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ABSTRACT

Scaling imitation learning to high degrees-of-freedom (DoF) whole-body robots
is fundamentally limited by the increased DoF and the non-stationary observation
transition. We argue that the core bottleneck is paradigmatic: real-world super-
vision for whole-body control is inherently imperfect, yet most methods assume
expert data. To overcome this, we propose HVD (Hierarchical Value-Decomposed
Offline Reinforcement Learning), an offline reinforcement learning framework that
learns effective policies directly from suboptimal, reward-labeled trajectories. HVD
structures the value function along the robot’s kinematic hierarchy and over tempo-
ral chunks, enabling precise credit assignment in long-horizon, high-dimensional
tasks. Built on a Transformer-based architecture, HVD supports multi-modal and
multi-task learning, allowing flexible integration of diverse sensory inputs. To
enable realistic evaluation and training, we further introduce WB-50, a 50-hour
dataset of teleoperated and policy rollout trajectories annotated with rewards and
preserving natural imperfections — including partial successes, corrections, and
failures. Experiments show HVD significantly outperforms existing baselines in
success rate across complex whole-body tasks. Our results suggest effective policy
learning for high-DoF systems can emerge not from perfect demonstrations, but
from structured learning over realistic, imperfect data.

1 INTRODUCTION

Imitation learning has become a central paradigm for developing robotic policies, enabling robots
to acquire complex skills by learning from expert demonstrations (Pomerleau, 1991; Ross et al.,
2011; Brantley et al., 2020). Recent advances, such as diffusion-based policies for robust action
generation (Chi et al., 2023; Ze et al., 2024; Liu et al., 2024) and Vision-Language-Action (VLA)
models for instruction following (Kim et al., 2024; Black et al., 2024; Liu et al., 2024; Hu et al.,
2024; Intelligence et al., 2025), extend imitation learning into unified perception-reasoning-control
frameworks, establishing it as a foundation for versatile, general-purpose robotic systems.

However, scaling imitation learning from manipulators to whole-body systems with high-DoF
introduces fundamental challenges due to the increased DoF (Bellman, 1966; Kober et al., 2013).
As the number of joints increases, both the state and action spaces expand exponentially. Moreover,
unlike manipulators operating in static environments with fixed third-person cameras, whole-body
robots rely on egocentric perception. Small torso or head movements can cause significant visual
shifts, demanding policies robust to dynamic, self-induced viewpoint changes (Tian et al., 2025).
Furthermore, teleoperating such high-dimensional systems is cognitively and physically costly, often
leading to noisy, suboptimal trajectories (Zhou et al., 2023; Jiang et al., 2025). We argue that
the bottleneck lies not only in the policy design but in the paradigm itself: reliance on optimal
demonstrations is misaligned with the imperfect supervision available in real-world whole-body
control. Thus, a key question emerges:

How can we learn desired whole-body behaviors when expert demonstrations are limited?

We observe that large volumes of non-expert data are organically generated during human teleopera-
tion and policy rollout. These trajectories often contain partial successes, corrective maneuvers, and
outright failures. Although they encode rich, scalable supervisory signals, such data have been largely
overlooked in prior work. A principled way to capitalize on such data is offline reinforcement learn-
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ing (offline RL), which learns policies entirely from fixed datasets without additional environment
interaction (Levine et al., 2020). Yet, existing offline RL approaches remain ill-suited for whole-body
control, as they struggle with high-dimensional action spaces, sparse reward signals, and the need to
generalize across diverse tasks and multi-modal perceptual inputs (Kalashnikov et al., 2018; Kumar
et al., 2022; Bhateja et al., 2023).

To address these issues, we propose HVD (Hierarchical Value-Decomposed Offline Reinforcement
Learning), an offline reinforcement learning framework designed for whole-body control. HVD
features a structured Q-function that jointly incorporates kinematically informed value decomposition
and temporal Q-chunking (Li et al., 2025), enabling precise credit assignment and stabilizing learning
across long-horizon, multi-step whole-body behaviors. Built upon a Transformer-based backbone,
HVD supports multi-modal sensory inputs and scales gracefully to multi-task settings. To ground this
framework in practice, we further contribute WB-50, a 50-hour dataset of teleoperated and policy
rollout trajectories collected under realistic conditions. WB-50 is annotated with reward labels tied
to subtask outcomes. It deliberately preserves natural imperfections, including partial successes,
corrections, and failures, thereby offering a rich and realistic benchmark for whole-body offline RL.

We evaluate HVD on a diverse set of complex whole-body manipulation tasks requiring precise,
coordinated control across multiple limbs. Experimental results show that HVD effectively learns
from the imperfections, significantly outperforming existing baselines in success rate and task
performance. Our findings show that high-DoF policy learning can be both practical and scalable—not
only by pursuing sufficient perfect demonstrations, but by leveraging suboptimal data in a structured,
hierarchical offline RL framework, paving the way for more accessible deployment of whole-body
control in real-world robotic applications.

The primary contributions of this work are as follows:

• We propose HVD, an offline RL method for whole-body control via hierarchical Q-value
decomposition with temporal chunking, enabling precise credit assignment in high-DoF,
long-horizon tasks.

• We implement HVD using a Transformer-based architecture that supports multi-modal
inputs and multi-task learning.

• We introduce WB-50, a 50-hour whole-body robotics dataset of imperfect, reward-labeled
trajectories.

• We demonstrate that HVD outperforms baselines across diverse whole-body tasks and policy
architectures, and validate the effectiveness of HVD on multi-task settings.

2 PRELIMINARIES

Markov Decision Process. We model the robot control task as a Markov Decision Process (MDP)
defined by the tupleM = (S,A, P, r,H), where H is the horizon. The state space S = Sobs ×Sprop
includes egocentric observations (e.g., images, point clouds) and proprioceptive state. The action
space A ⊂ Rd consists of joint-level commands for a d-DoF robot. and r(sh, ah) ∈ [0, 1] is the
reward function and P (sh+1|sh, ah) characterizes the non-stationary transition function of this MDP,
which is a critical assumption because the whole-body movement and the constraints of the camera’s
Field of View (FoV) result in partial observability, making the observation-based transitions appear
highly stochastic and time-varying throughout the horizon. The goal is to learn a policy π(a|s) that
maximizes the expected return V (π) = Eπ[

∑H
h=0 r(sh, ah)].

Offline Reinforcement Learning considers the problem of learning a policy from a fixed dataset
D = {(s, a, r, s′)} without further environment interaction. A central challenge is distributional shift,
where the learned policy may query actions outside the support of the data, leading to erroneous
value estimates and thus poor performance (Kumar et al., 2019; Levine et al., 2020; Koh et al., 2021).

Implicit Diffusion Q-Learning (IDQL) (Hansen-Estruch et al., 2023) builds on IQL Kostrikov et al.
(2021), which can be viewed as an actor-critic method (Konda & Tsitsiklis, 1999), where the critic
objective induces an implicit, behavior-regularized actor to prevent the value overestimation problem
in offline RL. In this framework, the value function Vψ(s) is obtained by minimizing a convex loss
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over dataset actions:

V ∗
ψ (s) = min

ψ
Ea∼µ(a|s)

[
f
(
Qθ(s

h, ah)− Vψ(sh)
)]
,

where f is chosen as an asymmetric convex function (e.g., expectiles (Kostrikov et al., 2021),
quantiles (Koenker & Hallock, 2001), or exponential (Beirlant et al., 1999)), determining how the
implicit policy πϕ deviates from the behavior policy µ. The Q-function is trained with Bellman
backups:

LQ(θ) = E(sh,ah,sh+1)∼D

[(
r(sh, ah) + Vψ(s

h+1)−Qθ(sh, ah)
)2]

,

To recover the policy, IDQL employs πϕ(a|s) trained via advantage weighted regression (Sasaki &
Yamashina, 2020):

Lweightbp
π (ϕ) =

1

H

H∑
h=1

E
[
|f ′(Q(sh, ah)− V ∗(sh)|
|Q(sh, ah)− V ∗(sh)|

∥∥∥ϵ− πϕ(√α̂ah +√1− α̂ϵ, sh, t)∥∥∥] ,
where ϵ ∼ Npol(0, I) denotes Gaussian noise, t is the noising timestep, α̂t is the noise schedule
parameter in diffusion training, and f ′ = ∂f

∂V (s) denotes the derivative of f with respect to V (s).

3 CHALLENGES IN WHOLE-BODY CONTROL

In this section, we argue that whole-body control presents two key challenges: the increased DoF
and non-stationary observation dynamics. We examine the impact of this phenomenon on policy
performance from both theoretical and empirical perspectives.

Whole-body experiment setup

Egocentric view

 Arm-only experiment setup

Third-person view

21-DoF, Dual arms 7-DoF, Single arm

Figure 1: Performance comparison between 21-DoF whole-body policies and 7-DoF arm-only
policies trained on 50 expert demonstrations.

3.1 THEORETICAL ANALYSIS

In the context of Behavior Cloning (BC), theoretical studies have established that the expert sample
complexity, defined as the number of expert trajectories required to learn a policy with a desired level
of performance, scales poorly with the size of the policy set Π. This has been a focus of recent work
(Rajaraman et al., 2020; Tu et al., 2022; Foster et al., 2024). We begin by formally introducing the
policy covering number of a policy class.
Definition 3.1 (Policy Covering Number). For a policy class Π ⊂ {πh : X → ∆(A)}1, we set that
Π′ ⊂ {πh : X → ∆(A)} is an ε-cover if for all π ∈ Π, there exists π′ ∈ Π′ such that for all x ∈ X ,
a ∈ A, and h ∈ [H],

log

(
πh(a|x)
π′
h(a|x)

)
≤ ε. (1)

We denote the size of the smallest such cover by Npol(Π, ε).

We then formalize the dependence of the expert sample complexity of BC on this measure:

1While diffusion policies are typically implemented as implicit generative models, they theoretically induce
an explicit probability density function π(a|x) via the Probability Flow ODE formulation (Song et al., 2021).
This bijective mapping ensures that the log-density log π(a|x) is well-defined and computable, rendering
diffusion policies compatible with this definition.

3
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Proposition 3.2 (Expert Sample Complexity of Behavior Cloning (Foster et al., 2024)). For any expert
policy π⋆ ∈ Π, to ensure that the suboptimality gap of the learned policy π̂ satisfies V (π⋆)−V (π̂) ≤ ε
with probability at least 1− δ, the number of expert trajectories n required for behavioral cloning
needs to satisfy:

n = Õ
(
H3 logNpol(Π, επ)

ε2

)
. (2)

Here, H is the task horizon, ε is the target suboptimality gap, and Npol(Π, επ) denotes the επ-policy
covering number of the policy class Π.

This result reveals a critical quantitative limitation of BC: the expert sample complexity of BC is
fundamentally tied to the log-covering number of the policy class Π. As the complexity or size of
the action space expands, Npol(Π, επ) grows, which in turn necessitates a larger number of expert
trajectories n to learn an επ-optimal policy.

3.2 EMPIRICAL VALIDATION

Figure 1 provides an empirical comparison of arm-only and whole-body policies applied to the same
task. The leftmost and middle panels show the experimental setups for both cases: the whole-body
setup uses a 21-DoF robot with dual arms and an egocentric view, while the arm-only setup uses a
7-DoF robot with a single arm and a third-person view. The rightmost panel compares the success
rates of various policies (π0, WB-VIMA, and DP) with the same number of expert demonstrations
(50) for both the whole-body and arm-only setups. The whole-body policies consistently achieve
significantly lower success rates than their arm-only counterparts across all models. This performance
gap highlights the challenges posed by high-dimensional action spaces and non-stationary transitions.

In summary, the increased DoF in whole-body control leads to an explosion in expert data require-
ments, driven both by the complexity of DoFs and the inherent non-stationary transition.

4 METHOD

4.1 WB-50: IMPERFECT DATA FOR WHOLE-BODY RL

The preceding analysis shows that directly relying on expert demonstrations is impractical due to the
increased DoF and instability of egocentric observations. Fortunately, in realistic settings, non-expert
demonstrations are more abundant, arising naturally from teleoperation and policy rollouts (Zhou
et al., 2023). To leverage this, we introduce WB-50 as illustrated in Figure 2: a reward-labeled
whole-body dataset spanning over 50 hours. WB-50 is intentionally composed of three distinct
data sources to reflect realistic data distributions: i) expert demonstrations (43.7%), ii) imperfect
teleoperation (14.6%), and iii) policy rollouts (41.7%) — the latter two comprising the majority,
mirroring the scarcity of perfect supervision in practice. Every trajectory is annotated at the subtask
level and labeled with discrete reward signals. More details are listed in Appendix B.

A direct way to leverage such data is offline reinforcement learning (offline RL), which enables
policy learning from static and imperfect datasets (Lange et al., 2012; Levine et al., 2020). However,
existing offline RL methods face fundamental limitations when applied to whole-body control. Most
prior successes have been restricted to relatively low-dimensional tasks (Mandlekar et al., 2022;
Sinha et al., 2022; Zhou et al., 2023), and current algorithms struggle to scale to the high degrees
of freedom inherent in whole-body robots. Compounding this difficulty, whole-body control often
involves sparse reward signals, which exacerbate the challenges of temporal credit assignment and
policy optimization. Furthermore, prevailing approaches are typically confined to single-task or
single-modality domains in embodied control, raising concerns about their versatility and scalability.

4.2 HVD: HIERARCHICAL VALUE-DECOMPOSED OFFLINE RL

To address the above issues, we introduce Hierarchical Value-Decomposed Offline Reinforcement
Learning (HVD), designed for high-dimensional, whole-body control in robotic systems. Unlike
conventional approaches that decompose the policy (Sentis & Khatib, 2006), HVD introduces
hierarchy directly into the Q-value function through spatial decomposition. This key design allows
us to maintain a unified policy network while enabling fine-grained, component-specific value

4
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43.7%
41.7%

14.6%

Data Collection & Reward Labelling

Expert 
Demonstrations

Suboptimal 
Demonstrations

Policy Rollouts

{(�, �, �, �’)}

A)      Pick      up      pen      and      put      

it in      the      container

B)      Move      forward       to       the 

whiteboard       and      clean      it
Mixed-Quality 

DatasetLanguage Instruction
...

Expert Demonstrations

Policy Rollouts

Suboptimal human Data

Dataset Construction Value Learning Policy Learning

Value Learning Objective

Temporal Difference Loss Value Loss
ℒ�(�) ℒ�(�)

����� ������ ���� ��

����� ������ ���� Observation

Prompt RGB
Image

Point
Cloud Proprio.

Policy Learning Objective

Policy Loss  ℒ�(�)    =     ℒ���      +       � ∙  ℒ�� 

⊗
 Hierarchical Weights �����      ������       ����

  �����           ������                              ����

...

General Policy

Action head����

Hierarchical Q Network V Network 

Hierarchical Q Decomposition Value

Figure 2: Learning framework of HVD. The proposed HVD framework consists of three stages: (1)
Dataset construction and reward labeling from expert, suboptimal, and rollout data; (2) Hierarchical
value learning with kinematically decomposed Q-functions and temporal chunking; and (3) Policy
learning via hierarchical advantage-weighted regression. The diagram illustrates the data flow from
multi-modal observations through hierarchical value function learning, and ultimately to policy
training.

assessment for different parts of the robot. As a result, HVD achieves more accurate credit assignment
across long-horizon, multi-step behaviors for whole-body control.

Q-value Decomposition. Inspired by Smith et al. (2012); Pan et al. (2024); Jiang et al. (2025), the
action space of whole-body control policies can be decomposed into three hierarchical components
corresponding to its physical structure, A = Abase ×Atorso ×Aarm. At each time step h, the action
chunk of size k is defined as ah:h+k = (ah:h+kbase , ah:h+ktorso , ah:h+karm ), where each component represents
a sub-action controlling a specific subset of the robot’s degrees of freedom. Specifically, ah:h+kbase
governs the lower-body motion (e.g., locomotion or base movement), ah:h+ktorso controls the upper body
or torso orientation, and ah:h+karm manages the arm movements.

Based on this decomposition, we define hierarchical Q-values over temporal chunks of length k,
where each level accumulates value estimates conditioned on progressively more complete subsets of
the robot’s action space. Specifically, for a chunk starting at timestep h, we compute:

Qh:h+kbase = Qθ(s
h, ah:h+kbase ),

Qh:h+ktorso = Qθ(s
h, ah:h+kbase , ah:h+ktorso ),

Qh:h+karm = Qθ(s
h, ah:h+kbase , ah:h+ktorso , ah:h+karm ).

(3)

Here, each Q-value corresponds to a specific part of the robot, creating a layered structure for the
value function, enabling more precise, joint-level credit assignment.

Hierarchical Value Estimation. To train the hierarchical Q-function in Equation 3, we employ a
multi-level TD learning loss that aligns each partial Q-value with its corresponding estimated return:

Lhi (θ) = E
[(
r(sh, ah:h+k) + Vψ(s

h+k+1)−Qh:h+ki

)2]
, where i ∈ {base, torso, arm}. (4)

Here, r(sh, ah:h+k) =
∑h+k
j=h r(s

j , aj) is the reward for executing the action chunk ah:h+k on the
state sh, which aggregates the per-timestep rewards over the sub-episode from time h to h + k.
Moreover, Vψ(sh+k+1) represents the estimated value of the next state predicted by a value network
parameterized by ψ. The Q-learning objective is designed to minimize the temporal difference
between the predicted Q-value and the target value, and the total Q loss combines all hierarchical
levels defined as below:

LQ(θ) =
1

H

H∑
h=1

[
Lhbase(θ) + Lhtorso(θ) + Lharm(θ)

]
. (5)
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The result is a value decomposition that promotes credit assignment across space with temporal Q
chunking, enabling more sample-efficient and coordinated whole-body control.

Implicit Value Learning. Concurrently, we incorporate implicit value learning to align value
estimates across the hierarchical levels of our framework. By leveraging an in-sample learning
paradigm (Wainwright, 2019; Hansen-Estruch et al., 2023), HVD effectively mitigates the risk of
value overestimation caused by OOD actions, a persistent challenge in Q-learning methods:

LV (ψ) =
1

H

H∑
h=1

E
[ ∑
i∈{base,torso,arm}

[
α exp

(
Qh:h+ki − Vψ(sh)

)
− α

(
Qh:h+ki − Vψ(sh)

) ]]
, (6)

where α > 0 is a temperature parameter controlling the strength of the constraint.

By optimizing this loss, we establish a soft lower bound on the value estimates across all hierarchical
Q-heads, ensuring that limb-level value predictions remain aligned with global, whole-body goals.

Policy Learning We train the policy network πϕ using a hierarchical variant of Advantage-Weighted
Regression (AWR) (Peters & Schaal, 2007; Peng et al., 2019; Nair et al., 2020). Rather than uniformly
imitating all actions in the dataset, our method assigns importance weights to action chunks based on
estimated advantages, encouraging the policy to prefer high-value behaviors while down-weighting
low-return trajectories. This weighting is applied separately at each hierarchical level, allowing
critical sub-actions to be emphasized even when other components generate lower returns.

The per-level advantage weight for an action chunk ah:h+ki executed from state sh is defined as:

ωh:h+ki (sh, ah:h+ki ) =
α
∣∣exp (α(Qh:h+ki − Vψ(sh))

)
− 1

∣∣
|Qh:h+ki − Vψ(sh)|

, (7)

where α > 0 controls the sharpness of advantage-based reweighting.

This formulation ensures that actions with higher relative advantage receive exponentially increasing
weight, while preserving gradient flow even near the decision boundary. Furthermore, to learn robust
policies from limited demonstrations, we combine two loss terms: i) an RL term trained on an offline
dataset DO, weighted by the advantage scores; and ii) a BC term trained on a smaller set of expert
trajectories DE , providing a stabilizing prior:

LRL
π (ϕ) =

1

H

H∑
h=1

∑
i

EDO

[
ωh:h+ki (sh, ah:h+ki )

∥∥∥ϵ− πϕ(√α̂ah:h+ki +
√
1− α̂ϵ, sh, t)

∥∥∥] , (8)

LBC
π (ϕ) =

1

H

H∑
h=1

∑
i

EDE

[∥∥∥ϵ− πϕ(√α̂ah:h+ki +
√
1− α̂ϵ, sh, t)

∥∥∥] , (9)

Lπ(ϕ) = LRL
π (ϕ) + βLBC

π (ϕ). (10)

where ϵ ∼ Npol(0, I) denotes Gaussian noise, t is the noising timestep, α̂t represents the noise
schedule parameter in diffusion training, and β > 0 controls the trade-off between reinforcement
learning-driven exploration and expert imitation.

4.3 GENERAL ALGORITHMS AND PRACTICAL IMPLEMENTATION

Algorithm 1 offers an overview of the HVD approach, which operates in two phases. The first phase
focuses on hierarchical value learning, where both the value network Vψ and Q-network Qθ are
updated using the hierarchical value-decomposed learning loss (Equation 6) and TD loss (Equation
5), respectively. The second phase performs policy extraction, where the policy network πϕ is trained
to maximize the cumulative returns through advantage weighted regression (Equation 10).

Model Architecture. As illustrated in Figure 21, our hierarchical Q-network adopts a unified
multi-modal architecture centered around a Transformer-based backbone. The model can optionally
process a rich set of sensory modalities as input by processing them into token embeddings, including
egocentric RGB images, point cloud data from depth sensors, natural language task instructions, and
proprioceptive state. More detailed implementation can be found in Appendix C.3.

6
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5 EXPERIMENTS

Our experiments aim to address three core questions. Q1: Does HVD consistently surpass imitation
learning baselines across diverse policy architectures? (Section 5.2) Q2: Does hierarchical value
decomposition yield more accurate credit assignment, and does this improve the policy performance?
(Section 5.3) Q3: Can HVD effectively scale to multi-task settings, leveraging shared value structure
to improve overall performance? (Section 5.4)

Figure 3: Illustration of evaluated tasks: (a) Pen Insert, (b) Cup Upright, (c) Wipe Board, (d) Basket
Carry, (e) Trash Dispose.

5.1 EXPERIMENT SETTINGS

Robot Platform. We conduct all experiments on the Galaxea R1, a real-world wheeled humanoid
robot with a 21-DoF whole-body system. Task demonstrations are collected using JoyLo, a teleopera-
tion interface developed by (Jiang et al., 2025). Guidelines are provided to constrain operators to
generate demonstrations that are easier for the robot to learn. Nevertheless, operator skill levels vary,
resulting in a substantial number of suboptimal demonstrations during data collection.

Task Design. We design a suite of five representative office tidying tasks (see Figure 3 with details
in Appendix B). The tasks require navigation, dexterous manipulation, and bimanual coordination,
with durations from 40-second single-arm actions to over 120-second multi-step sequences involving
coordinated locomotion and dual-arm cooperation. Additionally, we assess task difficulty from
temporal complexity, kinematics, control, and coordination complexity as detailed in Appendix B.6.
This diversity enables rigorous testing of both precision and long-horizon whole-body control.

Baselines. We develop our HVD framework based on three baselines with different input modal-
ities, including the state-of-the-art VLA model π0 (Black et al., 2024), the 3D-input model WB-
VIMA (Jiang et al., 2025), and the Diffusion Policy (Chi et al., 2023). We evaluate the performance
of policies trained using the original methods on expert datasets and compare them with policies
trained using HVD on mixed-quality datasets.

Evaluation Metrics. To enable fine-grained assessment of policy performance, each task is de-
composed into distinct logical stages. We report two primary metrics: success rate for task-level
evaluation and normalized stage score for stage-level analysis. Moreover, we introduce perturbations
to the task environment background, initial task region, and robot’s initial pose to further challenge
robustness and evaluate the model’s ability to generalize under diverse and realistic variations. Each
policy was evaluated over 50 independent rollouts per task. Reported success rates and stage scores
are averaged over these rollouts to ensure statistical consistency and fair comparison across methods.

5.2 BENCHMARK RESULTS

We present the main experimental results of our study, evaluating each method under its optimal
training regime to assess peak performance. HVD is trained on the full mixed-quality dataset, while
imitation learning baselines are trained on the expert-only subset, consistent with their reliance on
high-quality demonstrations.

7
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As shown in Table 1, our proposed HVD consistently outperforms standard imitation learning
across all five tasks, yielding higher average success rates across policies. The gains are especially
pronounced in challenging manipulation tasks such as Wipe Board and Basket Carry, where robustness
to imperfect initial states and partial observability is essential. Moreover, Figure 4 shows that HVD’s
benefits extend beyond task-level success: it achieves higher normalized stage scores on nearly all
subtasks. This demonstrates that HVD not only improves final outcomes but also enhances policy
reliability throughout the entire execution trajectory.

Method Tasks Avg SR
(IL/HVD) Pen Insert Cup Upright Wipe Board Basket Carry Trash Dispose

π0 0.64/0.86 0.82/0.90 0.18/0.32 0.26/0.44 0.28/0.36 0.44/0.58
WB-VIMA 0.52/0.78 0.58/0.82 0.12/0.26 0.10/0.10 0.20/0.32 0.30/0.46

DP 0.54/0.64 0.66/0.72 0.00/0.00 0.00/0.08 0.08/0.16 0.26/0.32

Table 1: Task-level success rate (SR) of IL and HVD across baseline methods on 5 tasks.

Pen Insert Cup Upright Trash Dispose

Wipe Board Basket Carry

Figure 4: Stage-level scores of IL and HVD across baseline methods across 5 tasks.

5.3 VALUE DECOMPOSITION ABLATION

First, we investigate whether the observed performance gain is primarily attributable to the hierarchical
value decomposition or merely to the application of offline RL. To this end, we conduct an ablation
study comparing our model with the shared Q-value (named as HVD w/o Hierarchy). Both models
are trained on the same mixed-quality dataset with the same hyperparameters, ensuring that the only
architectural difference is the presence of hierarchical value decomposition. Table 2 shows that
removing hierarchical decomposition consistently harms performance across tasks, confirming that
the improvements not only stem from the training paradigm, but also from the proposed structure.

Method Tasks Avg Diff
w/o hierarchy Pen Insert Cup Upright Wipe Board Basket Carry Trash Dispose

DP -0.02 0.00 0.00 -0.08 -0.06 -0.03
WB-VIMA -0.02 0.00 -0.12 -0.08 -0.12 -0.07

π0 +0.04 -0.02 -0.14 -0.10 -0.04 -0.05

Table 2: Ablation study results on hierarchical value decomposition across 5 tasks. The value here
indicates the success rate changes when removing the hierarchy.
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To further analyze how decomposition impacts credit assignment, we visualize the advantage weights
ωi of several key frames in the Basket Carry task (Figure 5). At the second key frame, where the robot
prepares to stand and hold the basket, HVD assigns higher weights to the arm and torso, reflecting
the importance of these components. In contrast, HVD w/o Hierarchy produces uniformly high
weights across all frames, failing to differentiate subcomponents. These findings indicate that HVD
enables more precise credit assignment, which directly contributes to more accurate and reliable
action generation. The more visualization examples are shown in Appendix D.1.

Basket Carry

0 1 2 3 4 5
1

2W
ei

gh
t

HVD - Base HVD - Torso HVD - Arm HVD w/o Hierarchy

Figure 5: Credit Assignment Comparison between HVD and HVD w/o hierarchy.

5.4 MULTI-TASK LEARNING

We evaluate HVD’s ability to scale to multi-task learning by training a single policy on data from all
five tasks and comparing its success rate against specialist (single-task) policies. As shown in Table 3,
standard IL suffers from negative transfer in the multi-task setting, leading to degraded performance
on most tasks. In contrast, HVD mitigates such interference and even surpasses single-task specialists
on several tasks. We observe that these gains primarily stem from enhanced torso robustness and
more generalizable grasping behaviors acquired during multi-task training. Together, these results
show that HVD effectively leverages shared knowledge across tasks while maintaining specialization,
making it more scalable to diverse multi-task settings.

Method Tasks Avg SR
π0 Pen Insert Cup Upright Wipe Board Basket Carry Trash Dispose

expertise IL 0.64 0.82 0.18 0.26 0.28 0.44
multi-task IL 0.50 0.60 0.18 0.24 0.30 0.36 (-0.08)

expertise HVD 0.86 0.90 0.32 0.44 0.36 0.58
multi-task HVD 0.92 0.94 0.32 0.50 0.30 0.60 (+0.02)

Table 3: Task-level success rate comparison of multi-task and expertise policies across 5 tasks.

5.5 COMPARISON WITH OFFLINE RL BASELINES

To further benchmark HVD against other offline RL methods, we implement QIPO (Zhang et al.)
using the same base policy π0 and train in a multi-task learning setting. For a fair comparison, QIPO
and HVD share identical network architectures, optimizer configurations, and training hyperparam-
eters. The only differences lie in: (i) the policy update mechanism, and (ii) the use of hierarchical
value decomposition. Specifically, QIPO initializes its policy and Q-networks using BC and TD
losses, respectively, followed by iterative policy improvement steps. We adopt the hyperparameter
recommendations from the original QIPO paper as our starting point and perform minimal tuning to
ensure stable convergence. The final configuration uses β = 1, M = 16 (number of sampled actions),
and Krenew = 10 (policy renewal interval).

As shown in Table 4, HVD consistently outperforms QIPO across all five tasks in terms of success
rate (SR). The improvement is most significant in long-horizon, whole-body control tasks, such as
Basket Carry and Trash Dispose, where accurate credit assignment over extended action sequences is
critical. We attribute this advantage to HVD’s hierarchical value decomposition, which enables more
precise reward propagation and subgoal-aware policy learning.
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Method Tasks Avg SR
π0 MultiTask Pen Insert Cup Upright Wipe Board Basket Carry Trash Dispose

QIPO 0.90 0.90 0.30 0.20 0.25 0.51
HVD 0.92 0.94 0.32 0.50 0.30 0.60

Table 4: Task-level success rate of HVD and QIPO across 5 tasks.

6 RELATED WORK

Whole-body Control Policy Learning. Whole-body control is a central challenge in robotics due
to the high dimensionality of articulated bodies and the lack of inherent self-stabilization (Hirai
et al., 1998; Grizzle et al., 2009). Classical model-based planning emphasizes kinematic feasibility,
stability, and reactive regulation (Sentis & Khatib, 2006; Dietrich et al., 2012; Burget et al., 2013;
Kaelbling & Lozano-Pérez, 2013; Dai et al., 2014), but struggles with adaptability and scalability
in unstructured tasks. Learning-based approaches optimize control policies from data (Siekmann
et al., 2021; Li et al., 2021; Dao et al., 2022; Radosavovic et al., 2024; Cheng et al., 2024), enabling
dynamic behaviors difficult to engineer manually (Xia et al., 2021; Jiang et al., 2024; Fu et al., 2024;
Arm et al., 2024). Recent advances include generative policies for capturing multimodal action
distributions (Fu et al., 2023; Jiang et al., 2025), VLA models that ground control in language and
perception (Xu et al., 2024; Ding et al., 2025), and hierarchical policy architectures for managing the
complexity of humanoid whole-body control (Hansen et al., 2025; Wei et al., 2025; Fu et al., 2025).
Despite these advances, most methods still require high-quality demonstrations, limiting scalability
to complex real-world tasks.

Offline RL for Embodied Control. Offline RL has made significant strides in embodied control
tasks, enabling robots to learn complex behaviors from pre-collected datasets without requiring
expert demonstrations (Levine et al., 2020). Previous works have attempted to learn policies from
trajectories generated by human failures or during policy evaluation (Kumar et al., 2021; Mandlekar
et al., 2022; Sinha et al., 2022; Bhateja et al., 2023; Luo et al., 2023; Zhou et al., 2023; Ma et al., 2024).
However, these methods are largely confined to arm-based manipulators, and their effectiveness in
high-DoF whole-body control tasks remains unexplored. Recently, there has been an effort to adapt
RL algorithms to mobile manipulators (Hu et al., 2023; Pan et al., 2024). However, these approaches
often rely on single-modality inputs, limiting their ability to integrate with generalist policies like
VLA models (Kim et al., 2024; Black et al., 2024). Furthermore, most of these methods focus on
single-task training, raising concerns about their scalability and generalization to multi-task scenarios.

7 CONCLUSION AND LIMITATIONS

Conclusion. In this paper, we present HVD, a framework for learning whole-body robotic control
from imperfect, real-world demonstrations. By introducing kinematically aware value decomposition
within a multi-modal Transformer architecture, HVD enables stable and scalable policy learning in
high-dimensional action spaces using suboptimal offline data. Together with the release of WB-50,
a 50-hour dataset of realistic teleoperation and rollout trajectories, we demonstrate that structured
offline RL can effectively leverage partial successes and failures to achieve robust, generalizable
control. The information about resource cost is listed in Appendix E.

Limitations. First, HVD relies on human-annotated rewards, which can be costly. Second, we
have not yet explored using failed data for pretraining, which could become a valuable paradigm for
improving robustness and scalability in open-ended environments. Future work could also investigate
leveraging VLM for automated reward labeling to reduce human effort and enhance scalability.
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A HARDWARE COMPONENTS

Figure 6: Low-cost JoyLo system and Galaxea R1 robot.

As illustrated in Figure 6, the hardware setup comprises a JoyLo system and a Galaxea R1 robot.
The JoyLo system integrates 3D-printable arm links, low-cost Dynamixel actuators, and commodity
Joy-Con controllers; its control loop runs at 100 Hz while data are recorded at 10 Hz. Functional
buttons on the right Joy-Con are used to start, pause, save, and discard recordings. Logged modalities
include RGB and depth images, point clouds, joint states, odometry, and action commands. The
Galaxea R1 platform is equipped with a ZED 2i stereo camera, two Intel RealSense D435i cameras,
and two Galaxea G1 parallel grippers.

B TASK DEFINITION

B.1 PEN INSERT

Task Description This task requires the robot to grasp a marker pen lying on a table and insert it
vertically into a fixed pen holder (diameter 8 cm). The core challenge lies in seamlessly executing
the entire sequence from grasping to insertion. For each trial, both the marker pen and pen holder
are randomly positioned on the tabletop within the robot’s operational workspace and field of view.
To further validate generalization, the robot’s starting position and torso pose are also randomized
within a constrained range.

Evaluation Rubric The task is evaluated as a single, continuous stage focusing on the successful
transfer of the pen to the holder.

Stage 1: Grasp and Insert Pen into Holder

• 0.0 points: The robot fails to grasp the marker pen (left of Figure 7).

• 0.5 points: The robot successfully grasps the marker pen but fails to place it in the
holder, for instance, by dropping the pen outside the holder due to an insecure hold (middle
of Figure 7).

• 1.0 points: The robot firmly grasps the marker pen and successfully places it into the
holder (right of Figure 7).

Prompt: pick the pen and put it into the holder
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Figure 7: Scoring rubric visualization for Pen Insert. Stage 1: Grasp and Insert Pen into Holder

B.2 CUP UPRIGHT

Task Description. This task requires the robot to grasp a horizontally lying plastic cup (diameter
8 cm) and place it in a stable, upright position onto a target plate. The primary challenges involve
dexterous reorientation of the cup during manipulation and ensuring a steady final placement. For
each trial, the cup is randomly placed on the tabletop, and the robot’s starting pose is randomized
within a constrained range to test for policy generalization. The task demands a combination of
precise grasping and controlled, stable placement.

Evaluation Rubric The task is evaluated as a single, continuous stage that assesses the entire
sequence from grasping to successful upright placement.

Stage 1: Grasp and Place Cup Upright

• 0.0 points: The robot fails to secure the cup with its gripper (left of Figure 8).

• 0.5 points: The robot grasps the cup but fails to place it upright on the plate, either due
to losing its grip or improper reorientation (middle of Figure 8).

• 1.0 points: The robot firmly grasps the cup and places it steadily in an upright position
on the plate (right of Figure 8).

Figure 8: Scoring rubric visualization for Cup Upright. Stage 1: Grasp and Place Cup Upright

Prompt: pick the cup and put it onto the coaster

B.3 WIPE BOARD

Task Description. This task is composed of three sequential stages. In the first stage, the robot
navigates its base to a position in front of the whiteboard and grasps an eraser. The second stage
involves wiping the designated markings from the board. In the third and final stage, the robot places
the eraser back into its designated slot. To promote policy generalization, each trial is initialized with
randomized starting poses for the robot and varied positions for the writing on the whiteboard, both
within a predefined area. This task demands precise physical interaction, as successful execution
hinges on delicate force control: excessive pressure may cause the whiteboard to tilt, while insufficient
force will fail to clean the markings completely.

Stage 1: Approach Whiteboard and Grasp Eraser

• 0.0 points: The robot fails to navigate to a position where any eraser is reachable (left
of Figure 9).

• 0.5 points: The robot successfully navigates to the whiteboard but fails to establish a
stable grasp on an eraser (middle of Figure 9).

• 1.0 points: The robot successfully navigates to the whiteboard and executes a stable
grasp on an eraser, suitable for the wiping motion (right of Figure 9).

Stage 2: Wipe Markings
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Figure 9: Scoring rubric visualization for Wipe Board. Stage 1: Approach Whiteboard and Grasp
Eraser

• 0.0 points: The robot fails to make effective contact with the markings, due to dropping
the eraser or significant positioning errors (left of Figure 10).

• 0.5 points: The robot partially erases the markings, or causes the whiteboard to tilt due
to imprecise force control or positioning error (middle of Figure 10).

• 1.0 points: The robot completely erases the markings while maintaining stable contact
with the whiteboard (right of Figure 10).

Figure 10: Scoring rubric visualization for Wipe Board. Stage 2: Wipe Markings

Stage 3: Return Eraser

• 0.0 points: The robot releases the eraser prematurely before reaching the designated
slot (left of Figure 11).

• 0.5 points: The robot reaches the slot but fails to place the eraser correctly due to
positioning inaccuracies, causing it to be dropped (middle of Figure 11).

• 1.0 points: The robot successfully and stably places the eraser back into its slot (right
of Figure 11).

Figure 11: Scoring rubric visualization for Wipe Board. Stage 3: Return Eraser

Prompt: move to the whiteboard and clean the whiteboard

B.4 BASKET CARRY

Task description. This task consists of four distinct stages. First, the robot navigates to a cuboid
basket placed on the ground. In the second stage, it bends down and lifts the basket using coordinated
movements of both arms. For the third stage, the robot turns while holding the basket and places it
onto a nearby table. In the final stage, the robot utilizes its left and right arms respectively to pick up
markers from the table and place them into the basket. To promote policy generalization, each trial is
initialized with the robot at a randomized starting pose, the basket at a varied position on the ground,
and the markers at randomized locations on the table, all within a predefined area. This task demands
long-horizon planning and effective bimanual coordination.

Stage 1: Approach Basket

• 0.0 points: The robot navigates to an incorrect position, rendering the basket unreach-
able for lifting (left of Figure 12).

• 0.5 points: The robot navigates to a misaligned position, preventing a symmetric,
bimanual grasp required for a stable lift (middle of Figure 12).
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• 1.0 points: The robot successfully navigates to a centered position directly in front of
the basket, enabling a symmetric, bimanual lift (right of Figure 12).

Figure 12: Scoring rubric visualization for Basket Carry. Stage 1: Approach Basket

Stage 2: Lift Basket

• 0.0 points: The robot fails to lift the basket off the ground (left of Figure 13).

• 0.5 points: The robot lifts the basket with both hands but fails to keep it level or
properly centered with its body (middle of Figure 13).

• 1.0 points: The robot successfully lifts the basket, maintaining a level and centered
orientation relative to its body (right of Figure 13).

Figure 13: Scoring rubric visualization for Basket Carry. Stage 2: Lift Basket

Stage 3: Place Basket on Table

• 0.0 points: The robot fails to place the basket onto the table surface (left of Figure 14).

• 0.5 points: The basket is placed on the table but is either dropped from a height or left
significantly misaligned with the table’s edge (middle of Figure 14).

• 1.0 points: The robot smoothly and squarely places the basket onto the table (right of
Figure 14).

Figure 14: Scoring rubric visualization for Basket Carry. Stage 3: Place Basket on Table

Stage 4: Place Markers in Basket

• 0.0 points: The robot fails to place any of the markers into the basket (left of Figure 15).

• 0.5 points: The robot successfully places the marker from one side into the basket
(middle of Figure 15).

• 1.0 points: The robot successfully places both markers into the basket (right of Fig-
ure 15).

Prompt: move to the storage box, pick up the storage box and place
it on the table, then put the pen on the table into the box

B.5 TRASH DISPOSE

Task Description This task is composed of four sequential stages, designed to evaluate the robot’s
capability in long-horizon planning and whole-body coordination within a practical cleanup scenario.
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Figure 15: Scoring rubric visualization for Basket Carry. Stage 4: Place Markers in Basket

In the first stage, the robot presses the top of a tabletop trash can to open its spring-loaded lid. In the
second stage, it turns its body to the right and bends down to grasp a crumpled paper towel placed on
a nearby chair, an action requiring substantial whole-body coordination to maintain balance. For the
third stage, the robot turns back to the left, moves its arm above the trash can opening, and releases
the paper towel. In the final stage, the robot must close the lid and press it down again to lock it in
place.

To promote policy generalization, each trial initializes with the robot in a randomized starting pose
and the paper towel at a varied position on the chair, both within predefined areas. This task presents
a significant challenge due to its extended, multi-stage nature. It demands seamless transitions
between pressing, grasping, placing, and locking sub-tasks, all while executing complex, coordinated
movements.

Stage 1: Open Trash Can Lid

• 0.0 points: The robot fails to open the trash can lid (left of Figure 16).

• 0.5 points: The robot opens the lid but does not succeed on the first attempt (middle of
Figure 16).

• 1.0 points: The robot successfully opens the lid on the first attempt (right of Figure 16).

Figure 16: Scoring rubric visualization for Trash Dispose. Stage 1: Open Trash Can Lid

Stage 2: Grasp Paper Towel

• 0.0 points: The robot fails to grasp the paper towel from the chair (left of Figure 17).

• 0.5 points: The robot grasps the paper towel but not on the first attempt (middle of
Figure 17).

• 1.0 points: The robot successfully grasps the paper towel on the first attempt (right of
Figure 17).

Figure 17: Scoring rubric visualization for Trash Dispose. Stage 2: Grasp Paper Towel

Stage 3: Dispose of Paper Towel

• 0.0 points: The robot fails to dispose of the paper towel into the trash can (left of
Figure 18).

• 0.5 points: The paper towel lands on the rim or gets stuck at the edge of the trash can
during disposal (middle of Figure 18).

• 1.0 points: The robot successfully disposes of the paper towel into the trash can (right
of Figure 18).
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Figure 18: Scoring rubric visualization for Trash Dispose. Stage 3: Dispose of Paper Towel

Stage 4: Close and Lock Trash Can Lid

• 0.0 points: The robot fails to close the lid of the trash can (left of Figure 19).
• 0.5 points: The robot pushes the lid down but fails to press it again to lock it, causing

the lid to remain unlatched (middle of Figure 19).
• 1.0 points: The robot successfully closes the lid and presses it to ensure it is securely

locked (right of Figure 19).

Figure 19: Scoring rubric visualization for Trash Dispose. Stage 4: Close and Lock Trash Can Lid

Prompt: Open the trash bin, turn around, pick up the trash on the
chair and put it into the bin, then close the bin.

B.6 TASK COMPLEXITY METRIC

To provide a quantitative and objective measure of difficulty for our task suite, we compute a
composite complexity score for each task from the collected expert demonstration data (Dexpert). This
score is derived from four distinct metrics, each capturing a different aspect of task complexity. Let a
single expert trajectory be a sequence of 21-DoF joint states {qt}Tt=1. The metrics are calculated for
each trajectory and then averaged across all demonstrations for a given task.

Temporal Complexity (Ctime) This metric captures the temporal length of the task and is calculated
as the average duration in seconds over all expert demonstrations.

Ctime =
1

N

N∑
i=1

Ti ·∆t, (11)

where N is the number of expert trajectories and ∆t is the time step duration.

Kinematic Complexity (Ckinematic) This metric quantifies the total magnitude of motion required,
which is distinct from temporal duration. It is calculated as the average sum of the ℓ1 norm of joint
displacements between consecutive timesteps, capturing the spatial extent of the behavior.

Ckinematic =
1

N

N∑
i=1

Ti−1∑
t=1

∥q(i)t+1 − q
(i)
t ∥1, (12)

where q(i)t is the joint state vector for the i-th trajectory at time t.

Control Complexity (Ccontrol) This metric serves as a proxy for control difficulty by measuring the
lack of smoothness in the motion. We approximate the average total jerk using the third-order finite
difference of the joint positions.

Ccontrol =
1

N

N∑
i=1

Ti−2∑
t=2

∥(q(i)t+2 − 3q
(i)
t+1 + 3q

(i)
t − q

(i)
t−1)∥2, (13)

Higher values indicate more frequent changes in acceleration, suggesting a higher demand on the
controller.
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Coordination Complexity (Ccoord) This metric estimates the number of joints actively involved in
the task. For each trajectory, we compute the variance σ2

j for each of the 21 joints over time. The
effective dimensionality is the average number of joints whose variance exceeds a small threshold ϵ
(e.g., 10−4).

Ccoord =
1

N

N∑
i=1

21∑
j=1

I(σ2
j > ϵ). (14)

where I(·) is the indicator function.

Complexity Score To synthesize these individual metrics into a single, comparable score for each
task, we first perform a min-max normalization on each of the four metrics across the entire task suite.
This procedure scales the values of each metric to the range of [0, 1], ensuring that each component
contributes equally to the final score regardless of its original units or scale. The final composite
complexity score, Cfinal, is then computed as the unweighted average of these four normalized scores,
providing a holistic and unified measure of task difficulty. The results of this analysis are presented
in Table 5.

Table 5: Quantitative analysis of task complexity. All presented metric scores (Ck) have been
min-max normalized to the range [0, 1] for direct comparison. The final score is the unweighted
average of these normalized values, confirming our task suite spans a graduated range of difficulty.

Task Temporal Kinematic Control Coordination Final Score
(Ctime) (Ckinematic) (Ccontrol) (Ccoord) (Cfinal)

Pen insert 0.00 0.00 0.05 0.01 0.02
Cup upright 0.06 0.51 0.00 0.00 0.14
Wipe board 0.63 0.73 1.00 0.06 0.61
Basket carry 0.47 1.00 0.86 0.78 0.78
Trash dispose 1.00 0.92 0.36 1.00 0.82

B.7 DATASET DESCRIPTION

The WB-50 dataset is a reward-labeled whole-body manipulation dataset spanning over 50 hours of
diverse robot experience. WB-50 contains three data sources to reflect realistic data distributions: (i)
expert demonstrations (43.7%), (ii) imperfect teleoperation (14.6%), and (iii) policy rollouts (41.7%)
— the latter two comprising the majority, mirroring the scarcity of perfect supervision in practice.
The proportion of the five task data frames to the total number of frames in the dataset is shown
in the Figure 20. It also shows the successful and failed trajectories generated during the expert
data collection process of each task, and the number of frames of successful and failed trajectories
generated by imitation learning strategy reasoning is also shown. Moreover, we assign rewards of 0,
0.5, and 1 at the end of each subtask according to the degree of task completion, and apply a step
penalty of -0.001 for all other steps.

C IMPLEMENTATION DETAILS

C.1 ALGORITHM PIPELINE

We present the pseudocode of our method as in Algorithm 1.

C.2 IMITATION LEARNING BASELINES

WB-VIMA. Our implementation of WB-VIMA is based on the official policy codebase (Jiang
et al., 2025) and applies minor adjustments to the model and training hyperparameters. The detailed
parameters are summarized in Table 6.

Diffusion Policy. We build our diffusion policy on the official GalaxeaDP codebase (Team, 2025),
which demonstrates strong compatibility with the Galaxea R1 robot, also developed by Galaxea. As
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Figure 20: Data distribution of WB-50. Distribution of WB-50. The plot shows the proportional
composition of the dataset by source, including expert demonstrations, suboptimal expert trajectories
and rollout data, together with counts of frames of successful and failed episodes collected during
data acquisition.

Algorithm 1 Hierarchical Value-Decomposed Offline Reinforcement Learning (HVD)

1: Input: Offline dataset D, action hierarchy: A = Abase ×Atorso ×Aarm
2: Initialize value network Vψ , Q-network Qθ, policy network πϕ

{Phase 1: Hierarchical Value Learning}
3: for each gradient step do
4: (Update value network)
5: ψ ← ψ − λV∇ψLV (ψ) by Equation equation 6
6: (Update Q-network)
7: θ ← θ − λQ∇θLQ(θ) by Equation equation 5
8: end for

{Phase 2: Policy Extraction}
9: for each gradient step do

10: (Update policy network)
11: ϕ← ϕ− λπ∇ϕLπ(ϕ) by Equation equation 10
12: end for
13: Output: Trained policy πϕ
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Table 6: Hyperparameters of WB-VIMA model.

Hyperparameter Value Hyperparameter Value Hyperparameter Value
PointNet Prop. MLP Transformer

Npcd 4096 Input Dim 21 Embed Size 512
Hidden Dim 256 Hidden Dim 256 Num Layers 8

Hidden Depth 2 Hidden Depth 3 Num Heads 8
Output Dim 256 Output Dim 256 Drop Rate 0.1
Activation GELU Activation ReLU Activation GEGLU

Table 7: Hyperparameters of WB-VIMA training process.

Hyperparameter Value

Learning Rate 1× 10−4

Weight Decay 0.1
Learning Rate Warm Up Steps 1000

Learning Rate Cosine Decay Steps 300,000
Minimal Learning Rate 5× 10−6

the original implementation supports only 14-DoF dual-arm tasks, we extend it by incorporating
additional control for the torso and mobile base to enable 21-DoF whole-body control tasks. The
hyperparameters and model architectures used in our experiments are summarized in Table 8.

Hyperparameter Value
Batch Size 32
Chunk Size 20
History Size 2

Learning Rate 1e-4
LR Scheduler cosine

Optimizer AdamW
AdamW Betas [0.9, 0.95]
Weight Decay 1e-4

Max Training Steps 100,000
Image Type RGB

Egocentric Perception Type Joint
Observation Encoder ResNet-18 (He et al., 2016)

Diffusion Model DDPM (Ho et al., 2020)
Diffusion Steps 20

Diffusion Network U-Net (Ronneberger et al., 2015)
U-Net Structure [256, 1024, 4096]

Table 8: Hyperparameters of Diffusion Policy.

π0. We adopt the official implementation of π0 (Black et al., 2024) as our codebase. Key hyperpa-
rameters are listed in Table 9.

C.3 HVD IMPLEMENTATION DETAILS

Model Architecture. HVD is implemented using a transformer backbone, which naturally accommo-
dates multiple input modalities. Specifically, the model processes observations through specialized
encoders for each modality:

• RGB Input: Three egocentric RGB views (front, left, and right) are independently processed
using SigLIP (Zhai et al., 2023), producing sequences of visual tokens that capture spatial
context and object semantics.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Hyperparameter Value
Batch Size 32
Chunk Size 20

Learning Rate 1e-4
LR Scheduler cosine

Optimizer AdamW
AdamW Betas [0.9, 0.95]

AdamW Epsilon 1e-8
Weight Decay 1e-10

Max Training Steps 50,000
Fine-tune Method LoRA (Hu et al., 2022)

Table 9: Hyperparameters of π0.

• Point Cloud Input: Depth-derived point clouds are encoded with PointNet (Qi et al., 2017)
modules, enabling robust perception of 3D geometry and scene layout, which is particularly
beneficial for navigation and object manipulation.

• Task Instruction: Natural language commands (e.g., “clean the whiteboard”) are tokenized
and embedded to provide high-level goal guidance.

• Proprioception: Joint angles, velocities, and end-effector poses are concatenated and
normalized to form a compact state vector representing the robot’s internal configuration.

The tokens produced by all modalities are concatenated along the sequence dimension to form a
unified representation. Attention masks regulate cross-modal interactions, after which the integrated
token sequence is processed by a pretrained PaliGemma model (Beyer et al., 2024). The resulting
representations are then passed through an MLP-based value decoder to estimate Q-values for the
different hierarchical components. The overall model architecture is depicted in Figure 21.

Transformer

Point
Net

ViT ViT ViT

Egocentric RGB 

Point
Net

Egocentric Point Cloud

“clean the whiteboard”

Task Instruction

Value
Decoder

𝑎𝑏𝑎𝑠𝑒
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𝑸𝒃𝒂𝒔𝒆

𝑎𝑡𝑜𝑟𝑠𝑜

Value
Decoder
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𝑸𝒂𝒓𝒎

𝑎𝑎𝑟𝑚Proprioception

state

Figure 21: Overall Model Architecture of Hierarchical Q-Network.

Hyperparameters. In our implementation, the parameter α in equation 6 controls the relative
weighting between the TD loss and the BC loss, effectively balancing value estimation and policy
imitation, while β in equation 10 is used in the exponential weighting of advantages when computing
hierarchical action weights, modulating the sensitivity to high-advantage actions. Both α and β are
set to their default values of 1.0. Importantly, we did not perform any hyperparameter tuning, yet our
method already achieves strong performance, highlighting the effectiveness and robustness of the
proposed HVD approach. Configurations and hyperparameter settings are listed in Table 10.

D ADDITIONAL EXPERIMENTS

D.1 QUALITATIVE VISUALIZATION OF HIERARCHICAL CREDIT ASSIGNMENT

The remaining weight visualization results are presented in Figure 22. We observe that the HVD w/o
Hierarchy weights exhibit a trend similar to the HVD arm weights across all tasks. This indicates
that while HVD w/o Hierarchy is able to capture key frames in which the arms are about to move, it
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Hyperparameter Value

Value Network MLP[128 × 256 × 64]
Max Training Steps 30,000
BC Loss Weight α 1

Exponential Weight β 1
Image Encoder SigLIP (Zhai et al., 2023)

Point Cloud Encoder PointNet (Qi et al., 2017)
Transformer Model PaliGemma (Beyer et al., 2024)

Width 256
Depth 4

MLP Dim 1024
Number of Heads 4

Number of KV Heads 1

Table 10: Hyperparameters of HVD.

fails to effectively recognize the contributions of the base and torso. These results further support our
conclusion that HVD provides more accurate credit assignment.
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Figure 22: Remaining Credit Assignment Comparison between HVD and HVD w/o hierarchy.

D.2 QUANTITATIVE ANALYSIS OF HIERARCHICAL CREDIT ASSIGNMENT

To validate the interpretability of our hierarchical framework, we analyzed the component weights
during policy training across different task stages. The quantitative results in Table 11 reveal
distinct stage-aware credit assignment patterns that align with functional requirements. These results
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demonstrate that our hierarchical framework successfully differentiates functional requirements
across task stages and allocates appropriate credit to different robot components.

Table 11: Hierarchical component weights across task stages.

Task Stage Component Weight

Base Torso Arm

Wipe Board
Stage 1: Approach and Grasp Eraser 0.962 0.884 1.321
Stage 2: Wipe Markings 0.946 0.890 1.054
Stage 3: Return Eraser 0.857 0.826 1.149

Basket Carry

Stage 1: Approach and Grasp Basket 0.980 0.999 1.405
Stage 2: Lift Basket 0.953 0.909 1.254
Stage 3: Place Basket on Table 0.837 0.807 1.063
Stage 4: Place Markers in Basket 0.972 0.980 1.243

Trash Dispose

Stage 1: Open Trash Can Lid 0.933 0.918 1.382
Stage 2: Grasp Paper Towel 0.930 0.960 1.273
Stage 3: Dispose of Paper Towel 0.944 0.902 1.356
Stage 4: Close and Lock Trash Can Lid 0.804 0.813 1.323

D.3 ANALYSIS OF TASK COMPLEXITY AND POLICY PERFORMANCE

By correlating the difficulty metrics presented in Table 5 with the actual success rates of learned
policies in Table 1, we can identify several key bottlenecks in current whole-body control approaches
and point out the primary sources of performance gains introduced by HVD. Specifically, our analysis
reveals that high control complexity and high kinematic coordination demands are the primary failure
modes for standard IL, which HVD successfully mitigates.

Overcoming the Smoothness Bottleneck in High-Control Complexity Tasks. Ccontrol serves
as the most correlated predictor of failure for baseline methods. For instance, the Wipe Board task
exhibits the maximum Control Complexity (Ccontrol = 1.00), indicating a requirement for frequent
acceleration changes and high jerk. Standard IL baselines collapse on this task. In contrast, HVD
significantly improves π0 performance with a +77% relative improvement, demonstrating that HVD
effectively models the non-smooth, high-frequency dynamics often lost in standard IL training.

Robustness in High-Dimensional Coordination. IL baselines often fail in the tasks characterized
by high Ckinematic and Ccoord due to the difficulty of coordinating high-dimensional joints over large
spatial displacements. The Basket Carry task, which possesses the highest Kinematic Complexity
(Ckinematic = 1.00) and very high Coordination Complexity (Ccoord = 0.78), illustrates this barrier.
While the WB-VIMA and DP baselines struggle significantly (with DP failing almost completely),
HVD provides its most robust improvement here, lifting the π0 success rate from 0.26 to 0.44. This
indicates that HVD acts as a superior regularizer in high-variance regimes, maintaining structural
integrity over wide state spaces where standard IL fails to generalize.

D.4 SIMULATOR EXPERIMENTS

We introduce a simulation experiment on the BEHAVIOR-1K platform to empirically validate our
approach, directly addressing the reviewer’s query (W5) for a concrete simulated environment.

D.4.1 SIMULATOR PLATFORM

We conduct our empirical evaluation using the BEHAVIOR-1K simulation environment (Li et al.,
2024). This platform is a high-fidelity, standardized benchmark focused on humanoid robotics
tasks grounded in real-world human needs. The simulated robot model features a base, torso,
and arm structure that necessitates complex whole-body coordination, aligning directly with our
methodological requirements for addressing the high-Dimensionality of the action space. Figure 23
provides an overview of the simulator setup.
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Figure 23: Overview of the simulator in the BEHAVIOR-1K.

Task Design and Decomposition. We selected the Picking Up Trash task from the official
BEHAVIOR-1K benchmark as our test environment. This task highly demands robust whole-body
control capabilities. Given the computational intensity of long-horizon rollouts in this complex
simulator, we constrained each episode to 10,000 control steps. While this limitation prevents full
task completion, it is sufficient to cover the most critical phases.To facilitate focused evaluation and
learning, we decomposed the task into two distinct, sequential stages with clear success criteria:

• Approaching: Successful if the robot positions itself directly in front of the trash bin, such
that the bin is visible in at least one camera view.

• Grasping: Successful if the robot lifts the trash bin off the ground using either arm.

For reward labeling, successful trajectories (meeting stage criteria) receive a terminal reward of
+1.0, provided at the end of the trajectory. Additionally, every intermediate frame incurs a small
step penalty of -0.001 to encourage efficient execution. The overall task pipeline, illustrating this
two-stage structure, is presented in Figure 24.

Figure 24: Task pipeline for the Picking Up Trash task in BEHAVIOR-1K, illustrating the approaching
and grasping stages evaluated in our experiments.

Dataset and Evaluation. Our experimental analysis utilized a training dataset of 300 trajectories:
200 expert demonstrations from the official BEHAVIOR-1K benchmark, supplemented by 100 policy
rollouts collected using the pre-trained π0-IL baseline. During evaluation, we tested each policy on
100 trials across 20 unseen scenarios to ensure robustness and generalizability. Table 13 summarizes
the performance of the baseline Imitation Learning (π0-IL) policy and our Hierarchical Value
Decomposition (π0-HVD) method across both evaluation stages. HVD consistently demonstrates a
significant performance improvement over the baseline:

Implementation Details. The HVD implementation was built directly on top of the official π0
codebase provided by the BEHAVIOR-1K benchmark, ensuring a fair and consistent comparison
with the π0, IL baseline. All implementation details, including the hierarchical architecture, network
configurations, and hyperparameter settings, remain the same as those introduced in Section C.3,
with only minor adjustments as summarized in Table 12.

Task Results. Table 13 summarizes the evaluation outcomes, showing that HVD substantially
outperforms the IL baseline. In Stage 1, HVD achieves a 77.0% success rate than IL’s 45.0%. The
advantage becomes even more pronounced in the more challenging grasping stage, where HVD
nearly doubles the success rate, reaching 22.0% compared to IL’s 5.0%. These results highlight
HVD’s effectiveness in handling complex, high-dimensional whole-body coordination tasks.
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Hyperparameter Value

Max Value Training Steps 10,000
Max Policy Training Steps 80,000

Hierarchical Order [[0-2], [3-6], [7-22]]

Table 12: Adjusted hyperparameters of HVD in BEHAVIOR-1K.

Method Stage 1 (SR) Stage 2 (SR)

π0-IL 45.0% 5.0%
π0-HVD 77.0% 22.0%

Table 13: Results for Picking Up Trash task in BEHAVIOR-1K.

D.5 ABLATION STUDY ON DATA DISTRIBUTION

To further empirically validate the data distribution robustness of HVD, we conduct an additional
ablation on the Pen Insert task under varying expert ratios. During training, we keep the total number
of demonstrations fixed at 100 with expert ratios of 20%, 50%, and 80%. During training, π0+IL uses
only the expert demonstrations, while π0+HVD uses all available demonstrations, including both
expert and suboptimal data. The results are shown in Table 14, where HVD consistently outperforms
IL, confirming that HVD maintains its effectiveness across a wide spectrum of data compositions.
Due to time constraints, each policy is evaluated over 20 trials.

Table 14: Success rates on the Pen Insert task under varying expert-to-imitation data ratios.

Method 20 exp + 80 imp 50 exp + 50 imp 80 exp + 20 imp
π0+IL 0.15 0.35 0.50
π0+HVD 0.55 0.60 0.75

D.6 ABLATION STUDY ON DECOMPOSITION ORDER

To validate the impact of different decomposition orders and validate our design choice, we conduct an
ablation experiment. Specifically, we compare two alternative sequencing strategies: (i) Arm–Torso–
Base and (ii) Base–Arm–Torso, using the same base policy π0 across all tasks within a multi-task
learning setup. Due to time constraints, the baseline policy is evaluated over 20 trials per task. The
results are summarized in the Table 15, clearly demonstrating that our proposed decomposition order
outperforms the alternatives, highlighting the importance of the hierarchical structure in our approach.

D.7 COMPARISON WITH RESIDUAL VALUE DECOMPOSITION

To further validate the residual approach versus our proposed independent decomposition, we add
an additional baseline across all tasks within a multi-task learning setup, which learns the residual
Q-function Qresidual using the formulation defined above. Due to time constraints, the baseline policy
is evaluated over 20 trials per task. The results are as shown in Table 16, showing that our independent
decomposition outperforms the residual variant baseline, achieving a higher average success rate.

E RESOURCE COST

E.1 REWARD LABELING COST

Reward signals are manually annotated according to the task definitions provided in Appendix B. For
each demonstration, operators carefully review the recordings from multiple camera views (head,
left wrist, and right wrist) and mark the key frames where the robot’s actions satisfy predefined
scoring criteria. This process is highly labor-intensive: labeling the entire WB-50 dataset required
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Table 15: Success rates (SR) for different decomposition orders across tasks.

Method Pen Insert Cup Upright Wipe Board Basket Carry Trash Dispose Avg SR
Arm–Torso–Base 0.55 0.60 0.15 0.20 0.10 0.32
Torso–Arm–Base 0.80 0.80 0.20 0.35 0.20 0.47
Base–Torso–Arm (ours) 0.92 0.94 0.32 0.50 0.33 0.60

Table 16: Comparison between residual and independent decomposition variants of HVD.

Method Pen Insert Cup Upright Wipe Board Basket Carry Trash Dispose Avg SR
HVD (residual) 0.75 0.80 0.25 0.50 0.35 0.53
HVD (ours) 0.92 0.94 0.32 0.50 0.33 0.60

two well-trained operators working for nearly 30 hours. The labeled data are subsequently used to
train HVD, yielding improved policy performance.

E.2 COMPUTATIONAL COST

All trainings are conducted on RTX 4090 GPU platform. During the value learning stage, Hierarchical
networks are trained on 4×RTX 4090 GPUs for approximately 2 hours. For policy learning, LoRA
fine-tuning of π0 requires around 40 hours on 4×RTX 4090 GPUs, while training the DP takes
1×RTX 4090 GPU for 30 hours. WB-VIMA policies are trained on 2×RTX 4090 GPUs for around
24 hours. For deploying policies, 1×RTX 4090 GPU is required to load model parameters and run
action inference.

F THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large language models (LLMs) are used in the preparation of this manuscript for sentence-level
editing, including improving grammar, clarity, and readability.
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