels. However, u− and v− are not well aligned,
reflecting non-conservation of the score model, or a non-normal score Jacobian. The eigenvectors
w0 and w+ of the symmetrised Jacobian show similar on-manifold semantics, but they are also not
aligned with the singular vectors. Major vector u+ and v+ show high-frequency contents in the
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Figure 2: An example image sequence generated from the SBM and the singular and eigen-vectors.
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Figure 3: Top, cosine angle between the singular vectors. Bottom, singular values spectrum and
effective local dimensionality corresponding to singular values above the noise floor.

background, which are likely off-manifold directions, as following these directions makes a sample
less realistic. Unlike the minor singular vectors, these major vectors differ by a sign and points
towards opposite directions. The eigenvector w− of the effective energy-based field also shows
high-frequency, off-manifold patterns in the background, similar to the major singular vectors.

In Fig. 3 (top), we show the inner products ui(x) · vi(x) (cosine angle) for three other example image
sequences and the summary statistics of 128 images. They confirm that the singular vectors are not
aligned for lower ranks and they differ by a sign for higher ranks. The opposite signs between ui’s
and vi’s in higher ranks are consistent with the Gaussian score along off-manifold directions. But
how to interpret the misalignment at lower ranks? The example image at t = 0.3 in Fig. 2 gives an
interesting clue: its v− focuses on the outline of the digit 5 but then maps to a u− that resembles the
outline of 6. This misalignment of singular vectors mixes data across different components, and we
speculate that it could facilitate mixing between high-level image classes at high noise levels.

3.2 Singular values reveal a progressive and diverse manifold expansion

Following from our Gaussian intuition, the inverse singular values of a score Jacobian are related
to the local length scales along principal directions of the distribution. We should then expect to
see inverse singular values equal to the corresponding noise variances σ2

t along many potentially
off-manifold directions. The examples in Fig. 3 (bottom left) support this prediction. In addition,
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Figure 4: Solid lines: the amount of overlap between local subspaces. Dotted lines: mean number of
nontrivial ranks for each temperature from Fig. 3 (bottom right).

the noise variance σ2
t lower bounds the inverse singular values, because the smoothing effect of the

Gaussian noise determines the smallest length scale.

All nontrivial inverse singular vectors above the noise levels contribute to local data dimensionality,
so we estimated the local data dimensionality of xt by the smallest rt such that s−1

i (xt) < (1+ κ)σ2
t

for all i > rt, where we set κ = 0.1 as a slack constant. The coloured dots in Fig. 3 (bottom left)
show the estimated local dimensionality for three images at each t, and Fig. 3 (bottom right) shows
the distribution of thus estimated local dimensionalities for 128 images: they increases and spreads
out more with decreasing noise levels. We compared this with the local dimensionality estimated
by a VAE model [3, 2], described in Appendix B. The VAE-estimated local dimensionality of clean
images turned out to be within 13± 3, substantially lower and less varied than the estimates from the
score model in Fig. 3. Thus, these patterns of singular values suggest that the SBM has a much more
expressive and more flexible representation power than the VAE.

3.3 Misaligned singular vectors span the same subspace and provides non-normal mixing.

From Figs. 2 and 3, we see that the singular vectors and eigenvectors are misaligned in the subspace
given by nontrivial singular values. In principle, the right singular vectors define an input space
of local changes, and the left singular vectors define an output basis to apply the denoising vector.
To at least preserve mixing during diffusion, the left and right subspaces spanned by nontrivial ui

and vi must substantially overlap, since otherwise the score field can project data into off-manifold
directions. Further, they should also overlap with the eigen-subspace of the effective energy-based
density spanned by {wi} with small-in-magnitude eigenvalues. We quantify the amount of overlap
between these subspaces by how well one reconstructs the other for the first n vectors:

Φa,b
n := 1− 1

n

n∑
j=1

∥âb,nj − aj∥22/∥aj∥22, where â
b,n
j =

n∑
k=1

(bk · aj)bk, a, b ∈ {u, v, w}. (2)

This is a criterion based on explained variance—a larger value indicates a better overlap. The results
in Fig. 4 confirm a considerable overlap between the three subspaces within the nontrivial ranks
at each t (Fig. 3). Therefore, although gσ(x) mixes image features onto different components in
a non-normal fashion, it still updates the image within highly overlapped subspaces. The singular
subspaces of ∇xgσ(x) also overlap well with the eigen-subspace of the symmetrised ∇xĝσ(x),
suggesting that the learned singular subspaces conform to the data subspace of the effective density.

4 Conclusion

We have shown that the score field of a trained score-based model shows low local dimensionality
consistent with the manifold hypothesis. As the noise scale decreases, the modelled manifold dimen-
sionality rises and becomes more varied, reflecting increasingly precise description of samples. In
addition to projecting noisy, off-manifold components back onto the manifold by normal projections,
the score function mixes between feature directions within the data manifold using a non-conservative
field, giving misaligned singular vectors. Nonetheless, these vectors span overlapping input and
output subspaces, both of which also overlap with the local eigen-subspace of the effective energy-
based field. Therefore, the score-based generative model learns a vector field that carefully constrains
the samples to be within the manifold while mixing samples within the manifold. This explains
the well-known harmless effect of non-conservation [6] and the little improvement obtained by
encouraging conservation [1]. The discussion of a related work by Mohan et al. [5] is in Appendix C.
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Score-based generative model learn
manifold-like structures with constrained mixing:

appendix

A The score-based model

The model, training objectives and procedures are essentially the same as the one proposed by [8].

A.1 Denoising networks

We took a standard implementation of the Unet and reduces the input size to 28× 28× 1. The batch
size is 2 048 and the learning rate is 0.0003. We trained the model for 540 000 steps.

A.2 Diffusion process

After obtaining the score estimates, we generated the images by discretising the SDE by the Euler-
Maruyama method. The noise schedule is a monotically decreasing function of t, and we apply
appropriate scaling on the drift term of the SDE (variance-preserving). We took samples at five
noise levels at t ∈ {0.01, 0.03, 0.05, 0.15, 0.3}, approximately corresponding to noises with standard
deviations σt ∈ {0.039, 0.10, 0.22, 0.46, 0.77}. For all summary statistics we used 128 randomly
sampled images from the model so that they stay in the learned but approximate score field. Using
more images does not change the conclusions.

B VAE model

Following [3, 2], we estimated the local dimensionality of a data point by the number of latent
dimensions in which the posterior variances were close to zero. In practice, we regarded any posterior
variance less than 0.5 as being close to zero. The VAE model we used to obtain a baseline data
dimensionality has a standard Gaussian prior on R100. The likelihood is a Gaussian with its mean
given by a neural network function of the latent variable and with variance as a free positive parameter.
The variational posterior is a factorised Gaussian with means and variances as output of a neural
network function. All neural networks have convolutional, ReLU nonlinearity and batch normalisation
layers similar to the DCGAN.

We trained the network for 1 000 epochs on 60 000 MNIST digits. The estimated local dimensionality
varies between digits: the digit “1” in general has lower dimensionality (around 11) than the other
digit (around 18). This number decreases when we trained on noisy images, consistent with the effect
of noise smoothing.

C Related work

Mohan et al. [5] used SVD to analyse locally linear features of the trained denoising model which
was not used for diffusion-based generation. There, the trained model f(·) : Rd → Rd outputs the
denoised image under the expected l-2 loss directly rather than the score function. Also, the networks
are constrained to be bias-free and have ReLU nonlinearities, so that the network is locally affine:
f(x) = ∇f(x)x.

We kept our score network to be as general as possible so did not impose these constraints. If we
adopt these constraints, we will have g(x) = ∇g(x)x. Under Gaussian noise with variance σ2, when
both f and g are perfectly trained, the optimally (in terms of expected l-2 loss) denoised estimate is

x̂ = x+ σ2g(x) = x+ σ2∇g(x)x = (I+ σ2∇g(x))x = ∇f(x)x, (3)

a form of the Stein’s unbiased risk estimate. Clearly, the f used by Mohan et al. [5] and the g used by
us are equivalent parametrisations of each other.

One should then expect to find the same conclusions between this paper and theirs. A seemingly
contradictory finding is that, in Mohan et al. [5], the left and right singular vector of ∇f(x) at a given
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rank were mostly aligned , whereas those of ∇g(x) here are mostly opposite to each other. This
is, however, expected. In the idealised case where the score function is perfectly estimated, ∇g is
symmetric, and so is ∇f . For small noise, the score Jacobian ∇g is symmetric with eigenvalues lower-
bounded by −1/σ2, since this is the lowest noise present in the data. Applying the tranformation
between f and g in (3) shows that ∇f is in fact positive semidefinite, which has identical left and
right singular vectors. However, Mohan et al. [5] did not interpret the misaligned singular vectors,
which we explain as arising from the non-conservation of the approximate score model.
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