Aggregating Grouped Semantics as a Building Blocks for Token
Representation in Language Models

Anonymous ACL submission

Abstract

Standard language models employ unique,
monolithic embeddings for each token, poten-
tially limiting their ability to capture the mul-
tifaceted nature of word meanings. We inves-
tigate whether tokens can be more effectively
represented through a compositional structure
that accumulates diverse semantic facets. To
explore this, we propose Aggregate Semantic
Grouping (ASG), a novel approach leverag-
ing Product Quantization (PQ). We apply ASG
to standard transformer architectures (mBERT,
XLM-R, mT5) and evaluate this representa-
tional scheme across diverse tasks (NLI, NER,
QA). Our findings demonstrate that represent-
ing tokens compositionally via ASG is able to
achieve extreme compression in embedding pa-
rameters (0.4-0.5%), while maintaining > 95%
task performance relative to the base model,
even in generative tasks. These results vali-
date the principle that tokens can be effectively
modeled as combinations of shared semantic
building blocks. ASG offers a simple yet con-
crete method for achieving this, showcasing
how compositional representations can capture
linguistic richness while enabling more com-
pact models.

1 Introduction

In modern language models, each token is typi-
cally represented by an individual, unique embed-
ding. However, this approach may not be opti-
mal, as semantically similar tokens (e.g., "mother,"
"mom," and their respective translations in different
languages) can be assigned entirely distinct repre-
sentations, potentially overlooking shared concep-
tual underpinnings. Zhang et al. (2024) proposed
concept-level representations, grouping semanti-
cally similar tokens, using k-means. While this
method achieved significant vocabulary compres-
sion with retained performance, it struggles with
polysemy (e.g., "father" as family vs. religious
figure) and is limited to encoder-only models, hin-

dered by not explicitly predicting subword in au-
toregressive decoding.

To address these limitations, we introduce Ag-
gregate Semantic Grouping (ASG). ASG maintains
concept-level sharing but represents tokens as se-
quences of ‘conceptlDs’, thereby accumulating
multiple semantic facets. This sequence-based rep-
resentation is inspired by successful applications in
information and generative retrieval (Wang et al.,
2022; Tay et al., 2022; Zhou et al., 2022). We em-
ploy Product Quantization (PQ) (Jégou et al., 2011)
to transform tokens into these conceptID sequences,
aiming to preserve token’s uniqueness and nuances
while benefiting from shared semantics.

Our primary contribution is the introduction
of Aggregate Semantic Grouping (ASG), a novel
method leveraging Product Quantization to rep-
resent tokens as sequences of shared conceptIDs,
thereby capturing multiple semantic facets while
significantly compressing embedding layer pa-
rameters. We provide a detailed methodology
for applying ASG to both encoder and encoder-
decoder transformer models. Conducting experi-
ments across diverse tasks (NLI, NER, QA) and
models (mBERT, XLM-R, mT5), we demonstrate
that even with extreme compression on embeddings
(down to 0.4-0.5% of the original embedding pa-
rameters), ASG maintains high performance (of-
ten >95% relative to baseline) and outperforms
the prior semantic grouping method (Zhang et al.,
2024), even in zero-shot cross-lingual transfer sce-
narios. Our code will be released upon acceptance.

2 Aggregate Semantic Grouping (ASG)

Our approach, Aggregate Semantic Grouping
(ASG), reframes token representation by learning
compositional embeddings from pre-trained mod-
els.

-

r TS TS

\——I\

Word Embeddings \
\ \

New Embedding
Am Layer

~

Old Input embedding
for token w

New Input embedding
for token

Figure 1: Overview of the Aggregate Semantic Grouping (ASG) method for creating compositional token embed-
dings. Product Quantization is applied to the original word embedding layer. Embeddings are segmented into m
sub-vectors. For each of the m segment positions, k-means clustering is performed on the corresponding sub-vectors
from all tokens to learn a codebook of & Concept Vectors (centroids). The new ASG embedding layer containing
these learned Concept Vectors is initial as the embedding layer. Instead of using the original input embedding for a
token ‘w’, a sequence of m ConceptIDs used to get their respective Concept Vectors from the ASG layer. These are

concatenated to form the new representation for token ‘w’.

2.1 Learning Concept Vectors via Product
Quantization

We begin with a pre-trained word embedding ma-
trix F, where each row is a D-dimensional vec-
tor for a token in a vocabulary of size V. Using
Product Quantization (PQ), each D-dimensional
embedding is first divided into m distinct segments
(sub-vectors), each of dimension D /m. For each
of these m segment positions, we apply k-means
clustering to the collection of all corresponding seg-
ments from every token in the vocabulary. This pro-
cess yields m distinct codebooks; each codebook
C; (fori = 0,...,m — 1) contains k centroids,
termed Concept Vectors, specific to that segment
position. Each Concept Vector is of dimension
D/m.

2.2 ASG Embedding Layer Initialization

The m distinct codebooks (Cy,C1,...,Chpr_1),
where each codebook C; contains k& Concept Vec-
tors of dimension D /m, are concatenated to form
a single, new embedding matrix E’. This matrix
E’ has dimensions (m x k) x (D/m) and stores
all unique Concept Vectors. Specifically, the j-th
Concept Vector (where j € [0, k — 1]) from the i-th
codebook C; is located at row ¢ x k + j within E’.

Each token is then mapped to a sequence of m
ConceptIDs. For each of its m embedding seg-
ments, the corresponding ConceptID is the specific
row index in E’ that stores the chosen Concept Vec-

tor for that segment. This row index is determined
ast X k + s;, where ¢ is the segment index (from 0
tom—1) and s; is the index (from O to k£ — 1) of the
selected centroid from the ¢-th segment’s codebook.
This sequence of m row indices (ConceptIDs) thus
identifies the set of Concept Vectors representing
the token.

2.3 Token Representation with ASG

When a token is processed, its pre-computed se-
quence of m ConceptIDs is used to retrieve the
corresponding m Concept Vectors from their re-
spective codebooks within E’. Let these retrieved
Concept Vectors be vg, v1, . .., Vm—1, Where each
v; has dimension D /m. The final ASG representa-
tion for the token, ¢/ € RP, is obtained by concate-
nating these m Concept Vectors:

¢’ = concat(vg, v, ..., Um_1) (1)
This vector €’ serves as the input to subsequent
layers of the model.

2.4 Application to Generative Models

For model with decoder, which have separate in-
put and output embedding layers (the latter often
serving as token classifier weights), we apply the
ASG process to both. This results in two distinct
ASG embedding structures: one for input token rep-
resentations (E’) and another for the output layer

Table 1: Evaluation results across cluster granularities for MBERT and XLM-R on multilingual benchmarks. Scores
include F1, Accuracy, and relative performance (%Base). For XNLI %Base is for the accuracy relative to the base
model. 40% SG: Semantic Grouping as mentioned in Zhang et al. (2024). In the Zero-Shot setting the models were
trained on english dataset and have been tested on all the languages.

PARAMETER REDUCED
WIKIANN

MODEL TO (%) ‘ XNLI ‘ ZERO-SHOT
\ \ \ XNLI | WIKIANN

Embedding ~ Model | Accuracy Fl1 %Base | Fl %Base | Accuracy %Base | Fl1 %Base
MBERT 100.00 100.00 75.46 74.79 100.00 | 89.74 100.00 64.86 100.00 | 58.58 100.00
-40% SG 40.00 68.95 72.43 71.88 95.99 86.69 96.61 60.64 93.49 | 52.35 89.37
-ASG(k=512, m=48) 0.50 48.65 73.51 72.84 9742 | 88.11 98.19 61.30 94.51 55.71 95.10
XLM-R 100.00 100.00 77.98 77.28 100.00 | 88.37 100.000 71.94 100.00 | 58.74 100.00
-40% SG 40.00 58.48 74.56 73.96 95.61 84.57 95.70 65.83 91.51 5148 87.65
-ASG(k=1024, m=48) 0.40 31.08 77.06 76.39 98.81 86.53 97.92 68.05 6739 | 5446 92.72

(OE"), each derived from their respective original
embedding matrices.

Output Logit Calculation: To compute the logit /;
for a target token ¢, the final hidden state H € R
from the model is first segmented into m parts:
H = [Hy,Hy,...,H,_1], where each H; €
RP/™_ Let the sequence of Concept Vectors for
token ¢ be us g, Ut 1, - .., ur,m—1 € OE’. The logit
is calculated as:

m—1
ly = g Hi - ug
i=0

2

3 Experiments and Results

3.1 Datasets

We evaluate our proposed ASG method on di-
verse cross-lingual benchmarks for natural lan-
guage inference (NLI), question answering (QA),
and named entity recognition (NER). These in-
clude: XNLI (Conneau et al., 2018), a 15-language
sentence understanding benchmark; the Gold Pas-
sage (GoldP) task of TyDi QA (Clark et al., 2020),
an 11-language QA dataset where gold context is
provided; and the XTREME benchmark version
(Hu et al., 2020) of WikiANN (Pan et al., 2017), a
40-language NER dataset.

For k, values were generally chosen as powers of
two. This allowed us to systematically target spe-
cific levels of embedding parameter compression,
aiming for reductions that brought the ASG em-
bedding layer size to approximately 0.5%, 1%, and
4% of the original embedding parameters. Regard-
ing the number of subspaces m, our explorations
indicated that too few subspaces (e.g., m = 16)
resulted in a significant degradation of model per-
formance. Conversely, using very high values for
m (e.g., 128, 256, or 512), would lead to extremely

small dimensions for each segment (D /m, poten-
tially as low as 4, 2, or 1 for common embedding
sizes D) and would consequently require very long
sequences of ConceptIDs (length m) to represent
each token. These considerations led us to focus
on m values within a moderate range for the exper-
iments detailed below.

3.2 Fine-tuning Performance

We evaluated ASG on encoder-only mBERT (De-
vlin et al., 2019) and XLLM-R (Conneau et al., 2019)
models using the XNLI and WikiANN datasets,
mainly to compare it’s effectiveness against the Se-
mantic grouping as mention in Zhang et al. (2024).
As demonstrated in Table 1, ASG achieves signif-
icant embedding compression while maintaining
over 97% of baseline performance and notably out-
performs Semantic Grouping (SG) method, even
with a low k value.

To assess ASG for generative tasks, we then
evaluated the mT5 model (Xue et al., 2020) on the
TyDiQA and WikiANN datasets, applying ASG
to both its input and output embeddings. Table
2, detailing results for various cluster (k) and sub-
space (m) configurations, shows ASG consistently
achieved over 85% of baseline mT5 performance.
Specifically, with & > 2048, relative performance
on TyDiQA surpassed 90%, while on WikiANN,
ASG configurations generally exceeded 95% of the
baseline.

Furthermore, for mT5, we investigated a vari-
ant employing a single shared codebook across all
m subspaces. To achieve this, the m segments
from all token embeddings in the vocabulary are
pooled together before applying k-means cluster-
ing. This yields one global codebook of Concept
Vectors. Each of the m ConceptIDs for a token
then selects a Concept Vector from this single

Table 2: Evaluation results for Generative models across cluster granularities for MTS on TYDIQA and WIKIANN.
Seperate: 1 codebook per segment, Shared: codebooks shared across all segments, In the Zero-Shot setting the
models were trained on English dataset and have been tested on all the languages.

PARAMETER WIKIANN

MODEL REDUCED TO (%) TYDIQA WIKIANN (ZERO-SHOT)

| Embedding Model | F1 EM %Base | Fl %Base | Fl1 %Base

MT5 \ 100.00 100.00 \ 70.74 56.20 100.00 \ 84.21 100.00 \ 50.75 100.00
-(k=1024,m = 32) 0.45 15.06 60.67 46.15 85.76 79.85 94.82 25.84 50091

ASG -(k = 2048, m = 32) 0.85 15.41 63.81 49.06 90.19 80.93 96.11 29.85 58.82
SEPARATE -(k = 8192, m = 32) 3.32 17.51 66.22 51.71 93.61 82.19 97.60 | 33.51 66.03
-(k =1024,m = 64) 0.45 15.06 69.96 55.53 98.89 83.18 98.78 44,02 86.74

ASG -(k = 16384, m = 32) 0.25 14.89 66.50 5190 93.99 81.65 96.96 34.01 67.02
SHARED -(k = 32768, m = 32) 0.45 15.06 67.00 53.06 94.71 82.04 97.42 37.01 72.92
-(k = 32768, m = 64) 0.25 14.89 70.81 56.51 100.09 | 84.19 99.97 47.23 93.06

shared codebook to represent its corresponding seg-
ment. This shared codebook is then used across all
m positions for constructing the token representa-
tion. This approach, despite reducing the diversity
of available Concept Vectors, impressively main-
tained over 95% relative performance across both
TyDiQA and WikiANN. This suggests that a highly
restricted set of output Concept Vectors can still be
effective for generative tasks.

3.3 Cross-Lingual Transfer (Zero-Shot)

For zero-shot cross-lingual transfer, we followed
the experimental setup of Zhang et al. (2024). Mod-
els were trained solely on the English XNLI and
WikiANN training sets and then evaluated on the
multilingual test sets of these datasets. In this set-
ting, ASG-enhanced models outperformed the Se-
mantic Grouping method. While generative models
using ASG with lower k (clusters per segment) and
m (segments) values showed reduced performance
in cross-lingual transfer (Table 2), configurations
with m = 64 segments nonetheless achieved at
least 86% relative to baseline model performance.
Using shared codebook, the performance further
improved upto 93% relative to the baseline model,
with just 0.25% of the embedding parameters.

3.4 Qualitative Analysis

Figure 2 illustrates how Aggregate Semantic
Grouping (ASG) captures varied semantic facets
of the token "father" through its clustering across
selected segments:

» Familial Context: "father" clusters with kinship
terms such as "padre" (father), "mother", and
"daughter” (Segment 2), or "barn" (child), "par-
ent", and "grandmother" (Segment 12; also Seg-
ment 16), reflecting its primary familial sense.

¢ Authority/Religious Context: In Segment 0, "fa-
ther" groups with "Chief", "Prophet", "notables",
and "religién", indicating connotations of leader-

ship or religious reverence.

* Figurative/Abstract Contexts: Other segments
link "father" to broader concepts, such as "Zeus"
(mythological father figure), or with terms like
"records”, "govern", and "legacy" (Segment 7),
potentially reflecting historical origin, or the act

of establishing something significant.
4 Conclusion

This work investigated equipping language models
with shared, compositional token representations
as an alternative to traditional monolithic embed-
dings. We explored this through Aggregate Seman-
tic Grouping (ASG), where Product Quantization
transforms embeddings into sequences of Concep-
tIDs that map to shared, learned Concept Vectors,
enabling multifaceted semantic capture alongside
significant compression. Extensive experiments
on diverse models (including mBERT, XLM-R,
and mT5) and NLU tasks (such as NLI, NER, and
QA) found ASG maintains high performance (often
>95% relative to baseline) despite extreme parame-
ter reduction (to <1% of original size). ASG also
outperformed prior semantic grouping methods,
and proved effective for generative architectures.
These findings confirm that ASG’s decomposition
of tokens into shared components offers an effi-
cient, semantically rich, and promising direction
for language modeling; future work may explore
dynamic or adaptive quantization techniques.

5 Limitations

ASG was applied directly to word embeddings
from pre-trained models without an explicit cross-

lingual alignment step, which could refine Con-
cept Vector clustering. This may partly explain
the observed performance degradation in gener-
ative tasks within cross-lingual settings, such as
on WikiANN, where better nuance preservation
through alignment-optimized clustering could be
beneficial. Furthermore, we did not undertake con-
tinual pre-training of the models with the ASG em-
beddings; such a phase could allow models to more
effectively adapt to the compositional representa-
tions and potentially enhance overall performance.

References

Jonathan H Clark, Eunsol Choi, Michael Collins, Dan
Garrette, Tom Kwiatkowski, Vitaly Nikolaev, and
Jennimaria Palomaki. 2020. Tydi qa: A benchmark
for information-seeking question answering in ty po-
logically di verse languages. Transactions of the As-
sociation for Computational Linguistics, 8:454—470.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmadn, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale. arXiv
preprint arXiv:1911.02116.

Alexis Conneau, Guillaume Lample, Ruty Rinott, Ad-
ina Williams, Samuel R Bowman, Holger Schwenk,
and Veselin Stoyanov. 2018. Xnli: Evaluating cross-
lingual sentence representations. arXiv preprint
arXiv:1809.05053.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 conference of the
North American chapter of the association for com-
putational linguistics: human language technologies,
volume 1 (long and short papers), pages 4171-4186.

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Graham
Neubig, Orhan Firat, and Melvin Johnson. 2020.
Xtreme: A massively multilingual multi-task bench-
mark for evaluating cross-lingual generalisation. In
International conference on machine learning, pages
4411-4421. PMLR.

Herve Jégou, Matthijs Douze, and Cordelia Schmid.
2011. Product quantization for nearest neighbor
search. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 33(1):117-128.

Xiaoman Pan, Boliang Zhang, Jonathan May, Joel Noth-
man, Kevin Knight, and Heng Ji. 2017. Cross-lingual
name tagging and linking for 282 languages. In Pro-
ceedings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 19461958, Vancouver, Canada. As-
sociation for Computational Linguistics.

Yi Tay, Vinh Tran, Mostafa Dehghani, Jianmo Ni, Dara
Bahri, Harsh Mehta, Zhen Qin, Kai Hui, Zhe Zhao,
Jai Gupta, and 1 others. 2022. Transformer memory
as a differentiable search index. Advances in Neural
Information Processing Systems, 35:21831-21843.

Yujing Wang, Yingyan Hou, Haonan Wang, Ziming
Miao, Shibin Wu, Qi Chen, Yuqing Xia, Chengmin
Chi, Guoshuai Zhao, Zheng Liu, and 1 others. 2022.
A neural corpus indexer for document retrieval. Ad-
vances in Neural Information Processing Systems,
35:25600-25614.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2020. mt5: A massively multilingual
pre-trained text-to-text transformer. arXiv preprint
arXiv:2010.11934.

Xinyu Zhang, Jing Lu, Vinh Q Tran, Tal Schuster, Don-
ald Metzler, and Jimmy Lin. 2024. Tomato, tom-
ahto, tomate: Measuring the role of shared semantics
among subwords in multilingual language models.
arXiv preprint arXiv:2411.04530.

Yujia Zhou, Jing Yao, Zhicheng Dou, Ledell Wu, Peitian
Zhang, and Ji-Rong Wen. 2022. Ultron: An ulti-
mate retriever on corpus with a model-based indexer.
arXiv preprint arXiv:2208.09257.

https://doi.org/10.1109/TPAMI.2010.57
https://doi.org/10.1109/TPAMI.2010.57
https://doi.org/10.1109/TPAMI.2010.57
https://doi.org/10.18653/v1/P17-1178
https://doi.org/10.18653/v1/P17-1178
https://doi.org/10.18653/v1/P17-1178

A Experimental Setup

All our experiments are conducted using the small-
est available checkpoint for each respective pre-
trained model. Training is performed with a batch
size of 128, and all experiments were run on a
single Nvidia L40 GPU.

For the encoder models (mBERT and XLM-R),
we set a weight decay of 0.01. The learning rate
was 5 x 1076 for XNLI experiments and 5 x 107>
for WikiANN experiments. These models were
trained for 2 epochs; for cross-lingual transfer set-
tings, training was extended to 5 epochs. The mT5
model was trained with a learning rate of 1 x 1073,

Product Quantization is implemented using the
nanopq library!. For the k-means clustering within
nanopq we use the faiss libraryz.

A.1 ASG Configuration and Embedding
Parameters

Table 3 provides a summary of the configurations
used for Aggregate Semantic Grouping (ASG)
across different models, alongside details for the
original base models. The table specifies the
choices for k£ (number of centroids per subspace)
and m (number of subspaces) for each ASG setup.
It also lists the resulting total number of parameters
in the model and the shape of the embbeding layer.

"https://github.com/matsui528/nanopq
’https://faiss.ai/

https://github.com/matsui528/nanopq
https://faiss.ai/

Table 3: Model Configurations and Embedding Parameters for ASG, Underlined uses a shard codebook

Model k m Parameters Embedding Shape (Dim)
N/A N/A 177M [120k, 768]
mBERT 512 48 86M [30k, 16]
N/A N/A 27TM [250k, 768]
XIMR 004 48 86 [49Kk, 16]
N/A N/A 300M [256k, 512]
1024 32 45M [36k, 16]
2048 32 46M [68k, 16]
TS 8196 32 53M [265k, 16]
16392 32 44M [20k, 16]
32784 32 45M [36Kk, 16]
32784 64 44M [39k, 8]
1024 64 45M [72k, 8]

Segment
(m=48)

12

16

Figure 2:

Number of tokens in)
Cluster Words in Cluster

£ 'E 1, '8, father, 'parts', 'Chief, "
7 "chief', 'Ho', ‘abinadons', 'Mother', 'olid', '##6ld', 'Telegraph', 'earth’, "
2 "#H#3560', 'notables’, 'adta’, 'religion’, 'meran’, ‘Israil', 'praise’, "
"Prophet’, 'm'v', 'Thief, 'voter', 'Capitaine’

H', 'father’, 'piccolo’, 'Zeus', 'Castello’, "
"ueHTpy', ##\', 'senjata’, ‘##ol', 'antichi', 'iniziale', ‘s, "
"Verenigd', 'apariencia’

29

father', '‘padre’, 'daughter’, 'mother’, 'coiv’, "
22 m,

"', 'incidente’, 'baby’, 'daughters’, 'V6', 'grandson’, T, "

afromoths', 'Michaela', ''Imnown’, 'cemeiictoto’, 'Mana', 'lluz', 'S ', "
"Potok', 'cmT', ‘##2"

Ig@', 'top', 'father’, 'records’, 'govern’, "
19 "##jné', 'corona’, 'Hartmann', '##jcka’, 'Uhgwqquw)hl', 'Dakar’, 'Pons', "

"legacy', ‘##Hcki', 'nopTpeT’, 'marge’, 'naturally’, HTARRTSERT, "
"McDowell

#4, 'father', 'él', 'barn’, 'G## 'S, "
2 "Infantry’, 'Elementary’, 'kinderen’, 'coupe’, 'parent’, '"##CA', 'injuries’, "
"#HRC', '##GC', 'connect’, 'cache’, '« 'kaldl’, 'Lahti, 'indicato’, "
"seco', 'grandmother’, 'wheat'

father', 'début', 'mother’, 'port', ‘cknagi’, "
13

"Dal', 'Beginning', 'uncle’, '##nHum', 'Strazy', '‘comengament’, ‘##rusade’,
"grandmother’

Grouping of the token "father" at a few selected subspaces

	Introduction
	Aggregate Semantic Grouping (ASG)
	Learning Concept Vectors via Product Quantization
	ASG Embedding Layer Initialization
	Token Representation with ASG
	Application to Generative Models

	Experiments and Results
	Datasets
	Fine-tuning Performance
	Cross-Lingual Transfer (Zero-Shot)
	Qualitative Analysis

	Conclusion
	Limitations
	Experimental Setup
	ASG Configuration and Embedding Parameters

