
Using Chat-GPT for coding properties in semantic memory
studies

Diego Ramos Á.

Sergio Chaigneau

diego.ramos.a@edu.uai.cl

sergio.chaigneau@uai.cl

Universidad Adolfo Ibáñez

Santiago, Metropolitana, Chile

Sebastián Moreno

Enrique Canessa

sebastian.moreno@uai.cl

ecanessa@uai.cl

Universidad Adolfo Ibáñez

Viña del Mar, Valparaíso, Chile

Abstract
In this paper, we propose Chat-GPT for the codification of a Prop-

erty Listing Task (PLT). PLTs are a standard method to study seman-

tic memory (understanding how people represent concepts coded

in their minds). In a PLT, a group of participants is asked to list

properties/features for a concept (e.g., “horse”). Given that different

properties could have the same meaning (e.g., “quadruped” and

“four legs”), the mentioned properties must be codified before any

analysis. Currently, the codification process is carried out by at least

two human coders, making it a slow and non-replicable process

(given the variability of codes assigned by the coders). Automating

this codification process through Chat-GPT will speed up the codi-

fication, reduce the variability of the human codification process,

and allow replicable results. We compare Chat-GPT with AC-PLT

(the first semi-automatic codification framework for PLTs), using

accuracy on two datasets. The experiment compares AC-PLT with

GPT-3.5-turbo-0125 (using one-shot prompting and fine-tuning)

and GPT-4o (using one-shot prompting). GPT-3.5-turbo-0125 with

fine-tuning shows comparable performance with AC-PLT, opening

a possible area of research for this codification process.

Keywords
Semantic Memory, Large Language models, LLMs, codification,

Property Listing Task, PLT

ACM Reference Format:
Diego Ramos Á., Sergio Chaigneau, Sebastián Moreno, and Enrique Canessa.

2025. Using Chat-GPT for coding properties in semantic memory studies. In

Proceedings of the Workshop "SciSoc LLM Workshop Large Language Models
for Scientific and Societal Advances" @ 31st ACM SIGKDD Conference on
Knowledge Discovery and Data Mining V.2 (KDD ’25), August 3, 2025, Toronto,
ON, Canada. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/XX

XXXX.XXXXXX

1 Introduction
Large language models (LLMs) are increasingly used for multiple

purposes, including automating certain tasks in cognitive psychol-

ogy [11]. One of the most studied fields in this area is semantic mem-

ory, the general human knowledge of concepts and verbal symbols

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

KDD ’25, Toronto, ON, Canada.
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1454-2/25/08

https://doi.org/10.1145/XXXXXX.XXXXXX

[15]. This field focuses on understanding how people comprehend

concepts through language. Despite their importance, LLMs have

not been fully used in this area’s research.

To conduct semantic memory studies, it is necessary to collect

data from individuals. Specifically, it is necessary to collect words

corresponding to the properties mentioned by a group of partici-

pants in response to a particular stimulus, which varies according

to the study’s objective. Among the most common methods to gen-

erate this type of data are the Semantic Fluency Task (SFT) [7], the

Associative Word List Task (AWLT) [16], and the Feature Listing

Task (FLT) [2], also called the Property Listing Task (PLT), being

PLT the focus of this work. In a PLT, participants are asked to list the

properties or characteristics associated with a particular concept.

For example, given the concept “horse”, participants can mention

“quadruped”, “four legs”, “loyalty”, and other properties. Once these

properties are collected, they are summarized in a frequency ma-

trix, which is called a ‘Conceptual Property Norm’, where the rows

represent concepts, the columns represent properties, and a cell

corresponds to the number of people who mention that specific

codified property for a particular concept [6, 9, 10, 13, 17, 19]. To

enhance understanding of this work and avoid term confusion, we

show in Table 1 the definitions of the terms Property and Code, so

that the reader can easily refer to them.

To transform a PLT into a CPN, properties must be assigned a

code through a multi-step process called coding. Given that people

might refer to the same property using different wordings, a unique

representative code must be assigned to those wordings. In the

previous example, where the concept is “horse”, “quadruped” and

“four legs” refer to the same property and are assigned the same

code. Coding is an extensive process where a human coder reviews,

analyzes, and assigns codes to different listed properties following

a set of rules and instructions. First, the rules for code creation

are defined. Second, a human coder has to assign each property a

corresponding code. Third, this process is repeated at least once

with a new coder because coders interpret the data differently.

If an assigned code differs among coders, the coders discuss the

situation and agree on a single code, or a new coder is used to solve

the disagreement. Unfortunately, on average, it can take a coder

months to code even small datasets.

To date, we do not know an automatic codification process for

PLT data in the literature. Even though Large Language Models

have been extensively used as annotators for different tasks [1,

18, 12], most of these tasks are focused on sentences and a few

classes (usually binary). In contrast, in a PLT, we have a small

quantity of information (usually a single word instead of a sentence)

https://doi.org/10.1145/XXXXXX.XXXXXX
https://doi.org/10.1145/XXXXXX.XXXXXX
https://doi.org/10.1145/XXXXXX.XXXXXX

KDD ’25, August 3, 2025, Toronto, ON, Canada. Diego Ramos Á., Sergio Chaigneau, Sebastián Moreno, and Enrique Canessa

Term Definition Example
Property The original sentence or word listed by a participant For the concept “horse” a participant might

in a PLT for a given concept list the sentence “has four legs”

Code The standardized label (code) assigned to a word/sentence For the sentence “has four legs”, the assigned

by a coder or a coding system code might be “quadruped”

Table 1: Definition of some terms used in this work

and multiple classes (the smallest dataset we use here has 1,296

classes and 4,941 properties). In the psychology area, only a few

methods have been developed to assist the codification process.

For example, the Buchanan method “cleans” the properties and

counts the number of words and sequences of words that appear

in the whole dataset [5]. The RK-processor applies text cleaning to

the properties to help human coders reduce the time required for

codification [22]. Finally, the Assisted Coding for Property Listing

Task (AC-PLT) is considered the first semi-automatic framework

that can suggest codes, where it learns from previous datasets to

suggest codes for new properties [21], but it needs to be trained on

coded datasets.

This work applies GPT-3.5-turbo and GPT-4o in a PLT codifica-

tion process. We apply GPT-3.5-turbo and GPT-4o with the one-shot

prompting technique and GPT-3.5-turbo fine-tuned. We compare

these results with the AC-PLT framework. Our results show that

one-shot prompting cannot replicate the codification process of

human coders, but important progress can be obtained with the

fine-tuning approach. Optimizing this process through LLMs would

significantly impact the quality of semantic memory studies, speed-

ing up the codification process and allowing the replication of the

codification process, avoiding the subjectivity of human coders.

2 Literature Review
The property codification process has been largely studied in psy-

chology [6]. While several studies focused on the issues and meth-

ods to improve this process [14, 3], few works are related to the

automation of it. One of the most advanced tools for coding PLT

data is the Assisted Coding for Property Listing Task (AC-PLT).

According to the authors, the AC-PLT framework is an auto-

matic codification process divided into three steps: text cleaning,

word embedding, and classification/recommendation. First, using

the Spacy library [20], a text-cleaning process helps to reduce the

variability of the properties. It starts by tokenizing (isolating each

word and special character into a single string), then sets every

letter to lowercase, and finally discards all special characters and

stop words (words that do not contribute to the final meaning, such

as “the”). Second, AC-PLT applies word embedding, a technique to

transform each word into a vector of real numbers [23]. The pro-

posed framework uses a Spanish version of the Word2Vec model

with 300 dimensions [8]. In the case of properties composed of 2 or

more words/tokens, it sums the vectors of each word and divides

this sum by their Euclidean norm to create a representative vector

of the property. Third, it uses the 𝑘-Means model for classification.

For this purpose, the model clusters the property vectors from the

training data into 𝑘 groups, where each group has been labeled with

a single code (the code’s mode of each cluster). To classify a new

property, AC-PLT applies the cleaning and embedding processes,

calculates the distance to each cluster, and returns the assigned

code of the closest cluster. AC-PLT can also return a list of𝑚 codes

corresponding to the codes of the𝑚 closest clusters.

As mentioned by its authors, the AC-PLT framework has sev-

eral weaknesses, which impact its performance. First, the embed-

ding model Word2Vec is context-insensitive, i.e., Word2Vec creates

a unique vector for each word independently of the context of

the words. So, in polysemy (words with multiple meanings) or

homonymy (words written equally but with different meanings),

the generated vectors are the same for a given word, although the

word may have different meanings. Additionally, this framework

uses a clustering model for classification, limiting the number of

possible classes to even lower than 𝑘 (the number of clusters). In

some cases, two or more clusters could have the same code.

3 Proposal
This paper proposes to use Chat-GPT (GPT-3.5-turbo-0125 and GPT-

4o versions) to replicate the codification process of a human coder,

comparing the one-shot prompting technique and fine-tuning (only

for GPT-3.5-turbo-0125). The first technique, one-shot, receives

instructions on codifying the properties, giving one example in

the prompt. In the second technique, fine-tuning, we train the

LLM model with examples of inputs and their expected output [4],

updating the initial weights. Note, a prompt is the input text for

the LLM, which is limited by its input and output length (number

of tokens/words). In the case of GPT-3.5-turbo-0125, it has an input

length (context window) of 16,385 tokens and a max output of

4,096 tokens; alternatively, the model GPT-4o has an input length

of 128,000 tokens and a max output of 16,384 tokens.

For the experimentation with GPT-3.5-turbo-0125, we have a

shorter context window, and we cannot upload a CSV file to process

all the data at once. Because of these limitations, we use a JSONL

file format, where each line of the file represents a query for the

model. Each query can have three objects: ‘system’ (the model setup

for the initial task), ‘user’ (the main instruction of codification and

the properties), and ‘assistant’ (the output we want from the model,

only used for fine-tuning). In contrast, GPT-4o has a larger context

window and supports files. In this case, we only give the prompt

and upload the corresponding file with the properties to codify.

3.1 One-Shot prompting
In the one-shot prompting technique, we give the instruction and

context of the codification process to the model, and, additionally,

we provide an example of the codification of a property. For the

model GPT-3.5-turbo-0125, we give the instruction shown in Figure

1. Given that the original data is in Spanish, this instruction cor-

responds to a direct translation to English of the original prompt

Using Chat-GPT for coding properties in semantic memory studies KDD ’25, August 3, 2025, Toronto, ON, Canada.

written in Spanish. Something to note is that we specify to the

model to “summarize them in a word that we will call code” instead

of simply saying “codification”, normally associated with writing

computer codes. Once the main instructions of the model are de-

fined, we proceed to ask for the codification of multiple properties,

limited by the maximum output allowed by the model. In this case,

we apply the instruction multiple times, using the prompt: “Codify

the following properties: ” following each property with a space

for the code.

Figure 1: Prompt used for one-shot on GPT-3.5-turbo-0125

The prompt used for the GPT-4o model is displayed in Figure 2.

As can be seen, the system message was used as a user instruction,

changing only the final paragraph. Also, in this model, we can

include a file with one column and multiple rows, where each row

is a property from the original dataset. Finally, the model provides

a CSV file as output. In this model, we use the prompt once, given

that the number of properties to codify is less than the maximum

number of tokens.

3.2 Fine-tuning
In the fine-tuning technique, we trained the GPT-3.5-turbo-0125

model to specialize in our task, adjusting the weights of the original

model [24]. The used prompt is displayed in Figure 3. As can be seen,

it is similar to the original prompt on Figure 1. In the ‘System’, we

give the initial instructions on how to codify. In the ‘User’, we define

the properties that we want to codify. Finally, we give the training

data in the ‘Assistant’, corresponding to some properties and the

expected output. For a fair comparison, we train the model using a 5-

fold cross-validation, as done in the original AC-PLT. Unfortunately,

given the input and output limitations of GPT-3.5-turbo-0125, we

had to separate the prompt into multiple instructions to be able to

compare the models.

Figure 2: Prompt used for one-shot on GPT-4o

Figure 3: Prompt used for fine-tuning on GPT-3.5-turbo-0125

4 Experiments
We evaluated our approach using two datasets (codified by human

coders) and compared the classification accuracy with AC-PLT

using k-fold cross-validation. The first dataset, CPN27, has 4,941

properties and 1,296 different codes. The second dataset, CPN120,

has 27,138 properties and 1,785 different codes. These datasets were

previously used by AC-PLT, where the authors set the number of

clusters (i.e., maximum possible codes) to 500.

To evaluate the performance of the LLM models compared to

AC-PLT on the datasets codified by human coders (CPN27 and

CPN120), we compared the accuracy of the LLMmodels with the top

1 and 5 accuracy of the AC-PLT framework. In the top 5 accuracy,

the codification by AC-PLT is considered correct if the ‘human

assigned code’ is among the first five suggested codes of AC-PLT.

KDD ’25, August 3, 2025, Toronto, ON, Canada. Diego Ramos Á., Sergio Chaigneau, Sebastián Moreno, and Enrique Canessa

We replicated the training of the original AC-PLT experiment using

a 5-fold cross-validation (4 folds to train and one for testing) on the

two datasets (CPN27 and CPN120).

Regarding hyperparameters, we searched for new hyperparame-

ters in the AC-PLT, but we used default hyperparameters for the

GPT models. For AC-PLT, we obtained the best performance with

𝑘=550 and 𝑘=1750 for CPN27 and CPN120, respectively. In the case

of one-shot prompting (GPT-3.5-turbo-0125 and GPT-4o models),

we use the models’ default settings, without training or hyper-

parameter tuning. We only provided the models with a property

codification example. Therefore, we divided the data into five train-

ing folds to compare the GPT models with the AC-PLT framework.

In the GPT-3.5-turbo-0125 fine-tuning process, we keep the default

hyperparameters (batch_size = 1 and learning_rate_multiplier= 2).

However, we set n_epoch = 10 for CPN27 and n_epoch = 5 for

CPN120, as a lower n_epoch reduces the number of tokens used

for training, reducing the training monetary cost.

In Figure 4, we compare all models’ accuracies for both datasets

(top: CPN27 and bottom: CPN120). For the CPN27 dataset, we can

see that the one-shot methods have a statistically lower accuracy

than the AC-PLT method in both datasets (t-test with p-values

≤ 0.004, corrected for multiple comparisons using Bonferroni´s
method), with GPT-4o being better than GPT-3.5-turbo-0125. Con-

trarily, the fine-tuning approach achieves better results than the

AC-PLT top-5 accuracy (p-value ≤ 0.004). However, fine-tuning has

a train accuracy of 0.913 and a test accuracy of 0.670, showing a

possible overfitting of the method.

The CPN120 results are shown at the bottom plot on Figure 4. We

can see that the one-shot prompting methods have lower accuracy

than AC-PLT, having an accuracy of 0.073 for GPT-3.5-turbo-0125

and 0.178 for GPT-4o (p-values ≤ 0.004, corrected for multiple

comparisons using Bonferroni´s method). Also, the fine-tuning

method has a similar performance to AC-PLT Top 5. GPT-3.5-turbo-

0125 achieves an accuracy of 0.554 and 0.582 for training and test,

respectively. However, those accuracies are lower than AC-PLT

top 5 accuracy (p-value = 0.01, corrected for multiple comparisons

using Bonferroni´s method), and better than the AC-PLT top 1

(p-value ≤ 0.004).

In addition to the previous results, the fine-tuning of the model

takes around 1 hour for training, while the testing process is even

faster. On the contrary, the AC-PLT paper mentions that it took

months for human coders to codify the smaller dataset (CPN27).

Unfortunately, the reported results have a monetary cost asso-

ciated with the fine-tuning process for GPT-3.5-turbo-0125. The

cost of training the model was US$25.26 and US$56.15 for CPN27

and CPN120, respectively. Correspondingly, we also needed to

classify the test data, where we also spent US$0.48 and US$5.88

for CPN27 and CPN120, respectively. In total, the cost of fine-

tuning GPT3.5-turbo-0125 was US$87.77, without hyperparameter

search. A simple search for one of the hyperparameters, such as

learning_rate_multiplier, with values from 1 to 10, could increase

the cost to US$ 800.

Even though the GPT associated monetary costs, these results

show the potential of the GPT models for the codification task.

Even with no hyperparameter search and with a low amount of

coded properties, the fine-tuned model has better results for one

Figure 4: Experiment results of the LLMs models (right) com-
pared to the AC-PLT model (left), using datasets CPN27 (top)
and CPN120 (bottom).

dataset (CPN27) and no significant difference for the second dataset

(CPN120), showing promising results for future work.

5 Conclusion
This paper proposed Chat-GPT for codifying Property Listing Tasks

using one-shot prompting and fine-tuning. One-shot prompting

with GPT-3.5-turbo-0125 andGPT-4o shows that a direct application

of these models cannot replicate human coding. On the contrary,

the fine-tuned model GPT-3.5-turbo-0125 obtained similar or even

better performance than AC-PLT, the current state-of-the-art tool

for this problem. Even though this is an initial study, these promis-

ing results can be a step forward in automating the codification

process.

Using Chat-GPT for coding properties in semantic memory studies KDD ’25, August 3, 2025, Toronto, ON, Canada.

Acknowledgments
This work was supported by the James S. McDonnell Foundation

grant, “A method for studying shared meaning in cultural groups”

(https: //doi.org/10.37717/2022-3930) and by ANID, FONDECYT

grant 1240075.

References
[1] Meysam Alizadeh, Maël Kubli, Zeynab Samei, Shirin Dehghani, Mohammad-

masiha Zahedivafa, Juan D. Bermeo, Maria Korobeynikova, and Fabrizio Gilardi.

2024. Open-source llms for text annotation: a practical guide for model setting

and fine-tuning. Journal of Computational Social Science, 8, 1, (Dec. 2024), 17.
doi:10.1007/s42001-024-00345-9.

[2] Julia Amunts, Julia A. Camilleri, Simon B. Eickhoff, Kaustubh R. Patil, Stefan

Heim, Georg G. von Polier, and Susanne Weis. 2021. Comprehensive verbal

fluency features predict executive function performance. Scientific Reports, 11,
1, (Mar. 2021), 6929. doi:10.1038/s41598-021-85981-1.

[3] Marianna Bolognesi, Roosmaryn Pilgram, and Romy van den Heerik. 2017.

Reliability in content analysis: the case of semantic feature norms classification.

Behavior Research Methods, 49, 1984–2001, 6. doi:10.3758/s13428-016-0838-6.
[4] Tom B. Brown et al. 2020. Language models are few-shot learners. In Advances

in Neural Information Processing Systems. Vol. 2020-December. doi:10.48550/ar

Xiv.2005.14165.

[5] Erin M. Buchanan, Simon De Deyne, and Maria Montefinese. 2020. A practical

primer on processing semantic property norm data. Cognitive Processing, 21, 4,
(Nov. 2020), 587–599. doi:10.1007/s10339-019-00939-6.

[6] Enrique Canessa, Sergio E Chaigneau, Rodrigo Lagos, and Felipe A Medina.

2021. How to carry out conceptual properties norming studies as parameter

estimation studies: lessons from ecology. Behavior Research Methods, 53, 1,
354–370.

[7] Erminio Capitani, Marcella Laiacona, and Riccardo Barbarotto. 1999. Gender

affects word retrieval of certain categories in semantic fluency tasks. Cortex,
35, 2, 273–278. doi:https://doi.org/10.1016/S0010-9452(08)70800-1.

[8] Cristian Cardellino. 2019. Spanish billion words corpus and embeddings. (Mar.

2019). https://crscardellino.github.io/SBWCE/.

[9] Jacob Cohen. 1960. A coefficient of agreement for nominal scales. Educational
and Psychological Measurement, 20, 1, 37–46. doi:10.1177/001316446002000104.

[10] Barry J Devereux, Lorraine K Tyler, Jeroen Geertzen, and Billi Randall. 2014.

The centre for speech, language and the brain (cslb) concept property norms.

Behavior Research Methods, 46, 1119–1127, 4. doi:10.3758/s13428-013-0420-4.
[11] Luoma Ke, Song Tong, Peng Cheng, and Kaiping Peng. 2025. Exploring the

frontiers of llms in psychological applications: a comprehensive review. (2025).

https://arxiv.org/abs/2401.01519 arXiv: 2401.01519 [cs.LG].
[12] Arina Kostina, Marios D. Dikaiakos, Dimosthenis Stefanidis, and George Pallis.

2025. Large language models for text classification: case study and compre-

hensive review. (2025). https://arxiv.org/abs/2501.08457 arXiv: 2501.08457

[cs.CL].
[13] Gerhard Kremer and Marco Baroni. 2011. A set of semantic norms for german

and italian. Behavior Research Methods, 43, 97–109, 1. doi:10.3758/s13428-010-0
028-x.

[14] Klaus Krippendorff. 2004. Reliability in content analysis: some common mis-

conceptions and recommendations. Human Communication Research, 30, (July
2004), 411–433, 3, (July 2004). doi:10.1111/j.1468-2958.2004.tb00738.x.

[15] Abhilasha A. Kumar. 2021. Semantic memory: a review of methods, models,

and current challenges. Psychonomic Bulletin & Review, 28, 1, (Feb. 2021), 40–80.
doi:10.3758/s13423-020-01792-x.

[16] Julieta Laurino, Simon De Deyne, Álvaro Cabana, and Laura Kaczer. 2023.

The pandemic in words: tracking fast semantic changes via a large-scale word

association task.OpenMind, 7, (June 2023), 221–239. eprint: https://direct.mit.ed

u/opmi/article-pdf/doi/10.1162/opmi_a_00081/2133848/opmi_a_00081.pdf.

doi:10.1162/opmi_a_00081.

[17] Alessandro Lenci, Marco Baroni, Giulia Cazzolli, and Giovanna Marotta. 2013.

Blind: a set of semantic feature norms from the congenitally blind. Behavior
Research Methods, 45, 1218–1233, 4. doi:10.3758/s13428-013-0323-4.

[18] Chandreen R. Liyanage, Ravi Gokani, and Vijay Mago. 2024. Gpt-4 as an x data

annotator: unraveling its performance on a stance classification task. PLOS
ONE, 19, 8, (Aug. 2024), 1–21. doi:10.1371/journal.pone.0307741.

[19] Ken McRae, George S Cree, Mark S Seidenberg, and Chris Mcnorgan. 2005.

Semantic feature production norms for a large set of living and nonliving

things. Behavior Research Methods, 37, 547–559, 4. doi:10.3758/BF03192726.
[20] [SW] Ines Montani, Matthew Honnibal, Matthew Honnibal, Adriane Boyd,

Sofie Van Landeghem, and Henning Peters, explosion/spaCy: v3.7.2: Fixes for

APIs and requirements version v3.7.2, Oct. 2023. doi:10.5281/zenodo.10009823,

url: https://doi.org/10.5281/zenodo.10009823.

[21] Diego Ramos, Sebastián Moreno, Enrique Canessa, Sergio E Chaigneau, and

Nicolás Marchant. 2023. Ac-plt: an algorithm for computer-assisted coding of

semantic property listing data. Behavior Research Methods, 1–14. doi:10.3758/s
13428-023-02260-9.

[22] J. Nick Reid and Albert Katz. 2022. The rk processor: a program for analysing

metaphor and word feature-listing data. Behavior Research Methods, 54, 1, (Feb.
2022), 174–195. doi:10.3758/s13428-021-01564-y.

[23] R Selva Birunda S. and Kanniga Devi. 2021. A review on word embedding tech-

niques for text classification. In Innovative Data Communication Technologies
and Application. Springer Singapore, (Feb. 2021), 267–281. isbn: 978-981-15-
9651-3. doi:10.1007/978-981-15-9651-3_23.

[24] Xiao-Kun Wu et al. 2025. Llm fine-tuning: concepts, opportunities, and chal-

lenges. Big Data and Cognitive Computing, 9, 4. doi:10.3390/bdcc9040087.

https://doi.org/10.1007/s42001-024-00345-9
https://doi.org/10.1038/s41598-021-85981-1
https://doi.org/10.3758/s13428-016-0838-6
https://doi.org/10.48550/arXiv.2005.14165
https://doi.org/10.48550/arXiv.2005.14165
https://doi.org/10.1007/s10339-019-00939-6
https://doi.org/https://doi.org/10.1016/S0010-9452(08)70800-1
https://crscardellino.github.io/SBWCE/
https://doi.org/10.1177/001316446002000104
https://doi.org/10.3758/s13428-013-0420-4
https://arxiv.org/abs/2401.01519
https://arxiv.org/abs/2401.01519
https://arxiv.org/abs/2501.08457
https://arxiv.org/abs/2501.08457
https://arxiv.org/abs/2501.08457
https://doi.org/10.3758/s13428-010-0028-x
https://doi.org/10.3758/s13428-010-0028-x
https://doi.org/10.1111/j.1468-2958.2004.tb00738.x
https://doi.org/10.3758/s13423-020-01792-x
https://direct.mit.edu/opmi/article-pdf/doi/10.1162/opmi_a_00081/2133848/opmi_a_00081.pdf
https://direct.mit.edu/opmi/article-pdf/doi/10.1162/opmi_a_00081/2133848/opmi_a_00081.pdf
https://doi.org/10.1162/opmi_a_00081
https://doi.org/10.3758/s13428-013-0323-4
https://doi.org/10.1371/journal.pone.0307741
https://doi.org/10.3758/BF03192726
https://doi.org/10.5281/zenodo.10009823
https://doi.org/10.5281/zenodo.10009823
https://doi.org/10.3758/s13428-023-02260-9
https://doi.org/10.3758/s13428-023-02260-9
https://doi.org/10.3758/s13428-021-01564-y
https://doi.org/10.1007/978-981-15-9651-3_23
https://doi.org/10.3390/bdcc9040087

	Abstract
	1 Introduction
	2 Literature Review
	3 Proposal
	3.1 One-Shot prompting
	3.2 Fine-tuning

	4 Experiments
	5 Conclusion
	Acknowledgments

