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ABSTRACT

Algorithmic recourse seeks to provide individuals with actionable recommenda-
tions that increase their chances of receiving favorable outcomes from automated
decision systems (e.g., loan approvals). While prior research has emphasized
robustness to model updates, considerably less attention has been given to the
temporal dynamics of recourse—particularly in competitive, resource-constrained
settings where recommendations shape future applicant pools. In this work, we
present a novel time-aware framework for algorithmic recourse, explicitly model-
ing how candidate populations adapt in response to recommendations. Addition-
ally, we introduce a novel reinforcement learning (RL)-based recourse algorithm
that captures the evolving dynamics of the environment to generate recommen-
dations that are both feasible and valid. We design our recommendations to be
durable, supporting validity over a predefined time horizon T . This durability
allows individuals to confidently reapply after taking time to implement the sug-
gested changes. Through extensive experiments in complex simulation environ-
ments, we show that our approach substantially outperforms existing baselines,
offering a superior balance between feasibility and long-term validity. Together,
these results underscore the importance of incorporating temporal and behavioral
dynamics into the design of practical recourse systems.

1 INTRODUCTION

Algorithmic recourse seeks to provide individuals who have been rejected by automated decision-
making systems with counterfactual explanations that clarify the reasons for their rejection (Karimi
et al., 2022; Rasouli & Yu, 2024; Rawal & Lakkaraju, 2020). These explanations typically consist
of alternative feature values, close to the original ones, that would have led to a favorable deci-
sion (Wachter et al., 2017; Barocas et al., 2020).

Actionable recommendations based on counterfactual explanations enable individuals to improve
their chances of acceptance in the future (Karimi et al., 2021; Upadhyay et al., 2025). However,
shifts in the training data, prediction model, or applicant pool can render such recommendations
invalid over time, leading to situations where individuals who follow the suggested changes—often
at significant time, labor, or financial costs—still get rejected (Upadhyay et al., 2021; Fonseca et al.,
2023). This issue of unreliable recourse is critical to address as it undermines trust in the system,
may discourage individuals from engaging with it, and result in wasted effort (Rawal et al., 2021).

This concern has motivated the development of robust recourse methods that seek to remain effec-
tive in dynamic settings, contingent on the socio-technical context in which the system operates and
responsive to the evolving conditions of the decision-making system and its environment (Upad-
hyay et al., 2021; Dominguez-Olmedo et al., 2022; Pawelczyk et al., 2023a). In particular, when
considering limited-resource, competitive settings, it becomes essential to account for and manage
the feedback effects of recourse on the applicant pool (Fonseca et al., 2023). Namely, as candidates
repeatedly apply after attempting to follow the recommendations, the decision threshold may shift,
potentially leading to a high rate of invalidity (Bell et al., 2024). While prior work has identified this
issue and emphasized the limitations of existing recourse methods under such endogenous dynam-
ics (Fonseca et al., 2023; Segal et al., 2024), no comprehensive solution has yet been proposed.

In this work, we address this gap by modeling the problem through the lens of reinforcement learning
(RL), interpreting the recommendation process as the policy of an RL agent, thereby capturing the
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Figure 1: Recourse invalidity. At t = 1, four candidates apply, and the two with the highest scores
are accepted. The decision threshold is 0.51; following the state-of-the-art approach, rejected can-
didates (yellow) receive recommendations to reach this score. At t = 2, the rejected candidates
from t = 1 (yellow) reapply, along with two new candidates (black). The yellow candidates have
implemented the recommendations and raised their scores to around 0.51. 2 However, because of
simultaneous recourse and a new candidate with a higher score, one reapplicant is still rejected.

sequential nature of interactions between the system and the applicants. The agent is trained to
provide recommendations that are feasible, robust, and valid over a predefined time horizon T . Our
contributions are as follows:

• We introduce a comprehensive, time-aware recourse framework that models a competitive,
limited-resource setting in which recommendations are issued. Our environment captures
varying feature-modification difficulties and delays between candidate reapplications, thus
reflecting complex human behavior and contextual constraints.

• We propose a novel RL-based recourse algorithm that explicitly accounts for the feedback
effects of recommendations on the applicant pool. To our knowledge, this is the first solu-
tion to the challenge of providing recourse in dynamic, resource-constrained environments.
Our recommendations come with guarantees of validity over a configurable time horizon
T , allowing candidates to delay reapplication while still benefiting from the same guidance.

• Through extensive experiments, we demonstrate the superiority of our method over the
state-of-the-art, and we analyze how intrinsic context characteristics and stakeholder ob-
jectives shape the trade-off between the feasibility and validity of recommendations.

2 RELATED WORK

Algorithmic recourse emerged in response to concerns about the opacity of automated decision-
making, particularly in the context of the GDPR’s right to an explanation. A foundational contribu-
tion came from Wachter et al. (2017), who introduced counterfactual explanations as a way to help
individuals understand and contest model outcomes; they casted recourse as an optimization prob-
lem, where the goal was identifying the smallest set of feature changes that would alter a decision.
Building on this idea, Ustun et al. (2019) formalized recourse in terms of practical costs, proposing
integer programming methods to generate actionable changes for linear classifiers. Subsequent work
generalized these approaches to incorporate richer objectives (Dandl et al., 2020; Mothilal et al.,
2020; Cheon et al., 2025; Rasouli & Yu, 2024; Rawal & Lakkaraju, 2020). Among these, Mothilal
et al. (2020) introduced DiCE, which generates diverse sets of feasible counterfactuals.

A parallel line of research situates recourse within the framework of structural causal models
(SCMs), emphasizing that feature dependencies constrain which interventions are feasible and
meaningful (Karimi et al., 2021; Beretta & Cinquini, 2023). Early work assumed access to the
true underlying SCM (Karimi et al., 2021), whereas more recent methods seek to approximate the
causal structure in practice (Karimi et al., 2020; Majumdar & Valera, 2024).
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Another strand of work examines the robustness of recourse in dynamic environments (Altmeyer
et al., 2023; Yang et al., 2025; Kayastha et al., 2024; Stundefinedpka et al., 2025; De Toni et al.,
2025). Existing work has largely focused on exogenous model shifts in non-competitive set-
tings (Upadhyay et al., 2021; Pawelczyk et al., 2023a; Guyomard et al., 2023; Nguyen et al., 2023).
Upadhyay et al. (2021) proposed a min–max optimization framework that ensures recourse validity
under worst-case perturbations to model parameters and inputs. Dominguez-Olmedo et al. (2022) in-
troduced adversarially robust strategies for counterfactual generation, while Pawelczyk et al. (2023b)
highlighted the trade-off between robustness and compliance with the right to be forgotten.

Fonseca et al. (2023) and Bell et al. (2024) explore endogenous population shifts induced by recourse
in competitive environments. They introduce an agent-based simulation framework to analyze how
applicant competition affects recourse validity. They conclude that the state-of-the-art approach of
pushing rejected candidates towards the last-seen decision threshold is ineffective, as it leads to high
values of invalidity. While these works highlight the challenge of maintaining valid recourse under
competition, they stop short of offering concrete solutions.

Recent research incorporates reinforcement learning into algorithmic recourse. For in-
stance, De Toni et al. (2024) leverage RL to learn individual preferences and generate tailored re-
course plans. Going further, Kanamori et al. (2025) apply RL to the concept of improvement (König
et al., 2023), ensuring recommendations not only increase the chance of acceptance but also pos-
itively affect the system where the recourse is issued. Other work highlights the role of risk and
imperfect user execution. To address this, Wu et al. (2024) use RL to balance cost and risk, pro-
viding policies that allow individuals to select safer options, while Xuan et al. (2025) use RL to
generate robust action trajectories that account for imperfect execution.

While prior work has significantly contributed to the field of algorithmic recourse, existing ap-
proaches primarily focus on improving individual recommendations. The literature, however,
largely overlooks the endogenous feedback dynamics that arise in competitive environments with
multiple candidates, where limited resources and strategic interactions continually reshape the de-
cision boundary. This work addresses this critical gap, proposing a novel reinforcement learning
method to generate feasible recourse recommendations that remain valid over a finite time horizon.

3 COMPETITIVE RECOURSE SETTING

In this section, we introduce the setting of the problem under study. We first describe the simulation
environment in which candidates compete for a limited resource and modify their features based
on recourse recommendations. We then formalize this environment as a reinforcement learning
problem, where the objective is to identify an optimal policy for generating recommendations.

3.1 SIMULATION ENVIRONMENT

We build our time-aware recourse framework on prior work modeling recourse under limited re-
sources and repeated applications (Fonseca et al., 2023; Bell et al., 2024), while introducing addi-
tional mechanisms to more thoroughly capture the dynamics of competitive recourse systems.

The simulation begins with an initial population I0 of N0 candidates. More generally, we denote
the population at time t by It, with size Nt. Each candidate j is characterized by a feature vector
XF

0 [j] ∈ [0, 1]z , where XF
t ∈ [0, 1]Nt×z denotes the matrix of factual features for the candidate

pool at time step t, and z is the total number of features, that take values in [0, 1]. Following prior
work on competitive recourse (Fonseca et al., 2023; Bell et al., 2024), we assume that features are
independently sampled from their respective marginal distributions, without causal dependencies
among them. The details of the synthetic feature generation process are provided in Appendix B.

At each time step t = 0, 1, 2, . . . , the population evolves as m new candidates enter, k candidates
are accepted, and a variable number of candidates leave. A previously trained prediction model
M : [0, 1]z → [0, 1] assigns a qualification score to each feature vector. At each step, a threshold
tht is chosen so that exactly k candidates in It are accepted. For a candidate j ∈ {1, . . . , Nt}
with features XF

t [j], the acceptance indicator is defined as hk
(
M(XF

t [j]), tht
)
∈ {0, 1}, where 1

denotes acceptance and 0 rejection.

3
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Each rejected candidate j is offered recourse in the form of a counterfactual feature vector XCF[j],
designed to ensure acceptance within T time steps. Candidates decide whether to attempt the modi-
fication or exit the environment. This decision is governed by a dropout probability, which increases
with both the number of failed attempts and the magnitude of required changes, modeling candidate
discouragement (Grbic & Roskovensky, 2012).

For candidates who remain, each modification on each feature i is implemented successfully with a
probability of success that depends on the change magnitude, a feature-specific difficulty parameter
di ∈ [0, 1] (Lievens et al., 2005), and a global difficulty parameter β. In addition, each candidate
has a reapplication probability, which increases with (i) self-confidence, measured by the extent to
which recommended changes were applied, and (ii) urgency, determined by the time since the last
application (Grbic & Roskovensky, 2012). Candidates may delay reapplication for up to T steps,
consistent with the guaranteed validity of the recommendation.

These extensions improve upon prior simulations (Fonseca et al., 2023; Bell et al., 2024), which
assumed (i) zero dropout probability, meaning that candidates only left once accepted, (ii) uniform
modification difficulty across features, and (iii) immediate reapplication without guarantees of rec-
ommendation duration. A detailed specification of these mechanisms is provided in Appendix B.

3.2 REINFORCEMENT LEARNING SETTING

We model the environment where the reinforcement learning agent is trained as a Partially Observ-
able Markov Decision Process (POMDP), capturing the sequential nature of algorithmic recourse
under feedback loops, and extending the simulation framework introduced earlier.

Partial observability arises due to delays in candidate reapplications and exits. Individuals modify
their features in response to prior recommendations, but these changes remain hidden until they
reapply, if they do at all. Some may permanently exit the system due to discouragement, introducing
further uncertainty into the environment.

Formally, the environment is a POMDP specified by the tuple (S,A,P,Ω, O,R, γ), where S is
the latent state space, A the set of actions, and P(s′|s, a) the transition function that defines the
probability of moving from state s to s′ after taking action a. The agent receives partial observations
from an observation space Ω, governed by the observation function O(o|s′, a), which defines the
likelihood of observing o upon reaching s′ via action a. The reward function R(s, a) assigns a
scalar signal to each state-action pair, and γ ∈ [0, 1] is a discount factor balancing immediate and
future rewards. We now describe the main components of the POMDP, starting from the latent state.

State st. The state st captures the complete configuration of the environment at time t. It includes
all candidates currently in the system, represented by their feature matrix Xc,t and identifiers Ic,t,
as well as all candidates applying at this step—including new entrants—represented by XF

t and IF
t .

Scores and binary outcomes for all candidates are obtained via the decision model M(·) and the
acceptance indicator h(·). The state space S is continuous—since candidate features and scores are
continuous—and its dimension varies with the number of candidates present and those reapplying.

Action at. The agent’s action at time t is defined as: at = XCF
t , where XCF

t is a matrix of coun-
terfactual feature vectors, each corresponding to a rejected candidate. These vectors represent the
feature configurations that, if adopted, would lead to acceptance, within a time window of T steps.
The action space A is continuous and of variable dimension.

Transition Function P(st+1|st, at). The environment evolves according to a stochastic transition
function P , mapping the current state st and agent action at to a distribution over successor states
st+1. Transitions proceed in three phases. First, candidates with positive outcomes permanently
exit the environment and are removed from Xc,t+1. Second, rejected candidates respond to their
counterfactual recourse recommendations: some exit due to discouragement, while others remain
and modify their features toward the suggested counterfactuals, updating Xc,t+1. Finally, a new ap-
plication round occurs, comprising both new entrants and reapplying candidates previously rejected,
forming the new feature matrix XF

t+1.

Observation ot and Observation Function O(ot | st, at−1). The agent has partial observability of
the environment, and the observation function specifies how this partial view is derived from the true
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latent state st and the previous action at−1. Formally, the observation includes only the elements of
st corresponding to the current applicants: ot = (XF

t , IF
t ). The observation space Ω is continuous

and can have variable dimensionality depending on the number of applicants at time t.

Reward Function R(st, at). The reward function integrates multiple objectives to ensure equity,
validity, and feasibility of the agent’s recommendations. To promote equity, we minimize disparities
in the scores that rejected candidates would obtain if they implemented the recommended actions.
Formally, we define the set of rejected candidates at time t as I rej

t . For each candidate j ∈ I rej
t ,

the goal score is gt[j] = M(XCF
t [j]), i.e., the score the candidate would achieve if they perfectly

implemented the recommendation. We argue that these scores should be similar across rejected
candidates, in order to prevent unequal treatments. To guarantee this, we minimize the Gini index:

Ginit =

∑
i,j∈Irej

t
|gt[j]− gt[i]|

2nr,t
∑

i∈Irej
t
gt[i]

, (1)

where nr,t = |I rej
t |. Lower Ginit indicates greater equity.

To ensure validity, we adopt the Recourse Reliability (RRt), first introduced by Fonseca et al. (2023),
which measures the portion of candidates that successfully implemented a recommendation and
were accepted at each time step:

RRT
t =

|Isucc
t ∩ Iacc

t |
|Isucc

t |
. (2)

where Isucc
t indicates the candidates that successfully implemented a recommendation and reapplied

at time step t, and Iacc
t indicates the candidates accepted at step t. In the original formulation, Isucc

t
included only candidates reapplying from the previous step. We extend this to candidates whose last
application was within the past T steps, so RRT

t measures reliability over a T -step horizon.

To prevent trivial solutions that maximize RRT
t by suggesting extremely difficult modifications, we

introduce the Recourse Feasibility (RFT
t ), which quantifies the fraction of candidates who received

recommendations within the past T steps and reapplied with a successful implementation at time t:

RFT
t =

|Isucc
t |

|I rej
t−T :t|

, (3)

where I rej
t−T :t is the set of candidates who last applied unsuccessfully in the window [t − T, t − 1],

and thus could have reapplied at t, with a perfectly implemented recommendation. In this way, the
metric penalizes failed implementations, delays, and discouragement-related exits.

Policy π(at|st). The agent learns a policy π(at|st) that defines a distribution over recommendations
at, conditioned on the current environment state st. Learning this policy is challenging due to the
high-dimensional, variable-sized state and action spaces. In the next section, we introduce a training
framework that mitigates the computational burden associated with these large and dynamic spaces.

4 REINFORCEMENT LEARNING SOLUTION

Directly learning the full counterfactual matrix XCF
t is computationally expensive due to its high

dimensionality and variable size. To address this, we adopt a hierarchical approach that separates
counterfactual generation from goal selection, explicitly modeling the dependency between the two.

Counterfactual generation. We first learn a stochastic function

ϕ : (xF
t , g) 7→ Dist(xCF

t ),

that defines a probability distribution over counterfactual feature vectors xCF
t , conditioned on a can-

didate’s features xF
t and a target score g. Samples from this distribution are required to satisfy

M(xCF
t ) ≈ g while minimizing a cost function that measures the discrepancy between xF

t and xCF
t .

In other words, ϕ specifies how to probabilistically modify features to achieve a desired score.

Goal selection policy. Given the pre-trained ϕ, we learn a stochastic policy

µ : (XF
t , IF

t ) 7→ Dist(gt),

5
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that defines a probability distribution over target scores gt. During training, the pre-trained ϕ trans-
lates sampled goal scores into actionable recommendations for each rejected candidate:

gt ∼ µ(XF
t , IF

t ), XCF
t [j] ∼ ϕ

(
XF

t [j], gt
)
, ∀j ∈ I rej

t .

The environment evolves according to these recommendations, making the training of µ inherently
dependent on ϕ.

In this hierarchical setup, µ decides what score to aim for, while ϕ determines how to modify the
features to reach that score. Pre-training ϕ reduces the computational complexity and stabilizes
the training of µ. While µ is primarily responsible for the trade-off between Recourse Reliability
(Equation 2) and Recourse Feasibility (Equation 3) in the reward function, the Pareto efficiency of
this trade-off largely depends on ϕ, as the feasibility of a recommendation critically depends on the
trajectory taken to reach the target score. Additionally, ϕ indirectly optimizes the Gini index (Equa-
tion 1), by providing recommendations that approximately lead to the same score for all candidates.

This two-step architecture mirrors state-of-the-art recourse methods, which typically fix the goal
score gt at the last-seen decision threshold and optimize only ϕ. Our approach instead learns gt adap-
tively, based on the behavior of the candidates. We further design ϕ to improve the balance between
reliability and feasibility, targeting higher values of both metrics. Concretely, ϕ is implemented as
an RL policy, the recourse recommender policy, pre-trained with respect to the target-score policy,
the predictor policy. We next describe the training procedure for both agents.

4.1 TRAINING OF THE RECOURSE RECOMMENDER POLICY

The recourse recommender policy ϕ is trained in a simplified environment derived from the setting
introduced earlier. The state at time t is defined as st = (xF

t , g), where xF
t is the feature vector of a

single candidate and g a target score. The action is the counterfactual feature vector at = xCF
t .

Training proceeds over multiple episodes. At the start of an episode, a goal score g is sampled such
that M(xF

0) < g. At each step, the agent proposes a recommendation xCF
t , which the candidate

attempts to implement. Each recommendation has validity T = 1, meaning candidates reapply at
every step. The episode terminates when M(xF

t ) ≥ g or a maximum number of steps is reached.

Recommendations are evaluated on two criteria: (i) accuracy: how closely M(xCF
t ) approaches

g, and (ii) cost: the effort required to modify xF
t into xCF

t . The accuracy objective ensures that
the recourse recommender can generate paths toward arbitrary targets, and that—once paired with
the recommender—it leads to counterfactual scores that are consistent with goal scores, thereby
improving the Gini-based reward (Equation 1). Formally, accuracy is measured as

et = |M(xCF
t )− g|. (4)

The cost objective encourages minimal-effort modifications. We define an estimated cost function
that penalizes large changes and prioritizes easier-to-modify features, based on estimated difficulties:

ĉt =

z∑
i=1

|xCF,(i)
t − x

F,(i)
t | · d̂i, (5)

where z is the number of features, and d̂i is the agent’s estimate of the difficulty of modifying feature
i. Difficulty estimates are learned adaptively; the full procedure is detailed in Appendix C.

For optimization, we employ the Soft Actor-Critic (SAC) algorithm (Haarnoja et al., 2018), a model-
free, off-policy method well-suited for continuous action spaces. In our work, ϕ is trained online,
interacting directly with the environment; the same procedure can also be executed offline if a suffi-
ciently rich dataset of candidate features, recommendations, and outcomes is available.

4.2 TRAINING OF THE PREDICTOR POLICY

The predictor policy, denoted by µ, is trained on the POMDP introduced in the previous section.
Within the hierarchical framework, the action space is reduced to at = gt, i.e., the selection of a
target score. During training, the recourse recommender policy ϕ is treated as a fixed component
of the environment: it provides the counterfactual updates required to construct XCF

t , based on gt,

6
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while µ focuses solely on learning how to select appropriate goals. The reward function used to train
µ excludes the Gini term, as it is entirely handled by the recourse recommender policy.

Because the environment is only partially observable and the reward is non-Markovian, we augment
both the state and observation spaces with explicit historical information. At each time step t,
the agent receives a window of data covering all candidates who applied and were rejected during
[t− T, t− 1]. For each such candidate, the following metadata are provided: (i) their feature vector
at the time of their last application, (ii) their unique identifier, (iii) the time step of their most recent
application, (iv) the total number of applications they have submitted, (v) the most recent recourse
recommendation received. By explicitly including these variables in the agent’s observation, rather
than requiring it to infer or internally store past events, we ensure that the environment is fully
Markovian with respect to the predictor’s decision process. This design choice facilitates stable
learning in the presence of delayed effects.

Training is conducted over fixed-length episodes. At the beginning of each episode, a new popula-
tion of initial applicants is generated. The predictor µ is then optimized using SAC (Haarnoja et al.,
2018), chosen for its sample efficiency and ability to handle continuous action spaces.

5 EXPERIMENTS

5.1 SETUP

In this section, we present the performance evaluation of our method relative to established baselines
from the literature. Additionally, we analyze how environmental constraints and design choices
influence achievable performance. Our approach is compared against three widely used baselines
for non-causal recourse (Ustun et al., 2019; Wachter et al., 2017; Mothilal et al., 2020) (hereafter
called Ustun, Wachter, and DiCE). Some of these methods have also been adopted as baselines
in recent studies on recourse under competition (Fonseca et al., 2023; Bell et al., 2024); in our
framework, they serve as alternatives to the recourse recommender policy ϕ.

Each strategy is combined with: (i) a trivial predictor, which applies the classifier’s most recent
decision threshold (reflecting standard practice in dynamic recourse), and (ii) our proposed predic-
tor, parameterized by policy µ. This yields two categories of methods: (i) baselines, pairing each
recourse strategy with the trivial predictor, and (ii) hybrids, pairing the strategies with our predictor.

We evaluate all methods under four experimental conditions, varying the recourse horizon (T ∈
{1, 5}) and the setting difficulty (β ∈ {0.05, 0.01}). The reward coefficients (α, τ), which govern
the trade-off between Recourse Reliability and Recourse Feasibility, are chosen to produce Pareto
frontiers spanning recourse reliability values RRT

t approximately in (0.20, 0.95).

Details on training and evaluation are illustrated in Appendix D. Since baselines tend to overlap, we
depict only Ustun for plot readability. Analogous results, including comparisons with Wachter and
DiCE, and analysis of the Gini Index of all methods, are provided in Appendix E.

5.2 RESULTS

Figure 2 shows Pareto plots for Recourse Feasibility (RFT
t ) and Recourse Reliability (RRT

t ) across
all four experimental settings, averaged over ten evaluation episodes. Each point on a Pareto front
corresponds to a different trained predictor µ with varying values of the parameters α and τ .

Impact of the time horizon T . Comparing the top and bottom plots in Figure 2, we observe that the
value of T strongly affects the validity-feasibility trade-off: achieving high validity requires policies
with lower feasibility as T increases. Guaranteeing recourse over a longer horizon imposes a more
stringent requirement, forcing the agent to recommend more challenging feature changes.

Figure 3 further highlights this phenomenon, by plotting the average Recourse Feasibility RFT
t ,

fixing RRT
t = 0.95 and β = 0.05, for T ∈ [1, 5]. As noticed, feasibility must decrease to guarantee

large reliability over an increasing time horizon T .

One additional challenge of a longer time horizon is slower convergence, highlighted in Figure 4.
It presents the convergence curves of two predictor agents trained under identical conditions (β =

7
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Figure 2: Comparison of Pareto fronts of our method (blue), the hybrid method based on Ustun’s
approach (orange), and the baseline using Ustun’s approach (green), across four settings with T ∈
{1, 5} and β ∈ {0.05, 0.01}. Pareto fronts plot Recourse Reliability RRT

t and Recourse Feasibility
RFT

t , each averaged over ten evaluation episodes.

0.01, α = 7, τ = 5), but with different planning horizons: T = 1 and T = 5. Each point represents
the cumulative reward averaged over the previous ten episodes.
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Figure 3: Recourse Feasibility RFT
t , for a fixed

value of Recourse Reliability RRT
t (≈ 0.95), and

β = 0.05, varying T ∈ [1, 5], for our method and
the hybrid (based on Ustun’s approach).

For T = 1, the reward begins to increase af-
ter a few hundred episodes and converges to
a final value of ≈ 600 after about 2000 steps.
In contrast, for T = 5, the reward starts im-
proving only after roughly 1000 episodes and
reaches a final value of ≈ 400 after around
3000 steps. This behavior shows that the agent
requires substantially more exploration when
validity must be guaranteed over a longer hori-
zon, since the task is more complex.

Impact of the setting difficulty β. Compar-
ing the left and right panels of Figure 2 shows
that the value of β strongly shapes the attain-
able trade-off between RFT

t and RRT
t .

We recall that β scales the probability of successfully implementing feature modifications: higher
values correspond to higher probabilities of success, while lower values make modifications more
difficult. In both scenarios, to ensure high reliability, the agent recommends relatively high target
scores, that push reapplying candidates above new applicants. For large β, this strategy has a mod-
erate negative impact on RFT

t , since even challenging modifications remain feasible. In contrast, for
low β, the same strategy yields a much sharper trade-off, as many candidates are unable to realize
the recommended changes.

This analysis reveals another intrinsic limitation of recourse in resource-constrained environments.
When the means for improvement are inherently difficult (low β), it is challenging to devise recom-
mendations that are both likely to be implemented and sufficient to guarantee a positive outcome.
Consequently, practitioners must carefully prioritize among these desiderata.

Recourse based on Wachter and DiCE highlights the same trends, as shown in Appendix E.

Comparison of baseline, hybrid, and our approach. Across all subplots in Figure 2, the base-
line approach (green) attains low reliability (RRT

t ≈ 0.4) while favoring feasibility. This outcome
reflects the limitations of simply using the last observed decision threshold as the target score in-
stead of tailoring it to an evolving environment. In contrast, our predictor µ can be plugged into any
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(b) T = 5

Figure 4: Convergence curves in two identical settings (β = 0.01, α = 7, τ = 5), comparing
T ∈ {1, 5}. The y-axis shows the average cumulative reward (smoothed over ten episodes), and the
x-axis denotes the episode index.

recourse recommender, such as Ustun, explicitly governing this trade-off (orange). These results
highlight the advantage of an RL-based predictor over a simplistic fixed threshold policy.

Figure 2 also compares our method (blue) with the hybrid approach (orange). Our approach achieves
Pareto optimality across all four experimental settings. The key distinction lies in the recommen-
dation strategy: while Ustun’s method selects recommendations based solely on minimal feature
changes, our policy ϕ explicitly accounts for feature modification difficulties, prioritizing changes
to easier features, thus resulting in more feasible recourse paths. Hybrid methods based on Wachter
and DiCE achieve a performance similar to Ustun, as illustrated in Appendix E.

We further note that the relative advantage of our method depends on the setting parameters. When
the complexity of the problem—encoded in the parameters β and T—increases, the Pareto front of
our method moves closer to that of the hybrid. One possible interpretation is that, while in favorable
conditions (T = 1, β = 0.05) more attainable recourse paths directly correspond to a higher portion
of implementing candidates (for the same validity), in more constrained environments (e.g., T = 5
or β = 0.01) this mapping is less immediate, limiting the achievable gain.

Even under these stricter conditions, however, our method continues to provide robust improve-
ments and maintains good trade-offs. This indicates that our approach remains effective over longer
horizons T , highlighting its practical advantage in dynamic, multi-step settings.

6 DICUSSION AND CONLUSION

This paper presents the first solution to the problem of robust recourse recommendations in com-
petitive, limited-resource settings. Our approach leverages reinforcement learning to anticipate can-
didate responses to recommendations and to generate suggestions that jointly maximize feasibility
and validity. By adaptively estimating the relative difficulty of modifying each feature, the method
prioritizes more accessible changes. Moreover, it supports recourse validity for T time steps, where
T is specified by the stakeholder issuing the recommendations.

While the RL agent effectively learns environment dynamics, real-world deployment may introduce
additional complexities. A key drawback arises during the transient learning phase—especially for
the recourse recommender policy—where candidates may receive suboptimal recommendations.
This limitation could be mitigated by training this policy on offline data; exploring such an extension
constitutes an important step toward practical deployment, and is left for future work.

Moreover, our simulation environment focuses on non-causal recourse, reflecting the work’s empha-
sis on robustness under competition. The predictor, however, can be paired with any causal recourse
method, and the recommender can be trained in environments with underlying causal structures.
Additional uncertainties could also be considered, such as candidates unexpectedly not reapplying
or shifts in new applicants’ distribution. Exploring these extensions provides a promising path for
validating robustness and optimality in more complex, causally grounded settings.

Overall, this work establishes a foundation for durable and adaptive recourse under competition,
while opening multiple pathways for further research.
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ETHICS STATEMENT

Our work addresses algorithmic recourse, a line of research that seeks to empower individuals af-
fected by automated decisions by identifying feasible changes they can undertake to alter future
outcomes. While this vision has clear ethical appeal, it is important to acknowledge several limita-
tions and potential risks.

First, recourse recommendations can inadvertently shift responsibility from institutions to individu-
als, obscuring systemic sources of unfairness (Sullivan & Kasirzadeh, 2024). A model may suggest
behavioral changes (e.g., increasing income or reducing debt), but such recommendations risk de-
flecting attention from structural inequities encoded in data and decision pipelines.

Moreover, many recommended changes may not map cleanly to real-world actions or may implicitly
require resources unequally available across social groups. This raises concerns about feasibility,
fairness, and inclusivity (Barocas et al., 2020).

Lastly, explanations and recourse operate in adversarial contexts, where institutions and affected
individuals may have misaligned incentives (Bordt et al., 2022). In such settings, post-hoc recourse
mechanisms are vulnerable to manipulation, selective disclosure, and explanation hacking, which
can undermine their transparency and accountability.

By highlighting these limitations, we aim to situate our contribution responsibly. Our research
does not directly involve human subjects or sensitive personal data, but it engages with concepts
that can influence downstream applications in high-stakes domains. We encourage future work to
complement technical advances in recourse with attention to their social, legal, and institutional
implications.

REPRODUCIBILITY STATEMENT

We ensure reproducibility by providing a repository with our code in the supplementary material.
Mathematical details of the environment are presented in Appendix B. A comprehensive description
of our approach is given in Section 4 and Appendix C. Finally, Appendix D reports the complete
specifications of the experimental setup.
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A MOTIVATING EXAMPLE

To demonstrate the limitations of existing recourse methods, we examine a Ph.D. admission process.
Decisions on admissions are determined by an automated system M(·) that evaluates applicants us-
ing criteria such as their GPA, educational background, publications, awards, extracurricular activ-
ities, English proficiency, and admission test scores. Admission is granted to the top k applicants,
where k remains a constant value representing the number of seats available annually.

The goal is to provide rejected candidates with actionable recommendations—feature changes likely
to lead to future acceptance, such as, for example, “Upgrade your education from Bachelor’s to
Master’s”, or “Increase your test score from 65% to 70%”. The motivation for this goal is highlighted
by Venkatasubramanian & Alfano (2020): recourse is a fundamental right, and people should be
empowered to reverse impactful algorithmic decisions through feasible actions.

State-of-the-art methods typically generate recourse by identifying feature changes that bring a re-
jected applicant’s score to the current threshold. However, this approach can fail in competitive
settings. For example, in Figure 1, at time t = 1, two candidates are accepted and two rejected.
Recommendations are given to the rejected candidates to reach the threshold score of 0.51. But at
t = 2, after implementing these changes, a candidate is still rejected, since more than k = 2 can-
didates now meet or exceed the previous threshold. This occurred because the recommendation did
not account for the increased competition caused by the recourse itself.

This results in wasted effort, financial cost, and loss of trust in the system. The candidate has
acted on the recommendation expecting acceptance, only to be denied again. The issue lies in
generating overly easy recommendations that too many can follow, leading to more applicants being
able to implement them than available slots. To address this, we propose an approach that anticipates
population-level responses and selects more robust target scores. The goal is to ensure that only a
subset of candidates can reach these targets, guaranteeing acceptance for those who do. At the same
time, recommendations must remain feasible and actionable.

Moreover, we introduce the concept of feature-modification difficulty, a measure of how difficult it
is to change a feature, to reflect real situations constraints. For example, to reach a predefined target
score, a candidate might either:

1. Publish a first-author paper at a top-tier conference, or
2. Improve English proficiency from B2 to C1 and increase their test score from 65% to 85%.

While the second option requires more changes, it may be more preferred, as the first option re-
quires resources that the student may not have, and entails a high level of uncertainty. Since precise
difficulty ratios are rarely known in advance, we propose estimating them by observing candidate
behavior over time.

Finally, recommendations must consider long implementation times, and reapplication delays. Fol-
lowing Venkatasubramanian & Alfano (2020), we argue that recourse should either be permanent
or come with an explicit expiration. We adopt the latter and associate each recommendation with a
validity horizon T , during which the recommendation ensures acceptance. This allows candidates
to plan longer-term changes with confidence that their efforts will remain relevant.

B SIMULATION ENVIRONMENT DETAILS

B.1 SYNTHETIC DATASET GENERATION

To train the predictive model M(·) for estimating candidates’ qualification levels, we construct a
synthetic dataset of 10,000 examples, each characterized by 10 continuous features. These exam-
ples represent past candidates who were either accepted or rejected. Each feature is independently
sampled from a normal distribution, with its mean and standard deviation drawn from uniform dis-
tributions, to introduce variability across features. All features are subsequently normalized to lie in
[0, 1].

Labels are designed to reflect subjective and occasionally inconsistent human decision-making.
Specifically, a weighted sum of the features is computed using randomly assigned weights sam-
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pled from [0.1, 1] and normalized to sum to 1. Gaussian noise with mean 0 and standard deviation
0.05 is added to this score. Candidates with a score exceeding 0.5 are labeled as accepted; all others
are labeled as rejected.

The same feature generation procedure is applied to produce candidate populations I0 at the begin-
ning of each episode, and new applicants at each time step. In this case, ground-truth labels are not
generated, as they are unnecessary for the simulation.

B.2 DROPOUT PROBABILITY

The likelihood of a candidate dropping out depends on two factors: the gap between their current
score and the goal score, and the number of previous applications. Intuitively, candidates are more
likely to withdraw when they are far from the goal or have already reapplied multiple times.

Formally, let bj = max(0, g − M(XF[j])) denote the distance of candidate j’s score from the
goal score g, and let qj be the number of reapplications submitted up to time step t. The dropout
probability is modeled as a function of these variables, with three decay coefficients: ρ (effect of the
score gap), χ (effect of reapplications), and ω (their interaction).

pdropout = 1− exp(−(ρbj + χqj + ωbjqj)) . (6)

This exponential form ensures that pdropout increases monotonically with both bj and qj , approaching
1 as either grows large. Conversely, when bj = 0 and qj = 0, the dropout probability is minimized
at pdropout = 0, corresponding to a candidate already meeting the goal score on their first attempt.

The term inside the exponent, ρbj + χqj + ωbjqj , can be interpreted as a discouragement factor,
jointly capturing how performance shortfall and repeated failures contribute to disengagement.

B.3 PROBABILITY OF SUCCESSFUL IMPLEMENTATION

For a candidate j with features XF[j], the probability of successfully implementing a recommended
change on feature i depends on:

• the amplitude of the recommended change, |XCF,i[j]−XF,i[j]|,
• the feature modification difficulty di ∈ [0, 1],

• the target value XCF,i[j], and

• the global scaling parameter β, which controls the overall difficulty of feature changes.

We note that the explicit dependence on the target value reflects the intuition that reaching extreme
goals is more challenging, even when the starting point is close.

We define the attainability of feature i for candidate j as:

aj,i =
1

|XCF,i[j]−XF,i[j]| ·XCF,i[j]
− 1. (7)

Attainability is minimized at 0 when |XCF,i[j] −XF,i[j]| = XCF,i[j] = 1, and diverges to infinity
when any of the denominator terms approaches zero. Intuitively, aj,i quantifies the feasibility of
implementing a specific feature change.

The probability of success is then modeled as:

psuccess = 1− exp

(
−β · aj,i

di

)
, (8)

where higher β increases the likelihood of success across all features. This probability lies in [0, 1]
and increases monotonically with attainability. Specifically, when |XCF,i−XF,i| = di = XCF,i = 1,
we obtain psuccess = 0, while if any of these terms is zero, the probability approaches 1.
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B.4 PROBABILITY OF REAPPLYING

At each time step, a candidate’s decision to reapply depends on two factors: self-confidence—the
extent to which they have implemented the recommendation—and urgency—the time elapsed since
their last application.

We model the reapplication probability as a convex combination of a distance-based base probability
and a time-based scaling factor.

The base probability measures the candidate’s alignment with the goal score. For candidate j, it is
defined as:

pbase,j = exp(−ν · bj) , (9)
where ν is a decay parameter, and bj is the distance of the candidate’s current score to the goal score,
as previously defined.

The time-based factor captures the increasing tendency to reapply as time passes:

uj =
t− lj
T

, (10)

where t is the current time step, lj the last application time step, and T the recourse validity horizon.

The final probability of reapplication is:

preapply,j = (1− uj) · pbase,j + uj . (11)

This formulation guarantees that preapply,j increases monotonically with time and converges to 1
either when uj = 1 (i.e., after T steps since the last application) or when pbase,j = 1 (i.e., the
recommendation has been perfectly implemented).

C REINFORCEMENT LEARNING SOLUTION DETAILS

C.1 FEATURE DIFFICULTIES ESTIMATION

To estimate feature difficulties, we assume partial knowledge of the environment—specifically, the
parametric form that links feature difficulties to the probability of successfully implementing a re-
course action. Without loss of generality, we fix the parameter β as known. As indicated in Equa-
tion 8, β acts only as a scaling factor on the difficulties, controlling the overall level of difficulty in
the simulation. Consequently, if β were unknown, it could be absorbed into the difficulty parameters
di and estimated jointly with them.

Initially, all estimates of feature difficulties are set to d̂(0)i = 0.5, for all features i. After each
recourse attempt, we observe whether each feature change was successfully applied, for the only
candidate in the environment. Let y(t)i ∈ {0, 1} denote this binary outcome (at time t), and let p(t)i

be the predicted probability of success, based on the current belief on d̂i. We then compute the error
signal:

err
(t)
i = (p

(t)
i − y

(t)
i ) · a(t)i , (12)

which represents the discrepancy between predicted and observed outcomes, scaled by the attain-
ability a(t)i (previously introduced).

Feature difficulties are updated using a decaying learning rate:

d̂
(t+1)
i = clip

(
d̂
(t)
i + η

(t)
i · err(t)i , 0, 1

)
, (13)

where
η
(t)
i =

η0

1 + V
(t)
i

, (14)

with η(0)i = 0.05 as the base learning rate and V (t)
i the number of prior updates to feature i. The

clipping ensures that updated difficulties remain within [0, 1].

This online procedure allows the model to iteratively refine its estimates of feature difficulties based
on observed behavioral responses to counterfactual recommendations.
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C.2 RECOURSE RECOMMENDER TRAINING

The recourse recommender is trained in a simplified environment with a single candidate. The
reward penalizes both the error in Equation 4 and the cost in Equation 5.

To facilitate learning, the reward evolves in two phases. During an initial warm-up period, it depends
only on the error term, enabling the agent to learn accurate mappings toward predefined goals. Once
feature-modification difficulty estimates stabilize, the cost term is introduced. From this point, the
agent operates in a constrained RL setting, where it must choose the lowest-cost recommendation
among those that reach the target.

The combined reward is:

rt =

{
−φ · ct, if et ≤ ε,

−φ · ct − ψ · (et − ε), otherwise,
(15)

where ε is a tolerance threshold, and φ,ψ are hyperparameters with ψ ≫ φ.

Over training, both the difficulty estimates d and the recommendation policy converge, yielding a
recourse recommender capable of producing accurate and low-cost counterfactuals.

D EXPERIMENTAL SETUP

The first step in our experimental setup is to construct the score-based decision model M(·). We
generate a synthetic dataset of 10,000 candidates, each described by 10 features and a binary ground-
truth label indicating past acceptance or rejection. M(·) is a logistic regression model, trained on this
dataset to approximate the ground-truth labels. The model’s probabilistic outputs serve as candidate
scores, representing the estimated likelihood of acceptance.

The same data generation procedure is used to initialize candidate instances for training the policy
ϕ. Training episodes for the recourse recommender span up to 10 time steps and are conducted
in two phases. In the first phase, the reward is based solely on prediction error (Equation 4), and
training runs for 3,000 episodes. In the second phase, the reward incorporates both prediction error
and modification cost (Equation 15), and training continues for an additional 20,000 episodes. The
parameters used are ε = 0.01, φ = 10, and ψ = 300.

The predictor policy is trained on a simulated population initialized with N = 20 candidates. At
each time step, k = 9 candidates are accepted and m = 10 new candidates are introduced. The
feature difficulties are set to d = [0.84, 0.15, 0.85, 0.78, 0.25, 0.18, 0.29, 0.83, 0.91, 0.10]. Each
episode comprises 100 time steps. The reward function for the predictor is defined as:

R(st, at) = α ·
(
1 + 0.90 · log(RRT

t )
)
+ τ ·

(
1 + 0.90 · log(RFT

t )
)
, (16)

where the logarithmic transformation emphasizes the impact of low values of both metrics. The
coefficients α and τ are positive and adjusted across simulations. The predictor is trained for 7,000
time steps.

E ADDITIONAL RESULTS

E.1 RECOURSE RECOMMENDER POLICY PERFORMANCE

The summed absolute error between the true difficulties d and their estimates d̂ is given by

ediff =

z∑
i=1

|di − d̂i|, (17)

and is approximately 3× 10−2, indicating high fidelity in the difficulty estimation process.

After training the recourse recommender, we assess its performance using the prediction error from
Equation 4 and the true modification cost:

ct =

z∑
i=1

|xCF,(i)
t − x

F,(i)
t | · di, (18)
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where, relative to Equation 5, the estimated difficulties d̂i are replaced with their true values di. Both
quantities are averaged over ten evaluation episodes.

Our method achieves an average error of 1.9× 10−3 and an average cost of 5.9× 10−2 (Table 1).

Method et ct

Ours 1.9× 10−3 5.9× 10−2

Ustun 2.2× 10−16 3.0× 10−1

Wachter 2.6× 10−3 2.7× 10−1

DiCE 1.6× 10−2 3.6× 10−1

Table 1: Average prediction error and modifica-
tion cost—computed with respect to the true fea-
ture difficulties—for our recourse recommender ϕ
and the comparison approaches. Each method is
evaluated under conditions matching the training
setting of our recourse recommender, and results
are averaged over ten evaluation runs.

For comparison, we applied the same protocol
to Ustun, Wachter, and DiCE. Ustun’s method
achieved near-zero error (et = 2.2×10−16) but
incurred a substantially higher cost (ct = 3.0×
10−1). Wachter and DiCE obtained errors of
the same order as our method but at high costs,
similarly to Ustun.

The strong precision of Ustun’s method is ex-
pected: it employs integer programming to
compute exact minimal changes for achiev-
ing the target score in linear models. In con-
trast, Wachter’s, DiCE’s, and our RL-based
approach rely on approximate, gradient-based
or learning-based optimization. Consequently,
they exhibit slightly higher error values but re-
main applicable to a broader class of models,
unlike Ustun’s approach which is restricted to
linear formulations.

These results highlight the effectiveness of the proposed policy in balancing fidelity to the target
decision with minimizing modification cost.

E.2 COMPARISON WITH WACHTER AND DICE
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(a) Comparison with Wachter’s approach.
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(b) Comparison with DiCE.

Figure 5: Comparison of Pareto fronts of our method (blue line), the hybrid method based on
Wachter’s approach and DiCE (orange line), and the baseline method using Wachter’s approach
and DiCE (green dot), in a setting with T = 1 and β = 0.05. The Pareto fronts plot the Recourse
Reliability RRT

t (averaged over ten evaluation episodes) against the Recourse Feasibility RFT
t (also

averaged over ten evaluation episodes).

Figure 5a compares our method with Wachter in a setting with β = 0.05 and T = 1, while Figure 5b
analogously compares DiCE. As observed previously, the baseline achieves low values of reliability
(≈ 0.4 for Wachter and ≈ 0.6 for DiCE), prioritizing feasibility. On the other hand, the hybrid
variant provides greater control over the trade-off between feasibility (RFT

t ) and validity (RRT
t ),

achieving high validity (RRT
t ≈ 0.95) while maintaining feasible recommendations (RFT

t ≈ 0.60),
in both cases. Overall, the Pareto fronts of the hybrid variants closely match that shown in Figure 2a,
related to Ustun’s approach. Our method remains Pareto-optimal, identifying more attainable paths
to reach a target score.

E.3 ANALYSIS OF THE GINI INDEX OF EACH RECOURSE RECOMMENDER

We evaluate the average Gini index and recommendation cost of our policy ϕ as well as the methods
by Ustun, Wachter, and DiCE, when paired with our predictor µ. The evaluation considers both
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Gini Index

Method T = 1 T = 5

Ours 3.2× 10−3 3.0× 10−3

Ustun 2.3× 10−16 2.3× 10−16

Wachter 1.8× 10−4 1.8× 10−4

DiCE 1.3× 10−2 1.2× 10−2

Table 2: Comparison of Gini indices. Results
are averaged over ten episodes and reported for
two settings (T = 1, T = 5). All methods are
matched on average RRT

t ≈ 0.95 and β = 0.05.

Recourse Feasibility RFT
t

Method β = 0.05 β = 0.01

Ours 0.707 0.365

Ustun 0.625 0.256

Wachter 0.606 0.303

DiCE 0.550 0.247

Table 3: Recourse feasibility (RFT
t ), averaged

over ten evaluation episodes, for a fixed re-
course validity (RRT

t ≈ 0.95) and T = 1,
across different values of β.

T = 1 and T = 5. For each recourse recommender, we train a dedicated predictor, ensuring
comparability by selecting models that achieve an average Recourse Reliability, over ten evaluation
episodes, of approximately 0.95. The Gini index (Table 2), defined in Equation 1, is computed over
ten evaluation episodes.

The results indicate that varying T has no substantial effect on the Gini index. As expected, Ustun’s
method yields extremely low values (≈ 10−16), reflecting near-perfect equity. The other methods
achieve higher but still reasonably low values. This behavior aligns with our earlier discussion (Sec-
tion 4): a recourse recommender that more precisely maps to a predefined score produces lower
dispersion in target scores, and hence a lower Gini index. Accordingly, the observed indices are
strongly correlated with the average errors reported in Table 1. Importantly, while Ustun’s method
achieves the greatest precision, our approach delivers equitable recommendations that, as demon-
strated in the main text, also attain high feasibility and reliability.

E.4 IMPACT OF β ON THE VALIDITY-FEASIBILITY TRADE-OFF

We analyze the effect of β on the balance between validity and feasibility. Lower values of β
correspond to settings in which feature changes are more difficult to implement, making the trade-off
between maintaining high validity (RRT

t ) and achieving feasible recourse (RFT
t ) more pronounced.

Table 3 shows that decreasing β substantially worsens the validity-feasibility trade-off. While valid-
ity is held fixed (RRT

t ≈ 0.95), feasibility drops sharply: for example, our method’s RFT
t falls from

0.707 at β = 0.05 to 0.365 at β = 0.01. This highlights that even strong methods face limited op-
tions in stringent settings, making the balance between feasible and validity particularly challenging
in such settings.

F USE OF LARGE LANGUAGE MODELS

Large language models were used solely to improve the clarity and grammar of the text and to
generate the icons of candidates in Figure 1. All substantive content was written by the authors;
LLMs were applied only for minor phrasing refinements.
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