

000 001 002 003 004 005 REINFORCEMENT LEARNING FOR DURABLE 006 ALGORITHMIC RE COURSE 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027

ABSTRACT

028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Algorithmic recourse seeks to provide individuals with actionable recommendations that increase their chances of receiving favorable outcomes from automated decision systems (e.g., loan approvals). While prior research has emphasized robustness to model updates, considerably less attention has been given to the *temporal dynamics* of recourse—particularly in competitive, resource-constrained settings where recommendations shape future applicant pools. In this work, we present a novel time-aware framework for algorithmic recourse, explicitly modeling how candidate populations adapt in response to recommendations. Additionally, we introduce a novel reinforcement learning (RL)-based recourse algorithm that captures the evolving dynamics of the environment to generate recommendations that are both feasible and valid. We design our recommendations to be *durable*, supporting validity over a predefined time horizon T . This durability allows individuals to confidently reapply after taking time to implement the suggested changes. Through extensive experiments in complex simulation environments, we show that our approach substantially outperforms existing baselines, offering a superior balance between feasibility and long-term validity. Together, these results underscore the importance of incorporating temporal and behavioral dynamics into the design of practical recourse systems.

1 INTRODUCTION

Algorithmic recourse seeks to provide individuals who have been rejected by automated decision-making systems with counterfactual explanations that clarify the reasons for their rejection (Karimi et al., 2022; Rasouli & Yu, 2024; Rawal & Lakkaraju, 2020). These explanations typically consist of alternative feature values, close to the original ones, that would have led to a favorable decision (Wachter et al., 2017; Barocas et al., 2020).

Actionable recommendations based on counterfactual explanations enable individuals to improve their chances of acceptance in the future (Karimi et al., 2021; Upadhyay et al., 2025). However, *shifts in the training data, prediction model, or applicant pool can render such recommendations invalid over time, leading to situations where individuals who follow the suggested changes—often at significant time, labor, or financial costs—still get rejected* (Upadhyay et al., 2021; Fonseca et al., 2023). This issue of unreliable recourse is critical to address as it undermines trust in the system, may discourage individuals from engaging with it, and result in wasted effort (Rawal et al., 2021).

This concern has motivated the development of robust recourse methods that seek to remain effective in dynamic settings, contingent on the socio-technical context in which the system operates and responsive to the evolving conditions of the decision-making system and its environment (Upadhyay et al., 2021; Dominguez-Olmedo et al., 2022; Pawelczyk et al., 2023a). In particular, when considering *limited-resource, competitive* settings, it becomes essential to account for and manage the feedback effects of recourse on the applicant pool (Fonseca et al., 2023). Namely, as candidates repeatedly apply after attempting to follow the recommendations, the decision threshold may shift, potentially leading to a high rate of invalidity (Bell et al., 2024). While prior work has identified this issue and emphasized the limitations of existing recourse methods under such endogenous dynamics (Fonseca et al., 2023; Segal et al., 2024), *no comprehensive solution has yet been proposed*. We exemplify this gap in Appendix A with a motivating scenario on Ph.D. admissions.

Figure 1: *Recourse invalidity*. At $t = 1$, four candidates apply, and the two with the highest scores are accepted. The decision threshold is 0.51; following the state-of-the-art approach, rejected candidates (yellow) receive recommendations to reach this score. At $t = 2$, the rejected candidates from $t = 1$ (yellow) reapply, along with two new candidates (black). The yellow candidates have implemented the recommendations and raised their scores to around 0.51. However, because of simultaneous recourse and a new candidate with a higher score, one reapplicant is still rejected.

In this work, we address this gap by modeling the problem through the lens of reinforcement learning (RL), interpreting the recommendation process as the policy of an RL agent, thereby capturing the sequential nature of interactions between the system and the applicants. The agent is trained to provide recommendations that are feasible, robust, and valid over a predefined time horizon T . Our contributions are as follows:

- We introduce a comprehensive, time-aware recourse framework that models a competitive, limited-resource setting in which recommendations are issued. Our environment captures varying feature-modification difficulties and delays between candidate reapplications, thus reflecting complex human behavior and contextual constraints.
- We propose a novel RL-based recourse algorithm that explicitly accounts for the feedback effects of recommendations on the applicant pool. To our knowledge, this is the first solution to the challenge of providing recourse in dynamic, resource-constrained environments. Our recommendations come with guarantees of validity over a configurable time horizon T , allowing candidates to delay reapplication while still benefiting from the same guidance.
- Through extensive experiments, we demonstrate the superiority of our method over the state-of-the-art, and we analyze how intrinsic context characteristics and stakeholder objectives shape the trade-off between the feasibility and validity of recommendations.

2 RELATED WORK

NEW

Foundational Works on Algorithmic Recourse. Algorithmic recourse emerged in response to concerns about the opacity of automated decision-making, particularly in the context of the GDPR’s *right to an explanation*. A foundational contribution came from Wachter et al. (2017), who introduced counterfactual explanations as a way to help individuals understand and contest model outcomes; they casted recourse as an optimization problem, where the goal was identifying the smallest set of feature changes that would alter a decision. Building on this idea, Ustun et al. (2019) formalized recourse in terms of practical costs, proposing integer programming methods to generate actionable changes for linear classifiers. Subsequent work generalized these approaches to incorporate richer objectives (Dandl et al., 2020; Mothilal et al., 2020; Cheon et al., 2025; Rasouli & Yu, 2024; Rawal & Lakkaraju, 2020). Among these, Mothilal et al. (2020) introduced DiCE, which generates diverse sets of feasible counterfactuals.

A parallel line of research situates recourse within the framework of structural causal models (SCMs), emphasizing that feature dependencies constrain which interventions are feasible and

108 meaningful (Karimi et al., 2021; Beretta & Cinquini, 2023). Early work assumed access to the
 109 true underlying SCM (Karimi et al., 2021), whereas more recent methods seek to approximate the
 110 causal structure in practice (Karimi et al., 2020; Majumdar & Valera, 2024).

NEW

112 **Dynamic recourse (exogenous shifts).** Another strand of work examines the robustness of re-
 113 course in dynamic environments (Altmeyer et al., 2023; Yang et al., 2025; Kayastha et al., 2024;
 114 Stundefinedpka et al., 2025; De Toni et al., 2025). Existing work has largely focused on *exogenous*
 115 *model shifts in non-competitive settings* (Upadhyay et al., 2021; Pawelczyk et al., 2023a; Guyomard
 116 et al., 2023; Nguyen et al., 2023). Upadhyay et al. (2021) proposed a min–max optimization frame-
 117 work that ensures recourse validity under worst-case perturbations to model parameters and inputs.
 118 Dominguez-Olmedo et al. (2022) introduced adversarially robust strategies for counterfactual gener-
 119 ation, while Pawelczyk et al. (2023b) highlighted the trade-off between robustness and compliance
 120 with the right to be forgotten.

NEW

121 **Reinforcement Learning solutions.** Recent research incorporates reinforcement learning into al-
 122 gorithmic recourse. For instance, De Toni et al. (2024) leverage RL to learn individual preferences
 123 and generate tailored recourse plans. Going further, Kanamori et al. (2025) apply RL to the concept
 124 of *improvement* (König et al., 2023), ensuring recommendations not only increase the chance of
 125 acceptance but also positively affect the system where the recourse is issued. Other work highlights
 126 the role of *risk* and imperfect user execution. To address this, Wu et al. (2024) use RL to balance cost
 127 and risk, providing policies that allow individuals to select safer options, while Xuan et al. (2025)
 128 use RL to generate robust action trajectories that account for imperfect execution. We note that none
 129 of these works consider interactions between users or the effects of competition.

NEW

NEW

130 **Competitive, limited-resource setting.** Fonseca et al. (2023) and Bell et al. (2024) explore *en-*
 131 *ogenous population shifts* induced by recourse in *competitive environments*. They introduce an
 132 agent-based simulation framework to analyze how applicant competition affects recourse validity.
 133 They conclude that the state-of-the-art approach of pushing rejected candidates towards the last-seen
 134 decision threshold is ineffective, as it leads to high values of invalidity. While these works highlight
 135 the challenge of maintaining valid recourse under competition, they stop short of offering concrete
 136 solutions.

137 While prior work has significantly contributed to the field of algorithmic recourse, existing ap-
 138 proaches primarily focus on improving individual recommendations. The literature, however,
 139 largely overlooks the endogenous feedback dynamics that arise in competitive environments with
 140 multiple candidates, where limited resources and strategic interactions continually reshape the de-
 141 cision boundary. This work addresses this critical gap, proposing a novel reinforcement learning
 142 method to generate feasible recourse recommendations that remain valid over a finite time horizon.

144 3 COMPETITIVE REOURSE SETTING

146 In this section, we introduce the setting of the problem under study. We first describe the simulation
 147 environment in which candidates compete for a limited resource and modify their features based
 148 on recourse recommendations. We then formalize this environment as a reinforcement learning
 149 problem, where the objective is to identify an optimal policy for generating recommendations.

151 3.1 SIMULATION ENVIRONMENT

153 We build our time-aware recourse framework on prior work modeling recourse under limited re-
 154 sources and repeated applications (Fonseca et al., 2023; Bell et al., 2024), while introducing addi-
 155 tional mechanisms to more thoroughly capture the dynamics of competitive recourse systems.

156 The simulation begins with an initial population \mathcal{I}_0 of N_0 candidates. More generally, we denote
 157 the population at time t by \mathcal{I}_t , with size N_t . Each candidate j is characterized by a feature vector
 158 $X_0^F[j] \in [0, 1]^z$, where $X_t^F \in [0, 1]^{N_t \times z}$ denotes the matrix of *factual* features for the candidate
 159 pool at time step t , and z is the total number of features, that take values in $[0, 1]$. Following prior
 160 work on competitive recourse (Fonseca et al., 2023; Bell et al., 2024), we assume that features are
 161 independently sampled from their respective marginal distributions, without causal dependencies
 among them. The details of the synthetic feature generation process are provided in Appendix B.

162 At each time step $t = 0, 1, 2, \dots$, the population evolves as m new candidates enter, k candidates
 163 are accepted, and a variable number of candidates leave. A previously trained prediction model
 164 $M : [0, 1]^z \rightarrow [0, 1]$ assigns a qualification score to each feature vector. At each step, a threshold
 165 th_t is chosen so that exactly k candidates in \mathcal{I}_t are accepted. For a candidate $j \in \{1, \dots, N_t\}$
 166 with features $X_t^F[j]$, the acceptance indicator is defined as $h_k(M(X_t^F[j]), th_t) \in \{0, 1\}$, where 1
 167 denotes acceptance and 0 rejection.

168 Each rejected candidate j is offered recourse in the form of a *counterfactual* feature vector $X^{CF}[j]$,
 169 designed to ensure acceptance within T time steps. Candidates decide whether to attempt the modi-
 170 fication or exit the environment. This decision is governed by a *dropout probability*, which increases
 171 with both the number of failed attempts and the magnitude of required changes, modeling candidate
 172 discouragement (Grbic & Roskovenksky, 2012).

173 For candidates who remain, each modification on each feature i is implemented successfully with a
 174 *probability of success* that depends on the change magnitude, a feature-specific difficulty parameter
 175 $d_i \in [0, 1]$ (Lievens et al., 2005), and a global difficulty parameter β . In addition, each candidate
 176 has a *reapplication probability*, which increases with (i) *self-confidence*, measured by the extent to
 177 which recommended changes were applied, and (ii) *urgency*, determined by the time since the last
 178 application (Grbic & Roskovenksky, 2012). Candidates may delay reapplication for up to T steps,
 179 consistent with the guaranteed validity of the recommendation.

180 These extensions improve upon prior simulations (Fonseca et al., 2023; Bell et al., 2024), which
 181 assumed (i) zero dropout probability, meaning that candidates only left once accepted, (ii) uniform
 182 modification difficulty across features, and (iii) immediate reapplication without guarantees on rec-
 183 ommendation duration. In other words, among the three key probabilities that we model, previous
 184 works only modeled the probability of success, making it dependent on the distance between the cur-
 185 rent score and the goal score, and a global difficulty parameter. By contrast, they treated the other
 186 two phenomena as deterministic: all rejected candidates reapply, and they do so at every available
 187 time step. We advance their framework by adding stochasticity to the modeling of reapplications and
 188 by modifying the probability of success, modeling one probability function per feature and making
 189 it depend on an additional parameter, the intrinsic feature difficulty. A detailed specification of these
 190 mechanisms is provided in Appendix B.

NEW

191

192 3.2 REINFORCEMENT LEARNING SETTING

193

194 We model the environment where the reinforcement learning agent is trained as a *Partially Observ-
 195 able Markov Decision Process (POMDP)*, capturing the sequential nature of algorithmic recourse
 196 under feedback loops, and extending the simulation framework introduced earlier.

197 Partial observability arises due to delays in candidate reapplications and exits. Individuals modify
 198 their features in response to prior recommendations, but these changes remain hidden until they
 199 reapply, if they do at all. Some may permanently exit the system due to discouragement, introducing
 200 further uncertainty into the environment.

201 Formally, the environment is a POMDP specified by the tuple $(\mathcal{S}, \mathcal{A}, \mathcal{P}, \Omega, O, R, \gamma)$, where \mathcal{S} is
 202 the latent state space, \mathcal{A} the set of actions, and $\mathcal{P}(s'|s, a)$ the transition function that defines the
 203 probability of moving from state s to s' after taking action a . The agent receives partial observations
 204 from an observation space Ω , governed by the observation function $O(o|s', a)$, which defines the
 205 likelihood of observing o upon reaching s' via action a . The reward function $R(s, a)$ assigns a
 206 scalar signal to each state-action pair, and $\gamma \in [0, 1]$ is a discount factor balancing immediate and
 207 future rewards. We now describe the main components of the POMDP, starting from the latent state.

208

209 **State s_t .** The state s_t captures the complete configuration of the environment at time t . It includes
 210 all candidates currently in the system, represented by their feature matrix $X_{c,t}$ and identifiers $\mathcal{I}_{c,t}$,
 211 as well as all candidates applying at this step—including new entrants—represented by X_t^F and \mathcal{I}_t^F .
 212 Scores and binary outcomes for all candidates are obtained via the decision model $M(\cdot)$ and the
 213 acceptance indicator $h(\cdot)$. The state space \mathcal{S} is continuous—since candidate features and scores are
 214 continuous—and its dimension varies with the number of candidates present and those reapplying.

214

215 **Action a_t .** The agent’s action at time t is defined as: $a_t = X_t^{CF}$, where X_t^{CF} is a matrix of coun-
 216 terfactual feature vectors, each corresponding to a rejected candidate. These vectors represent the

216 feature configurations that, if adopted, would lead to acceptance, within a time window of T steps.
 217 The action space \mathcal{A} is continuous and of variable dimension.
 218

219 **Transition Function** $\mathcal{P}(s_{t+1}|s_t, a_t)$. The environment evolves according to a stochastic transition
 220 function \mathcal{P} , mapping the current state s_t and agent action a_t to a distribution over successor states
 221 s_{t+1} . Transitions proceed in three phases. First, candidates with positive outcomes permanently
 222 exit the environment and are removed from $X_{c,t+1}$. Second, rejected candidates respond to their
 223 counterfactual recourse recommendations: some exit due to discouragement, while others remain
 224 and modify their features toward the suggested counterfactuals, updating $X_{c,t+1}$. Finally, a new ap-
 225 plication round occurs, comprising both new entrants and reapplying candidates previously rejected,
 226 forming the new feature matrix X_{t+1}^F .
 227

228 **Observation o_t and Observation Function** $O(o_t | s_t, a_{t-1})$. The agent has partial observability of
 229 the environment, and the observation function specifies how this partial view is derived from the true
 230 latent state s_t and the previous action a_{t-1} . Formally, the observation includes only the elements of
 231 s_t corresponding to the current applicants: $o_t = (X_t^F, \mathcal{I}_t^F)$. The observation space Ω is continuous
 232 and can have variable dimensionality depending on the number of applicants at time t .
 233

234 **Reward Function** $R(s_t, a_t)$. The reward function integrates multiple objectives to ensure *equity*,
 235 *validity*, and *feasibility* of the agent’s recommendations. To promote *equity*, we minimize disparities
 236 in the scores that rejected candidates would obtain if they implemented the recommended actions.
 237 Formally, we define the set of rejected candidates at time t as $\mathcal{I}_t^{\text{rej}}$. For each candidate $j \in \mathcal{I}_t^{\text{rej}}$,
 238 the *goal score* is $g_t[j] = M(X_t^{\text{CF}}[j])$, i.e., the score the candidate would achieve if they perfectly
 239 implemented the recommendation. We argue that these scores should be similar across rejected
 240 candidates, in order to prevent unequal treatments. Distinct from effort-based fairness (Bell et al.,
 241 2025), this reasoning aligns with merit-based fairness: candidates can receive recommendations that
 242 require different levels of effort according to their scores. This also discourages the agent from
 243 adopting degenerate strategies, such as implicitly encouraging some candidates to exit the environ-
 244 ment by assigning them excessively difficult recommendations, thereby reducing competition for
 245 others. To guarantee this equity constraint, we minimize the *Gini index*:
 246

$$\text{Gini}_t = \frac{\sum_{i,j \in \mathcal{I}_t^{\text{rej}}} |g_t[j] - g_t[i]|}{2n_{r,t} \sum_{i \in \mathcal{I}_t^{\text{rej}}} g_t[i]}, \quad (1)$$

247 where $n_{r,t} = |\mathcal{I}_t^{\text{rej}}|$. Lower Gini_t indicates greater equity.
 248

249 To ensure *validity*, we adopt the *Recourse Reliability* (RR_t), first introduced by Fonseca et al. (2023),
 250 which measures the portion of candidates that successfully implemented a recommendation and
 251 were accepted at each time step:
 252

$$\text{RR}_t^T = \frac{|\mathcal{I}_t^{\text{succ}} \cap \mathcal{I}_t^{\text{acc}}|}{|\mathcal{I}_t^{\text{succ}}|}. \quad (2)$$

253 where $\mathcal{I}_t^{\text{succ}}$ indicates the candidates that successfully implemented a recommendation and reapplied
 254 at time step t , and $\mathcal{I}_t^{\text{acc}}$ indicates the candidates accepted at step t . In the original formulation, $\mathcal{I}_t^{\text{succ}}$
 255 included only candidates reapplying from the previous step. We extend this to candidates whose last
 256 application was within the past T steps, so RR_t^T measures reliability over a T -step horizon.
 257

258 To prevent trivial solutions that maximize RR_t^T by suggesting extremely difficult modifications, we
 259 introduce the *Recourse Feasibility* (RF_t^T), which quantifies the fraction of candidates who received
 260 recommendations within the past T steps and reapplied with a successful implementation at time t :
 261

$$\text{RF}_t^T = \frac{|\mathcal{I}_t^{\text{succ}}|}{|\mathcal{I}_{t-T:t}^{\text{rej}}|}, \quad (3)$$

262 where $\mathcal{I}_{t-T:t}^{\text{rej}}$ is the set of candidates who last applied unsuccessfully in the window $[t - T, t - 1]$,
 263 and thus could have reapplied at t , with a perfectly implemented recommendation. In this way, the
 264 metric penalizes failed implementations, delays, and discouragement-related exits.
 265

266 **Policy $\pi(a_t|s_t)$** . The agent learns a policy $\pi(a_t|s_t)$ that defines a distribution over recommendations
 267 a_t , conditioned on the current environment state s_t . Learning this policy is challenging due to the
 268 high-dimensional, variable-sized state and action spaces. In the next section, we introduce a training
 269 framework that mitigates the computational burden associated with these large and dynamic spaces.
 270

NEW

270 4 REINFORCEMENT LEARNING SOLUTION
271

NEW

272 In the previous section, we interpreted the simulation environment through the lens of reinforcement
273 learning, framing the recourse task as learning a policy that yields valid, durable, and feasible rec-
274 ommendations. In this section, we describe the strategy used to search for the optimal policy within
275 this environment.

276 Directly learning the full counterfactual matrix X_t^{CF} is computationally expensive due to its high
277 dimensionality and variable size. To address this, we adopt a hierarchical approach that separates
278 counterfactual generation from goal selection, explicitly modeling the dependency between the two.
279

280 **Counterfactual generation.** We first learn a stochastic function

$$281 \quad \phi : (x_t^{\text{F}}, g) \mapsto \text{Dist}(x_t^{\text{CF}}), \\ 282$$

283 that defines a probability distribution over counterfactual feature vectors x_t^{CF} , conditioned on a can-
284 didate’s features x_t^{F} and a target score g . Samples from this distribution are required to satisfy
285 $M(x_t^{\text{CF}}) \approx g$ while minimizing a cost function that measures the discrepancy between x_t^{F} and x_t^{CF} .
286 In other words, ϕ specifies how to probabilistically modify features to achieve a desired score.

287 **Goal selection policy.** Given the pre-trained ϕ , we learn a stochastic policy

$$288 \quad \mu : (X_t^{\text{F}}, \mathcal{I}_t^{\text{F}}) \mapsto \text{Dist}(g_t), \\ 289$$

290 that defines a probability distribution over target scores g_t . During training, the pre-trained ϕ trans-
291 lates sampled goal scores into actionable recommendations for each rejected candidate:

$$292 \quad g_t \sim \mu(X_t^{\text{F}}, \mathcal{I}_t^{\text{F}}), \quad X_t^{\text{CF}}[j] \sim \phi(X_t^{\text{F}}[j], g_t), \quad \forall j \in \mathcal{I}_t^{\text{rej}}. \\ 293$$

294 The environment evolves according to these recommendations, making the training of μ inherently
295 dependent on ϕ .

296 In this hierarchical setup, μ decides *what score to aim for*, while ϕ determines *how to modify the*
297 *features* to reach that score. Pre-training ϕ reduces the computational complexity and stabilizes
298 the training of μ . While μ is primarily responsible for the trade-off between *Recourse Reliability*
299 (Equation 2) and *Recourse Feasibility* (Equation 3) in the reward function, the Pareto efficiency of
300 this trade-off largely depends on ϕ , as the feasibility of a recommendation critically depends on the
301 trajectory taken to reach the target score. Additionally, ϕ indirectly optimizes the Gini index (Equa-
302 tion 1), by providing recommendations that approximately lead to the same score for all candidates.

303 This two-step architecture mirrors state-of-the-art recourse methods, which typically fix the goal
304 score g_t at the last-seen decision threshold and optimize only ϕ . Our approach instead learns g_t adap-
305 tively, based on the behavior of the candidates. We further design ϕ to improve the balance between
306 reliability and feasibility, targeting higher values of both metrics. Concretely, ϕ is implemented as
307 an RL policy, the *recourse recommender policy*, pre-trained with respect to the target-score policy,
308 the *predictor policy*. We next describe the training procedure for both agents.

309
310 4.1 TRAINING OF THE RECOURSE RECOMMENDER POLICY
311

312 The recourse recommender policy ϕ is trained in a simplified environment derived from the setting
313 introduced earlier. The state at time t is defined as $s_t = (x_t^{\text{F}}, g)$, where x_t^{F} is the feature vector
314 of a single candidate and g a target score. The action is the counterfactual feature vector $a_t =$
315 x_t^{CF} . Although the deployment setting of the policy remains unchanged, with respect to the setting
316 presented in Section 3.2, the POMDP used for training is modified to pursue a different objective,
317 which is achieving a predefined target score, and to focus exclusively on a single candidate, which
318 is sufficient for the intended task. This reduction significantly lowers the computational burden.

NEW

319 Training proceeds over multiple episodes. At the start of an episode, a goal score g is sampled such
320 that $M(x_0^{\text{F}}) < g$. At each step, the agent proposes a recommendation x_t^{CF} , which the candidate
321 attempts to implement. Each recommendation has validity $T = 1$, meaning candidates reapply at
322 every step. The episode terminates when $M(x_t^{\text{F}}) \geq g$ or a maximum number of steps is reached.

323 Recommendations are evaluated on two criteria: (i) *accuracy*: how closely $M(x_t^{\text{CF}})$ approaches
324 g , and (ii) *cost*: the effort required to modify x_t^{F} into x_t^{CF} . The accuracy objective ensures that

324 the recourse recommender can generate paths toward arbitrary targets, and that—once paired with
 325 the recommender—it leads to counterfactual scores that are consistent with goal scores, thereby
 326 improving the Gini-based reward (Equation 1). Formally, accuracy is measured as
 327

$$e_t = |M(x_t^{\text{CF}}) - g|. \quad (4)$$

329 The cost objective encourages minimal-effort modifications. We define an estimated cost function
 330 that penalizes large changes and prioritizes easier-to-modify features, based on estimated difficulties:
 331

$$\hat{c}_t = \sum_{i=1}^z |x_t^{\text{CF},(i)} - x_t^{\text{F},(i)}| \cdot \hat{d}_i, \quad (5)$$

334 where z is the number of features, and \hat{d}_i is the agent’s estimate of the difficulty of modifying feature
 335 i . Difficulty estimates are learned adaptively; the full procedure is detailed in Appendix C.

336 For optimization, we employ the Soft Actor-Critic (SAC) algorithm (Haarnoja et al., 2018), a model-
 337 free, off-policy method well-suited for continuous action spaces. In our work, ϕ is trained *online*,
 338 interacting directly with the environment; the same procedure can also be executed *offline* if a suf-
 339 ficiently rich dataset, related to another recourse system employed in this setting and containing
 340 information on how candidates respond to recommendations, is available. FIX

342 4.2 TRAINING OF THE PREDICTOR POLICY

343 The predictor policy, denoted by μ , is trained on the POMDP introduced in the previous section.
 344 Within the hierarchical framework, the action space is reduced to $a_t = g_t$, i.e., the selection of a
 345 target score. During training, the recourse recommender policy ϕ is treated as a fixed component
 346 of the environment: it provides the counterfactual updates required to construct X_t^{CF} , based on g_t ,
 347 while μ focuses solely on learning how to select appropriate goals. The reward function used to train
 348 μ excludes the Gini term, as it is entirely handled by the recourse recommender policy.

349 Because the environment is only partially observable and the reward is non-Markovian, we augment
 350 both the state and observation spaces with explicit historical information. At each time step t ,
 351 the agent receives a window of data covering all candidates who applied and were rejected during
 352 $[t - T, t - 1]$. For each such candidate, the following metadata are provided: (i) their feature vector
 353 at the time of their last application, (ii) their unique identifier, (iii) the time step of their most recent
 354 application, (iv) the total number of applications they have submitted, (v) the most recent recourse
 355 recommendation received. This represents information that the recourse system, represented by the
 356 agent, has seen at some point; we assume that such data can be stored. By explicitly including these
 357 variables in the agent’s observation, rather than requiring it to infer or internally store past events,
 358 we ensure that the environment is fully Markovian with respect to the predictor’s decision process.
 359 This design choice facilitates stable learning in the presence of delayed effects. NEW

360 Training is conducted over fixed-length episodes. At the beginning of each episode, a new popula-
 361 tion of initial applicants is generated. The predictor μ is then optimized using SAC (Haarnoja et al.,
 362 2018), chosen for its sample efficiency and ability to handle continuous action spaces.

364 5 EXPERIMENTS

366 5.1 SETUP

368 In this section, we present the performance evaluation of our method relative to established baselines
 369 from the literature. Additionally, we analyze how environmental constraints and design choices
 370 influence achievable performance. Our approach is compared against three widely used baselines
 371 for non-causal recourse (Ustun et al., 2019; Wachter et al., 2017; Mothilal et al., 2020) (hereafter
 372 called Ustun, Wachter, and DiCE). Some of these methods have also been adopted as baselines
 373 in recent studies on recourse under competition (Fonseca et al., 2023; Bell et al., 2024); in our
 374 framework, they serve as alternatives to the recourse recommender policy ϕ .

375 Each strategy is combined with: (i) a *trivial predictor*, which applies the classifier’s most recent
 376 decision threshold (reflecting standard practice in dynamic recourse), and (ii) our proposed predictor,
 377 parameterized by policy μ . This yields two categories of methods: (i) *baselines*, pairing each
 378 recourse strategy with the trivial predictor, and (ii) *hybrids*, pairing the strategies with our predictor. NEW

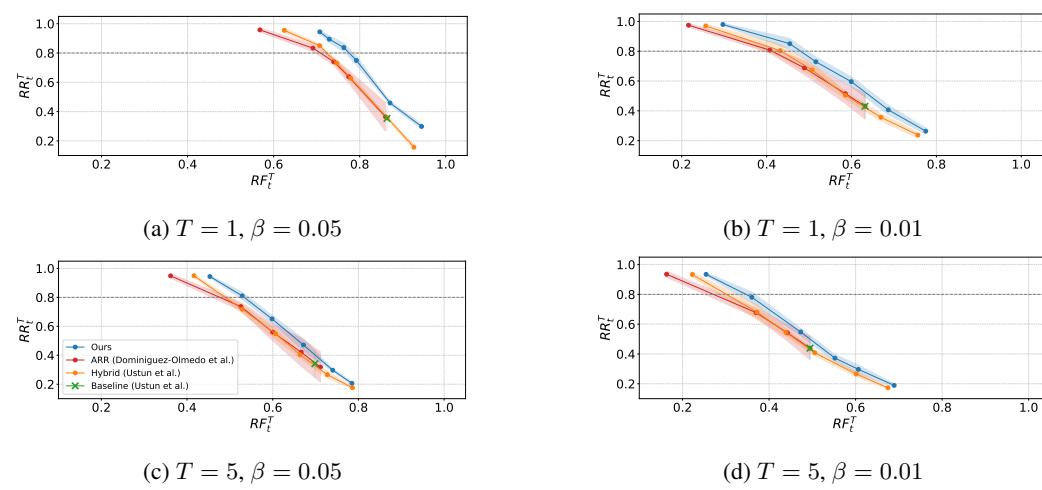


Figure 2: Comparison of Pareto fronts of our method (blue), the hybrid method based on Ustun’s approach (orange), the baseline using Ustun’s approach (green), and the ARR method (red), across four settings with $T \in \{1, 5\}$ and $\beta \in \{0.05, 0.01\}$. Pareto fronts plot Recourse Reliability RR_t^T and Recourse Feasibility RF_t^T , each averaged over ten evaluation episodes. The gray line at $RR_t^T = 0.8$ denotes the *high reliability threshold*, distinguishing configurations that achieve desirable recourse reliability.

We further compare our approach to the method of Dominguez-Olmedo et al. (2022), referred to as Adversarially Robust Recourse (ARR). ARR accounts for adversarial perturbations to an individual’s features; Since $M(\cdot)$ is linear and the features are independent, the ARR objective reduces to adjusting the target score according to ε . Counterfactuals for reaching this adjusted target score are then derived using the procedure of Ustun et al. (2019). We evaluate ARR across a range of ε values.

We evaluate all methods under four experimental conditions, varying the recourse horizon ($T \in \{1, 5\}$) and the setting difficulty ($\beta \in \{0.05, 0.01\}$). The reward coefficients (α, τ) , and the robustness coefficient ε , which govern the trade-off between Recourse Reliability and Recourse Feasibility, are chosen to produce Pareto frontiers spanning recourse reliability values RR_t^T approximately in $(0.20, 0.95)$.

Details on training and evaluation are illustrated in Appendix D. Since baselines tend to overlap, we depict only Ustun and ARR for plot readability. Analogous results, including comparisons with Wachter and DiCE, and analysis of the Gini Index of all methods, are provided in Appendix E.

5.2 RESULTS

Figure 2 shows Pareto plots for Recourse Feasibility (RF_t^T) and Recourse Reliability (RR_t^T) across all four experimental settings, averaged over ten evaluation episodes. Regarding our method and the hybrid approach, each point on a Pareto front corresponds to a different trained predictor μ with varying values of the parameters α and τ . In the case of ARR, each point corresponds to a different value of ε . The horizontal gray line at $RR_t^T = 0.8$ indicates the *high reliability threshold*, highlighting simulations that achieve a desirable level of recourse reliability.

NEW

Impact of the time horizon T . Comparing the top and bottom plots in Figure 2, we observe that the value of T strongly affects the validity-feasibility trade-off: achieving high validity requires policies with lower feasibility as T increases. Guaranteeing recourse over a longer horizon imposes a more stringent requirement, forcing the agent to recommend more challenging feature changes.

Figure 3 further highlights this phenomenon, by plotting the average Recourse Feasibility RF_t^T , fixing $RR_t^T = 0.95$ and $\beta = 0.05$, for $T \in [1, 5]$. As noticed, feasibility must decrease to guarantee large reliability over an increasing time horizon T .

One additional challenge of a longer time horizon is slower convergence, highlighted in Figure 4. It presents the convergence curves of two predictor agents trained under identical conditions ($\beta =$

432 0.01, $\alpha = 7$, $\tau = 5$), but with different planning horizons: $T = 1$ and $T = 5$. Each point represents
 433 the cumulative reward averaged over the previous ten episodes.
 434

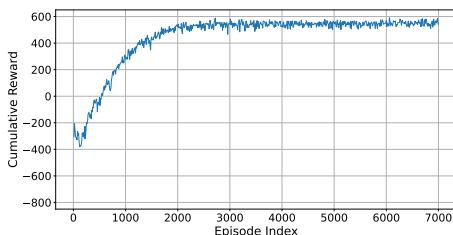
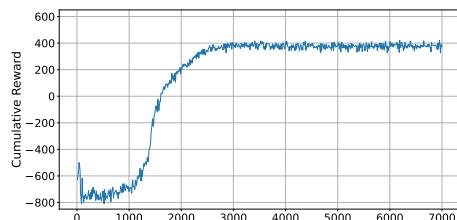
435 For $T = 1$, the reward begins to increase af-
 436 ter a few hundred episodes and converges to
 437 a final value of ≈ 600 after about 2000 steps.
 438 In contrast, for $T = 5$, the reward starts im-
 439 proving only after roughly 1000 episodes and
 440 reaches a final value of ≈ 400 after around
 441 3000 steps. This behavior shows that the agent
 442 requires substantially more exploration when
 443 validity must be guaranteed over a longer hori-
 444 zon, since the task is more complex.

445 **Impact of the setting difficulty β .** Compar-
 446 ing the left and right panels of Figure 2 shows
 447 that the value of β strongly shapes the attain-
 448 able trade-off between RF_t^T and RR_t^T .

449 We recall that β scales the probability of successfully implementing feature modifications: higher
 450 values correspond to higher probabilities of success, while lower values make modifications more
 451 difficult. In both scenarios, to ensure high reliability, the agent recommends relatively high target
 452 scores, that push reapplying candidates above new applicants. For large β , this strategy has a mod-
 453 erate negative impact on RF_t^T , since even challenging modifications remain feasible. In contrast, for
 454 low β , the same strategy yields a much sharper trade-off, as many candidates are unable to realize
 455 the recommended changes.

456 This analysis reveals another intrinsic limitation of recourse in resource-constrained environments.
 457 When the means for improvement are inherently difficult (low β), it is challenging to devise recom-
 458 mendations that are both likely to be implemented and sufficient to guarantee a positive outcome.
 459 Consequently, practitioners must carefully prioritize among these desiderata.

460 Recourse based on Wachter and DiCE highlights the same trends, as shown in Appendix E.
 461
 462

(a) $T = 1$ (b) $T = 5$

472 Figure 4: Convergence curves in two identical settings ($\beta = 0.01$, $\alpha = 7$, $\tau = 5$), comparing
 473 $T \in \{1, 5\}$. The y-axis shows the average cumulative reward (smoothed over ten episodes), and the
 474 x-axis denotes the episode index.
 475

477 **Comparison of baseline, hybrid, ARR, and our approach.** Across all subplots in Figure 2, the
 478 baseline approach (green) attains low reliability ($RR_t^T \approx 0.4$) while favoring feasibility. This out-
 479 come reflects the limitations of simply using the last observed decision threshold as the target score
 480 instead of tailoring it to an evolving environment. In contrast, our predictor μ can be plugged into
 481 any recourse recommender, such as Ustun, explicitly governing this trade-off (orange). These results
 482 highlight the advantage of an RL-based predictor over a simplistic fixed threshold policy. Compar-
 483 ing ARR (red) to the baseline (green), we observe that robustifying the target score based on a fixed
 484 parameter ε improves recourse reliability, at the cost of reduced feasibility. However, the hybrid
 485 method (orange) Pareto-dominates ARR in all four settings, particularly in high-reliability regimes
 (RR_t above the high reliability threshold). This demonstrates that environment-aware target adjust-

NEW

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

ments outperform naive approaches that ignore the candidates’ behavior. A more in-depth analysis of this is provided in Appendix F.

Figure 2 also compares our method (blue) with the hybrid approach (orange). Our approach achieves Pareto optimality across all four experimental settings. The key distinction lies in the recommendation strategy: while Ustun’s method selects recommendations based solely on minimal feature changes, our policy ϕ explicitly accounts for feature modification difficulties, prioritizing changes to easier features, thus resulting in more feasible recourse paths. Hybrid methods based on Wachter and DiCE achieve a performance similar to Ustun, as illustrated in Appendix E.

We further note that the relative advantage of our method depends on the setting parameters. When the complexity of the problem—encoded in the parameters β and T —increases, the Pareto front of our method moves closer to that of the hybrid. One possible interpretation is that, while in favorable conditions ($T = 1, \beta = 0.05$) more attainable recourse paths directly correspond to a higher portion of implementing candidates (for the same validity), in more constrained environments (e.g., $T = 5$ or $\beta = 0.01$) this mapping is less immediate, limiting the achievable gain.

Even under these stricter conditions, however, our method continues to provide robust improvements and maintains good trade-offs. This indicates that our approach remains effective over longer horizons T , highlighting its practical advantage in dynamic, multi-step settings.

6 DISCUSSION AND CONCLUSIONS

This paper presents the first solution to the problem of *robust recourse recommendations in competitive, limited-resource settings*. Our approach leverages reinforcement learning to anticipate candidate responses to recommendations and to generate suggestions that jointly maximize feasibility and validity. By adaptively estimating the relative difficulty of modifying each feature, the method prioritizes more accessible changes. Moreover, it supports recourse validity for T time steps, where T is specified by the stakeholder issuing the recommendations.

While the RL agent effectively learns environment dynamics, real-world deployment may introduce additional complexities. A key drawback arises during the transient learning phase—especially for the recourse recommender policy—where candidates may receive suboptimal recommendations. This limitation could be mitigated by training this policy on offline data, such as data from previous recourse systems used in the same setting, which record how the candidate population evolved in response to recommendations. Alternatively, the system could be pre-trained in our simulation environment, using domain expertise to align it with the actual setting; once online training on real data begins, such pre-training would help avoid fully sacrificing performance on transient candidates while allowing faster adaptation and convergence. Exploring such extensions constitutes an important step toward practical deployment and is left for future work.

NEW

Moreover, our simulation environment focuses on non-causal recourse, reflecting the work’s emphasis on robustness under competition. The predictor, however, can be paired with any causal recourse method, and the recommender can be trained in environments with underlying causal structures. Additional sources of uncertainty, such as shifts in new applicants’ distribution or in the prediction model, could also be modeled (Appendix B.5). Exploring these extensions provides a promising path for validating robustness and optimality in more complex, causally grounded settings.

NEW

Lastly, while our framework empirically shows that RL can be leveraged in competitive recourse settings to find a solution that balances multiple desiderata, no theoretical guarantees of convergence to such a solution can be established, as the chosen RL method (Haarnoja et al., 2018) lacks such guarantees (Appendix H).

Overall, this work establishes a foundation for durable and adaptive recourse under competition, while opening multiple pathways for further research.

ETHICS STATEMENT

Our work addresses algorithmic recourse, a line of research that seeks to empower individuals affected by automated decisions by identifying feasible changes they can undertake to alter future

540 outcomes. While this vision has clear ethical appeal, it is important to acknowledge several limita-
 541 tions and potential risks.

542 First, recourse recommendations can inadvertently *shift responsibility* from institutions to individu-
 543 als, obscuring systemic sources of unfairness (Sullivan & Kasirzadeh, 2024). A model may suggest
 544 behavioral changes (e.g., increasing income or reducing debt), but such recommendations risk de-
 545 flecting attention from structural inequities encoded in data and decision pipelines.

546 Moreover, many recommended changes may not map cleanly to real-world actions or may implicitly
 547 require resources unequally available across social groups. This raises concerns about feasibility,
 548 fairness, and inclusivity (Barocas et al., 2020).

549 Lastly, explanations and recourse operate in *adversarial contexts*, where institutions and affected
 550 individuals may have misaligned incentives (Bordt et al., 2022). In such settings, post-hoc recourse
 551 mechanisms are vulnerable to manipulation, selective disclosure, and explanation hacking, which
 552 can undermine their transparency and accountability.

553 By highlighting these limitations, we aim to situate our contribution responsibly. Our research
 554 does not directly involve human subjects or sensitive personal data, but it engages with concepts
 555 that can influence downstream applications in high-stakes domains. We encourage future work to
 556 complement technical advances in recourse with attention to their social, legal, and institutional
 557 implications.

560 REPRODUCIBILITY STATEMENT

561 We ensure reproducibility by providing a repository with our code in the supplementary material.
 562 Mathematical details of the environment are presented in Appendix B. A comprehensive description
 563 of our approach is given in Section 4 and Appendix C. Finally, Appendix D reports the complete
 564 specifications of the experimental setup.

567 REFERENCES

568 Patrick Altmeyer, Giovan Angela, Aleksander Buszydlik, Karol Dobiczek, Arie van Deursen, and
 569 Cynthia C. S. Liem. Endogenous macrodynamics in algorithmic recourse. In *2023 IEEE Confer-
 570 ence on Secure and Trustworthy Machine Learning (SaTML)*, volume 12, pp. 418–431. IEEE,
 571 February 2023. doi: 10.1109/satml54575.2023.00036. URL <http://dx.doi.org/10.1109/SaTML54575.2023.00036>.

572 Solon Barocas, Andrew D. Selbst, and Manish Raghavan. The hidden assumptions behind counter-
 573 factual explanations and principal reasons. In *Proceedings of the 2020 Conference on Fairness,
 574 Accountability, and Transparency*, FAT* ’20, pp. 80–89, New York, NY, USA, 2020. Associa-
 575 tion for Computing Machinery. ISBN 9781450369367. doi: 10.1145/3351095.3372830. URL
 576 <https://doi.org/10.1145/3351095.3372830>.

577 Andrew Bell, Joao Fonseca, and Julia Stoyanovich. The game of recourse: Simulating algorithmic
 578 recourse over time to improve its reliability and fairness. In *Companion of the 2024 International
 579 Conference on Management of Data*, SIGMOD/PODS ’24, pp. 464–467, New York, NY, USA,
 580 2024. Association for Computing Machinery. ISBN 9798400704222. doi: 10.1145/3626246.
 581 3654742. URL <https://doi.org/10.1145/3626246.3654742>.

582 Andrew Bell, Joao Fonseca, Carlo Abate, Francesco Bonchi, and Julia Stoyanovich. How much
 583 effort is enough? fairness in algorithmic recourse through the lens of substantive equality of
 584 opportunity. In *Proceedings of the 5th ACM Conference on Equity and Access in Algorithms,
 585 Mechanisms, and Optimization*, EAAMO ’25, pp. 170–184, New York, NY, USA, 2025. Associa-
 586 tion for Computing Machinery. ISBN 9798400721403. doi: 10.1145/3757887.3763014. URL
 587 <https://doi.org/10.1145/3757887.3763014>.

588 Isacco Beretta and Martina Cinquini. The importance of time in causal algorithmic recourse. In
 589 Luca Longo (ed.), *Explainable Artificial Intelligence*, pp. 283–298, Cham, 2023. Springer Nature
 590 Switzerland. ISBN 978-3-031-44064-9. doi: 10.1007/978-3-031-44064-9_16. URL https://doi.org/10.1007/978-3-031-44064-9_16.

594 Sebastian Bordt, Michèle Finck, Eric Raidl, and Ulrike von Luxburg. Post-hoc explanations fail
 595 to achieve their purpose in adversarial contexts. In *Proceedings of the 2022 ACM Conference on*
 596 *Fairness, Accountability, and Transparency*, FAccT '22, pp. 891–905, New York, NY, USA, 2022.
 597 Association for Computing Machinery. ISBN 9781450393522. doi: 10.1145/3531146.3533153.
 598 URL <https://doi.org/10.1145/3531146.3533153>.

599 Seung Hyun Cheon, Anneke Wernerfelt, Sorelle Friedler, and Berk Ustun. Feature responsiveness-
 600 ness scores: Model-agnostic explanations for recourse. In *The Thirteenth International Confer-*
 601 *ence on Learning Representations*, 2025. URL <https://openreview.net/forum?id=wsWCVrH9dv>.

602 Susanne Dandl, Christoph Molnar, Martin Binder, and Bernd Bischl. Multi-objective counter-
 603 factual explanations. In Thomas Bäck, Mike Preuss, André Deutz, Hao Wang, Carola Do-
 604 err, Michael Emmerich, and Heike Trautmann (eds.), *Parallel Problem Solving from Nature*
 605 – PPSN XVI, pp. 448–469, Cham, 2020. Springer International Publishing. ISBN 978-3-
 606 030-58112-1. doi: 10.1007/978-3-030-58112-1_31. URL https://doi.org/10.1007/978-3-030-58112-1_31.

607 Giovanni De Toni, Paolo Viappiani, Stefano Teso, Bruno Lepri, and Andrea Passerini. Personalized
 608 algorithmic recourse with preference elicitation. *Transactions on Machine Learning Research*,
 609 2024. URL <https://openreview.net/forum?id=sh6N4KuDLX>.

610 Giovanni De Toni, Stefano Teso, Bruno Lepri, and Andrea Passerini. Time can invalidate algo-
 611 rithmic recourse. In *Proceedings of the 2025 ACM Conference on Fairness, Accountability,*
 612 *and Transparency*, FAccT '25, pp. 89–107, New York, NY, USA, 2025. Association for Com-
 613 puting Machinery. ISBN 9798400714825. doi: 10.1145/3715275.3732008. URL <https://doi.org/10.1145/3715275.3732008>.

614 Ricardo Dominguez-Olmedo, Amir H Karimi, and Bernhard Schölkopf. On the adversarial ro-
 615 bustness of causal algorithmic recourse. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
 616 Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), *Proceedings of the 39th International Con-*
 617 *ference on Machine Learning*, volume 162 of *Proceedings of Machine Learning Research*, pp.
 618 5324–5342. PMLR, 17–23 Jul 2022. URL <https://proceedings.mlr.press/v162/dominguez-olmedo22a.html>.

619 João Fonseca, Andrew Bell, Carlo Abrate, Francesco Bonchi, and Julia Stoyanovich. Setting the
 620 right expectations: Algorithmic recourse over time. In *Equity and Access in Algorithms, Mech-
 621 anisms, and Optimization*, volume 14 of *EAAMO '23*, pp. 1–11. ACM, October 2023. doi:
 622 10.1145/3617694.3623251. URL <http://dx.doi.org/10.1145/3617694.3623251>.

623 Douglas Grbic and Lindsay Brewer Roskovensky. Which factors predict the likelihood of reap-
 624 plying to medical school? an analysis by gender. *Academic Medicine*, 87(4):449–457, 2012.
 625 doi: 10.1097/ACM.0b013e3182494e54. URL <https://pubmed.ncbi.nlm.nih.gov/22361796/>.

626 Victor Guyomard, Françoise Fessant, Thomas Guyet, Tassadit Bouadi, and Alexandre Termier. Gen-
 627 erating robust counterfactual explanations. In Danai Koutra, Claudia Plant, Manuel Gomez Ro-
 628 driguez, Elena Baralis, and Francesco Bonchi (eds.), *Machine Learning and Knowledge Dis-
 629 covery in Databases: Research Track*, pp. 394–409, Cham, 2023. Springer Nature Switzerland.
 630 ISBN 978-3-031-43418-1. doi: 10.1007/978-3-031-43418-1_24. URL https://doi.org/10.1007/978-3-031-43418-1_24.

631 Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
 632 maximum entropy deep reinforcement learning with a stochastic actor. In Jennifer Dy and An-
 633 dreas Krause (eds.), *Proceedings of the 35th International Conference on Machine Learning*,
 634 volume 80 of *Proceedings of Machine Learning Research*, pp. 1861–1870. PMLR, 10–15 Jul
 635 2018. URL <https://proceedings.mlr.press/v80/haarnoja18b.html>.

636 Kentaro Kanamori, Ken Kobayashi, Satoshi Hara, and Takuya Takagi. Algorithmic recourse for
 637 long-term improvement. In *Proceedings of the 42nd International Conference on Machine Learn-
 638 ing (ICML 2025) Poster Track*, May 2025. URL <https://openreview.net/forum?id=gmLD0DHaoZ>.

648 Amir-Hossein Karimi, Julius von Kügelgen, Bernhard Schölkopf, and Isabel Valera. Algorithmic
 649 recourse under imperfect causal knowledge: a probabilistic approach. In *Proceedings of the 34th*
 650 *International Conference on Neural Information Processing Systems*, NIPS '20, Red Hook, NY,
 651 USA, 2020. Curran Associates Inc. ISBN 9781713829546. doi: 10.5555/3495724.3495747. URL
 652 <https://dl.acm.org/doi/10.5555/3495724.3495747>.

653 Amir-Hossein Karimi, Bernhard Schölkopf, and Isabel Valera. Algorithmic recourse: from counter-
 654 factual explanations to interventions. In *Proceedings of the 2021 ACM Conference on Fairness,*
 655 *Accountability, and Transparency*, FAccT '21, pp. 353–362, New York, NY, USA, 2021. Associa-
 656 tion for Computing Machinery. ISBN 9781450383097. doi: 10.1145/3442188.3445899. URL
 657 <https://doi.org/10.1145/3442188.3445899>.

658 Amir-Hossein Karimi, Gilles Barthe, Bernhard Schölkopf, and Isabel Valera. A survey of algo-
 659 rithmic recourse: Contrastive explanations and consequential recommendations. *ACM Comput. Surv.*,
 660 55(5), December 2022. ISSN 0360-0300. doi: 10.1145/3527848. URL <https://doi.org/10.1145/3527848>.

663 Kshitij Kayastha, Vasilis Gkatzelis, and Shahin Jabbari. Learning-augmented robust algorithmic
 664 recourse, 2024. URL <https://arxiv.org/abs/2410.01580>. arXiv preprint.

665 Gunnar König, Timo Freiesleben, and Moritz Grosse-Wentrup. Improvement-focused causal re-
 666 course (icr). In *Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence and*
 667 *Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence and Thirteenth Sym-
 668 posium on Educational Advances in Artificial Intelligence*, AAAI'23/IAAI'23/EAAI'23. AAAI
 669 Press, 2023. ISBN 978-1-57735-880-0. doi: 10.1609/aaai.v37i10.26398. URL <https://doi.org/10.1609/aaai.v37i10.26398>.

671 Filip Lievens, Tine Buyse, and Paul R Sackett. Retest effects in operational selection settings:
 672 Development and test of a framework. *Personnel Psychology*, 58(4):981–1007, 2005. doi:
 673 10.1111/j.1744-6570.2005.00713.x. URL <https://onlinelibrary.wiley.com/doi/10.1111/j.1744-6570.2005.00713.x>.

675 Ayan Majumdar and Isabel Valera. Carma: A practical framework to generate recommendations for
 676 causal algorithmic recourse at scale. In *Proceedings of the 2024 ACM Conference on Fairness,*
 677 *Accountability, and Transparency*, FAccT '24, pp. 1745–1762, New York, NY, USA, 2024. Associa-
 678 tion for Computing Machinery. ISBN 9798400704505. doi: 10.1145/3630106.3659003. URL
 679 <https://doi.org/10.1145/3630106.3659003>.

681 Ramaravind K. Mothilal, Amit Sharma, and Chenhao Tan. Explaining machine learning classifiers
 682 through diverse counterfactual explanations. In *Proceedings of the 2020 Conference on Fairness,*
 683 *Accountability, and Transparency*, FAT* '20, pp. 607–617. ACM, January 2020. doi: 10.1145/
 684 3351095.3372850. URL <http://dx.doi.org/10.1145/3351095.3372850>.

685 Roger B Nelsen. *An introduction to copulas*. Springer, 2006.

686 Duy Nguyen, Ngoc Bui, and Viet Anh Nguyen. Distributionally robust recourse action. In *The Eleventh International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=E3ip6qBLF7>.

689 Martin Pawelczyk, Teresa Datta, Johan Van den Heuvel, Gjergji Kasneci, and Himabindu Lakkaraju.
 690 Probabilistically robust recourse: Navigating the trade-offs between costs and robustness in algo-
 691 rithmic recourse. In *The Eleventh International Conference on Learning Representations*, 2023a.
 692 URL <https://openreview.net/forum?id=SC-PmTsiTB>.

694 Martin Pawelczyk, Tobias Leemann, Asia Biega, and Gjergji Kasneci. On the trade-off between
 695 actionable explanations and the right to be forgotten. In *The Eleventh International Confer-
 696 ence on Learning Representations*, 2023b. URL <https://openreview.net/forum?id=HWt4BBZjVW>.

698 Pardis Rasouli and I. Chieh Yu. CARE: coherent actionable recourse based on sound coun-
 699 terfactual explanations. *International Journal of Data Science and Analytics*, 17(1):13–
 700 38, 2024. doi: 10.1007/s41060-022-00365-6. URL <https://doi.org/10.1007/s41060-022-00365-6>.

702 Kaivalya Rawal and Himabindu Lakkaraju. Beyond individualized recourse: Interpretable
 703 and interactive summaries of actionable recourses. In H. Larochelle, M. Ranzato,
 704 R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neural Information Pro-
 705 cessing Systems*, volume 33, pp. 12187–12198. Curran Associates, Inc., 2020. URL
 706 https://proceedings.neurips.cc/paper_files/paper/2020/file/8ee7730e97c67473a424ccfeff49ab20-Paper.pdf.
 707

708 Kaivalya Rawal, Ece Kamar, and Himabindu Lakkaraju. Algorithmic recourse in the wild: Under-
 709 standing the impact of data and model shifts, 2021. URL <https://arxiv.org/abs/2012.11788>. arXiv preprint.
 710

712 Meirav Segal, Anne-Marie George, Ingrid Chieh Yu, and Christos Dimitrakakis. Better luck next
 713 time: About robust recourse in binary allocation problems. In Luca Longo, Sebastian Lapuschkin,
 714 and Christin Seifert (eds.), *Explainable Artificial Intelligence*, pp. 374–394, Cham, 2024. Springer
 715 Nature Switzerland. ISBN 978-3-031-63800-8. doi: 10.1007/978-3-031-63800-8_19. URL
 716 https://doi.org/10.1007/978-3-031-63800-8_19.

717 Ignacy Stundefinedpka, Jerzy Stefanowski, and Mateusz Lango. Counterfactual explanations with
 718 probabilistic guarantees on their robustness to model change. In *Proceedings of the 31st ACM
 719 SIGKDD Conference on Knowledge Discovery and Data Mining V.I, KDD '25*, pp. 1277–1288,
 720 New York, NY, USA, 2025. Association for Computing Machinery. ISBN 9798400712456. doi:
 721 10.1145/3690624.3709300. URL <https://doi.org/10.1145/3690624.3709300>.

722 Emily Sullivan and Atoosa Kasirzadeh. Explanation hacking: The perils of algorithmic recourse,
 723 2024. URL <https://arxiv.org/abs/2406.11843>. arXiv preprint.
 724

725 Sohini Upadhyay, Shalmali Joshi, and Himabindu Lakkaraju. Towards robust and reliable algo-
 726 rithmic recourse. *Advances in Neural Information Processing Systems*, 34:16926–16937, 2021.

727 Sohini Upadhyay, Himabindu Lakkaraju, and Krzysztof Z. Gajos. Counterfactual explanations may
 728 not be the best algorithmic recourse approach. In *Proceedings of the 30th International Confer-
 729 ence on Intelligent User Interfaces, IUI '25*, pp. 446–462, New York, NY, USA, 2025. Associa-
 730 tion for Computing Machinery. ISBN 9798400713064. doi: 10.1145/3708359.3712095. URL
 731 <https://doi.org/10.1145/3708359.3712095>.
 732

733 Berk Ustun, Alexander Spangher, and Yang Liu. Actionable recourse in linear classification. In
 734 *Proceedings of the Conference on Fairness, Accountability, and Transparency, FAT* '19*, pp.
 735 10–19. ACM, January 2019. doi: 10.1145/3287560.3287566. URL <http://dx.doi.org/10.1145/3287560.3287566>.
 736

737 Suresh Venkatasubramanian and Mark Alfano. The philosophical basis of algorithmic recourse.
 738 In *Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, FAT*
 739 '20*, pp. 284–293, New York, NY, USA, 2020. Association for Computing Machinery. ISBN
 740 9781450369367. doi: 10.1145/3351095.3372876. URL <https://doi.org/10.1145/3351095.3372876>.
 741

742 Sandra Wachter, Brent Mittelstadt, and Chris Russell. Counterfactual explanations without opening
 743 the black box: Automated decisions and the GDPR. *Harvard Journal of Law & Technology*, 31
 744 (2):841–887, 2017. doi: 10.2139/ssrn.3063289. URL https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3063289.
 745

747 Haochen Wu, Shubham Sharma, Sunandita Patra, and Sriram Gopalakrishnan. Safear: safe al-
 748 gorithmic recourse by risk-aware policies. In *Proceedings of the Thirty-Eighth AAAI Con-
 749 ference on Artificial Intelligence and Thirty-Sixth Conference on Innovative Applications of
 750 Artificial Intelligence and Fourteenth Symposium on Educational Advances in Artificial Intel-
 751 ligence, AAAI'24/IAAI'24/EAAI'24*. AAAI Press, 2024. ISBN 978-1-57735-887-9. doi:
 752 10.1609/aaai.v38i14.29522. URL <https://doi.org/10.1609/aaai.v38i14.29522>.
 753

Y. Xuan, K. Sokol, M. Sanderson, et al. Perfect counterfactuals in imperfect worlds: Mod-
 754 elling noisy implementation of actions in sequential algorithmic recourse. *Machine Learning*,
 755 114:187, 2025. doi: 10.1007/s10994-025-06821-1. URL <https://doi.org/10.1007/s10994-025-06821-1>.

756 Hao-Tsung Yang, Jie Gao, Bo-Yi Liu, and Zhi-Xuan Liu. Towards robust model evolution with al-
757 gorithmic recourse, 2025. URL <https://arxiv.org/abs/2503.09658>. arXiv preprint.
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810 A MOTIVATING EXAMPLE
811812 To demonstrate the limitations of existing recourse methods, we examine a Ph.D. admission process.
813 Decisions on admissions are supported by a screening system $M(\cdot)$ that evaluates applicants using
814 criteria such as their GPA, educational background, publications, awards, extracurricular activities,
815 English proficiency, and admission test scores. Admission to the next stage is granted to the top k
816 applicants, where k remains a constant value representing the number of seats available annually.
817818 The goal is to provide rejected candidates with actionable recommendations—feature changes likely
819 to lead to future acceptance, such as, for example, “Upgrade your education from Bachelor’s to
820 Master’s”, or “Increase your test score from 65% to 70%”. The motivation for this goal is highlighted
821 by Venkatasubramanian & Alfano (2020): recourse is a fundamental right, and people should be
822 empowered to reverse impactful algorithmic decisions through feasible actions.
823824 State-of-the-art methods typically generate recourse by identifying feature changes that bring a re-
825 jected applicant’s score to the current threshold. However, this approach can fail in competitive
826 settings. For example, in Figure 1, at time $t = 1$, two candidates are accepted and two rejected.
827 Recommendations are given to the rejected candidates to reach the threshold score of 0.51. But at
828 $t = 2$, after implementing these changes, a candidate is still rejected, since more than $k = 2$ can-
829 didates now meet or exceed the previous threshold. This occurred because the recommendation did
830 not account for the increased competition caused by the recourse itself.
831832 This results in wasted effort, financial cost, and loss of trust in the system. The candidate has
833 acted on the recommendation expecting acceptance, only to be denied again. The issue lies in
834 generating overly easy recommendations that too many can follow, leading to more applicants being
835 able to implement them than available slots. To address this, we propose an approach that anticipates
836 population-level responses and selects more robust target scores. The goal is to ensure that only a
837 subset of candidates can reach these targets, guaranteeing acceptance for those who do. At the same
838 time, recommendations must remain *feasible and actionable*.
839840 Moreover, we introduce the concept of *feature-modification difficulty*, a measure of how difficult it
841 is to change a feature, to reflect real situations constraints. For example, to reach a predefined target
842 score, a candidate might either:
843844 1. Publish a first-author paper at a top-tier conference, or
845 2. Improve English proficiency from B2 to C1 and increase their test score from 65% to 85%.
846847 While the second option requires more changes, it may be more preferred, as the first option re-
848 quires resources that the student may not have, and entails a high level of uncertainty. Since precise
849 difficulty ratios are rarely known in advance, we propose estimating them by observing candidate
850 behavior over time.
851

NEW

852 Finally, recommendations must consider long implementation times and reapplication delays. Fol-
853 lowing Venkatasubramanian & Alfano (2020), we argue that recourse should either be permanent
854 or come with an explicit expiration date. Offering candidates recommendations that are only valid
855 for a single time step risks creating a false sense of agency, since they may have no realistic way to
856 implement the required changes within that interval. We adopt the latter option and associate each
857 recommendation with a *validity horizon T* , during which the recommendation ensures acceptance.
858 This allows candidates to plan longer-term changes with confidence that their efforts will remain
859 relevant.
860861 In real deployments, practitioners could select T by combining domain knowledge with empirical
862 evidence. Domain expertise can help estimate the typical time required for individuals to imple-
863 ment meaningful changes to key features, allowing stakeholders to choose a horizon that balances
864 recommendation validity with practical feasibility. Additionally, if historical data were available on
865 applicants who received recommendations and later reapplied, one could empirically estimate the
866 distribution of reapplication intervals or the time needed to implement specific changes.
867868 We note that although the responsibility to ensure longer durability may not be as strong as the
869 responsibility to ensure validity (since the latter corresponds more directly to breaking a promise),
870 both are tied to user trust and to the system’s broader accountability. Failures on either front can lead
871

864 candidates to disregard the recommendations altogether, ultimately rendering the recourse system
 865 ineffective.
 866

867 B SIMULATION ENVIRONMENT DETAILS

868 B.1 SYNTHETIC DATASET GENERATION

871 To train the predictive model $M(\cdot)$ for estimating candidates' qualification levels, we construct a
 872 synthetic dataset of 10,000 examples, each characterized by 10 continuous features. These exam-
 873 ples represent past candidates who were either accepted or rejected. Each feature is indepen-
 874 dently sampled from a normal distribution, with its mean and standard deviation drawn from uniform
 875 distributions, to introduce variability across features. All features are subsequently normalized to lie in
 876 $[0, 1]$.

877 Labels are designed to reflect subjective and occasionally inconsistent human decision-making.
 878 Specifically, a weighted sum of the features is computed using randomly assigned weights sam-
 879 pled from $[0.1, 1]$ and normalized to sum to 1. Gaussian noise with mean 0 and standard deviation
 880 0.05 is added to this score. Candidates with a score exceeding 0.5 are labeled as accepted; all others
 881 are labeled as rejected.

882 The same feature generation procedure is applied to produce candidate populations \mathcal{I}_0 at the begin-
 883 ning of each episode, and new applicants at each time step. In this case, ground-truth labels are not
 884 generated, as they are unnecessary for the simulation.

NEW

885 Our design extends previous simulation environments modeling competitive recourse in limited-
 886 resource settings (Fonseca et al., 2023; Bell et al., 2024). Prior work considered candidates generated
 887 in a 2-dimensional feature space, sampled independently at random, where $x = (x_1, x_2)$ and $x_i \sim$
 888 $\mathcal{N}(\mu = 0.5, \sigma = 0.3)$ for $i = 1, 2$. They trained a simple logistic regressor as a classifier, with target
 889 variables y_i drawn from a binomial distribution.

NEW

890 We improve this synthetic data generation process by considering 10 continuous features instead of
 891 2, with each feature sampled from a distinct Gaussian. Moreover, we train the logistic regressor on
 892 a dataset constructed in this way, where the ground-truth target is correlated with the features, while
 893 still incorporating noise.

894 B.2 DROPOUT PROBABILITY

895 The likelihood of a candidate dropping out depends on two factors: the gap between their current
 896 score and the goal score, and the number of previous applications. Intuitively, candidates are more
 897 likely to withdraw when they are far from the goal or have already reapplied multiple times.

898 Formally, let $b_j = \max(0, g - M(X^F[j]))$ denote the distance of candidate j 's score from the
 899 goal score g , and let q_j be the number of reapplications submitted up to time step t . The dropout
 900 probability is modeled as a function of these variables, with three decay coefficients: ρ (effect of the
 901 score gap), χ (effect of reapplications), and ω (their interaction).

$$902 p_{\text{dropout}} = 1 - \exp(-(\rho b_j + \chi q_j + \omega b_j q_j)). \quad (6)$$

903 This exponential form ensures that p_{dropout} increases monotonically with both b_j and q_j , approaching
 904 1 as either grows large. Conversely, when $b_j = 0$ and $q_j = 0$, the dropout probability is minimized
 905 at $p_{\text{dropout}} = 0$, corresponding to a candidate already meeting the goal score on their first attempt.

906 The term inside the exponent, $\rho b_j + \chi q_j + \omega b_j q_j$, can be interpreted as a *discouragement factor*,
 907 jointly capturing how performance shortfall and repeated failures contribute to disengagement.

908 B.3 PROBABILITY OF SUCCESSFUL IMPLEMENTATION

909 For a candidate j with features $X^F[j]$, the probability of successfully implementing a recommended
 910 change on feature i depends on:

- 911 • the amplitude of the recommended change, $|X^{\text{CF},i}[j] - X^{\text{F},i}[j]|$,

918 • the feature modification difficulty $d_i \in [0, 1]$,
 919 • the target value $X^{\text{CF},i}[j]$, and
 920 • the global scaling parameter β , which controls the overall difficulty of feature changes.

922 We note that the explicit dependence on the target value reflects the intuition that reaching extreme
 923 goals is more challenging, even when the starting point is close.
 924

925 We define the *attainability* of feature i for candidate j as:

$$926 \quad 927 \quad a_{j,i} = \frac{1}{|X^{\text{CF},i}[j] - X^{\text{F},i}[j]| \cdot X^{\text{CF},i}[j]} - 1. \quad (7)$$

929 Attainability is minimized at 0 when $|X^{\text{CF},i}[j] - X^{\text{F},i}[j]| = X^{\text{CF},i}[j] = 1$, and diverges to infinity
 930 when any of the denominator terms approaches zero. Intuitively, $a_{j,i}$ quantifies the feasibility of
 931 implementing a specific feature change.

932 The probability of success is then modeled as:

$$934 \quad 935 \quad p_{\text{success}} = 1 - \exp\left(-\beta \cdot \frac{a_{j,i}}{d_i}\right), \quad (8)$$

936 where higher β increases the likelihood of success across all features. This probability lies in $[0, 1]$
 937 and increases monotonically with attainability. Specifically, when $|X^{\text{CF},i} - X^{\text{F},i}| = d_i = X^{\text{CF},i} = 1$,
 938 we obtain $p_{\text{success}} = 0$, while if any of these terms is zero, the probability approaches 1.
 939

940 B.4 PROBABILITY OF REAPPLYING

942 At each time step, a candidate’s decision to reapply depends on two factors: *self-confidence*—the
 943 extent to which they have implemented the recommendation—and *urgency*—the time elapsed since
 944 their last application.

945 We model the reapplication probability as a convex combination of a distance-based base probability
 946 and a time-based scaling factor.

947 The base probability measures the candidate’s alignment with the goal score. For candidate j , it is
 948 defined as:

$$949 \quad p_{\text{base},j} = \exp(-\nu \cdot b_j), \quad (9)$$

950 where ν is a decay parameter, and b_j is the distance of the candidate’s current score to the goal score,
 951 as previously defined.
 952

953 The time-based factor captures the increasing tendency to reapply as time passes:

$$954 \quad 955 \quad u_j = \frac{t - l_j}{T}, \quad (10)$$

956 where t is the current time step, l_j the last application time step, and T the recourse validity horizon.
 957

958 The final probability of reapplication is:

$$959 \quad p_{\text{reapply},j} = (1 - u_j) \cdot p_{\text{base},j} + u_j. \quad (11)$$

961 This formulation guarantees that $p_{\text{reapply},j}$ increases monotonically with time and converges to 1
 962 either when $u_j = 1$ (i.e., after T steps since the last application) or when $p_{\text{base},j} = 1$ (i.e., the
 963 recommendation has been perfectly implemented).

965 B.5 POSSIBLE ENVIRONMENT EXTENSIONS

NEW

967 Our simulation environment is intentionally designed to be extensible, allowing richer behavioral
 968 dynamics to be incorporated as needed. In this way, future work could capture more complex candi-
 969 date behaviors and assess the agent’s ability to learn an effective policy in the presence of additional
 970 sources of noise.

971 Table 1 summarizes several phenomena that could be included, together with indicative implemen-
 972 tation strategies.

Phenomenon	Implementation strategy
Heterogeneous urgency and self-confidence	Introduce personalized parameters in p_{reapply} , sampled per candidate.
Collective action among candidates	Assign a small probability (e.g., 0.03) to a coordinated <i>non-engagement</i> event. If the event occurs, set $p_{\text{success}} = 0$ for every rejected candidate and set $p_{\text{reapply}} = 1$ at the next time step.
A priori low trust in the recourse system	For each candidate receiving a recommendation, sample a low-probability event (e.g., 0.05). If the event occurs, set that candidate’s $p_{\text{success}} = 0$, regardless of the attainability (for all the time-steps where such candidate reapplies).
Exogenous variation in candidate features	Sample a low-probability event (e.g., 0.05). If the event occurs, select a subset of features and shift the mean or standard deviation of their sampling distributions.
Exogenous shifts in the predictive model	With small probability (e.g., 0.05), retrain the model on a modified dataset where the weights for computing the ground truth are slightly perturbed.

Table 1: Potential extensions to the simulation environment and corresponding implementation strategies.

Each phenomenon requires modifications to specific components of the environment. For instance, personalization of candidates’ urgency or self-confidence can be reflected by introducing per-candidate parameters in the reapplication model, scaling the exponent in Equation 9 and u_j in Equation 10.

Collective action can be modeled as a rare global event in which candidates strategically choose not to pursue recommendations to avoid intensifying competition. Under such an event, candidates follow their usual dropout dynamics via p_{dropout} , but all remaining candidates reapply at the first available time step with unchanged features (i.e., $p_{\text{success}} = 0$ and $p_{\text{reapply}} = 1$).

Even when collective action does not occur, candidates may individually decline to engage due to low trust in the recourse system. These candidates similarly keep their features unchanged and reapply at the next opportunity (i.e., $p_{\text{success}} = 0$ and $p_{\text{reapply}} = 1$), regardless of the attainability of their recommendations.

Exogenous shifts may arise in both the candidate population and the predictive model $M(\cdot)$. Shifts in candidate features may be implemented by perturbing the sampling distributions of selected features, modifying their means or standard deviations. For model shifts, retraining $M(\cdot)$ on a perturbed version of the synthetic training set (whose ground-truth weights are slightly altered) provides a simple mechanism to modify the relationship between features and outcomes, thereby affecting the model’s learned weights.

C REINFORCEMENT LEARNING SOLUTION DETAILS

C.1 FEATURE DIFFICULTIES ESTIMATION

To estimate feature difficulties, we assume partial knowledge of the environment—specifically, the parametric form that links feature difficulties to the probability of successfully implementing a recourse action. Without loss of generality, we fix the parameter β as known. As indicated in Equation 8, β acts only as a scaling factor on the difficulties, controlling the overall level of difficulty in the simulation. Consequently, if β were unknown, it could be absorbed into the difficulty parameters d_i and estimated jointly with them.

Initially, all estimates of feature difficulties are set to $\hat{d}_i^{(0)} = 0.5$, for all features i . After each recourse attempt, we observe whether each feature change was successfully applied, for the only candidate in the environment. Let $y_i^{(t)} \in \{0, 1\}$ denote this binary outcome (at time t), and let $p_i^{(t)}$ be the predicted probability of success, based on the current belief on \hat{d}_i . We then compute the error signal:

$$err_i^{(t)} = (p_i^{(t)} - y_i^{(t)}) \cdot a_i^{(t)}, \quad (12)$$

which represents the discrepancy between predicted and observed outcomes, scaled by the attainability $a_i^{(t)}$ (previously introduced).

Feature difficulties are updated using a decaying learning rate:

$$\hat{d}_i^{(t+1)} = \text{clip}\left(\hat{d}_i^{(t)} + \eta_i^{(t)} \cdot err_i^{(t)}, 0, 1\right), \quad (13)$$

where

$$\eta_i^{(t)} = \frac{\eta_0}{1 + V_i^{(t)}}, \quad (14)$$

with $\eta_0^{(0)} = 0.05$ as the base learning rate and $V_i^{(t)}$ the number of prior updates to feature i . The clipping ensures that updated difficulties remain within $[0, 1]$.

This online procedure allows the model to iteratively refine its estimates of feature difficulties based on observed behavioral responses to counterfactual recommendations.

C.2 REOURSE RECOMMENDER TRAINING

The recourse recommender is trained in a simplified environment with a single candidate. The reward penalizes both the error in Equation 4 and the cost in Equation 5.

To facilitate learning, the reward evolves in two phases. During an initial warm-up period, it depends only on the error term, enabling the agent to learn accurate mappings toward predefined goals. Once feature-modification difficulty estimates stabilize, the cost term is introduced. From this point, the agent operates in a constrained RL setting, where it must choose the *lowest-cost* recommendation among those that reach the target.

The combined reward is:

$$r_t = \begin{cases} -\varphi \cdot c_t, & \text{if } e_t \leq \varepsilon, \\ -\varphi \cdot c_t - \psi \cdot (e_t - \varepsilon), & \text{otherwise,} \end{cases} \quad (15)$$

where ε is a tolerance threshold, and φ, ψ are hyperparameters with $\psi \gg \varphi$.

Over training, both the difficulty estimates \mathbf{d} and the recommendation policy converge, yielding a recourse recommender capable of producing accurate and low-cost counterfactuals.

D EXPERIMENTAL SETUP

The first step in our experimental setup is to construct the score-based decision model $M(\cdot)$. We generate a synthetic dataset of 10 000 candidates, each described by 10 features and a binary ground-truth label indicating past acceptance or rejection. $M(\cdot)$ is a logistic regression model, trained on this dataset to approximate the ground-truth labels. The model's probabilistic outputs serve as candidate scores, representing the estimated likelihood of acceptance.

The same data generation procedure is used to initialize candidate instances for training the policy ϕ . Training episodes for the recourse recommender span up to 10 time steps and are conducted in two phases. In the first phase, the reward is based solely on prediction error (Equation 4), and training runs for 3,000 episodes. In the second phase, the reward incorporates both prediction error and modification cost (Equation 15), and training continues for an additional 20,000 episodes. The parameters used are $\varepsilon = 0.01$, $\varphi = 10$, and $\psi = 300$.

The predictor policy is trained on a simulated population initialized with $N = 20$ candidates. At each time step, $k = 9$ candidates are accepted and $m = 10$ new candidates are introduced. The

1080 feature difficulties are set to $\mathbf{d} = [0.84, 0.15, 0.85, 0.78, 0.25, 0.18, 0.29, 0.83, 0.91, 0.10]$. Each
 1081 episode comprises 100 time steps. The reward function for the predictor is defined as:

$$1082 R(s_t, a_t) = \alpha \cdot (1 + 0.90 \cdot \log(\text{RR}_t^T)) + \tau \cdot (1 + 0.90 \cdot \log(\text{RF}_t^T)), \quad (16)$$

1083 where the logarithmic transformation emphasizes the impact of low values of both metrics. The
 1084 coefficients α and τ are positive and adjusted across simulations. The predictor is trained for 7,000
 1085 time steps.

1087 E ADDITIONAL RESULTS

1089 E.1 REOURSE RECOMMENDER POLICY PERFORMANCE

1091 The summed absolute error between the true difficulties \mathbf{d} and their estimates $\hat{\mathbf{d}}$ is given by

$$1093 e_{\text{diff}} = \sum_{i=1}^z |d_i - \hat{d}_i|, \quad (17)$$

1095 and is approximately 3×10^{-2} , indicating high fidelity in the difficulty estimation process.

1096 After training the recourse recommender, we assess its performance using the prediction error from
 1097 Equation 4 and the *true* modification cost:

$$1099 c_t = \sum_{i=1}^z |x_t^{\text{CF},(i)} - x_t^{\text{F},(i)}| \cdot d_i, \quad (18)$$

1101 where, relative to Equation 5, the estimated difficulties \hat{d}_i are replaced with their true values d_i . Both
 1102 quantities are averaged over ten evaluation episodes.

1103 Our method achieves an average error of 1.9×10^{-3} and an average cost of 5.9×10^{-2} (Table 2).

1105 For comparison, we applied the same protocol
 1106 to Ustun, Wachter, and DiCE. Ustun’s method
 1107 achieved near-zero error ($e_t = 2.2 \times 10^{-16}$) but
 1108 incurred a substantially higher cost ($c_t = 3.0 \times$
 1109 10^{-1}). Wachter and DiCE obtained errors of
 1110 the same order as our method but at high costs,
 1111 similarly to Ustun.

1112 The strong precision of Ustun’s method is ex-
 1113 pected: it employs integer programming to
 1114 compute exact minimal changes for achiev-
 1115 ing the target score in linear models. In con-
 1116 trast, Wachter’s, DiCE’s, and our RL-based
 1117 approach rely on approximate, gradient-based
 1118 or learning-based optimization. Consequently,
 1119 they exhibit slightly higher error values but re-
 1120 main applicable to a broader class of models,
 1121 unlike Ustun’s approach which is restricted to
 1122 linear formulations.

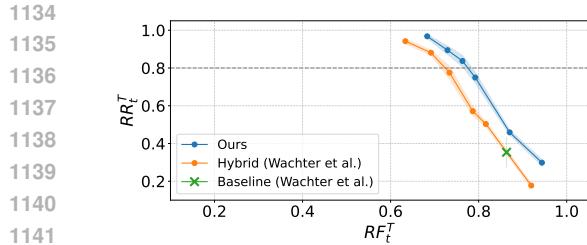
1123 These results highlight the effectiveness of the proposed policy in balancing fidelity to the target
 1124 decision with minimizing modification cost.

1125 E.2 COMPARISON WITH WACHTER AND DICE

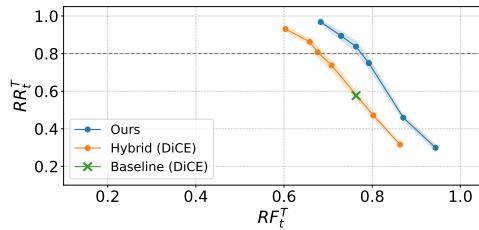
1127 Figure 5a compares our method with Wachter in a setting with $\beta = 0.05$ and $T = 1$, while Figure 5b
 1128 analogously compares DiCE. As observed previously, the baseline achieves low values of reliability
 1129 (≈ 0.4 for Wachter and ≈ 0.6 for DiCE), prioritizing feasibility. On the other hand, the hybrid
 1130 variant provides greater control over the trade-off between feasibility (RF_t^T) and validity (RR_t^T),
 1131 achieving high validity ($\text{RR}_t^T \approx 0.95$) while maintaining feasible recommendations ($\text{RF}_t^T \approx 0.60$),
 1132 in both cases. Overall, the Pareto fronts of the hybrid variants closely match that shown in Figure 2a,
 1133 related to Ustun’s approach. Our method remains Pareto-optimal, identifying more attainable paths
 to reach a target score.

Method	e_t	c_t
Ours	1.9×10^{-3}	5.9×10^{-2}
Ustun	2.2×10^{-16}	3.0×10^{-1}
Wachter	2.6×10^{-3}	2.7×10^{-1}
DiCE	1.6×10^{-2}	3.6×10^{-1}

1125 Table 2: Average prediction error and modifi-
 1126 cation cost—computed with respect to the *true*
 1127 feature difficulties—for our recourse recommender ϕ
 1128 and the comparison approaches. Each method is
 1129 evaluated under conditions matching the training
 1130 setting of our recourse recommender, and results
 1131 are averaged over ten evaluation runs.



(a) Comparison with Wachter’s approach.



(b) Comparison with DiCE.

Figure 5: Comparison of Pareto fronts of our method (blue line), the hybrid method based on Wachter’s approach (orange line), and the baseline method using Wachter’s approach and DiCE (green dot), in a setting with $T = 1$ and $\beta = 0.05$. The Pareto fronts plot the Recourse Reliability RR_t^T (averaged over ten evaluation episodes) against the Recourse Feasibility RF_t^T (also averaged over ten evaluation episodes).

Gini Index		
Method	$T = 1$	$T = 5$
Ours	3.2×10^{-3}	3.0×10^{-3}
Ustun	2.3×10^{-16}	2.3×10^{-16}
Wachter	1.8×10^{-4}	1.8×10^{-4}
DiCE	1.3×10^{-2}	1.2×10^{-2}

Table 3: Comparison of Gini indices. Results are averaged over ten episodes and reported for two settings ($T = 1$, $T = 5$). All methods are matched on average $RR_t^T \approx 0.95$ and $\beta = 0.05$.

Recourse Feasibility RF_t^T		
Method	$\beta = 0.05$	$\beta = 0.01$
Ours	0.71 ± 0.01	0.30 ± 0.02
Ustun	0.63 ± 0.03	0.26 ± 0.02
Wachter	0.61 ± 0.02	0.30 ± 0.02
DiCE	0.55 ± 0.02	0.25 ± 0.03

Table 4: Recourse feasibility (RF_t^T), averaged over ten evaluation episodes, for a fixed recourse reliability ($RR_t^T \approx 0.95$) and $T = 1$, across different values of β .

E.3 ANALYSIS OF THE GINI INDEX OF EACH RECOURSE RECOMMENDER

We evaluate the average Gini index and recommendation cost of our policy ϕ as well as the methods by Ustun, Wachter, and DiCE, when paired with our predictor μ . The evaluation considers both $T = 1$ and $T = 5$. For each recourse recommender, we train a dedicated predictor, ensuring comparability by selecting models that achieve an average Recourse Reliability, over ten evaluation episodes, of approximately 0.95. The Gini index (Table 3), defined in Equation 1, is computed over ten evaluation episodes.

The results indicate that varying T has no substantial effect on the Gini index. As expected, Ustun’s method yields extremely low values ($\approx 10^{-16}$), reflecting near-perfect equity. The other methods achieve higher but still reasonably low values. This behavior aligns with our earlier discussion (Section 4): a recourse recommender that more precisely maps to a predefined score produces lower dispersion in target scores, and hence a lower Gini index. Accordingly, the observed indices are strongly correlated with the average errors reported in Table 2. Importantly, while Ustun’s method achieves the greatest precision, our approach delivers equitable recommendations that, as demonstrated in the main text, also attain high feasibility and reliability.

E.4 IMPACT OF β ON THE VALIDITY-FEASIBILITY TRADE-OFF

We analyze the effect of β on the balance between validity and feasibility. Lower values of β correspond to settings in which feature changes are more difficult to implement, making the trade-off between maintaining high validity (RR_t^T) and achieving feasible recourse (RF_t^T) more pronounced.

1188
 1189 Table 4 shows that decreasing β substantially worsens the validity-feasibility trade-off. While validity
 1190 is held fixed ($RR_t^T \approx 0.95$), feasibility drops sharply: for example, our method’s RF_t^T falls from
 1191 0.707 at $\beta = 0.05$ to 0.365 at $\beta = 0.01$. This highlights that even strong methods face limited op-
 1192 tions in stringent settings, making the balance between feasible and validity particularly challenging
 1193 in such settings.

1194
 1195 **F IN-DEPTH COMPARISON OF OUR APPROACH, THE HYBRID (BASED ON**
 1196 **USTUN ET AL.) AND ARR (DOMINGUEZ-OLMEDO ET AL.)**

NEW

1199 1200 Method	1201 $T = 1$		1202 $T = 5$	
	1203 $\beta = 0.05$	1204 $\beta = 0.01$	1205 $\beta = 0.05$	1206 $\beta = 0.01$
Ours	0.71 ± 0.01	0.30 ± 0.02	0.45 ± 0.01	0.25 ± 0.01
Hybrid (Ustun et al.)	0.63 ± 0.03	0.26 ± 0.02	0.42 ± 0.03	0.22 ± 0.02
ARR (Dominiguez-Olmedo et al.)	0.57 ± 0.02	0.22 ± 0.02	0.36 ± 0.02	0.16 ± 0.01

1207
 1208 Table 5: Recourse feasibility (RF_t^T), averaged over ten evaluation episodes, for a fixed recourse
 1209 validity ($RR_t^T \approx 0.95$), varying $T \in \{1, 5\}$ and $\beta \in \{0.05, 0.01\}$.

1211
 1212 In Table 5, we zoom into the results of our approach, the hybrid variant based on Ustun et al. (2019),
 1213 and the ARR approach (Dominguez-Olmedo et al., 2022) in high-reliability regimes (i.e., $RR_t =$
 1214 0.95). As shown in the table, our method achieves higher feasibility at the same reliability level than
 1215 the hybrid approach, by prioritizing changes on features with lower difficulties. Meanwhile, the
 1216 hybrid approach, which uses our recommender to choose a target score based on the environment’s
 1217 characteristics and candidates’ behavior, outperforms the ARR method, whose recommendations
 1218 consist of a target score derived from a robustified threshold (parameterized by ε) at each time step.

1219
 1220 The higher feasibility observed in this case is likely due to the fact that, while ARR robustifies the
 1221 threshold at every time step, our recommender predicts future competition. As a consequence, in
 1222 some cases it anticipates a decrease in competition in subsequent time steps and therefore lowers the
 1223 target score.

1224
 1225 Specifically, when examining the behavior of our trained recommender μ (paired with Ustun) in a
 1226 short evaluation episode (Table 6) with $\beta = 0.05$ and $T = 1$, we observe that there are time steps
 1227 in which the agent recommends a target score lower than the most recent threshold ($t = 2$ and
 1228 $t = 4$). These recommendations still yield high levels of reliability. As a result, the average recourse
 1229 feasibility RF_t increases, since candidates are only recommended strong changes when necessary.

1230
 1231 Instead, when examining the behavior of ARR in a short evaluation episode (Table 7), we observe
 1232 that, as expected, the score recommended by ARR is always higher than the most recently observed
 1233 threshold. As a consequence, the values of recourse feasibility RF_t are generally lower.

1234
 1235 **G EXPERIMENT ON GERMAN**

NEW

1236
 1237 To assess the suitability of our method in real-world settings, we conducted an additional experiment
 1238 using the German Credit dataset¹. Although information on how candidates respond to recom-
 1239 mendations is not available in this dataset—a limitation relative to literature datasets noted by prior work
 1240 on recourse in competitive settings (Fonseca et al., 2023)—it can still be used to sample candidates’
 1241 initial features, grounding them in a realistic setting. Below, we describe how our experimental
 1242 setup is adapted for this dataset and present preliminary results.

¹<https://archive.ics.uci.edu/dataset/522/south+german+credit>

1242
1243
1244
1245
1246
1247

	Time step							
	$t = 1$	$t = 2$	$t = 3$	$t = 4$	$t = 5$	$t = 6$	$t = 7$	$t = 8$
Threshold values	0.46	0.63	0.60	0.63	0.56	0.57	0.59	0.54
Recommended scores	0.63	0.60	0.63	0.63	0.58	0.59	0.60	
Recourse Reliability RR_t		1.0	1.0	1.0	1.0	1.0	1.0	1.0
Recourse Feasibility RF_t		0.36	0.67	0.30	0.86	0.57	0.71	0.75

1258
1259 Table 6: Values of the threshold, the subsequent score recommended by the predictor μ , and the
1260 observed Recourse Reliability (RR_t) and Recourse Feasibility (RF_t) at each time step in an 8-step
1261 evaluation episode. The quantities RR_t and RF_t are computed relative to the recommendation
1262 issued in the previous step. At $t = 2$ and $t = 4$, the agent recommends a target score lower than the
1263 most recently observed threshold. The corresponding values of RR_t and RF_t at the following steps
1264 ($t = 3$ and $t = 5$) are both desirable.1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276

	Time step							
	$t = 1$	$t = 2$	$t = 3$	$t = 4$	$t = 5$	$t = 6$	$t = 7$	$t = 8$
Threshold values	0.55	0.57	0.59	0.60	0.58	0.62	0.55	0.61
Recommended scores	0.61	0.63	0.65	0.66	0.64	0.68	0.61	
Recourse Reliability RR_t		1.0	1.0	1.0	1.0	1.0	1.0	1.0
Recourse Feasibility RF_t		0.36	0.44	0.33	0.71	0.71	0.43	0.50

1287
1288 Table 7: Values of the threshold, the subsequent score recommended by ARR, and the observed
1289 Recourse Reliability (RR_t) and Recourse Feasibility (RF_t) at each time step in an 8-step evaluation
1290 episode. The quantities RR_t and RF_t are computed relative to the recommendation issued in the
1291 previous step.1292
1293
1294
1295

1296
1297

G.1 EXPERIMENTAL SET-UP

1298
1299
1300
1301

We use the German Credit dataset to train the predictive model $M(\cdot)$ and to sample candidates' initial features. Since the dataset only contains 1 000 samples, which is insufficient to both train $M(\cdot)$ and generate a diverse set of candidate profiles for all time steps across episodes, we augment it with synthetic data, generated to be as similar as possible to the original samples.

1302
1303
1304
1305
1306

To preserve the statistical properties of the original dataset, we employ a Gaussian copula approach (Nelsen, 2006), that captures both the marginal distributions and the correlation structure among features, thus ensuring that synthetic samples closely resemble the original data in terms of both individual feature distributions and inter-feature dependencies.

1307
1308
1309
1310
1311
1312
1313
1314

A key difference between the German dataset and the synthetic dataset that we use in our main experiments is the presence of categorical features. This changes the meaning of feature difficulties: while for continuous features they represent a relative difficulty to implement a feature change, in the case of categorical features they represent the difficulty of switching from a category to another. Thus, for every categorical feature we define a matrix of difficulty parameters, one for every ordered pair of categories. These parameters vary both within the same category (changing the savings from < 100 to ≥ 1000 is more difficult than changing it to $100 \leq x < 1000$), and among different categories (changing the purpose of the loan is easier than changing the savings or the employment). These values represent the difficulty of implementing the corresponding category switch.

1315
1316
1317

The probability of successfully implementing a categorical feature switch p_{success} is also different from Equation 8, due to these changes. Specifically, we design it as:

1318
1319
1320

$$p_{\text{success}}^{\text{cat}} = (1 - d_{i,j})^{\frac{1}{\beta_{\text{cat}}}} \quad (19)$$

1321
1322
1323
1324

where β_{cat} is a setting difficulty parameter, analogous to the parameter β previously defined. Lower values of β_{cat} indicate settings where implementing changes to categorical features is generally more difficult. Instead, $d_{i,j}$ represents the difficulty of switching from category i to category j .

1325
1326

G.2 IMPLEMENTATION DETAILS

1327
1328
1329
1330
1331

We train our recommender agent in an environment similar to the one described in Section 3.1 and Appendix B, with two key modifications: (i) recommendations on categorical features are constrained to category switches, and (ii) the probability of successfully implementing a category switch follows the formulation defined in Equation 19.

1332
1333
1334
1335
1336
1337
1338

The recommender requires a longer training period compared to the synthetic dataset experiments. This increased complexity likely stems from the challenges inherent in categorical feature recommendations. Specifically, with 17 categorical features spanning 54 distinct categories, the agent must navigate a substantially larger action space of possible feature switches. Moreover, category switches induce non-smooth changes in the credit score, making it difficult to identify counterfactuals that achieve a precise target score. To account for this complexity, we train the recommender for 20 000 time-steps in the first phase and 30 000 time-steps in the second phase.

1339
1340
1341
1342

The predictor, as in the experiments on synthetic samples, is trained for 7 000 time-steps. We use the following hyperparameters: $T = 1$, $\beta = 0.05$ and $\beta_{\text{cat}} = 1.0$.

1343
1344

G.3 RESULTS

In Table 8, we report the results of the preliminary experiment on the German dataset. As can be seen, both our method and the hybrid variant achieve desirable levels of reliability in this more complex setting. On the other hand, as in the scenario with synthetic data, the baseline's threshold-based policy yields recommendations that too many candidates can satisfy, thereby reducing reliability.

1348
1349

These results showcase the utility of our approach in more complex scenarios, where feature values are drawn from a real dataset and both continuous and categorical features are taken into account.

Method			
	Baseline	Hybrid	Ours
Recourse Reliability RR_t	0.43 ± 0.05	0.90 ± 0.04	0.89 ± 0.03
Recourse Feasibility RF_t	0.78 ± 0.06	0.36 ± 0.05	0.40 ± 0.03

Table 8: Results for the baseline, the hybrid method (based on Ustun), and our approach in the simulation environment based on German, with $\beta = 0.05$, $\beta_{\text{cat}} = 1.0$, and $T = 1$.

H DISCUSSION ON CONVERGENCE GUARANTEES

NEW

While our method and the hybrid variants yield desirable solutions in all four settings under consideration ($T \in \{1, 5\}$, $\beta \in \{0.05, 0.01\}$), we cannot provide theoretical guarantees that the agent converges to an *optimal* solution. This limitation arises because the reinforcement learning algorithm we employ, Soft Actor Critic (SAC) (Haarnoja et al., 2018), does not include such guarantees.

In their paper, the authors provide lemmas and theorems establishing convergence of Soft Policy Iteration, the tabular algorithm SAC is based on. However, these results rely on assumptions that SAC does not satisfy. SAC uses neural networks to approximate policies and value functions, which breaks the assumption of exact or tabular representations, and it operates in continuous action spaces. Moreover, SAC incorporates entropy maximization and stochastic actor updates, which further depart from the theoretical setting in which convergence can be proven.

At the same time, deriving strong theoretical bounds in our environment would be extremely difficult, due to the complexity of the environment. Candidates’ behavior is noisy, the system is only partially observable, and the dynamics involve significant stochasticity. Given these complexities, this work is focused on establishing a rigorous empirical framework that demonstrates the practical effectiveness of our approach across diverse experimental conditions.

I USE OF LARGE LANGUAGE MODELS

Large language models were used solely to improve the clarity and grammar of the text and to generate the icons of candidates in Figure 1. All substantive content was written by the authors; LLMs were applied only for minor phrasing refinements.