
Aggregating Grouped Semantics as a Building Blocks for Token
Representation in Language Models

Anonymous ACL submission

Abstract001

Standard language models employ unique,002
monolithic embeddings for each token, poten-003
tially limiting their ability to capture the mul-004
tifaceted nature of word meanings. We inves-005
tigate whether tokens can be more effectively006
represented through a compositional structure007
that accumulates diverse semantic facets. To008
explore this, we propose Aggregate Semantic009
Grouping (ASG), a novel approach leverag-010
ing Product Quantization (PQ). We apply ASG011
to standard transformer architectures (mBERT,012
XLM-R, mT5) and evaluate this representa-013
tional scheme across diverse tasks (NLI, NER,014
QA). Our findings demonstrate that represent-015
ing tokens compositionally via ASG is able to016
achieve extreme compression in embedding pa-017
rameters (0.4-0.5%), while maintaining > 95%018
task performance relative to the base model,019
even in generative tasks. These results vali-020
date the principle that tokens can be effectively021
modeled as combinations of shared semantic022
building blocks. ASG offers a simple yet con-023
crete method for achieving this, showcasing024
how compositional representations can capture025
linguistic richness while enabling more com-026
pact models.027

1 Introduction028

In modern language models, each token is typi-029

cally represented by an individual, unique embed-030

ding. However, this approach may not be opti-031

mal, as semantically similar tokens (e.g., "mother,"032

"mom," and their respective translations in different033

languages) can be assigned entirely distinct repre-034

sentations, potentially overlooking shared concep-035

tual underpinnings. Zhang et al. (2024) proposed036

concept-level representations, grouping semanti-037

cally similar tokens, using k-means. While this038

method achieved significant vocabulary compres-039

sion with retained performance, it struggles with040

polysemy (e.g., "father" as family vs. religious041

figure) and is limited to encoder-only models, hin-042

dered by not explicitly predicting subword in au- 043

toregressive decoding. 044

To address these limitations, we introduce Ag- 045

gregate Semantic Grouping (ASG). ASG maintains 046

concept-level sharing but represents tokens as se- 047

quences of ‘conceptIDs’, thereby accumulating 048

multiple semantic facets. This sequence-based rep- 049

resentation is inspired by successful applications in 050

information and generative retrieval (Wang et al., 051

2022; Tay et al., 2022; Zhou et al., 2022). We em- 052

ploy Product Quantization (PQ) (Jégou et al., 2011) 053

to transform tokens into these conceptID sequences, 054

aiming to preserve token’s uniqueness and nuances 055

while benefiting from shared semantics. 056

Our primary contribution is the introduction 057

of Aggregate Semantic Grouping (ASG), a novel 058

method leveraging Product Quantization to rep- 059

resent tokens as sequences of shared conceptIDs, 060

thereby capturing multiple semantic facets while 061

significantly compressing embedding layer pa- 062

rameters. We provide a detailed methodology 063

for applying ASG to both encoder and encoder- 064

decoder transformer models. Conducting experi- 065

ments across diverse tasks (NLI, NER, QA) and 066

models (mBERT, XLM-R, mT5), we demonstrate 067

that even with extreme compression on embeddings 068

(down to 0.4-0.5% of the original embedding pa- 069

rameters), ASG maintains high performance (of- 070

ten >95% relative to baseline) and outperforms 071

the prior semantic grouping method (Zhang et al., 072

2024), even in zero-shot cross-lingual transfer sce- 073

narios. Our code will be released upon acceptance. 074

2 Aggregate Semantic Grouping (ASG) 075

Our approach, Aggregate Semantic Grouping 076

(ASG), reframes token representation by learning 077

compositional embeddings from pre-trained mod- 078

els. 079

1

Figure 1: Overview of the Aggregate Semantic Grouping (ASG) method for creating compositional token embed-
dings. Product Quantization is applied to the original word embedding layer. Embeddings are segmented into m
sub-vectors. For each of the m segment positions, k-means clustering is performed on the corresponding sub-vectors
from all tokens to learn a codebook of k Concept Vectors (centroids). The new ASG embedding layer containing
these learned Concept Vectors is initial as the embedding layer. Instead of using the original input embedding for a
token ‘w’, a sequence of m ConceptIDs used to get their respective Concept Vectors from the ASG layer. These are
concatenated to form the new representation for token ‘w’.

2.1 Learning Concept Vectors via Product080

Quantization081

We begin with a pre-trained word embedding ma-082

trix E, where each row is a D-dimensional vec-083

tor for a token in a vocabulary of size V . Using084

Product Quantization (PQ), each D-dimensional085

embedding is first divided into m distinct segments086

(sub-vectors), each of dimension D/m. For each087

of these m segment positions, we apply k-means088

clustering to the collection of all corresponding seg-089

ments from every token in the vocabulary. This pro-090

cess yields m distinct codebooks; each codebook091

Ci (for i = 0, . . . ,m − 1) contains k centroids,092

termed Concept Vectors, specific to that segment093

position. Each Concept Vector is of dimension094

D/m.095

2.2 ASG Embedding Layer Initialization096

The m distinct codebooks (C0, C1, . . . , Cm−1),097

where each codebook Ci contains k Concept Vec-098

tors of dimension D/m, are concatenated to form099

a single, new embedding matrix E′. This matrix100

E′ has dimensions (m × k) × (D/m) and stores101

all unique Concept Vectors. Specifically, the j-th102

Concept Vector (where j ∈ [0, k−1]) from the i-th103

codebook Ci is located at row i× k + j within E′.104

Each token is then mapped to a sequence of m105

ConceptIDs. For each of its m embedding seg-106

ments, the corresponding ConceptID is the specific107

row index in E′ that stores the chosen Concept Vec-108

tor for that segment. This row index is determined 109

as i× k+ si, where i is the segment index (from 0 110

to m−1) and si is the index (from 0 to k−1) of the 111

selected centroid from the i-th segment’s codebook. 112

This sequence of m row indices (ConceptIDs) thus 113

identifies the set of Concept Vectors representing 114

the token. 115

2.3 Token Representation with ASG 116

When a token is processed, its pre-computed se- 117

quence of m ConceptIDs is used to retrieve the 118

corresponding m Concept Vectors from their re- 119

spective codebooks within E′. Let these retrieved 120

Concept Vectors be v0, v1, . . . , vm−1, where each 121

vi has dimension D/m. The final ASG representa- 122

tion for the token, e′ ∈ RD, is obtained by concate- 123

nating these m Concept Vectors: 124

e′ = concat(v0, v1, . . . , vm−1) (1) 125

This vector e′ serves as the input to subsequent 126

layers of the model. 127

2.4 Application to Generative Models 128

For model with decoder, which have separate in- 129

put and output embedding layers (the latter often 130

serving as token classifier weights), we apply the 131

ASG process to both. This results in two distinct 132

ASG embedding structures: one for input token rep- 133

resentations (E′) and another for the output layer 134

2

Table 1: Evaluation results across cluster granularities for MBERT and XLM-R on multilingual benchmarks. Scores
include F1, Accuracy, and relative performance (%Base). For XNLI %Base is for the accuracy relative to the base
model. 40% SG: Semantic Grouping as mentioned in Zhang et al. (2024). In the Zero-Shot setting the models were
trained on english dataset and have been tested on all the languages.

MODEL
PARAMETER REDUCED

TO (%) XNLI WIKIANN ZERO-SHOT

XNLI WIKIANN

Embedding Model Accuracy F1 %Base F1 %Base Accuracy %Base F1 %Base

MBERT 100.00 100.00 75.46 74.79 100.00 89.74 100.00 64.86 100.00 58.58 100.00
-40% SG 40.00 68.95 72.43 71.88 95.99 86.69 96.61 60.64 93.49 52.35 89.37
-ASG(k=512, m=48) 0.50 48.65 73.51 72.84 97.42 88.11 98.19 61.30 94.51 55.71 95.10

XLM-R 100.00 100.00 77.98 77.28 100.00 88.37 100.000 71.94 100.00 58.74 100.00
-40% SG 40.00 58.48 74.56 73.96 95.61 84.57 95.70 65.83 91.51 51.48 87.65
-ASG(k=1024, m=48) 0.40 31.08 77.06 76.39 98.81 86.53 97.92 68.05 67.39 54.46 92.72

(OE′), each derived from their respective original135

embedding matrices.136

Output Logit Calculation: To compute the logit lt137

for a target token t, the final hidden state H ∈ RD138

from the model is first segmented into m parts:139

H = [H0, H1, . . . ,Hm−1], where each Hi ∈140

RD/m. Let the sequence of Concept Vectors for141

token t be ut,0, ut,1, . . . , ut,m−1 ∈ OE′. The logit142

is calculated as:143

lt =
m−1∑
i=0

Hi · ut,i (2)144

3 Experiments and Results145

3.1 Datasets146

We evaluate our proposed ASG method on di-147

verse cross-lingual benchmarks for natural lan-148

guage inference (NLI), question answering (QA),149

and named entity recognition (NER). These in-150

clude: XNLI (Conneau et al., 2018), a 15-language151

sentence understanding benchmark; the Gold Pas-152

sage (GoldP) task of TyDi QA (Clark et al., 2020),153

an 11-language QA dataset where gold context is154

provided; and the XTREME benchmark version155

(Hu et al., 2020) of WikiANN (Pan et al., 2017), a156

40-language NER dataset.157

For k, values were generally chosen as powers of158

two. This allowed us to systematically target spe-159

cific levels of embedding parameter compression,160

aiming for reductions that brought the ASG em-161

bedding layer size to approximately 0.5%, 1%, and162

4% of the original embedding parameters. Regard-163

ing the number of subspaces m, our explorations164

indicated that too few subspaces (e.g., m = 16)165

resulted in a significant degradation of model per-166

formance. Conversely, using very high values for167

m (e.g., 128, 256, or 512), would lead to extremely168

small dimensions for each segment (D/m, poten- 169

tially as low as 4, 2, or 1 for common embedding 170

sizes D) and would consequently require very long 171

sequences of ConceptIDs (length m) to represent 172

each token. These considerations led us to focus 173

on m values within a moderate range for the exper- 174

iments detailed below. 175

3.2 Fine-tuning Performance 176

We evaluated ASG on encoder-only mBERT (De- 177

vlin et al., 2019) and XLM-R (Conneau et al., 2019) 178

models using the XNLI and WikiANN datasets, 179

mainly to compare it’s effectiveness against the Se- 180

mantic grouping as mention in Zhang et al. (2024). 181

As demonstrated in Table 1, ASG achieves signif- 182

icant embedding compression while maintaining 183

over 97% of baseline performance and notably out- 184

performs Semantic Grouping (SG) method, even 185

with a low k value. 186

To assess ASG for generative tasks, we then 187

evaluated the mT5 model (Xue et al., 2020) on the 188

TyDiQA and WikiANN datasets, applying ASG 189

to both its input and output embeddings. Table 190

2, detailing results for various cluster (k) and sub- 191

space (m) configurations, shows ASG consistently 192

achieved over 85% of baseline mT5 performance. 193

Specifically, with k ≥ 2048, relative performance 194

on TyDiQA surpassed 90%, while on WikiANN, 195

ASG configurations generally exceeded 95% of the 196

baseline. 197

Furthermore, for mT5, we investigated a vari- 198

ant employing a single shared codebook across all 199

m subspaces. To achieve this, the m segments 200

from all token embeddings in the vocabulary are 201

pooled together before applying k-means cluster- 202

ing. This yields one global codebook of Concept 203

Vectors. Each of the m ConceptIDs for a token 204

then selects a Concept Vector from this single 205

3

Table 2: Evaluation results for Generative models across cluster granularities for MT5 on TYDIQA and WIKIANN.
Seperate: 1 codebook per segment, Shared: codebooks shared across all segments, In the Zero-Shot setting the
models were trained on English dataset and have been tested on all the languages.

MODEL
PARAMETER

REDUCED TO (%) TYDIQA WIKIANN
WIKIANN

(ZERO-SHOT)

Embedding Model F1 EM %Base F1 %Base F1 %Base

MT5 100.00 100.00 70.74 56.20 100.00 84.21 100.00 50.75 100.00

ASG
SEPARATE

-(k = 1024,m = 32) 0.45 15.06 60.67 46.15 85.76 79.85 94.82 25.84 50.91
-(k = 2048,m = 32) 0.85 15.41 63.81 49.06 90.19 80.93 96.11 29.85 58.82
-(k = 8192,m = 32) 3.32 17.51 66.22 51.71 93.61 82.19 97.60 33.51 66.03
-(k = 1024,m = 64) 0.45 15.06 69.96 55.53 98.89 83.18 98.78 44.02 86.74

ASG
SHARED

-(k = 16384,m = 32) 0.25 14.89 66.50 51.90 93.99 81.65 96.96 34.01 67.02
-(k = 32768,m = 32) 0.45 15.06 67.00 53.06 94.71 82.04 97.42 37.01 72.92
-(k = 32768,m = 64) 0.25 14.89 70.81 56.51 100.09 84.19 99.97 47.23 93.06

shared codebook to represent its corresponding seg-206

ment. This shared codebook is then used across all207

m positions for constructing the token representa-208

tion. This approach, despite reducing the diversity209

of available Concept Vectors, impressively main-210

tained over 95% relative performance across both211

TyDiQA and WikiANN. This suggests that a highly212

restricted set of output Concept Vectors can still be213

effective for generative tasks.214

3.3 Cross-Lingual Transfer (Zero-Shot)215

For zero-shot cross-lingual transfer, we followed216

the experimental setup of Zhang et al. (2024). Mod-217

els were trained solely on the English XNLI and218

WikiANN training sets and then evaluated on the219

multilingual test sets of these datasets. In this set-220

ting, ASG-enhanced models outperformed the Se-221

mantic Grouping method. While generative models222

using ASG with lower k (clusters per segment) and223

m (segments) values showed reduced performance224

in cross-lingual transfer (Table 2), configurations225

with m = 64 segments nonetheless achieved at226

least 86% relative to baseline model performance.227

Using shared codebook, the performance further228

improved upto 93% relative to the baseline model,229

with just 0.25% of the embedding parameters.230

3.4 Qualitative Analysis231

Figure 2 illustrates how Aggregate Semantic232

Grouping (ASG) captures varied semantic facets233

of the token "father" through its clustering across234

selected segments:235

• Familial Context: "father" clusters with kinship236

terms such as "padre" (father), "mother", and237

"daughter" (Segment 2), or "barn" (child), "par-238

ent", and "grandmother" (Segment 12; also Seg-239

ment 16), reflecting its primary familial sense.240

• Authority/Religious Context: In Segment 0, "fa- 241

ther" groups with "Chief", "Prophet", "notables", 242

and "religión", indicating connotations of leader- 243

ship or religious reverence. 244

• Figurative/Abstract Contexts: Other segments 245

link "father" to broader concepts, such as "Zeus" 246

(mythological father figure), or with terms like 247

"records", "govern", and "legacy" (Segment 7), 248

potentially reflecting historical origin, or the act 249

of establishing something significant. 250

4 Conclusion 251

This work investigated equipping language models 252

with shared, compositional token representations 253

as an alternative to traditional monolithic embed- 254

dings. We explored this through Aggregate Seman- 255

tic Grouping (ASG), where Product Quantization 256

transforms embeddings into sequences of Concep- 257

tIDs that map to shared, learned Concept Vectors, 258

enabling multifaceted semantic capture alongside 259

significant compression. Extensive experiments 260

on diverse models (including mBERT, XLM-R, 261

and mT5) and NLU tasks (such as NLI, NER, and 262

QA) found ASG maintains high performance (often 263

>95% relative to baseline) despite extreme parame- 264

ter reduction (to <1% of original size). ASG also 265

outperformed prior semantic grouping methods, 266

and proved effective for generative architectures. 267

These findings confirm that ASG’s decomposition 268

of tokens into shared components offers an effi- 269

cient, semantically rich, and promising direction 270

for language modeling; future work may explore 271

dynamic or adaptive quantization techniques. 272

5 Limitations 273

ASG was applied directly to word embeddings 274

from pre-trained models without an explicit cross- 275

4

lingual alignment step, which could refine Con-276

cept Vector clustering. This may partly explain277

the observed performance degradation in gener-278

ative tasks within cross-lingual settings, such as279

on WikiANN, where better nuance preservation280

through alignment-optimized clustering could be281

beneficial. Furthermore, we did not undertake con-282

tinual pre-training of the models with the ASG em-283

beddings; such a phase could allow models to more284

effectively adapt to the compositional representa-285

tions and potentially enhance overall performance.286

References287

Jonathan H Clark, Eunsol Choi, Michael Collins, Dan288
Garrette, Tom Kwiatkowski, Vitaly Nikolaev, and289
Jennimaria Palomaki. 2020. Tydi qa: A benchmark290
for information-seeking question answering in ty po-291
logically di verse languages. Transactions of the As-292
sociation for Computational Linguistics, 8:454–470.293

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,294
Vishrav Chaudhary, Guillaume Wenzek, Francisco295
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-296
moyer, and Veselin Stoyanov. 2019. Unsupervised297
cross-lingual representation learning at scale. arXiv298
preprint arXiv:1911.02116.299

Alexis Conneau, Guillaume Lample, Ruty Rinott, Ad-300
ina Williams, Samuel R Bowman, Holger Schwenk,301
and Veselin Stoyanov. 2018. Xnli: Evaluating cross-302
lingual sentence representations. arXiv preprint303
arXiv:1809.05053.304

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and305
Kristina Toutanova. 2019. Bert: Pre-training of deep306
bidirectional transformers for language understand-307
ing. In Proceedings of the 2019 conference of the308
North American chapter of the association for com-309
putational linguistics: human language technologies,310
volume 1 (long and short papers), pages 4171–4186.311

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Graham312
Neubig, Orhan Firat, and Melvin Johnson. 2020.313
Xtreme: A massively multilingual multi-task bench-314
mark for evaluating cross-lingual generalisation. In315
International conference on machine learning, pages316
4411–4421. PMLR.317

Herve Jégou, Matthijs Douze, and Cordelia Schmid.318
2011. Product quantization for nearest neighbor319
search. IEEE Transactions on Pattern Analysis and320
Machine Intelligence, 33(1):117–128.321

Xiaoman Pan, Boliang Zhang, Jonathan May, Joel Noth-322
man, Kevin Knight, and Heng Ji. 2017. Cross-lingual323
name tagging and linking for 282 languages. In Pro-324
ceedings of the 55th Annual Meeting of the Associa-325
tion for Computational Linguistics (Volume 1: Long326
Papers), pages 1946–1958, Vancouver, Canada. As-327
sociation for Computational Linguistics.328

Yi Tay, Vinh Tran, Mostafa Dehghani, Jianmo Ni, Dara 329
Bahri, Harsh Mehta, Zhen Qin, Kai Hui, Zhe Zhao, 330
Jai Gupta, and 1 others. 2022. Transformer memory 331
as a differentiable search index. Advances in Neural 332
Information Processing Systems, 35:21831–21843. 333

Yujing Wang, Yingyan Hou, Haonan Wang, Ziming 334
Miao, Shibin Wu, Qi Chen, Yuqing Xia, Chengmin 335
Chi, Guoshuai Zhao, Zheng Liu, and 1 others. 2022. 336
A neural corpus indexer for document retrieval. Ad- 337
vances in Neural Information Processing Systems, 338
35:25600–25614. 339

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, 340
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and 341
Colin Raffel. 2020. mt5: A massively multilingual 342
pre-trained text-to-text transformer. arXiv preprint 343
arXiv:2010.11934. 344

Xinyu Zhang, Jing Lu, Vinh Q Tran, Tal Schuster, Don- 345
ald Metzler, and Jimmy Lin. 2024. Tomato, tom- 346
ahto, tomate: Measuring the role of shared semantics 347
among subwords in multilingual language models. 348
arXiv preprint arXiv:2411.04530. 349

Yujia Zhou, Jing Yao, Zhicheng Dou, Ledell Wu, Peitian 350
Zhang, and Ji-Rong Wen. 2022. Ultron: An ulti- 351
mate retriever on corpus with a model-based indexer. 352
arXiv preprint arXiv:2208.09257. 353

5

https://doi.org/10.1109/TPAMI.2010.57
https://doi.org/10.1109/TPAMI.2010.57
https://doi.org/10.1109/TPAMI.2010.57
https://doi.org/10.18653/v1/P17-1178
https://doi.org/10.18653/v1/P17-1178
https://doi.org/10.18653/v1/P17-1178

A Experimental Setup354

All our experiments are conducted using the small-355

est available checkpoint for each respective pre-356

trained model. Training is performed with a batch357

size of 128, and all experiments were run on a358

single Nvidia L40 GPU.359

For the encoder models (mBERT and XLM-R),360

we set a weight decay of 0.01. The learning rate361

was 5× 10−6 for XNLI experiments and 5× 10−5362

for WikiANN experiments. These models were363

trained for 2 epochs; for cross-lingual transfer set-364

tings, training was extended to 5 epochs. The mT5365

model was trained with a learning rate of 1× 10−3.366

Product Quantization is implemented using the367

nanopq library1. For the k-means clustering within368

nanopq we use the faiss library2.369

A.1 ASG Configuration and Embedding370

Parameters371

Table 3 provides a summary of the configurations372

used for Aggregate Semantic Grouping (ASG)373

across different models, alongside details for the374

original base models. The table specifies the375

choices for k (number of centroids per subspace)376

and m (number of subspaces) for each ASG setup.377

It also lists the resulting total number of parameters378

in the model and the shape of the embbeding layer.379

1https://github.com/matsui528/nanopq
2https://faiss.ai/

6

https://github.com/matsui528/nanopq
https://faiss.ai/

Table 3: Model Configurations and Embedding Parameters for ASG, Underlined uses a shard codebook

Model k m Parameters Embedding Shape (Dim)

mBERT
N/A N/A 177M [120k, 768]
512 48 86M [30k, 16]

XLM-R
N/A N/A 277M [250k, 768]
1024 48 86 [49k, 16]

mT5

N/A N/A 300M [256k, 512]
1024 32 45M [36k, 16]
2048 32 46M [68k, 16]
8196 32 53M [265k, 16]
16392 32 44M [20k, 16]
32784 32 45M [36k, 16]
32784 64 44M [39k, 8]
1024 64 45M [72k, 8]

7

Segment
(m=48)

Number of tokens in
Cluster Words in Cluster

0 27

笔', '筆', '钦', '할', 'father', 'parts', 'Chief', "
 "'chief', 'Ho', 'äbinädons', 'Mother', 'olid', '##öld', 'Telegraph', 'earth', "
 "'##ვანი', 'notables', 'adta', 'religión', 'метал', 'İsrail', 'praise', "
 "'Prophet', 'שירת', 'Thief', 'voter', 'Capitaine'

1 29

丑', 'father', 'piccolo', 'Zeus', 'Castello', "
 "'центру', '##سام', 'senjata', '##σι', 'antichi', 'iniziale', 'جسم', "
 "'Verenigd', 'apariencia'

2 22

father', 'padre', 'daughter', 'mother', 'сын', "
 "'તે', 'incidente', 'baby', 'daughters', 'V6', 'grandson', 'লয়াহান', "
 "'afromoths', 'Michaela', 'משפחתו', 'семейството', 'Мала', 'lluz', '운영', "
 "'Potok', 'смт', '##캡'

7 19

囉', 'top', 'father', 'records', 'govern', "
 "'##jnë', 'corona', 'Hartmann', '##јска', 'միջազգային', 'Dakar', 'Pons', "
 "'legacy', '##нскі', 'портрет', 'marge', 'naturally', 'आंतरराçĚȣय', "
 "'McDowell

12 24

" ,'بزرگ', '##فی' ,'father', 'él', 'barn' ,'ز##
 "'Infantry', 'Elementary', 'kinderen', 'coupe', 'parent', '##CA', 'injuries', "
 "'##RC', '##GC', 'connect', 'cache', 'قطع', 'kaldı', 'Lahti', 'indicato', "
 "'seco', 'grandmother', 'wheat'

16 13
father', 'début', 'mother', 'port', 'складі', "
 "'Dal', 'Beginning', 'uncle', '##дним', 'Straży', 'començament', '##rusade', "
 "'grandmother'

Figure 2: Grouping of the token "father" at a few selected subspaces

8

	Introduction
	Aggregate Semantic Grouping (ASG)
	Learning Concept Vectors via Product Quantization
	ASG Embedding Layer Initialization
	Token Representation with ASG
	Application to Generative Models

	Experiments and Results
	Datasets
	Fine-tuning Performance
	Cross-Lingual Transfer (Zero-Shot)
	Qualitative Analysis

	Conclusion
	Limitations
	Experimental Setup
	ASG Configuration and Embedding Parameters

