
Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels

Sai Rajeswar * 1 2 Pietro Mazzaglia * 3 Tim Verbelen 3 Alexandre Piché 2

Bart Dhoedt 3 Aaron Courville 1 4 Alexandre Lacoste 2

Abstract

Controlling artificial agents from visual sensory
data is an arduous task. Reinforcement learning
(RL) algorithms can succeed but require large
amounts of interactions between the agent and
the environment. To alleviate the issue, unsu-
pervised RL proposes to employ self-supervised
interaction and learning, for adapting faster to fu-
ture tasks. Yet, as shown in the Unsupervised
RL Benchmark (URLB; Laskin et al. (2021)),
whether current unsupervised strategies can im-
prove generalization capabilities is still unclear,
especially in visual control settings. In this work,
we study the URLB and propose a new method
to solve it, using unsupervised model-based RL,
for pre-training the agent, and a task-aware fine-
tuning strategy combined with a new proposed
hybrid planner, Dyna-MPC, to adapt the agent for
downstream tasks. On URLB, our method obtains
93.59% overall normalized performance, surpass-
ing previous baselines by a staggering margin.
The approach is empirically evaluated through
a large-scale empirical study, which we use to
validate our design choices and analyze our mod-
els. We also show robust performance on the
Real-Word RL benchmark, hinting at resiliency
to environment perturbations during adaptation.

Project website:
https://masteringurlb.github.io/

1. Introduction
Modern successes of deep reinforcement learning (RL) have
shown promising results for control problems (Levine et al.,
2016; OpenAI et al., 2019; Lu et al., 2021). However,
training an agent for each task individually requires a large
amount of task-specific environment interactions, incurring
huge redundancy and prolonged human supervision. Devel-
oping algorithms that can efficiently adapt and generalize to
new tasks has hence become an active area of research.

In computer vision and natural language processing, un-
supervised learning has enabled training models without
supervision to reduce sample complexity on downstream
tasks (Chen et al., 2020; Radford et al., 2019). In a similar
fashion, unsupervised RL (URL) agents aim to learn about
the environment without external reward functions, driven
by intrinsic motivation (Pathak et al., 2017; Burda et al.,
2019a; Bellemare et al., 2016). The learned models can
then be adapted to downstream tasks, aiming to reduce the
required amount of interactions with the environment.

Recently, the Unsupervised RL Benchmark (URLB) (Laskin
et al., 2021) established a common protocol to compare
self-supervised algorithms across several domains and tasks

*Equal contribution 1Mila, Université de Montréal 2ServiceNow
Research 3Ghent University - imec, Belgium 4CIFAR Fellow. Cor-
respondence to: Sai Rajeswar <rajsai24@gmail.com>, Pietro
Mazzaglia <pietro.mazzaglia@ugent.be>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Approach Unsupervised PT Model-based Task-aware FT Dyna-MPC Performance (%)
DrQv2 17.66±1.09

DreamerV2 ✓ 28.16±1.26

Disagreement ✓ 39.0±1.87

Plan2Explore (P2E) ✓ ✓ 76.59±3.46

P2E + task-aware FT (ours) ✓ ✓ ✓ 83.07±2.01

P2E + Dyna-MPC (ours) ✓ ✓ ✓ ✓ 88.86±1.76

Ours ✓ ✓ ✓ ✓ 93.59±0.84

Table 1. Mastering URLB from pixels. The table summarizes the results obtained by our method compared to previous approaches. We
also show how the performance of Plan2Explore (P2E) (Sekar et al., 2020) increases when we combine it with our adaptation strategies.

1

https://masteringurlb.github.io/

Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels

from the DMC Suite (Tassa et al., 2018). In the benchmark,
an agent is allowed a task-agnostic pre-training stage, where
it can interact with the environment in an unsupervised
manner, followed by a fine-tuning stage where, given a
limited budget of interactions with the environment, the
agent should quickly adapt for a specific task. However,
the results obtained by Laskin et al. (2021) suggest that
the benchmark is particularly challenging for current URL
approaches, especially when the inputs of the agent are
pixel-based images.

World models have proven highly effective for solving RL
tasks from vision both in simulation (Hafner et al., 2021;
2019a) and in robotics (Wu et al., 2022), and they are gener-
ally data-efficient as they enable learning behavior in imagi-
nation (Sutton, 1991). Inspired by previous work on model-
based exploration (Sekar et al., 2020) and by the idea that
world models can efficiently leverage self-supervised data
(LeCun, 2022), we adopted a world-model-based approach.

In a preliminary large-scale study, we show that different
URL strategies can be effectively combined with world-
model-based agents, for unsupervised pre-training, leading
to more solid performance in URLB from pixels, compared
to model-free agents (Laskin et al., 2021). With our method,
we further improve performance by leveraging a task-aware
adaptation strategy and by introducing a new hybrid planner,
Dyna-MPC, which allows exploiting the pre-trained world
model even more, by enabling the agent to both learn and
plan behavior in imagination.

Our contributions can be summarized as follow:

• we perform a large-scale study on URLB showing that
world models can be combined with different unsu-
pervised RL approaches as an effective pre-training
strategy for data-efficient visual control (Section 3),

• we introduce our method: an effective adaptation strat-
egy that combines task-aware fine-tuning of the agent’s
components with a novel hybrid planner, Dyna-MPC,
enabling the agent to effectively combine behaviors
learned in imagination with planning (Section 4),

• we present state-of-the-art results on URLB from pix-
els, obtaining 93.59% normalized performance. We
also extensively evaluate and analyze our method, to
test its robustness to potential environment perturba-
tions at adaptation time (Dulac-Arnold et al., 2020)
and to understand current limitations (Section 5).

An extensive empirical evaluation, supported by more than
2k experiments, among main results, analysis and ablations,
was used to carefully study URLB and analyse our method.
We hope that our large-scale evaluation will inform future re-
search towards developing and deploying pre-trained agents
that can be adapted with considerably less data to more
complex and realistic tasks, as it has happened with unsu-

pervised pre-trained models for vision (Parisi et al., 2022)
and language (Ahn et al., 2022).

2. Preliminaries
Reinforcement learning. The RL setting can be formalized
as a Markov Decision Process (MDP), denoted with the
tuple {S,A, T,R, γ}, where S is the set of states, A is the
set of actions, T is the state transition dynamics, R is the
reward function, and γ is a discount factor. The objective of
an RL agent is to maximize the expected discounted sum of
rewards over time for a given task, also called return, and in-
dicated as Gt =

∑T
k=t+1 γ

(k−t−1)rk. In continuous-action
settings, you can learn an actor, i.e. a model predicting the
action to take from a certain state, and a critic, i.e. a model
that estimates the expected value of the actor’s actions over
time. Actor-critic algorithms can be combined with the
expressiveness of neural network models to solve complex
continuous control tasks (Haarnoja et al., 2018; Lillicrap
et al., 2016; Schulman et al., 2017).

Unsupervised RL. In this work, we investigate the problem
of fast adaptation for a downstream task, after a phase of
unsupervised training and interaction with the environment.
Our training routine, based on the setup of URLB (Laskin
et al., 2021), is made of two phases: a pre-training (PT)
phase, where the agent can interact with a task-agnostic
version of the environment for up to 2M frames, and a
fine-tuning phase (FT), where the agent is given a task to
solve and a limited budget of 100k frames. During the PT
phase, rewards are removed so that sensible information
about the environment should be obtained by exploring the
domain-dependent dynamics, which is expected to remain
similar or unchanged in the downstream tasks. During FT,
the agent receives task-specific rewards when interacting
with the environment. As the agent has no prior knowledge
of the task, it should both understand the task and solve it
efficiently, in a limited interaction budget. The URL bench-
mark consists of three control domains, Walker, Quadruped
and Jaco, and twelve tasks, four per domain. To evaluate the
agents, snapshots of the agent are taken at different times
during training, i.e. 100k, 500k, 1M, and 2M frames, and
fine-tuned for 100k frames. Returns are normalized using
results from a supervised baseline (see Appendix A).

World models. In this work, we ground upon the Dream-
erV2 agent (Hafner et al., 2021), which learns a world
model (Ha & Schmidhuber, 2018; Hafner et al., 2019b)
predicting the outcomes of actions in the environment. The
dynamics is captured into a latent space Z , providing a
compact representation of the high-dimensional inputs.

2

Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels

(a) Aggregated results from Laskin et al. (2021) of unsupervised RL to pre-train the model-free DrQ agent.

(b) Our aggregated results of unsupervised RL to pre-train the model-based Dreamer agent.

Figure 1. Unsupervised pre-training. Aggregated performance of different URL techniques for PT, with FT snapshots taken at different
times along training. (a) With the model-free DrQ agent, performance slightly improves over time only using knowledge-based techniques.
(b) With the model-based Dreamer agent, performance is higher and, overall, improves for all techniques. We also report Dreamer@100k
and DrQ@100k results, which are obtained in 100k FT steps with no PT.

The world model consists of the following components:

Encoder: et = fϕ(st),
Decoder: pϕ(st|zt),
Dynamics: pϕ(zt|zt−1, at−1),
Posterior: qϕ(zt|zt−1, at−1, et).

The model states zt have both a deterministic component,
modeled using the recurrent state of a GRU (Chung et al.,
2014), and a (discrete) stochastic component. The encoder
and decoder are convolutional neural networks (CNNs)
and the remaining components are multi-layer perceptrons
(MLPs). The world model is trained end-to-end by optimiz-
ing an evidence lower bound (ELBO) on the log-likelihood
of the data collected in the environment (Hafner et al.,
2019b;a). For the encoder and the decoder networks, we
used the same architecture as in Hafner et al. (2021).

For control, the agent learns latent actor πθ(at|zt) and critic
vψ(zt) networks. Both components are trained online within
the world model, by imagining the model state outcomes of
the actions produced by the actor, using the model dynamics.
Rewards for imagined trajectories are provided by a reward
predictor, pϕ(rt|zt) trained to predict environment rewards,
and they are combined with the critic predictions to produce
a GAE-λ estimate of the returns (Schulman et al., 2016).
The actor maximizes these returns, backpropagating gradi-
ents through the model dynamics. The hyperparameters for
the agent, which we keep fixed across all domains and tasks,
can be found in Appendix I.

3. Unsupervised Model-based Pre-training
In the PT stage, unsupervised RL can be used to explore
the environment, collecting the data to train the components
of the agent. The resulting networks are then used to ini-
tialize respective components in the agent deployed for the
downstream task, aiming to reduce sample complexity.

Unsupervised RL methods can be grouped into three cate-
gories (Laskin et al., 2021): knowledge-based, which aim
to increase the agent’s knowledge by maximizing error pre-
diction (Pathak et al., 2017; 2019; Burda et al., 2019b),
data-based, which aim to achieve diversity of data (Yarats
et al., 2021; Liu & Abbeel, 2021b) and competence-based,
which aim to learn diverse skills (Liu & Abbeel, 2021a; Ey-
senbach et al., 2019). In Figure 1a we report the results from
Laskin et al. (2021), showing that none of these approaches
is particularly effective on URLB from pixels when com-
bined with the DrQv2 model-free agent (Yarats et al., 2022),
state-of-the-art in RL from pixels, where the data collected
with unsupervised RL is used to pre-train the agent’s actor,
critic, and encoder. The cause of this underwhelming perfor-
mance is that all the pre-trained components in model-free
agents rely on the reward function to maximize. As rewards
during the PT stage are intrinsic rewards coming from unsu-
pervised RL, they miss capturing important aspects of the
environment, such as the dynamics of the environment, that
could be useful to efficiently adapt to downstream tasks.

World model-based agents, instead, can be used to effec-
tively exploit unsupervised data collection, as they focus on

3

Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels

Pr e-t r a in in g

Wor ld
M od e l

act ion
Un su p er v ised

ex p lo r a t ion

m odel
state

Task -ag n ost ic
En v i r on m en t

Act o r -Cr i t i c

Fin e-t u n in g

Wor ld
M od e l

act ion
Rew ar d

Pr ed ict o r

m odel
state

Dow n st r eam
Task

Act o r -Cr i t i c

Plan n er

Environm ent State Environm ent State

Task Reward

Weig h t
In i t ia l i ze

Figure 2. Method overview. Our method considers a pre-training (PT) and a fine-tuning (FT) stage. During pre-training, the agent
interacts with the environment through unsupervised RL, maximizing an intrinsic reward function, and concurrently training a world
model on the data collected. During fine-tuning, the agent exploits some of the pre-trained components and plans in imagination, to
efficiently adapt to different downstream tasks, maximizing the rewards received from the environment.

learning the dynamics of the environment and then lever-
age the learned model to learn actions in latent imagination.
To strengthen this thesis, we perform a large-scale study,
including multiple unsupervised RL approaches and using
them to pre-train the Dreamer’s agent components. As
knowledge-based methods we employ ICM (Pathak et al.,
2017), LBS (Mazzaglia et al., 2021), Plan2Explore (P2E;
(Sekar et al., 2020)), and RND (Burda et al., 2019b). As
a data-based approach, we choose APT (Liu & Abbeel,
2021b), and as competence-based approaches, we adopt
DIAYN (Eysenbach et al., 2019) and APS (Liu & Abbeel,
2021a). Finally, we also test random actions, as a naive
maximum entropy baseline (Haarnoja et al., 2018).

Aggregating results per category, in Figure 1b, we show
that by leveraging a pre-trained world model the overall
performance improves over time for all categories, as op-
posed to the model-free results, where only knowledge-
based approaches slightly improve. In particular, data-based
and knowledge-based methods are more effective in the
Walker and Quadruped domains, and random actions and
competence-based are more effective in the Jaco domain.
Detailed results for each method, which are available in
Appendix D, also show that, in contrast with the findings
in Sekar et al. (2020), many unsupervised RL approaches
can be combined with world models for efficient explo-
ration. This merit could be attributed to the way we care-
fully adapted these methods to effectively work with world
models’. Details on the implementation are provided in
Appendix B and the code is available on the project website.

4. Method
In the previous section’s large-scale study on URLB, we
showed that learning a model-based agent with data col-
lected using unsupervised RL constitutes an effective pre-
training strategy. Based on that, we focus our method on ef-

ficiently adapting the pre-trained world-model-based agents
for downstream tasks. Our approach can be summarized as:

• employing a task-aware FT strategy, which only adapts
the PT agent’s modules that we expect to be sensible
for the downstream task;

• adopting a hybrid planner, which allows to further ex-
ploit the PT world model by learning and planning
in imagination. For this purpose, we propose a new
algorithm: Dyna-MPC.

An overview of the method is illustrated in Figure 2 and the
algorithm is presented in Appendix C.

Task-aware fine-tuning. In the context of URLB, where the
environment dynamics is unchanged between the PT and FT
stage, some of the components learned during unsupervised
interaction, such as the world model, can be reused for fast
adaptation during FT. However, as the reward is changing
from pseudo-reward to task reward when changing from
the PT to the FT phase, it is not clear if pre-training of the
actor and critic can help the downstream task, a factor which
was not accounted for in previous work (Laskin et al., 2021;
Sekar et al., 2020) and in the results in Section 3.

The actor’s actions during the unsupervised stage drive the
agent to explore new transitions or to reach unseen states
of the environment. When moving to the FT stage, these
actions can be useful to quickly explore some environment
transitions in dense reward tasks, like the Quadruped and
Walker ones in URLB, where the agent is rewarded for
each state change. However, in sparser reward settings, like
the Jaco tasks, the agent’s actions need to find the rewards
corresponding to some specific areas of the environment. In
these cases, actions that repeatedly drive the agent far from
the starting state, potentially missing the task target, may
actually make the adaptation stage more difficult.

The critic’s predictions, trained on the intrinsic rewards dur-

4

https://masteringurlb.github.io/

Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels

ing the unsupervised interaction phase, would hardly trans-
fer to a specific downstream task reward function, given
the difference in reward scale and value. While we believe
that finding ways to adapt the critic’s prediction might be
interesting, e.g. by re-scaling them to be closer to the down-
stream task returns, we choose to discard the pre-trained
critic and re-learn it from scratch during fine-tuning.

To summarize, moving our agent to the adaptation stage,
we do always keep and fine-tune the PT model and we do
always discard the PT critic. As for the PT actor, this is fine-
tuned when the reward is dense, e.g. Walker and Quadruped
tasks, but we discard it in sparse reward tasks, e.g. Jaco.

Learning and planning in imagination. Knowing a model
of the environment, traditional model-based control ap-
proaches, e.g. model predictive control (MPC) (Williams
et al., 2015; Chua et al., 2018; Richards, 2005), can be used
to plan the agent’s action. Nonetheless, using actor-critic
methods has several advantages, such as amortizing the cost
of planning by caching previously computed (sub)optimal
actions and computing long-term returns from a certain
state, without having to predict outcomes that are far in
the future. More recent hybrid strategies, such as LOOP
(Sikchi et al., 2020) and TD-MPC (Hansen et al., 2022),
allow combining the actor’s predictions with trajectories
sampled from a distribution over actions that is iteratively
improved (Rubinstein & Kroese, 2004).

As in URLB we pre-train a world model, we could exploit
planning in latent space to adapt with limited additional
environment interaction. One problem with the above strate-
gies is that they are based upon learning off-policy actor and
critic, which in our context would prevent us from exploit-
ing the PT model to learn the actor and critic in imagination.
In order to enable hybrid planning with the behavior learned
in imagination (Hafner et al., 2019a), we develop a new
approach, which we call Dyna-MPC, that combines the
actor and critic learned in imagination with an MPPI-like
sampling strategy (Williams et al., 2015) for planning.

4.1. Dyna-MPC

As detailed in Algorithm 1, at each time step, we imagine
a set of latent trajectories using the model, by sampling ac-
tions from a time-dependent multivariate gaussian and from
the latent actor policy, trained in imagination (Hafner et al.,
2019a). Returns are estimated using reward predictions by
the model and the critic. An iterative strategy (Williams
et al., 2015) is used to update the parameters of the multi-
variate gaussian for J iterations. One significant difference
with previous approaches is that the policy in Dyna-MPC
is learned on-policy in imagination, thus no correction for
learning off-policy is required (Sikchi et al., 2020).

The critic is learned in the model’s imagination, comput-

Algorithm 1 Dyna-MPC

Require: Actor θ, Critic ψ, World Model ϕ
1: µ, σ: initial parameters for sampling actions
2: N,Nπ: num trajectories, num policy trajectories
3: zt, H: current model state, planning horizon
4: for each iteration j = 1..J do
5: Sample N trajectories of length H fromN (µ, σ2I),

starting from zt
6: Sample Nπ trajectories of length H using the actor
πθ, starting from zt

7: Predict future states using the model and expected
returns using reward and critic predictions (Eq. 1)

8: Update µ and σ (Eq. 2)
9: end for

10: return at ∼ N (µt, σ
2
t I)

ing the expected value of the actor’s actions using GAE-λ
estimates of the returns (Schulman et al., 2016):

V λt = rt + γt

{
(1− λ)vψ(zt+1) + λV λt+1 if t < H,

vψ(zH) if t = H,

(1)
where rt is the reward for state zt, yielded by the reward
predictor of the world model, and H is the imagination
horizon. When computing returns for the action’s iterative
update procedure we use the same return estimates.

At each step, we iteratively fit the parameters of a time-
dependent multivariate Gaussian distribution with diagonal
covariance, updating mean and standard deviation param-
eters using an importance-weighted average of the top-k
trajectories with the highest estimated returns. At every
step, N trajectories Πi = {a0,i, a1,i, ..., aH,i} of length
H are obtained sampling actions from the distributions
at ∼ N (µt, σ

2
t I) and Nπ trajectories are sampled from

the actor network at ∼ πθ(at|zt) and their outcomes are
predicted using the model. At each iteration, first, the top-k
trajectories with the highest returns are selected, then the
distribution parameters are updated as follows:

µ =
∑k
i=1 ρiΠ

⋆
i , σ = max(

√∑k
i=1 ρi(Π

⋆
i − µ)2 , ϵ) ,

(2)

where ρi = exp(τV λi)/
∑
j exp(τV

λ
j), τ is a temperature

parameter, ⋆ indicates the trajectory is in the top-k, and ϵ
is a clipping factor to avoid too small standard deviations
(Hansen et al., 2022). To reduce the number of iterations re-
quired for convergence, we reuse the 1-step shifted mean ob-
tained at the previous timestep (Argenson & Dulac-Arnold,
2020).

5

Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels

Figure 3. URL Benchmark. Our method obtains the highest overall performance on URLB, largely outperforming previous approaches.

5. Evaluation and Analysis
For all experiments, results are presented with at least three
random seeds.

5.1. Unsupervised Reinforcement Learning Benchmark

In Figure 3, we compare the results of Disagreement, the
best-performing algorithm from the URLB paper (Laskin
et al., 2021), and of Plan2Explore (Sekar et al., 2020) with
our approach. We also report the scores of DrQv2 and
DreamerV2 after 100k FT frames, with no pre-training. The
performance of our method is superior in all domains. With
respect to Disagreement, we improve performance by a
staggering 55% margin. With respect to Plan2Explore, we
improve performance by 17%. We highlight that the main
differences with Plan2Explore are: (i) we employ LBS for
unsupervised data collection (Mazzaglia et al., 2021), as
this showed to be performing better in some domains (see
Appendix D), (ii) we employ task-aware FT, (iii) we adopt
Dyna-MPC.

As also reported in Table 1, Plan2Explore performance can
also improve significantly when combined with our intro-
duced adaptation strategies. We further validate these strate-
gies through ablations in the following paragraphs.

Task-aware fine-tuning. We test different fine-tuning con-

figurations, where we copy the weights of some of the PT
components into the agent to fine-tune for the downstream
task. To increase the generality of this ablation, we run
the tests for all the unsupervised RL methods that we pre-
sented in Section 3 and show aggregated results in Figure 4
(detailed results per each method in Appendix D).

Overall, fine-tuning the PT world model provides the most
significant boost in performance, strengthening the hypothe-
sis that world models are very effective with unsupervised
RL. As we expected, using a PT critic is systematically
worse and this can be explained by the discrepancy between
intrinsic rewards and task rewards. Finally, fine-tuning the
actor improves performance slightly in Walker tasks and
remarkably in Quadruped tasks, which are the dense reward
tasks, but it is harmful in the Jaco sparse reward tasks.

Dyna-MPC. We use the world models and actors pre-
trained with all the different unsupervised strategies we
considered (see Section 3) and test their FT performance
with and without planning with Dyna-MPC. Aggregated
scores are reported in Figure 5, and detailed results for
each method are available in Appendix D. We observe that
adopting Dyna-MPC is always beneficial, as it improves the
average performance in all domains.

Figure 4. Task-aware fine-tuning. Effects of fine-tuning different
sets of pre-trained components of the agent.

Figure 5. Dyna-MPC. Using Dyna-MPC during the adaptation
stage improves performance in all domains.

6

Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels

Figure 6. RWRL tasks. We evaluate our method and the baselines
on the perturbated environments from the RWRL suite.

5.2. Real-World Reinforcement Learning Benchmark

We employ vision-based variants of the Walker Walk and
Quadruped Walk tasks from the RWRL suite (Dulac-Arnold
et al., 2020) to test the robustness of our method. These tasks
introduce system delays, stochasticity, and perturbations of
the robot’s model and sensors, which are applied with three
degrees of intensity to the original environment, i.e. ‘easy’,
‘medium’, and ‘hard’ (details in Appendix E).

In Figure 6, we present the results of our approach, pre-
trained on the non-perturbed environment and fine-tuned
on the environment wih perturbations, and compare it to
training Dreamer from scratch on the perturbed environment
for 100k, 1M, and 2M frames. We also add a random actions
+ Dreamer baseline, also pre-trained on the non-perturbed
environment, to see whether our approach outperforms pre-
training on randomly collected data.

Overall, we found that fine-tuning PT models offer an ad-
vantage over training from scratch for 100k frames, despite
all the variations in the environment. Furthermore, on the
Quadruped Easy and Medium settings, our method performs
better than Dreamer@1M and not far from Dreamer@2M
while using 10x and 20x less task-specific data, respectively.
Our method also performs close to Dreamer@1M/2M in
the Walker Easy task. Finally, our method also strongly
outperforms random actions in the ‘easy’ and ‘medium’
settings, showing that a better PT model yields higher FT
performance, even when the dynamics of the downstream
task is affected by misspecifications and noisy factors.

5.3. Extended Analysis

To better analyze the learned components, we conducted
a range of additional studies. For conciseness, detailed
descriptions of the experimental settings are deferred to
Appendix F and here we briefly summarize the takeaways.

Learning rewards online. We verify whether having to
discover and learn the reward function during FT impacts
performance. In Figure 7, we compare against agents that

Figure 7. Ablation study about knowing the task from the PT stage.

Figure 8. Zero-shot (ZS) vs fine-tuned (FT) performance.

(violating the URLB settings) know the task in advance and
can pre-train a reward predictor during the PT stage. We
see that learning the reward predictor does not affect per-
formance significantly for dense-reward tasks, such as the
Walker and Quadruped tasks. However, in sparser reward
tasks, i.e. the Jaco ones, knowing reward information in
advance provides an advantage. Efficient strategies to find
sparse rewards efficiently represent a challenge for future
research. More details in Appendix F.1.

Zero-shot adaptation. Knowing a reward predictor from
PT, it could be possible to perform zero-shot control with
MPC methods if the model and the reward function allow
it. In Figure 8, we show that despite the zero-shot MPC
(ZS) offers an advantage over Dreamer@100k, the FT phase
is crucial to deliver high performance on the downstream
tasks, as the agent uses this phase to collect missing infor-
mation about the environment and the task. Further details
in Appendix F.2.

Latent dynamics discrepancy. We propose a novel met-
ric, Latent Dynamics Discrepancy (LDD), evaluating the
distance between the latent predictions of the PT model and
the same model after FT on a task. In Figure 9, we show
the correlation between LDD and the performance ratio be-
tween using the PT model and the FT model for planning
(see Appendix F.3 for a detailed explanation). We observed
a strong negative Pearson correlation (−0.62, p-value: 0.03),

7

Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels

Figure 9. LDD and performance correlation. The line and shade
represent a linear regression model fit and its confidence intervals.

Pre-training for 2M environment frames
ICM LBS P2E RND

Correlation -0.54 -0.60 -0.34 -0.03
p-value 0.07 0.04 0.28 0.91

Table 2. Pearson correlation and p-value between fine-tuned per-
formance across URLB tasks and intrinsic rewards.

highlighting that updates in the model dynamics during FT
played a significant role in improving performance.

Unsupervised rewards and performance. We analyze the
correlation between the performance of different agents and
their intrinsic rewards for optimal trajectories obtained by
an oracle agent in Table 2. In particular, the correlation for
LBS, which overall performs best in URLB, has a statisti-
cal significance, as its p-value is < 0.05. We believe this
correlation might be one of the causes of LBS outstanding
performance. Further insights are provided in Appendix F.4.

6. Related Work
Model-based control. Dynamics models combined with
powerful search methods have led to impressive results on
a wide variety of tasks such as Atari (Schrittwieser et al.,
2020) and continuous control (Hafner et al., 2019a; Janner
et al., 2019; Sikchi et al., 2021; Lowrey et al., 2018). LOOP
(Sikchi et al., 2020) and TD-MPC (Hansen et al., 2022)
combine temporal difference learning and MPC. The model
proposed with TD-MPC is task-oriented and thus requires
a task to accelerate learning. In our work, we focus on un-
supervised model learning, grounding on the DreamerV2
model (Hafner et al., 2021), whose supervision comes from
predicting the environment’s observations. Methods that
use no reconstruction could generalize better to visual dif-
ferences (Deng et al., 2021; Ma et al., 2020) but they lose in
explainability, for the absence of a decoder.

Unsupervised RL. Prior to our work, the large-scale study
of curiosity (Burda et al., 2018) provided an insightful
analysis of the performance of knowledge-based methods

in the reward-free setting. In our work, we leverage the
URLB setting, to provide an analysis of a combination
of model-based control techniques with unsupervised RL.
This allowed us to formulate a strategy to adapt pre-trained
models to visual control tasks in a data-efficient manner.
Closely, Plan2Explore (Sekar et al., 2020) adapts Disagree-
ment (Pathak et al., 2019) to work with Dreamer (Hafner
et al., 2019a). In our work, in addition to analyzing a wider
choice of unsupervised RL strategies that can work with a
world-model-based agent, we show how to better exploit
the agent PT components for adaptation, and we propose a
hybrid planner to improve data efficiency. As a results, we
largely improved performance compared to Plan2Explore.

Transfer learning. In the field of transfer learning, fine-
tuning is the most used approach. However, fine-tuning all
the pre-trained agent components may not be the most effec-
tive strategy. In transfer learning for RL, they have studied
this problem, mainly with the objective of transferring from
one environment to another (Farebrother et al., 2018; Sasso
et al., 2022; van Driessel & Francois-Lavet, 2021). Instead,
we analyze which agent’s components should be transferred
from the unsupervised PT stage to the supervised FT stage
when the environment’s dynamics is assumed to stay similar
or be the same.

7. Conclusion
In order to accelerate the development and deployment of
learning agents for real-world tasks, it is crucial that the
employed algorithms can adapt in a data-efficient way for
multiple tasks. Our method obtains near-optimal perfor-
mance in URLB from pixels, which is a challenging bench-
mark that has been widely adopted in the community, and
showed robustness to perturbations in the environment, on
the RWRL benchmark. We also analyzed several aspects of
the learned models, to understand what could be improved
further in the future to ease the adaptation process.

Our results, establishing a new state-of-the-art in URLB
from pixels, could become a reference to push advances in
URL further. At the same time, as we close the gap with
supervised baselines, we show the need for new benchmarks
in the community for further developing URL research. One
main limitation of URLB is that the environment is almost
identical between PT and FT and, as we have shown, this
makes it easier for model-based approaches to learn how
the environment works. Although our evaluation on the
RWRL benchmark shows that unsupervised pre-training is
still beneficial despite visual differences and perturbations,
additional precautions are required to deploy these systems
in the real world. To support this line of research, future
benchmarks should include variations (both visual and in
the dynamics) between PT and FT, testing the generalization
capabilities of the agent’s behavior or the world model.

8

Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels

Another takeaway from our study on the URLB is the im-
portance of learning generalizable and adaptable behaviors.
In RL, this is reflected in the actor and critic models. While
we showed that a critic model trained on unsupervised re-
wards cannot easily transfer to new tasks, there are lines
of research that aim to learn generalizable critic networks
by adopting successor features (Hansen et al., 2020; Bar-
reto et al., 2016) or goal-directed value functions (Ma et al.,
2022), which could lead to faster or zero-shot adaptation
to a given reward function (Touati et al., 2023). As for the
actor, we believe that learning generalizable skills could be
one potential way to learn more varied and adaptable action
behaviors (Pertsch et al., 2020). However, we also expe-
rienced that skill-driven methods (Liu & Abbeel, 2021a;
Eysenbach et al., 2019) tend to have more limited explo-
ration capabilities (Campos et al., 2020) falling behind other
approaches in some domains (i.e. Walker and Quadruped)
of URLB.

Acknowledgements
This research received funding from the Flemish Govern-
ment (AI Research Program). Pietro Mazzaglia is funded by
a Ph.D. grant of the Flanders Research Foundation (FWO).
The authors would like to thank Sebastien Paquet and Chris
Pal for their valuable feedback.

References
Ahn, M., Brohan, A., Brown, N., Chebotar, Y., Cortes,

O., David, B., Finn, C., Gopalakrishnan, K., Hausman,
K., Herzog, A., Ho, D., Hsu, J., Ibarz, J., Ichter, B.,
Irpan, A., Jang, E., Ruano, R. J., Jeffrey, K., Jesmonth,
S., Joshi, N., Julian, R., Kalashnikov, D., Kuang, Y., Lee,
K.-H., Levine, S., Lu, Y., Luu, L., Parada, C., Pastor,
P., Quiambao, J., Rao, K., Rettinghouse, J., Reyes, D.,
Sermanet, P., Sievers, N., Tan, C., Toshev, A., Vanhoucke,
V., Xia, F., Xiao, T., Xu, P., Xu, S., and Yan, M. Do as
i can and not as i say: Grounding language in robotic
affordances. In arXiv preprint arXiv:2204.01691, 2022.

Argenson, A. and Dulac-Arnold, G. Model-based offline
planning, 2020. URL https://arxiv.org/abs/
2008.05556.

Barreto, A., Dabney, W., Munos, R., Hunt, J. J., Schaul, T.,
van Hasselt, H., and Silver, D. Successor features for
transfer in reinforcement learning, 2016. URL https:
//arxiv.org/abs/1606.05312.

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T.,
Saxton, D., and Munos, R. Unifying count-based explo-
ration and intrinsic motivation. In Lee, D., Sugiyama, M.,
Luxburg, U., Guyon, I., and Garnett, R. (eds.), Advances

in Neural Information Processing Systems, volume 29,
2016.

Burda, Y., Edwards, H., Pathak, D., Storkey, A., Darrell, T.,
and Efros, A. A. Large-scale study of curiosity-driven
learning, 2018. URL https://arxiv.org/abs/
1808.04355.

Burda, Y., Edwards, H., Pathak, D., Storkey, A., Darrell,
T., and Efros, A. A. Largescale study of curiosity-driven
learning. ICLR, 2019a.

Burda, Y., Edwards, H., Storkey, A. J., and Klimov, O.
Exploration by random network distillation. ICLR, 2019b.

Campos, V., Trott, A., Xiong, C., Socher, R., Giro-i Nieto,
X., and Torres, J. Explore, discover and learn: Unsu-
pervised discovery of state-covering skills, 2020. URL
https://arxiv.org/abs/2002.03647.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A
simple framework for contrastive learning of visual rep-
resentations. In Proceedings of the 37th International
Conference on Machine Learning, pp. 1597–1607, 2020.

Chua, K., Calandra, R., McAllister, R., and Levine, S. Deep
reinforcement learning in a handful of trials using prob-
abilistic dynamics models. In Bengio, S., Wallach, H.,
Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Gar-
nett, R. (eds.), Advances in Neural Information Process-
ing Systems. Curran Associates, Inc., 2018.

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. Empirical
evaluation of gated recurrent neural networks on sequence
modeling. In NIPS Workshop on Deep Learning, 2014,
2014.

Deng, F., Jang, I., and Ahn, S. Dreamerpro: Reconstruction-
free model-based reinforcement learning with prototyp-
ical representations, 2021. URL https://arxiv.
org/abs/2110.14565.

Dulac-Arnold, G., Levine, N., Mankowitz, D. J., Li, J.,
Paduraru, C., Gowal, S., and Hester, T. An empirical in-
vestigation of the challenges of real-world reinforcement
learning, 2020.

Eysenbach, B., Gupta, A., Ibarz, J., and Levine, S. Diversity
is all you need: Learning skills without a reward function.
In ICLR, 2019.

Farebrother, J., Machado, M. C., and Bowling, M. Gener-
alization and regularization in dqn, 2018. URL https:
//arxiv.org/abs/1810.00123.

Ha, D. and Schmidhuber, J. Recurrent world models fa-
cilitate policy evolution. In Bengio, S., Wallach, H.,
Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Gar-
nett, R. (eds.), Advances in Neural Information Process-
ing Systems. Curran Associates, Inc., 2018.

9

https://arxiv.org/abs/2008.05556
https://arxiv.org/abs/2008.05556
https://arxiv.org/abs/1606.05312
https://arxiv.org/abs/1606.05312
https://arxiv.org/abs/1808.04355
https://arxiv.org/abs/1808.04355
https://arxiv.org/abs/2002.03647
https://arxiv.org/abs/2110.14565
https://arxiv.org/abs/2110.14565
https://arxiv.org/abs/1810.00123
https://arxiv.org/abs/1810.00123

Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. arXiv preprint
arXiv:1801.01290, 2018.

Hafner, D., Lillicrap, T., Ba, J., and Norouzi, M. Dream
to control: Learning behaviors by latent imagination. In
ICLR, 2019a.

Hafner, D., Lillicrap, T., Fischer, I., Villegas, R., Ha, D.,
Lee, H., and Davidson, J. Learning latent dynamics for
planning from pixels. In ICML, pp. 2555–2565, 2019b.

Hafner, D., Lillicrap, T. P., Norouzi, M., and Ba, J. Master-
ing atari with discrete world models. In ICLR, 2021.

Hansen, N., Wang, X., and Su, H. Temporal difference
learning for model predictive control. 2022.

Hansen, S., Dabney, W., Barreto, A., Warde-Farley, D.,
de Wiele, T. V., and Mnih, V. Fast task inference with
variational intrinsic successor features. In ICLR, 2020.

Janner, M., Fu, J., Zhang, M., and Levine, S. When to trust
your model: Model-based policy optimization. ArXiv,
abs/1906.08253, 2019.

Laskin, M., Yarats, D., Liu, H., Lee, K., Zhan, A., Lu, K.,
Cang, C., Pinto, L., and Abbeel, P. URLB: Unsupervised
reinforcement learning benchmark. In NeurIPS Datasets
and Benchmarks Track (Round 2), 2021.

LeCun, Y. A path towards autonomous machine intelligence
version 0.9. 2, 2022-06-27. Open Review, 62, 2022.

Levine, S., Finn, C., Darrell, T., and Abbeel, P. End-to-end
training of deep visuomotor policies. J. Mach. Learn.
Res., 2016.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. Continuous
control with deep reinforcement learning. In Bengio, Y.
and LeCun, Y. (eds.), ICLR, 2016.

Liu, H. and Abbeel, P. Aps: Active pretraining with succes-
sor features. In ICML, pp. 6736–6747, 2021a.

Liu, H. and Abbeel, P. Unsupervised active pre-training for
reinforcement learning. ICLR, 2021b.

Lowrey, K., Rajeswaran, A., Kakade, S., Todorov, E., and
Mordatch, I. Plan online, learn offline: Efficient learning
and exploration via model-based control, 2018. URL
https://arxiv.org/abs/1811.01848.

Lu, Y., Hausman, K., Chebotar, Y., Yan, M., Jang, E., Her-
zog, A., Xiao, T., Irpan, A., Khansari, M., Kalashnikov,
D., and Levine, S. AW-opt: Learning robotic skills with
imitation andreinforcement at scale. In 5th Annual Con-
ference on Robot Learning (CoRL), 2021.

Ma, X., Chen, S., Hsu, D., and Lee, W. S. Contrastive varia-
tional model-based reinforcement learning for complex
observations. In Proceedings of the 4th Conference on
Robot Learning (CoRL), 2020.

Ma, Y. J., Sodhani, S., Jayaraman, D., Bastani, O., Kumar,
V., and Zhang, A. Vip: Towards universal visual reward
and representation via value-implicit pre-training, 2022.
URL https://arxiv.org/abs/2210.00030.

Mazzaglia, P., Çatal, O., Verbelen, T., and Dhoedt, B.
Curiosity-driven exploration via latent bayesian surprise.
ArXiv, abs/2104.07495, 2021.

OpenAI, Akkaya, I., Andrychowicz, M., Chociej, M.,
Litwin, M., McGrew, B., Petron, A., Paino, A., Plappert,
M., Powell, G., Ribas, R., Schneider, J., Tezak, N. A.,
Tworek, J., Welinder, P., Weng, L., Yuan, Q., Zaremba,
W., and Zhang, L. M. Solving rubik’s cube with a robot
hand. ArXiv, abs/1910.07113, 2019.

Parisi, S., Rajeswaran, A., Purushwalkam, S., and Gupta,
A. The unsurprising effectiveness of pre-trained vision
models for control, 2022.

Pathak, D., Agrawal, P., Efros, A., and Darrell, T. Curiosity-
driven exploration by self-supervised prediction. ICML,
2017.

Pathak, D., Gandhi, D., and Gupta, A. Self-supervised
exploration via disagreement. In ICML, 2019.

Pertsch, K., Lee, Y., and Lim, J. J. Accelerating rein-
forcement learning with learned skill priors, 2020. URL
https://arxiv.org/abs/2010.11944.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. Language models are unsupervised multitask
learners. 2019.

Richards, A. G. Robust constrained model predictive control.
PhD thesis, Massachusetts Institute of Technology, 2005.

Rubinstein, R. Y. and Kroese, D. P. The cross-entropy
method: a unified approach to combinatorial optimiza-
tion, Monte-Carlo simulation, and machine learning, vol-
ume 133. Springer, 2004.

Sasso, R., Sabatelli, M., and Wiering, M. A. Multi-source
transfer learning for deep model-based reinforcement
learning, 2022. URL https://arxiv.org/abs/
2205.14410.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K.,
Sifre, L., Schmitt, S., Guez, A., Lockhart, E., Hassabis,
D., Graepel, T., et al. Mastering atari, go, chess and shogi
by planning with a learned model. Nature, 588(7839):
604–609, 2020.

10

https://arxiv.org/abs/1811.01848
https://arxiv.org/abs/2210.00030
https://arxiv.org/abs/2010.11944
https://arxiv.org/abs/2205.14410
https://arxiv.org/abs/2205.14410

Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels

Schulman, J., Moritz, P., Levine, S., Jordan, M., and Abbeel,
P. High-dimensional continuous control using generalized
advantage estimation. In ICLR, 2016.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
ArXiv, abs/1707.06347, 2017.

Sekar, R., Rybkin, O., Daniilidis, K., Abbeel, P., Hafner, D.,
and Pathak, D. Planning to explore via self-supervised
world models. In ICML, 2020.

Sikchi, H., Zhou, W., and Held, D. Learning off-policy with
online planning, 2020. URL https://arxiv.org/
abs/2008.10066.

Sikchi, H., Zhou, W., and Held, D. Learning off-policy
with online planning. In 5th Annual Conference on Robot
Learning, 2021. URL https://openreview.net/
forum?id=1GNV9SW95eJ.

Singh, H., Hnizdo, V., Demchuk, A., and Misra, N. Near-
est neighbor estimates of entropy. American Journal of
Mathematical and Management Sciences, 23, 02 2003.

Sutton, R. S. Dyna, an integrated architecture for
learning, planning, and reacting. SIGART Bull., 2
(4):160–163, jul 1991. ISSN 0163-5719. doi: 10.
1145/122344.122377. URL https://doi.org/10.
1145/122344.122377.

Talvitie, E. Learning the reward function for a misspecified
model. In Dy, J. and Krause, A. (eds.), ICML, volume 80
of Proceedings of Machine Learning Research, pp. 4838–
4847. PMLR, 10–15 Jul 2018.

Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y.,
de Las Casas, D., Budden, D., Abdolmaleki, A., Merel,
J., Lefrancq, A., Lillicrap, T. P., and Riedmiller, M. A.
Deepmind control suite. CoRR, abs/1801.00690, 2018.

Touati, A., Rapin, J., and Ollivier, Y. Does zero-shot rein-
forcement learning exist?, 2023.

van Driessel, G. and Francois-Lavet, V. Component
transfer learning for deep rl based on abstract repre-
sentations, 2021. URL https://arxiv.org/abs/
2111.11525.

Williams, G., Aldrich, A., and Theodorou, E. Model Predic-
tive Path Integral Control using Covariance Variable Im-
portance Sampling. arXiv e-prints, art. arXiv:1509.01149,
2015.

Wu, P., Escontrela, A., Hafner, D., Goldberg, K., and
Abbeel, P. Daydreamer: World models for physical robot
learning, 2022. URL https://arxiv.org/abs/
2206.14176.

Yarats, D., Fergus, R., Lazaric, A., and Pinto, L. Reinforce-
ment learning with prototypical representations. 2021.

Yarats, D., Fergus, R., Lazaric, A., and Pinto, L. Master-
ing visual continuous control: Improved data-augmented
reinforcement learning. In ICLR, 2022.

11

https://arxiv.org/abs/2008.10066
https://arxiv.org/abs/2008.10066
https://openreview.net/forum?id=1GNV9SW95eJ
https://openreview.net/forum?id=1GNV9SW95eJ
https://doi.org/10.1145/122344.122377
https://doi.org/10.1145/122344.122377
https://arxiv.org/abs/2111.11525
https://arxiv.org/abs/2111.11525
https://arxiv.org/abs/2206.14176
https://arxiv.org/abs/2206.14176

Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels

Appendix

A. Normalization scores

Pre-trainining for 2M environment frames
Domain Task URLB Expert URLB Disagreement Dreamer@2M Ours

Walker

Flip 799 339 ± 16 778 938 ± 5
Run 796 154 ± 9 724 596 ± 17

Stand 984 552 ± 92 909 973 ± 6
Walk 971 424 ± 36 965 959 ± 0

Quadruped

Jump 888 194 ± 21 753 822 ± 15
Run 888 143 ± 25 904 642 ± 44

Stand 920 305 ± 35 945 927 ± 13
Walk 866 145 ± 10 947 816 ± 27

Jaco

Reach bottom left 193 106 ± 22 223 192 ± 10
Reach bottom right 203 90 ± 15 231 192 ± 8

Reach top left 191 127 ± 21 233 197 ± 8
Reach top right 223 118 ± 23 225 212 ± 6

Table 3. Performance of expert baseline and the best method on pixel-based URLB from (Laskin et al., 2021) and performance of our
oracle baseline (Dreamer@2M) and best approach, using LBS for unsupervised data collection, after pre-training for 2M frames and
fine-tuning for 100k steps.

In Table 3, we report the mean scores for the URLB Expert, used to normalize the scores in the URLB paper, and for
Dreamer@2M, which we use to normalize returns of our methods, where both supervised baselines have been trained
individually on each of the 12 tasks from URLB for 2M frames. We additionally report mean and standard errors for the
best-performing unsupervised baseline from URLB. which is Disagreement (Pathak et al., 2019), and our method. We notice
that our scores approach the Dreamer@2M’s scores in several tasks, eventually outperforming them in a few tasks (e.g.
Walker Flip, Quadruped Jump). We believe this merit is due both to the exploration pre-training, which may have found
more rewarding trajectories than greedy supervised RL optimization and of the improved Dyna-MPC planning strategy.

B. Integrating Unsupervised RL Strategies
We summarize here the unsupervised RL approaches tested and how we integrated them with the Dreamer algorithm for
exploration. For all methods, rewards have been normalized during training using an exponential moving average with
momentum 0.95, with the exceptions of RND, which follows its original reward normalization (Burda et al., 2019b), and
APS, whose rewards are not normalized because they are used to regress the skill that is closer to the downstream task
during FT.

ICM. The Intrinsic Curiosity Module (ICM; Pathak et al. (2017)) defines intrinsic rewards as the error between states
projected in a feature space and a feature dynamics model’s predictions. We use the Dreamer agent encoder et = fϕ(st) to
obtain features and train a forward dynamics model g(et|et−1, at−1) to compute rewards as:

rt
ICM ∝ ∥g(et|et−1, at−1)− et∥2.

As the rewards for ICM require environment states (going through the encoder to compute prediction error), we train a
reward predictor to allow estimating rewards in imagination.

Plan2Explore. The Plan2Explore algorithm (Sekar et al., 2020) is an adaptation of the Disagreement algorithm (Pathak
et al., 2019) for latent dynamics models. An ensemble of forward dynamics models is trained to predict the features
embedding et = fϕ(st), given the previous latent state and actions, i.e. g(et|zt−1, at−1, wk), where wk are the parameters

12

Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels

of the k-th predictor. Intrinsic rewards are defined as the variance of the ensemble predictions:

rt
P2E ∝ Var({g(et|zt−1, at−1, wk)|k ∈ [1, ...,K]}).

Plan2Explore requires only latent states and actions, thus it can be computed directly in imagination. We used an ensemble
of 5 models.

RND. Random Network Distillation (RND; Burda et al. (2019b)) learns to predict the output of a randomly initialized
network n(st) that projects the states into a more compact random feature space. As the random network is not updated
during training, the prediction error should diminish for already visited states. The intrinsic reward here is defined as:

rt
RND ∝ ∥g(st)− n(st)∥2

As the rewards for RND requires environment states (to encode with the random network), we train a reward predictor to
allow estimating rewards in imagination.

LBS. In Latent Bayesian Surprise (LBS; Mazzaglia et al. (2021)), they use the KL divergence between the posterior
and the prior of a latent dynamics model as a proxy for the information gained with respect to the latent state variable, by
observing new states. Rewards are computed as:

rt
LBS ∝ DKL[q(zt|zt−1, at−1, et)∥p(zt|zt−1, at−1)]

As the rewards for LBS requires environment states (to compute the posterior distribution), we train a reward predictor to
allow estimating rewards in imagination.

APT. Active Pre-training (APT; Liu & Abbeel (2021b)) uses a particle-based estimator based on the K nearest-neighbors
algorithm (Singh et al., 2003) to estimate entropy for a given state. We implement APT on top of the deterministic component
of the latent states z̄t, providing rewards as:

rt
APT ∝

k∑
i

log ∥z̄t − z̄it∥2,

where k are the nearest-neighbor states in latent space. As APT requires only latent states, it can be computed directly in
imagination. We used k = 12 nearest neighbors.

DIAYN. Diversity is All you need (DIAYN; Eysenbach et al. (2019)) maximizes the mutual information between the
states and latent skills w. We implement DIAYN on top of the latent space of Dreamer, writing the mutual information as
I(wt, zt) = H(wt)−H(wt|zt). The entropy H(wt) is kept maximal by sampling wt ∼ Unif(wt) from a discrete uniform
prior distribution, while H(wt|zt) is estimated learning a discriminator q(wt|zt). We compute intrinsic rewards as:

rt
DIAYN ∝ log q(wt|zt)

Additionally, DIAYN maximizes the entropy of the actor, so we add an entropy maximization term to Dreamer’s objective
(Haarnoja et al., 2018). As DIAYN requires model states and skills sampled from a uniform distribution to compute rewards,
we can directly compute them in imagination. For FT, the skill adapted is the one with the highest expected rewards,
considering the states and rewards obtained in the initial episodes.

APS. Active Pre-training with Successor features (APS; Liu & Abbeel (2021a)) maximizes the mutual information
between the states and latent skills w. We implement APS on top of the latent space of Dreamer, writing the mutual
information as I(wt, zt) = H(zt)−H(zt|wt). The entropy term H(zt) is estimated using a particle-based estimator on
top of the deterministic component of the latent states z̄t, as for APT, while the term H(zt|wt) is estimated learning a
discriminator q(zt|wt). The intrinsic rewards for APS can be written as:

rt
APS ∝ rtAPT + log q(wt|zt)

As APS requires model states and uniformly sampled skills to compute rewards, we can directly compute them in imagination.
For FT, the skill to adapt is selected using linear regression over the states and rewards obtained in the initial episodes (Liu
& Abbeel, 2021a).

13

Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels

C. Algorithm

Algorithm 2 Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels

Require: Actor θ, Critic ψ, World Model ϕ
1: Intrinsic reward rint, extrinsic reward rext

2: Environment, M , downstream tasks Tk, k ∈ [1, . . . ,M]
3: Pre-train frames NPT, fine-tune frames NFT, environment frames/update τ
4: Initial model state z0, hybrid planner Dyna-MPC, replay buffers DPT, DFT
5:
6: // Pre-training
7: for t = 0, . . . , NPT do
8: Draw action from the actor, at ∼ πθ(at|zt)
9: Apply action to the environment, st+1 ∼ P (·|st,at)

10: Add transition to replay buffer, DPT ← DPT ∪ (st,at, st+1)
11: Infer model state, zt+1 ∼ q(zt+1|zt, at, fϕ(st+1))
12: if t mod τ = 0 then
13: Update world model parameters ϕ on the data from the replay buffer DPT
14: Update actor-critic parameters {θ, ψ} in imagination, maximizing rint

15: end if
16: end for
17: Output pre-trained parameters {ψPT, θPT, ϕPT}
18:
19: // Fine-tuning
20: for Tk ∈ [T1, . . . , TM] do
21: Initialize fine-tuning world-model with ϕPT
22: (Optional) Initialize fine-tuning actor with θPT
23: for t = 0, . . . , NFT do
24: Draw action from the actor, at ∼ πθ(at|zt)
25: Use the planner for selecting best action, at ∼ Dyna-MPC(zt)
26: Apply action to the environment, st+1, r

ext
t ∼ P (·|st,at)

27: Add transition to replay buffer, DFT ← DFT ∪ (st,at, r
ext
t , st+1)

28: Infer model state, zt+1 ∼ q(zt+1|zt, at, fϕ(st+1))
29: if t mod τ = 0 then
30: Update world model parameters ϕ on the data from the replay buffer DFT
31: Update actor-critic parameters {θ, ψ} in imagination, maximizing rext

32: end if
33: end for
34: Evaluate performance on Tk
35: end for

14

Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels

D. Additional Results
We present complete results, for each unsupervised RL method, for the large-scale study experiments presented in Section 3
and for the ablations in Section 5.

Figure 10. Complete results for Figure 1b.

(a) Model (b) Model, Actor (c) Model, Actor, Critic

Figure 11. Complete results for Figure 4.

(a) FT (b) FT + Dyna-MPC

Figure 12. Complete results for Figure 5.

15

Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels

Can a pre-training stage longer than 2M frames be beneficial? In Figure 13, we report FT results with our full method,
every 1M frames up to 5M PT frames. The aggregated results show that, adopting our method, longer PT can increase
performance further, especially until 4M steps. The performance in all domains keeps increasing or remains steady until 5M
steps, with two exceptional cases, Walker for Plan2Explore and Jaco for APS, where performance slightly drops between
4M and 5M steps.

For these experiments, we kept the size of the model and all the hyperparameters unvaried with respect to the 2M PT frames
experiments but we increased the replay buffer maximum size to 5M frames. Increasing model capacity, and adopting
additional precautions, such as annealing learning rate, it is possible that the agent could benefit even more from longer
pre-training and we aim to analyse this more in details for future work.

Figure 13. Longer pre-training. Fine-tuning performance of our method when pre-training for longer than 2M steps. Every bar reports
mean performance and standard errors.

16

Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels

E. RWRL settings
Algorithms developed in simulation struggle to transfer to real-world systems due to a series of implicit assumptions that
are rarely satisfied in real environments, e.g. URLB assumes the dynamics between PT and FT stay the same. The RWRL
benchmark (Dulac-Arnold et al., 2020) considers several challenges that are common in real-world systems and implements
them on top of DMC tasks.

We take the Quadruped and Walker tasks from the RWRL benchmark and replace the low-dimensional sensor inputs with
RGB camera inputs. While this removes some of the perturbations planned in the benchmark (Dulac-Arnold et al., 2020),
such as noise in the sensors, it introduces the difficulty of a different dynamics in pixel space (due to the other perturbations),
compared to the one observed during pre-training in the vanilla simulation environment.

Setting Easy Medium Hard
System Delays Time Steps Time Steps Time Steps
Action 3 6 9
Rewards 10 20 40
Action Repetition 1 2 3
Gaussian Noise Std. Deviation Std. Deviation Std. Deviation
Action 0.1 0.3 1.0
Perturbation [Min,Max] Std. [Min,Max] Std. [Min,Max] Std.
Quadruped
(shin length) [0.25, 0.3] 0.005 [0.25, 0.8] 0.05 [0.25, 1.4] 0.1
Perturbation [Min,Max] Std. [Min,Max] Std. [Min,Max] Std.
Walker
(thigh length) [0.225, 0.25] 0.002 [0.225, 0.4] 0.015 [0.15, 0.55]] 0.04

Table 4. Perturbations setting for each challenge of our adapted tasks from the RWRL benchmark, in increasing levels of intensity.

F. Extended Analysis
We note that, to run the experiments faster, we did not use Dyna-MPC for the extended analysis. Furthermore, the Jaco tasks
used slightly differ from the original ones in URLB, only in that the target to reach cannot move. This allows consistency of
the reward function between PT and FT, so that a reward predictor can be trained on ‘reward-labelled’ PT data. However,
because of this change, the performance in Jaco may differ from the other main results (mainly in Figure 7 and Figure 8).

F.1. Learning Rewards Online

In Figure 7 of the main text, we measure the gap in performance between pre-trained agents that have no knowledge of the
reward function at the beginning of fine-tuning and agents whose reward predictor is initialized from a reward predictor
learned on top of the unsupervisedly collected data (violating the URLB settings). Crucially, the agent during unsupervised
PT can learn the reward predictor without affecting neither the model learning or the exploration process. To not affect the
model, gradients are stopped between the reward predictor and the rest of the world model. To not affect exploration, the
rewards used to train the agent’s actor and critic remain the intrinsic rewards, used for exploration.

F.2. Zero-shot Adaptation

Using agents that have access to a PT reward predictor, we explore the idea of zero-shot adaptation using MPC, which
is trying to solve the URLB tasks using only planning and the pre-trained world model and reward predictor. In order to
obtain good performance, this assumes that the model correctly learned the dynamics of the environment and explored
rewarding transitions that are relevant to the downstream task, during pre-training. In Figure 8 of the main text, we compare
the results of performing MPC in a zero-shot setting (ZS) with the performance of an MPC agent that is allowed 100k
frames for fine-tuning (FT). As for the MPC method, we employ MPPI (Williams et al., 2015). Because these experiments
are particularly expensive to run, we just them on the agents trained with the Plan2Explore URL approach.

We observe that the performance of zero-shot MPC is generally weak. While it overall performs better than the non-pre-
trained model, simply applying MPC leveraging the pre-trained world model and reward predictor trained on the pre-training
stage data is not sufficient to guarantee satisfactory performance. The fact that exploiting the fine-tuning stage using the same

17

Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels

MPC approach generally boosts performance demonstrates that the model has a major benefit from the FT stage. Still, the
performance of MPC generally lacks behind the actor-critic performance, suggesting that, especially in a higher-dimensional
action space such as the Quadruped one, amortizing the cost of planning with actor-critic seems crucial to achieve higher
performance.

F.3. Latent Dynamics Discrepancy

Model misspecification is a useful measure to assess the uncertainty or inaccuracy of the model dynamics. It is computed
as the difference between the dynamics predictions and the real environment dynamics. The metric helps build robust
RL strategies, that take the dynamics uncertainty into account while searching for the optimal behavior (Talvitie, 2018).
However, with pixel-based inputs the dynamics of the environment are observed through high-dimensional images. And this
in-turn could hurt the metric evaluation, since the distances in pixel space can be misleading. In our approach, we use a
model-based RL agent that learns the dynamics model in a compact latent space Z .

Our novel metric, Latent Dynamics Discrepancy (LDD), quantifies the “misspecification” of the learned latent dynamics
accordingly. The metric quantifies the distance between the predictions of the pre-trained model and the same model
after fine-tuning on a downstream task. However, as the decoder of the world model gets updated during fine-tuning, the
latent space mapping between model states z and environment states s might drift. For this reason, we freeze the agent’s
decoder weights, so that the model can only improve the posterior and the dynamics. This ensures that the mapping Z −→ S
remains unchanged and allows to compare the dynamics model after fine-tuning with the one before fine-tuning. In order to
measure the distance between the distribution output by the dynamics network, we chose the symmetrical Jensen-Shannon
divergence:

LDD = E(zt,at)

[
DJS[pFT(zt+1|zt, at)∥pPT(zt+1|zt, at)]

]
, (3)

where the expectation is taken over the previous model states zt sampled from the fine-tuned posterior qFT(zt), actions at−1

sampled from an oracle actor π∗(at|zt), so that we evaluate the metric on optimal trajectories, whose environment’s state
distribution corresponds to the stationary distribution induced by the actor st ∼ dπ

∗
(st). We used 30 trajectories per task in

our evaluation.

We observe in our experiments that there exists a correlation between the metric and the performance ratio between a
zero-shot model and a fine-tuned model (see Figure 9 in the main paper). The key observation is that major updates in the
model dynamics during fine-tuning phase played an important role in improving the agent’s performance, compared to the
pre-trained model and zero-shot performance. Future research may attempt to reduce such dependency by either improving
the model learning process, so that the pre-trained dynamics could have greater accuracy, or the data collection process,
proposing URL methods that directly aid to reduce such uncertainty.

F.4. Unsupervised Rewards and Performance

We further analyzed the correlation between the normalized performance of the different exploration agents and their
intrinsic rewards for optimal trajectories obtained by an oracle agent. A strong negative correlation between the two factors
should indicate that the agent is more interested in seeing the optimal trajectories when its performance is low on the task.

We observe that there is negative correlation between Plan2Explore (P2E), ICM, LBS’s performance and their intrinsic
rewards, while we found ∼0 correlation for RND (see Table 2 in the main text). Out of the methods tested, LBS significantly
demonstrated the correlation, as its p-value is < 0.05. This is likely one of the key factors for the high performance of the
agent using LBS on the benchmark.

One possible explanation is that LBS searches for transitions of the environment that are difficult to predict for the dynamics,
so the model likely learns those transitions more accurately, facilitating planning during the fine-tuning stage. Another
potential explanation is that, given the high correlation between intrinsic and extrinsic rewards, the actor initialized by LBS
performs better at the beginning of FT, speeding up adaptation.

18

Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels

Figure 14. Jaco tasks variations. Testing denser and sparser rewards for the Jaco tasks. The performance gap between choosing to use or
not to use the pre-trained actor increases with the sparsity of the reward function.

G. On the sparsity of the Jaco tasks
The Jaco tasks in URLB are sparsely rewarded reaching tasks. To support our claim that fine-tuning the exploration actor
is challenging due to the task sparsity, we conducted additional experiments on two modified versions of the Jaco tasks:
one with a sparser reward function and another with a denser reward function. In these experiments, the maximum reward
obtainable is the same as the default URLB tasks, but the area of the environment that is rewarded is smaller in the sparser
version and larger in the denser version.

Results are presented in Figure 14 (averaged across all 2M steps PT methods and all Jaco tasks). Our findings indicate that
the sparser the reward function, the greater the performance difference between initializing with the exploration PT actor
(Model, Actor) and a random actor (Model). Based on visual inspection of the agent’s behavior (which can be seen on the
project website), we believe this occurs because exploration policies often move the agent toward areas far from the initial
position, which are typically further away from the target and make the reward harder to find compared to a random policy,
which tends to explore closer to the initial pose.

H. A recipe for unsupervised RL
In our large-scale study, we explored several design choices to establish the most adequate approach to tackle the URL
benchmark, aiming to provide a general recipe for data-efficient adaptation thanks to unsupervised RL. Three main findings
about useful strategies to apply for URL emerge from our study:

1. unsupervised model-based PT: learning a model-based agent with data collected using unsupervised RL (Figure 1);
2. performing task-aware FT: fine-tuning the PT world model (always) and the pre-trained actor (where beneficial), while

learning the critic from scratch (Figure 4);
3. using a hybrid planner: such as Dyna-MPC, to further improve data efficiency (Figure 5).

An overview of our method is illustrated in Figure 2 and a detailed algorithm is presented in Appendix C.

We believe the above recipe could be applied to several unsupervised settings, outside of URLB, with the precaution that
one should pay attention to two aspects: (a) whether starting fine-tuning from the PT actor is meaningful for the downstream
task, (b) what is the best data collection strategy to adopt in the adopted domain.

19

https://masteringurlb.github.io/

Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels

I. Hyperparameters
Most of the hyperparameters we used for world-model training are the same as in the original DreamerV2 work (Hafner
et al., 2021). Specific details are as outlined here:

Name Value

World Model

Batch size 50
Sequence length 50
Discrete latent state dimension 32
Discrete latent classes 32
GRU cell dimension 200
KL free nats 1
KL balancing 0.8
Adam learning rate 3 · 10−4

Slow critic update interval 100

Actor-Critic

Imagination horizon 15
γ parameter 0.99
λ parameter 0.95
Adam learning rate 8 · 10−5

Actor entropy loss scale 1 · 10−4

Dyna-MPC

Iterations 12
Number of samples 512
Top-k 64
Mixture coefficient (Actor/CEM) 0.05
Min std (fixed) 0.1
Temperature 0.5
Momentum 0.1
Planning horizon 5

Common

Environment frames/update 10
MLP number of layers 4
MLP number of units 400
Hidden layers dimension 400
Adam epsilon 1 · 10−5

Weight decay 1 · 10−6

Gradient clipping 100

Table 5. World model, actor-critic, planner (Dyna-MPC) and common hyperparameters.

For the pure MPC-based experiments, we increased the number of MPPI samples from 512 to 1000, the number of top-k
from 64 to 100, and the horizon from 5 to 15, to compensate for the absence of the actor network’s samples and the critic’s
predictions in the return estimates.

20

