

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 LG-BENCH: A GRAPH-STRUCTURED EVALUATION BENCHMARK FOR LIFE SCIENCES

005 **Anonymous authors**
006 Paper under double-blind review

ABSTRACT

011 Traditional evaluation benchmarks reduce inherently interconnected scientific
012 knowledge in life sciences into flat lists of questions, disregarding the underlying
013 topological structure of the knowledge. We introduce, the first graph-structured
014 benchmark for life sciences, featuring over 10,000 high-quality multiple-choice
015 questions across medicine, biology, and chemistry. Our approach constructs a
016 weighted evaluation graph using bidirectional matching and semantic similarity
017 algorithms, where nodes represent questions and edge weights capture their se-
018 mantic relationships. Leveraging this graph topology, we design two novel eval-
019 uation metrics. The Global Coherence Score (GCS) measures a model’s consis-
020 tency within semantically related neighborhoods, while Knowledge Balance Score
021 (KBS) analyzes how model errors are distributed across the graph to reveal con-
022 ceptual blind spots. LG-Bench facilitates fine-grained comparison of LLMs by
023 surfacing differences in conceptual coherence and patterns of knowledge orga-
024 nization across models. Our framework shifts the evaluation paradigm from flat
025 accuracy metrics to structure-aware analysis, offering a new lens for diagnosing
026 and improving LLM performance in the life sciences domain.

1 INTRODUCTION

030 Recent breakthroughs in large language models
031 (LLMs) epitomized by systems such as GPT-4
032 (Team, 2024), and Llama (Meta AI, 2024) have
033 rapidly accelerated progress in natural language
034 processing and sparked an intense wave of re-
035 search activity across multiple scientific disci-
036 plines. As model scale and performance con-
037 tinue to increase, the community is increasingly
038 dependent on systematic evaluation to guide de-
039 velopment, compare approaches, and guarantee
040 safe deployment.

041 However, current evaluations such as practices
042 in artificial intelligence suffer from a funda-
043 mental misrepresentation: they treat knowledge
044 as isolated, independent facts when it nat-
045 urally forms interconnected webs of under-
046 standing. This “flat-world illusion” is particularly
047 problematic in complex domains such as life
048 sciences (Bodenreider, 2004; Jin et al., 2021),
049 where understanding protein function requires
050 grasping its role in cellular pathways, regu-
051 latory mechanisms, and therapeutic implica-
052 tions as an integrated whole. Traditional benchmarks
053 present evaluation questions as flat lists, ob-
scuring the rich semantic relationships that de-
fine genuine domain expertise. These limita-

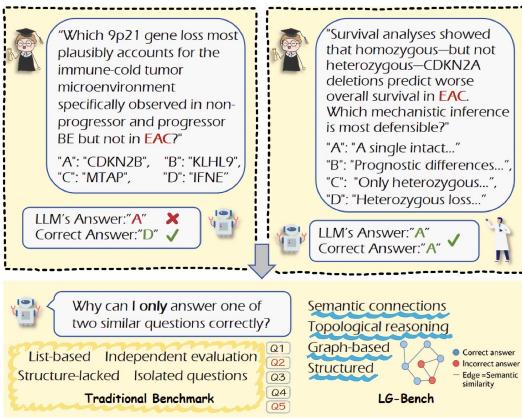


Figure 1: A case study highlights the limita-
tions of traditional benchmarks and the ad-
vantages of LG-Bench. Despite high semantic
similarity between two related questions, large
language models often answer only one of them cor-
rectly. Traditional benchmarks use a list-based
structure, making it difficult to uncover semantic
connections between questions. LG-Bench struc-
tures questions as a graph, enabling models to an-
alyze semantic links and allowing for more effec-
tive evaluation of their capabilities.

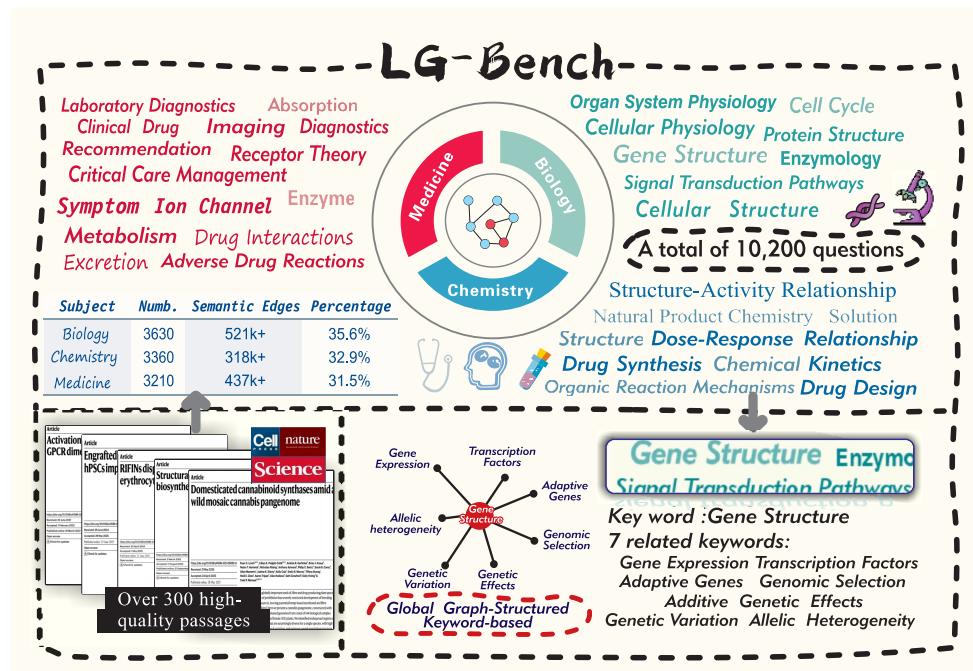


Figure 2: Overview diagram of LG-Bench. Our LG-Bench extracts over 10,000 questions from top-tier journals in the life sciences, covering three subfields: Medicine, Biology, and Chemistry. It innovatively introduces graph structures into the benchmark to better capture the nuanced capabilities of large language models.

tions make it hard for current metrics to distinguish between genuine understanding and mere pattern matching.

To solve this problem, we introduce the first graph-structured benchmark for comprehensive life sciences evaluation. Unlike traditional flat benchmarks that treat questions as isolated units, our approach reveals and exploits the inherent evaluation graph structure in evaluation datasets, as shown in Fig. 1. We construct a large-scale benchmark containing over 10k expert-reviewed questions drawn from recent peer-reviewed scientific literature, spanning diverse life sciences domains including Medicine, Biology, and Chemistry. Representative sources include *Nature*, *Science*, and *Cell*, ensuring coverage of both foundational knowledge and cutting-edge research. Through sophisticated graph construction methods using bidirectional matching and semantic similarity, we transform this question corpus into a weighted evaluation graph that captures the interconnected nature of scientific knowledge. This graph structure enables novel evaluation approaches that distinguish true understanding from superficial pattern matching by measuring knowledge coherence and analyzing the topological distribution of model errors across semantically related questions.

Our contributions are threefold:

- We introduce the first graph-structured benchmark for life sciences, containing over 10k expert-curated questions from recent literature from leading scientific journals spanning Medicine, Biology, and Chemistry, as shown in Fig. 2.
- We propose novel graph-based evaluation methods including the Global Coherence Score (GCS) for measuring knowledge coherence and the Knowledge Balance Score (KBS) for quantifying variance in local coherence patterns across the knowledge graph topology.
- We conducted a systematic evaluation of LG-Bench across large language models of varying scales, and leveraged GCS and KBS to deeply analyze performance flaws, providing practical support for capability diagnosis and optimization of large models in the life science.

108

2 RELATED WORK

110 Traditional evaluation of large language models relies on accuracy-based metrics, treating each ques-
 111 tion as an independent unit (Li et al., 2024; Richard, 2015). This approach assumes knowledge can
 112 be divided into isolated facts, missing the interconnected nature of true expertise. Although recent
 113 work explores more nuanced frameworks (Mondorf & Plank, 2024; Xu et al., 2025; Zhang et al.,
 114 2025), current metrics still struggle to differentiate genuine understanding from sophisticated pattern
 115 matching, a limitation particularly evident in complex scientific domains.

116 This challenge is amplified in the life sciences. Prominent benchmarks like UMLS (Bodenreider,
 117 2004), MedQA (Jin et al., 2021), PubMedQA (Jin et al., 2019), MLEC-QA (Li et al., 2021), and
 118 BioASQ (Nentidis et al., 2023) suffer from critical limitations. They often rely on static knowledge,
 119 failing to capture the rapid evolution of research in areas like personalized medicine and advanced
 120 therapeutics (Cai et al., 2024; Chen et al., 2025; Zhou et al., 2025). Furthermore, their narrow focus
 121 on medicine over foundational sciences like biology and chemistry restricts the ability to assess
 122 comprehensive, interdisciplinary knowledge, which is essential for reliable evaluation.

123 A promising direction to address these structural flaws lies in graph-based knowledge representa-
 124 tion. While knowledge graphs are extensively studied in NLP (Hogan et al., 2021; Ji et al., 2021),
 125 and techniques like graph embeddings (Bordes et al., 2013; Wang et al., 2017) and graph neural net-
 126 works (Kipf, 2016; Wu et al., 2020) have proven effective at capturing complex relationships, these
 127 insights have not yet been applied to benchmark construction. In the life sciences, where knowledge
 128 inherently forms interconnected networks from molecular interactions to physiological systems, the
 129 absence of a graph-structured evaluation framework represents a significant gap. Our work bridges
 130 this gap by introducing the first graph-structured benchmark that explicitly models and leverages
 131 these knowledge relationships for a more meaningful and robust evaluation.

132

133 3 GRAPH-STRUCTURED BENCHMARK CONSTRUCTION

134 Our benchmark construction follows a two-stage pipeline shown as Fig. 3. First, we generate high-
 135 quality evaluation questions from recent scientific literature through a sophisticated multi-stage pro-
 136 cess with expert validation. Second, we construct a weighted evaluation graph, transforming the flat
 137 question corpus into a structured representation that reflects the interconnected nature of scientific
 138 knowledge.

141

3.1 QUESTION NODE GENERATION

142 We generate question sets through a sophisticated multi-stage pipeline that transforms cutting-edge
 143 scientific literature into high-quality evaluation questions.

144 **Document Analysis.** Our pipeline begins with a multi-modal large language model (LLM) ana-
 145 lyzer that processes recent peer-reviewed papers from leading journals in the life sciences. This
 146 analyzer extracts structured knowledge representations from each document $d \in D_{\text{corpus}}$, identifying
 147 core concepts along with their hierarchical and semantic relationships. It systematically extracts
 148 knowledge pairs, consisting of concepts and their associated properties or relations, which serve as
 149 fundamental units for downstream question generation. The analyzer also assigns each identified
 150 concept a corresponding Bloom’s Taxonomy level (Forehand, 2010), specifying its cognitive depth.
 151 The system enforces explicit targets for the distribution of questions across these levels, ensuring a
 152 balanced coverage of cognitive complexity in the final benchmark.

153 **Guided Question Generation.** The generation stage employs a specialized LLM that receives
 154 guidance from the analyzer’s output. Each generation prompt includes:

- 155 • Domain-specific knowledge context and key concepts
- 156 • Target Bloom level with specific cognitive verbs
- 157 • Scientific accuracy constraints
- 158 • Requirements for testing conceptual relationships

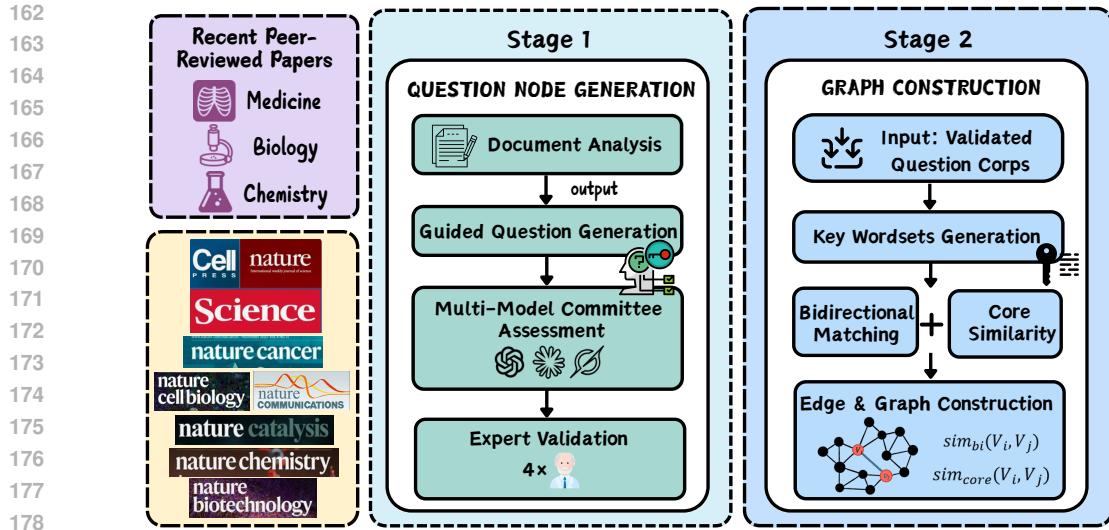


Figure 3: Two-stage Pipeline for Construction of LG-Bench.

This guidance ensures generated questions genuinely test integrated understanding rather than isolated fact recall.

Multi-Model Committee Assessment. The quality assurance stage involves a committee of three state-of-the-art large language models (GPT-4o, Claude 3.7 Sonnet, and Grok-3) that independently evaluate each generated question. The committee members assess questions across multiple dimensions, including scientific accuracy, cognitive complexity, and conceptual integration. Through a voting mechanism, questions that fail to meet quality thresholds are flagged for mandatory human expert review. Additionally, the committee annotates the relevant knowledge sources and the rationale behind each judgment to facilitate more efficient and accurate expert verification.

Expert Validation. Our human validation team comprises 4 PhD-holding life sciences experts. These experts conduct rigorous review by simultaneously examining both the source scientific papers and the generated questions, ensuring strict verification of knowledge accuracy and appropriateness as evaluation items. They assess whether questions faithfully reflect the paper’s content while testing meaningful understanding. This dual-verification approach—checking both scientific correctness and QA suitability—ensures our dataset maintains the highest standards while capturing genuinely challenging, interconnected knowledge that reflects current advances in the field.

Through this rigorous process, we construct $Q_{\text{corpus}} = \{q_1, q_2, \dots, q_n\}$ with over 10k expert-validated questions that form the foundation for meaningful graph construction.

3.2 GRAPH CONSTRUCTION

The core innovation of our approach lies in recovering the latent knowledge structure from the flat question collection. We accomplish this through rigorous graph-based methods that transform Q_{corpus} into a meaningful evaluation graph. We construct a weighted undirected graph $G = (V, E, w)$ where the structure emerges naturally from the semantic relationships within our question corpus. The node set V corresponds directly to our questions, with $V = Q_{\text{corpus}}$ and $|V| = n$, establishing a one-to-one mapping between graph nodes and evaluation questions.

We first employ an LLM to extract key concepts and entities from each question, generating key-word sets that capture the essential knowledge elements. This extraction process identifies domain-specific terms, scientific concepts, and their semantic roles within the question context. Then we define a hybrid similarity function $\text{sim} : V \times V \rightarrow [0, 1]$ that captures both semantic and knowledge-based relationships between questions through a multi-component approach. For questions v_i and v_j with respective keyword sets K_i and K_j extracted by the LLM, we embed all keywords and compute the similarity matrix $S_{ij} \in \mathbb{R}^{|K_i| \times |K_j|}$ where $S_{ij}[p, q] = \cos(\text{emb}(k_p^i), \text{emb}(k_q^j))$. We then compute two complementary similarity components:

216 **Bidirectional Matching:** Measures mutual coverage between keyword sets. We first define directional similarities:
 217

$$219 \quad \text{sim}_{i \rightarrow j} = \frac{1}{|K_i|} \sum_{p=1}^{|K_i|} \max_q S_{ij}[p, q] \quad (1)$$

$$222 \quad \text{sim}_{j \rightarrow i} = \frac{1}{|K_j|} \sum_{q=1}^{|K_j|} \max_p S_{ij}[p, q] \quad (2)$$

225 where $\text{sim}_{i \rightarrow j}$ measures how well keywords in K_i are covered by K_j , and vice versa. The bidirectional similarity is:
 226

$$227 \quad \text{sim}_{\text{bi}}(v_i, v_j) = \frac{1}{2} (\text{sim}_{i \rightarrow j} + \text{sim}_{j \rightarrow i}) \quad (3)$$

229 **Core Similarity:** Focuses on the strongest connections by selecting top- k matches:
 230

$$231 \quad \text{sim}_{\text{core}}(v_i, v_j) = \frac{1}{k} \sum_{l=1}^k S_{ij}^{(l)} \quad (4)$$

234 where $S_{ij}^{(l)}$ represents the l -th largest element in the flattened similarity matrix, and $k = \min(\kappa, |K_i|, |K_j|)$ with κ being a predefined parameter.
 235

236 The final similarity score combines these two components:
 237

$$238 \quad \text{sim}(v_i, v_j) = \gamma \cdot \text{sim}_{\text{core}}(v_i, v_j) + (1 - \gamma) \cdot \text{sim}_{\text{bi}}(v_i, v_j) \quad (5)$$

239 where $\gamma \in [0, 1]$ controls the balance between core similarity and bidirectional matching.
 240

241 An edge (v_i, v_j) exists in our graph if and only if $\text{sim}(v_i, v_j) > \theta$, where θ is an adaptive threshold
 242 determined. Each edge carries a weight $w(v_i, v_j) = \text{sim}(v_i, v_j)$, encoding the strength of the relationship
 243 between questions. This construction ensures that our graph captures meaningful semantic
 244 relationships while avoiding noise from spurious connections.
 245

246 4 GRAPH-BASED MODEL EVALUATION

248 The graph structure of our benchmark enables fundamentally new approaches to model evaluation.
 249 We leverage the evaluation graph topology to assess two core aspects of model performance—its
 250 global coherence in understanding life sciences as an integrated knowledge domain and the distribution
 251 of its errors across the graph—and develop complementary methods to address these challenges.
 252

253 4.1 GLOBAL COHERENCE SCORE (GCS)

254 Consider two models achieving identical 75% accuracy on a life sciences benchmark. Model A correctly
 255 answers questions about protein synthesis, translation, and ribosome function as a coherent cluster, while Model B’s correct answers scatter randomly—answering about ATP synthesis while
 256 missing basic cellular respiration, correctly identifying drug mechanisms while failing on the underlying
 257 biochemistry. Traditional accuracy metrics see these models as equivalent, yet any domain
 258 expert would immediately recognize Model A’s superior understanding. The Global Coherence
 259 Score (GCS) captures this phenomenon by recognizing that genuine comprehension creates clusters
 260 of consistent performance in the knowledge graph.
 261

262 For model M evaluated on graph $G = (V, E, w)$, let $\text{Res}_M(v) \in \{0, 1\}$ denote whether M correctly
 263 answers question v . We compute the neighborhood coherence for each node:
 264

$$265 \quad \text{Coherence}_M(v) = \frac{\sum_{u \in N(v)} w(v, u) \cdot \text{Res}_M(u)}{\sum_{u \in N(v)} w(v, u)} \quad (6)$$

268 where $N(v)$ denotes the set of nodes whose distance from v is at most 1. This represents the
 269 weighted accuracy within v ’s semantic neighborhood.
 270

270 The GCS transforms each binary correct/incorrect outcome into a continuous value that reflects
 271 neighborhood support:
 272

$$273 \quad 274 \quad 275 \quad \text{GCS}(M) = \frac{1}{|V|} \sum_{v \in V} \text{Res}_M(v) \cdot \text{Coherence}_M(v) \quad (7)$$

276 Although the GCS is strongly correlated with overall accuracy, transforming each binary 0/1 out-
 277 come into a weighted value between 0 and 1 allows it to reveal knowledge gaps even among correctly
 278 answered nodes with low neighborhood support. This highlights cases where the model may have
 279 guessed correctly in isolation, without demonstrating genuine understanding of the surrounding se-
 280 mantic context—making GCS a more diagnostic measure of structured knowledge.
 281

282 4.2 KNOWLEDGE BALANCE SCORE (KBS) 283

284 While GCS measures overall coherence, understanding how consistently a model maintains coher-
 285 ence across different regions of the knowledge graph reveals deeper insights into its knowledge
 286 organization patterns. Traditional evaluation metrics fail to capture whether a model exhibits bal-
 287 anced understanding or demonstrates highly variable performance across semantic neighborhoods.
 288 We introduce the Knowledge Balance Score (KBS), a novel metric that quantifies the variance in
 289 local coherence patterns to assess knowledge stability and balance.
 290

291 For a given model M evaluated on graph $G = (V, E, w)$, we leverage the neighborhood coherence
 292 values $\text{Coherence}_M(v)$ computed in the GCS framework. The KBS is computed as the variance of
 293 amplified coherence values across all nodes:
 294

$$295 \quad \text{KBS}(M) = \text{Var}(\text{Coherence}_M(v) \times \alpha) \quad (8)$$

$$296 \quad 297 \quad = \frac{1}{|V|} \sum_{v \in V} (\text{Coherence}_M(v) \times \alpha - \mu)^2 \quad (9)$$

298 where $\alpha > 1$ is an amplification factor that enhances the distinction between high and low coherence
 299 regions, and $\mu = \frac{1}{|V|} \sum_{v \in V} (\text{Coherence}_M(v) \times \alpha)$ is the mean amplified coherence across all nodes.
 300

301 This variance-based perspective on coherence analysis enables precise identification of whether
 302 models suffer from knowledge imbalance or systematic understanding deficits, guiding more ef-
 303 fective training and improvement strategies.
 304

305 5 EXPERIMENTS

306 5.1 EXPERIMENTAL SETUP

307 **Benchmark Details.** Our dataset construction pipeline generated high-quality questions from re-
 308 cent peer-reviewed literature spanning three major life sciences domains. For each subdomain, the
 309 corresponding graph is a subgraph of the global evaluation graph. Table 1 presents the structural
 310 characteristics of our constructed evaluation graph. More details can be found in Appendix A.1.
 311

312 Table 1: LG-Bench: Graph-Structured Benchmark Statistics
 313

314 Domain	315 Questions (Nodes)	316 Semantic Edges	317 Avg. Degree
318 Biology	3,630	521,890	287.50
319 Chemistry	3,360	318,763	189.74
320 Medicine	3,210	437,442	272.55
321 Overall	10,200	2,990,277	586.32

322 **Models.** We evaluate a comprehensive set of large language models spanning different scales, ar-
 323 chitectures, and specializations to provide a thorough assessment of capabilities. In the case of

324 open-source models , we include the Qwen2.5 series (0.5B/7B/14B/32B/72B) (Team, 2024), the
 325 Llama family (Touvron et al., 2023; Meta AI, 2024; Dubey et al., 2024) including Llama-7B, Llama-
 326 3B, Llama-3.3-70B, Llama-3.1-405B, and Llama-4-scout. We also evaluate the GLM-4 series
 327 (9B/32B) (GLM et al., 2024), Gemma-3-1B (Team, 2025), and DeepSeek-v3 (DeepSeek-AI, 2024).
 328 For domain-specific models, we include BioMedLM-2.7B (Bolton et al., 2024), Medicine-LLM-7B
 329 (Cheng et al., 2024), HuatuoGPT family (Zhang et al., 2023; Chen et al., 2023), and Llama3-Med42-
 330 8B (Christophe et al., 2024), which are specifically fine-tuned for life sciences applications.

331 For closed-source commercial models, we utilize the GPT series including GPT-3.5, GPT-4o-mini,
 332 GPT-4o, OpenAI o3, and OpenAI o4-mini (OpenAI, 2023a;b), the Claude family with Claude-3.5-
 333 sonnet and Claude-3.7-sonnet (Anthropic, 2024; 2025), and the Grok series (Grok-2/Grok-3) (xAI,
 334 2025). All models are evaluated using identical prompting strategies and evaluation protocols to
 335 ensure fair comparison.

336

337

5.2 RESULTS

339

340 Table 2 presents comprehensive evaluation re-
 341 sults across all models on LG-Bench using our
 342 graph-based metrics. All accuracy (Acc) and
 343 Global Coherence Score (GCS) values are re-
 344 ported as percentages. For KBS computation,
 345 we set the amplification parameter $\alpha = 100$
 346 to enhance the distinction between high and
 347 low coherence regions. All experiments were
 348 conducted three times and averaged, with more
 349 experimental settings available in Appendix B.
 350 Our evaluation demonstrates significant per-
 351 formance variations across models, with overall
 352 accuracy ranging from 23.93% (BioMedLM-
 353 2.7B) to 89.51% (OpenAI o4-mini), GCS span-
 354 ning 5.67% to 80.59%, and KBS values vary-
 355 ing from 5.28 to 27.60. Notably, our graph-
 356 based metrics reveal substantial differences be-
 357 tween models that are not captured by tradi-
 358 tional accuracy alone, effectively distin-
 359 guishing models with coherent knowledge orga-
 360 nization from those exhibiting scattered un-
 361 derstanding patterns across the life sciences
 362 domain. As shown in Fig.4, we compare the
 363 responses of Qwen2.5 within a local graph struc-
 364 ture and observe a clear lack of understanding
 365 of certain concepts in Qwen2.5-7B, whereas
 366 Qwen2.5-72B demonstrates a clear and solid
 367 grasp of these knowledge points. A more de-
 368 tailed analysis is provided in Appendix A.2.

369

370

371

372

373

374

375

376

377

Open-Weight LLMs vs. Closed-Weight LLMs. The result highlights a striking contrast between open and closed models when confronted with LG-Bench, whose items deliberately target clinical guidelines, drugs, and biomolecular findings released recently. Early open models such as HuatuoGPT, BioMedLM, and Llama-7B reach only 24–31% accuracy, revealing substantial blind spots for the newest knowledge. In contrast, iterative open-source versions like HuatuoGPT2-7B, Llama-3-8B, and Llama3-Med42-8B boost the same metric to 60–78% while staying under 10B parameters. These improvements attest to the compounding benefits of an open ecosystem, where community-contributed data refreshes and lightweight domain fine-tuning shorten the model–data–task loop. Closed-source systems still occupy the top tier: OpenAI o3 and OpenAI o4-mini surpass 88% overall accuracy, reflecting the value of proprietary corpora and extensive RLHF (Christiano et al., 2017). Nevertheless, the gap is narrowing; fully open models like Qwen2.5-72B and DeepSeek-v3 trail GPT series by less than 3 pp. In sum, while closed models presently set the performance ceil-

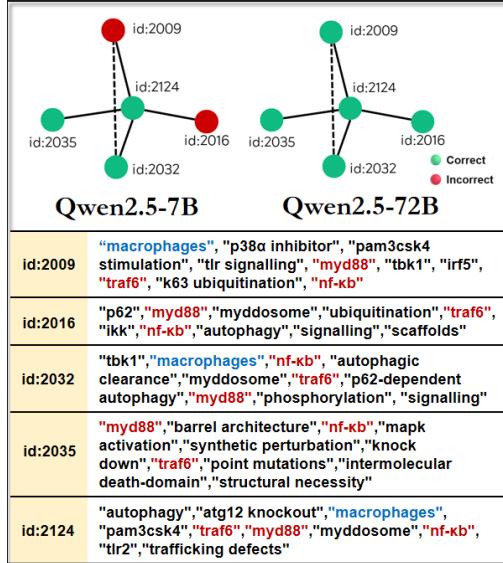


Figure 4: Qwen2.5 results within a local graph structure. Qwen2.5-7B failed on many questions in the neighborhood-level evaluation. Red keywords indicate areas of severe knowledge weakness, while blue keywords denote relatively weak points. In contrast, Qwen2.5-72B correctly answered all relevant questions in the neighborhood test, demonstrating a relatively good grasp of the associated knowledge.

378 Table 2: Evaluation Results on LG-Bench: Acc denotes traditional accuracy (in %), GCS measures
 379 global coherence (in %), with higher scores indicating stronger capabilities. We use **bold** to highlight
 380 the best-performing model in each domain, and *italics* to indicate the second-best. KBS quantifies
 381 knowledge balance, and higher scores indicate a more uneven distribution.

Model	Medicine			Biology			Chemistry			Overall		
	Acc	GCS	KBS									
Open-Weight LLM (Scale<10B)												
Qwen2.5-0.5B	37.07	13.96	22.19	38.10	14.83	26.34	37.44	14.35	36.52	37.56	14.39	16.11
Gemma-3-1b	51.56	26.73	29.42	55.45	30.71	21.97	52.65	28.20	39.34	53.30	28.62	17.94
BioMedLM-2.7B	24.14	5.80	12.85	23.80	5.65	9.03	23.87	5.56	13.69	23.93	5.67	5.28
Llama-7B	30.06	9.19	13.62	30.91	9.60	14.41	32.20	10.47	19.14	31.07	9.76	6.80
Medicine-LLM-7B	38.72	15.23	22.23	34.88	12.26	17.23	35.57	12.58	23.87	36.31	13.29	10.65
HuatuoGPT-7B	28.75	8.36	15.94	29.20	8.50	10.31	28.42	8.13	12.97	28.80	8.33	5.96
HuatuoGPT2-7B	61.06	38.09	33.85	62.42	39.36	20.89	58.36	34.41	44.45	60.66	37.39	20.00
Qwen2.5-7B	78.38	62.15	29.17	80.03	64.24	21.58	76.76	59.21	25.74	78.43	62.00	15.19
Llama-3-8b	72.77	54.11	35.65	75.67	57.64	17.94	72.53	53.16	27.97	73.73	55.04	14.62
Llama3-Med42-8B	78.10	61.60	25.61	77.38	60.01	18.22	75.00	56.71	30.78	76.82	59.43	13.56
GLM-4-9b	76.67	59.61	30.59	77.47	59.82	25.99	75.45	57.50	36.28	76.55	58.97	18.05
Open-Weight LLM (Scale>10B)												
Qwen2.5-14B	83.02	69.62	20.67	85.26	72.72	18.54	82.62	68.64	21.91	83.69	70.42	11.73
Qwen2.5-32B	84.70	72.55	21.01	86.06	74.34	15.02	83.75	70.38	20.78	84.87	72.56	11.07
GLM-4-32B	78.94	63.32	29.30	80.44	64.82	22.22	78.30	61.77	29.31	79.26	63.33	15.28
Llama-3.1-70B	72.77	69.51	24.30	83.14	69.19	19.55	71.67	66.78	24.67	82.54	68.58	12.70
Qwen2.5-72B	86.26	75.12	16.53	86.97	75.68	15.45	84.85	72.44	23.04	86.05	74.52	10.26
Llama-3.1-405b	88.07	78.13	13.98	88.26	78.01	10.88	87.14	76.18	14.98	87.83	77.51	7.19
Llama-4-scout	78.69	62.61	32.32	81.79	66.95	25.66	80.27	64.79	28.76	80.31	64.89	18.65
Deepseek-v3	87.17	76.57	14.76	87.96	77.51	11.63	86.90	75.70	15.09	87.36	76.70	7.50
Closed-Weight LLM												
Grok-2	88.54	78.71	16.61	89.01	79.30	11.15	87.23	76.36	17.60	88.27	78.20	7.78
Grok-3	86.29	75.06	14.01	84.38	71.75	29.89	85.77	73.75	16.68	85.44	73.54	10.40
Claude-3.5-sonnet	88.91	79.43	12.51	88.65	78.61	10.25	86.93	76.03	18.69	88.17	78.09	7.56
Claude-3.7-sonnet	88.41	78.76	15.91	89.04	79.29	9.00	87.83	77.27	14.71	88.44	78.52	6.97
GPT-3.5	76.42	59.35	27.79	77.02	59.67	23.01	74.55	56.38	35.35	76.02	58.47	16.31
GPT-4o-mini	82.21	68.77	25.94	84.41	71.13	14.91	81.70	67.26	26.46	82.82	69.19	12.68
GPT-4o	88.47	78.99	15.08	89.70	80.44	10.62	88.01	77.79	13.29	88.75	79.19	6.22
OpenAI o3	90.00	81.57	10.65	89.26	79.84	9.94	89.05	79.56	11.60	89.42	80.34	5.83
OpenAI o4-mini	89.75	81.09	10.69	89.89	81.14	7.22	88.87	79.32	9.46	89.51	80.59	4.45

410
 411 ing, rapid, community-driven iteration is continuously raising the open-source floor, accelerating
 412 progress for medical reasoning at large.

413
 414 **Model Scale Effects.** Our empirical analysis confirms a clear parameter–performance scaling law.
 415 Sub-10B models deliver only moderate results, with accuracies below 80% and GCS under 62%; for
 416 instance, Qwen2.5-0.5B attains merely 37.56% accuracy and a GCS of 14.39%. Once the parameter
 417 count exceeds 10B, every metric improves sharply. Within the Qwen2.5 family, accuracy and GCS
 418 rise from 83.69% and 70.42% at 14B to 84.87% and 72.56% at 32B, and further to 86.05% and
 419 74.52% at 72B. Knowledge balance benefits from scaling as well: the KBS drops monotonically
 420 from 16.11 at 0.5B to 11.73 at 14B, 11.07 at 32B, and 10.26 at 72B, indicating progressively more
 421 coherent knowledge organization. The Llama series exhibits the same scaling advantages, under-
 422 scoring the generality of these trends across model families. The Coherence Score distribution of
 423 Qwen2.5 family is shown as Fig. 5.

423
 424 **Impact of Domain-Specific Training.** Our graph-based metrics provide a detailed lens through
 425 which to analyze the effects of domain-specific fine-tuning. A direct comparison between the gener-
 426 alist Llama-3-8b and its domain-adapted counterpart, Llama3-Med42-8B, reveals that specialization
 427 does more than just increase accuracy—it fundamentally reshapes the model’s knowledge structure.
 428 We embed each knowledge graph with *node2vec* (Grover & Leskovec, 2016) into a 2-D mani-
 429 fold and plot Coherence Score heatmaps, shown as Fig. 6. Although the overall surface becomes
 430 brighter—corroborating the aggregate metric improvements—an inverted pattern emerges in certain
 431 regions, revealing a migration of knowledge density rather than a uniform amplification.

432
 433 In the target domain of Medicine, Llama3-Med42-8B shows a substantial improvement in its GCS,
 434 rising to 61.60% from the base model’s 54.11%. More revealing is the impact on the KBS. The KBS

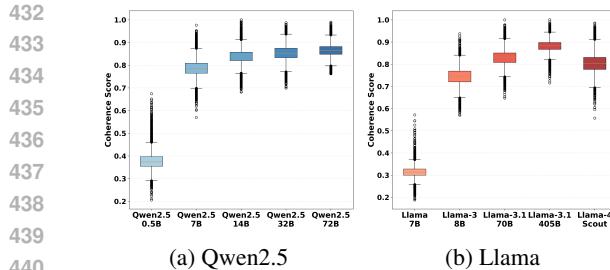


Figure 5: Coherence Score distribution of Qwen2.5 and Llama family. As model size increases, its overall capability in the life sciences domain gradually improves, while its knowledge becomes more evenly distributed.

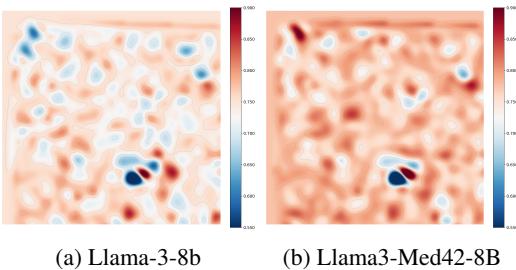


Figure 6: Heatmap visualization of the LG-Bench, where each cell represents a node’s Coherence Score. Redder regions indicate higher coherence, while bluer areas indicate lower coherence.

for Llama3-Med42-8B in Medicine drops sharply to 25.61 from the base model's 35.65. This significant reduction in variance demonstrates that the fine-tuning not only enhanced knowledge but also homogenized it, leading to a more evenly distributed and balanced understanding across different medical topics. However, this specialization comes with trade-offs that metrics can precisely identify. While its GCS shows minor improvements in the related field of Biology, Llama3-Med42-8B's KBS in Chemistry increases to 30.78, higher than the base model's 27.97. This suggests that the intense focus on medicine may have inadvertently created a more imbalanced and "spiky" knowledge representation in the less related chemical domain. This demonstrates that domain adaptation can reshape knowledge organization both positively and negatively across different semantic regions, a critical insight that flat accuracy metrics would completely miss.

Domain-Specific Performance Patterns. A discipline-level decomposition reveals pronounced performance asymmetries, as illustrated in Fig. 7. Biology most often emerges as the relative strong models such as GPT-4o-mini, Qwen2.5-72B, Claude-3.7, HuatuoGPT2-7B achieve their peak accuracies and GCS in this domain, yet this advantage is not universal, varying with architecture and scale. Chemistry, by contrast, remains the chief bottleneck: even state-of-the-art systems record their lowest scores there, a deficit plausibly tied to the field’s dense symbolic notation, heterogeneous nomenclature, and high conceptual abstraction. Such disciplinary disparities highlight works that can capture the unique challenges and opportunities of specific domains.

6 CONCLUSION AND OTHERS

Conclusion. In this work, we introduced LG-Bench, the first graph-structured benchmark designed to address the fundamental limitations of traditional evaluations in the life sciences. By modeling knowledge as an interconnected graph and introducing novel coherence-based metrics, we provide the community with the tools to move beyond simple accuracy and assess the depth of a model’s scientific reasoning.

Future Work. We will continuously update our dataset and incorporate semantic information into the edges of the graph structure to enable more fine-grained evaluation.

Broad Impact. We believe this rigorous evaluation framework will guide LLMs beyond pattern-matching toward becoming true scientific partners. Ultimately, more reliable and coherent AI systems will accelerate discovery and innovation across the life sciences.

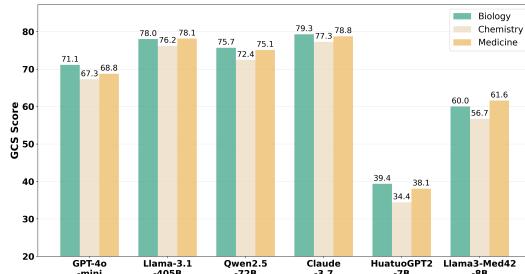


Figure 7: GCS Comparison Across Models and Categories.

486 REFERENCES
487

488 Anthropic. Claude 3.5. <https://www.anthropic.com/clause>, 2024. Available at
489 <https://www.anthropic.com/clause>.

490 Anthropic. Claude 3.7. <https://www.anthropic.com/clause>, 2025. Available at
491 <https://www.anthropic.com/clause>.

492 Olivier Bodenreider. The unified medical language system (umls): integrating biomedical terminol-
493 ogy. *Nucleic acids research*, 32(suppl_1):D267–D270, 2004.

494

495 Elliot Bolton, Abhinav Venigalla, Michihiro Yasunaga, David Hall, Betty Xiong, Tony Lee, Roxana
496 Daneshjou, Jonathan Frankle, Percy Liang, Michael Carbin, et al. Biomedlm: A 2.7 b parameter
497 language model trained on biomedical text. *arXiv preprint arXiv:2403.18421*, 2024.

498 Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
499 Translating embeddings for modeling multi-relational data. *Advances in neural information pro-
500 cessing systems*, 26, 2013.

501

502 Yan Cai, Linlin Wang, Ye Wang, Gerard de Melo, Ya Zhang, Yanfeng Wang, and Liang He. Med-
503 bench: A large-scale chinese benchmark for evaluating medical large language models. In *Pro-
504 ceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 17709–17717, 2024.

505 Junying Chen, Xidong Wang, Ke Ji, Anningzhe Gao, Feng Jiang, Shunian Chen, Hongbo Zhang,
506 Dingjie Song, Wenyia Xie, Chuyi Kong, et al. Huatuogpt-ii, one-stage training for medical adap-
507 tion of llms. *arXiv preprint arXiv:2311.09774*, 2023.

508 Xiaolan Chen, Jiayang Xiang, Shanfu Lu, Yexin Liu, Mingguang He, and Danli Shi. Evaluating
509 large language models and agents in healthcare: key challenges in clinical applications. *Intelligent
510 Medicine*, 2025.

511

512 Daixuan Cheng, Shaohan Huang, and Furu Wei. Adapting large language models via reading com-
513 prehension. In *The Twelfth International Conference on Learning Representations*, 2024. URL
514 <https://openreview.net/forum?id=y886UXPEZ0>.

515 Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
516 reinforcement learning from human preferences. *Advances in neural information processing sys-
517 tems*, 30, 2017.

518 Clément Christophe, Praveen K Kanithi, Tathagata Raha, Shadab Khan, and Marco AF Pimentel.
519 Med42-v2: A suite of clinical llms, 2024. URL <https://arxiv.org/abs/2408.06142>.

520

521 DeepSeek-AI. Deepseek-v3 technical report, 2024. URL <https://arxiv.org/abs/2412.19437>.

522

523 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
524 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
525 *arXiv e-prints*, pp. arXiv–2407, 2024.

526

527 Mary Forehand. Bloom’s taxonomy. *Emerging perspectives on learning, teaching, and technology*,
528 41(4):47–56, 2010.

529

530 Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Diego Rojas, Guanyu
531 Feng, Hanlin Zhao, Hanyu Lai, Hao Yu, Hongning Wang, Jiadai Sun, Jiajie Zhang, Jiale Cheng,
532 Jiayi Gui, Jie Tang, Jing Zhang, Juanzi Li, Lei Zhao, Lindong Wu, Lucen Zhong, Mingdao Liu,
533 Minlie Huang, Peng Zhang, Qinkai Zheng, Rui Lu, Shuaiqi Duan, Shudan Zhang, Shulin Cao,
534 Shuxun Yang, Weng Lam Tam, Wenyi Zhao, Xiao Liu, Xiao Xia, Xiaohan Zhang, Xiaotao Gu,
535 Xin Lv, Xinghan Liu, Xinyi Liu, Xinyue Yang, Xixuan Song, Xunkai Zhang, Yifan An, Yifan
536 Xu, Yilin Niu, Yuantao Yang, Yueyan Li, Yushi Bai, Yuxiao Dong, Zehan Qi, Zhaoyu Wang,
537 Zhen Yang, Zhengxiao Du, Zhenyu Hou, and Zihan Wang. Chatglm: A family of large language
538 models from glm-130b to glm-4 all tools, 2024.

539

540 Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In *Proceedings
541 of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining*,
542 pp. 855–864, 2016.

540 Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’Amato, Gerard De Melo, Claudio Gutier-
 541 rez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli, Sebastian Neumaier, et al.
 542 Knowledge graphs. *ACM Computing Surveys (Csur)*, 54(4):1–37, 2021.

543

544 Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and Philip S Yu. A survey on knowledge
 545 graphs: Representation, acquisition, and applications. *IEEE transactions on neural networks and*
 546 *learning systems*, 33(2):494–514, 2021.

547 Di Jin, Eileen Pan, Nassim Oufattolle, Wei-Hung Weng, Hanyi Fang, and Peter Szolovits. What dis-
 548 ease does this patient have? a large-scale open domain question answering dataset from medical
 549 exams. *Applied Sciences*, 11(14):6421, 2021.

550

551 Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William W Cohen, and Xinghua Lu. Pubmedqa: A
 552 dataset for biomedical research question answering. *arXiv preprint arXiv:1909.06146*, 2019.

553

554 TN Kipf. Semi-supervised classification with graph convolutional networks. *arXiv preprint*
 555 *arXiv:1609.02907*, 2016.

556

557 Haitao Li, Qian Dong, Junjie Chen, Huixue Su, Yujia Zhou, Qingyao Ai, Ziyi Ye, and Yiqun
 558 Liu. Llms-as-judges: a comprehensive survey on llm-based evaluation methods. *arXiv preprint*
 559 *arXiv:2412.05579*, 2024.

560

561 Jing Li, Shangping Zhong, and Kaizhi Chen. Mlec-qa: A chinese multi-choice biomedical question
 562 answering dataset. In *Proceedings of the 2021 Conference on Empirical Methods in Natural*
 563 *Language Processing*, pp. 8862–8874, 2021.

564

565 Meta AI. Introducing meta llama 3: The most capable openly available llm to date, 2024. URL
 566 <https://ai.meta.com/blog/meta-llama-3/>. Accessed: 2025-07-28.

567

568 Philipp Mondorf and Barbara Plank. Beyond accuracy: evaluating the reasoning behavior of large
 569 language models—a survey. *arXiv preprint arXiv:2404.01869*, 2024.

570

571 Anastasios Nentidis, Georgios Katsimpras, Anastasia Krithara, Salvador Lima López, Eulália Farré-
 572 Maduell, Luis Gasco, Martin Krallinger, and Georgios Palioras. Overview of bioasq 2023: The
 573 eleventh bioasq challenge on large-scale biomedical semantic indexing and question answering.
 574 In *International Conference of the Cross-Language Evaluation Forum for European Languages*,
 575 pp. 227–250. Springer, 2023.

576

577 OpenAI. Chatgpt. <https://chat.openai.com/chat>, 2023a.

578

579 OpenAI. Gpt-4 technical report. Technical report, OpenAI, March 2023b. Available at <https://arxiv.org/abs/2303.08774>.

580

581 L Richard. Burden, j douglas faires, and annette m burden. *Numerical analysis. Cengage learning*,
 582 4, 2015.

583

584 Gemma Team. Gemma 3. 2025. URL <https://goo.gle/Gemma3Report>.

585

586 Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL <https://qwenlm.github.io/blog/qwen2.5/>.

587

588 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 589 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
 590 tion and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

591

592 Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. Knowledge graph embedding: A survey of
 593 approaches and applications. *IEEE transactions on knowledge and data engineering*, 29(12):
 594 2724–2743, 2017.

595

596 Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A
 597 comprehensive survey on graph neural networks. *IEEE transactions on neural networks and*
 598 *learning systems*, 32(1):4–24, 2020.

599

600 xAI. Grok 3 beta — the age of reasoning agents, 2025. URL <https://x.ai/news/grok-3>.

594 Fangzhi Xu, Qika Lin, Jiawei Han, Tianzhe Zhao, Jun Liu, and Erik Cambria. Are large language
 595 models really good logical reasoners? a comprehensive evaluation and beyond. *IEEE Transac-*
 596 *tions on Knowledge and Data Engineering*, 2025.

597 Hongbo Zhang, Junying Chen, Feng Jiang, Fei Yu, Zhihong Chen, Jianquan Li, Guiming Chen,
 598 Xiangbo Wu, Zhiyi Zhang, Qingying Xiao, et al. Huatuogpt, towards taming language model to
 599 be a doctor. *arXiv preprint arXiv:2305.15075*, 2023.

600 Zicheng Zhang, Junying Wang, Yijin Guo, Farong Wen, Zijian Chen, Hanqing Wang, Wenzhe Li,
 601 Lu Sun, Yingjie Zhou, Jianbo Zhang, Bowen Yan, Ziheng Jia, Jiahao Xiao, Yuan Tian, Xi-
 602 angyang Zhu, Kaiwei Zhang, Chunyi Li, Xiaohong Liu, Xiongkuo Min, Qi Jia, and Guangtao
 603 Zhai. Aibench: Towards trustworthy evaluation under the 45° law. <https://aiben.ch/>,
 604 2025.

605 Bohao Zhou, Yibing Zhan, Zhonghai Wang, Yanhong Li, Chong Zhang, Baosheng Yu, Liang Ding,
 606 Hua Jin, Weifeng Liu, Xiongbin Wang, et al. Benchmarking medical llms on anesthesiology:
 607 A comprehensive dataset in chinese. *IEEE Transactions on Emerging Topics in Computational
 608 Intelligence*, 2025.

611 A APPENDIX

614 A.1 DETAILS OF LG-BENCH

616 A.1.1 HYPERPARAMETER SETTINGS

617 Each edge in our evaluation graph represents a weighted semantic relationship between questions,
 618 computed using our bidirectional matching and core similarity algorithms. For graph construction,
 619 we set the balance parameter $\gamma = 0.6$ to weight core similarity slightly higher than bidirectional
 620 matching, selected the top $\kappa = 3$ strongest connections for core similarity computation, and applied
 621 an adaptive edge threshold $\theta = 0.4$ to ensure meaningful semantic relationships while maintaining
 622 graph connectivity.

624 A.1.2 SAMPLE QUESTIONS AND GRAPH STRUCTURE FROM LG-BENCH

625 **Sample Questions.** The following section presents several representative examples from our
 626 dataset, including options and explanations. Correct answers are highlighted in red.

627 **Question 48:** What primary cellular phenotype links loss of keratinization genes to increased EAC
 628 aggressiveness?

- 631 • (A) Suppression of Wnt signaling curtailing stem-cell renewal
- 632 • (B) Enhanced epithelial plasticity facilitating invasion
- 633 • (C) Elevated oxidative respiration reducing hypoxia tolerance
- 634 • (D) Activation of DNA damage checkpoints halting proliferation

635 **Explanation:** Loss of terminal squamous differentiation increases plasticity, enabling invasion and
 636 aggressive tumor behavior.

637 **Question 915:** If imaging-only maps recover large assemblies better than small ones, what physical
 638 explanation best accounts for this?

- 644 • (A) Small complexes have lower protein copy numbers, depleting peptide coverage in MS.
- 645 • (B) Spatial resolution of light microscopy limits detection of nanometre-scale com-
 646 plexes, causing small assemblies to be visually indistinguishable.
- 647 • (C) Image segmentation algorithms preferentially crop large structures for analysis.

648 • (D) Large assemblies generate brighter fluorescence signal enabling better antibody bind-
649 ing.
650

651 **Explanation:** Optical diffraction restricts resolution (200 nm); small complexes below this scale
652 cannot be visually separated, whereas larger assemblies occupy resolvable regions.
653

654
655 **Question 1767:** When donor-to-recipient cell ratios in MitoTRACER coculture increased from 1:10
656 to 1:1, the percentage of green-converted cancer cells rose. This demonstrates that mitochondrial
657 transfer probability depends mainly on which factor?
658

659 • (A) **Donor cell abundance creating more contact opportunities**
660 • (B) Recipient cell cell-cycle phase
661 • (C) Mitochondrial fission rate in recipients
662 • (D) Serum glucose concentration
663

664 **Explanation:** Higher donor proportion increases physical interactions and nanotube formation, el-
665 evating organelle transfer frequency.
666

667
668 **Question 2148:** What experimental evidence argues that myddosome clearance is p62-dependent?
669

670 • (A) p62 overexpression reduced IL-6 secretion
671 • (B) ProteoStat staining increased in p62-deficient cells
672 • (C) **p62 knockout macrophages accumulated residual myddosome structures long af-
673 ter signaling subsided**
674 • (D) Phospho-p65 levels declined faster in p62 knockout cells
675

676 **Explanation:** Persistence of remnants specifically in p62-null cells indicates its necessity for tar-
677 getting complexes to autophagy.
678

679
680 **Question 3992:** Stability studies demonstrated that folate-diketone remained bound to CovCAR at
681 pH 4.5, whereas folate-FITC dissociated. This finding predicts which therapeutic advantage?
682

683 • (A) Faster renal clearance of the adapter
684 • (B) **Enhanced trafficking through acidic tumour microenvironments**
685 • (C) Reduced requirement for lymphodepletion
686 • (D) Lower likelihood of cytokine release syndrome
687

688 **Explanation:** Retention of covalent linkage under acidic conditions supports sustained CAR-
689 adapter association in endosomes and acidic tumour niches.
690

691
692 **Question 4134:** Circular dichroism of the phenanthroline chromophore shows a negative Cotton
693 effect at 330 nm for (+)-5-[Cu][Lu]. What stereochemical element is most directly inferred from
694 this observation?
695

696 • (A) Δ -helicity at the Lu(III) helicate
697 • (B) **Λ -helicity at the Cu(I)-dpp clasp**
698 • (C) Presence of racemic knot mixture
699 • (D) Metal-free macrocycle formation
700

702
703 **Explanation:** A negative Cotton effect for bis-dpp Cu(I) complexes corresponds to Λ helicity, indicating that the clasp crossing in the knot adopts Λ configuration.
704

705
706 **Question 7441:** To evaluate whether N-0385 can block influenza A virus entry in vitro, which cell
707 model would best replicate the TMPRSS2-dependent activation step targeted in the Nature study,
708 and why?
709

710
711

- (A) Human Calu-3 airway epithelial cells, because they endogenously express TM-
712 PRSS2 and other TTSPs needed for viral fusion
- (B) BHK-21 hamster fibroblasts, because they lack serine proteases that interfere with fu-
713 sion assays
- (C) Vero E6 kidney cells, because they are routinely used for high-titre virus propagation
714 despite minimal TMPRSS2 expression
- (D) HEK-293 human embryonic kidney cells, because they overexpress ACE2 after tran-
715 sient transfection

716

717 **Explanation:** Calu-3 cells were used for their endogenous TMPRSS2 activity, allowing pep-
718 pidomimetic inhibitors to block spike/hemagglutinin activation.
719

720 **Question 8622:** Vorinostat targets class I/II HDACs. Which downstream effect most directly in-
721 creases tumor immunogenicity?
722

723
724

- (A) Blocking VEGF secretion, thereby reducing angiogenesis.
- (B) Enhanced histone acetylation leading to up-regulation of MHC class I genes.
- (C) Suppression of DNA repair enzymes, causing mutational overload.
- (D) Direct phosphorylation of STAT3, activating immune checkpoints.

725

726 **Explanation:** HDAC inhibition acetylates chromatin and increases expression of antigen-
727 presentation molecules, improving immune recognition.
728

729 **Question 9437:** Which control would MOST convincingly demonstrate that the loss of stress-
730 granule assembly after RIOK1 shRNA is on-target?
731

732
733

- (A) Overexpress GFP to control for lentiviral transduction.
- (B) Re-express an shRNA-resistant RIOK1 cDNA and test whether SG formation is
734 rescued.
- (C) Add cycloheximide to dissolve granules in all samples.
- (D) Include a non-targeting shRNA vector in parallel cultures.

735

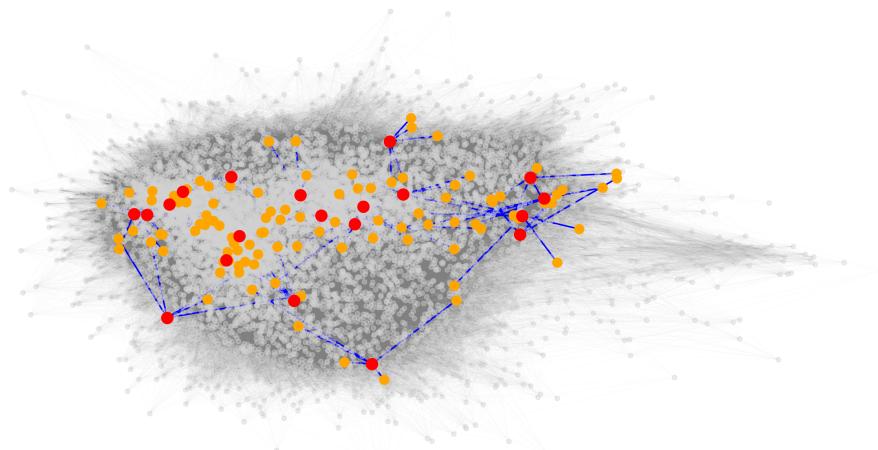
736 **Explanation:** Functional rescue with an shRNA-proof construct specifically attributes the pheno-
737 type to RIOK1 depletion.
738

739 **Question 9885:** A researcher cultures iPSC-derived cardiac fibroblasts on 2 kPa hydrogels and
740 treats them with exogenous TGF β . What combined manipulation would most effectively restore
741 quiescence according to the study's findings?
742

743
744

- (A) Blockade of IL-1 β signalling with anakinra alone
- (B) Knockdown of YAP together with ROCK inhibition
- (C) Overexpression of SORBS2 together with blebbistatin

745

756 • (D) **Addition of SB431542 together with saracatinib**
757758 **Explanation:** Soft substrate plus TGF β inhibition alone was insufficient after activation; adding
759 SRC inhibition (saracatinib) created the synergy required for full reversal toward quiescence.
760761
762 **Sample Graph Structure.** We sample several local subgraph structures and visualize them, as
763 shown in Fig. 8. We also present the neighboring information, as shown in Table 3. It can be
764 observed that the graph structure of our dataset captures rich semantic connections.
765789 Figure 8: Visualization of a subset of LG-Bench, where red nodes represent sampled questions
790 and their top-5 semantic neighbors (orange) based on edge weights. All other nodes and edges
791 are displayed in gray to show overall connectivity. The blue edges indicate the strongest semantic
792 connections (top-5 weighted edges) for each sampled node.793
794 **A.2 DETAILS OF EVALUATION**
795796 **A.2.1 EVALUATION ENVIRONMENT**
797798 For models with open weights, we downloaded the official weights and deployed tests on a cluster
799 with 8 nodes as shown in the Table 4. We set the same default temperature parameters and tested
800 with the exact same prompt. For models with closed weights, we conducted tests based on the API
801 while maintaining the same testing configurations as the open-weight models to ensure fairness.802 **A.2.2 CASE STUDY**
803804 To further analyse the performance differences between pre-trained language models of varying sizes
805 in complex question-answering tasks, we selected a set of highly relevant questions as evaluation
806 samples to compare the response quality of large models (Qwen-72B) and medium-sized models
807 (7B) under the same input settings. We retained the original question stems, concealed the multiple-
808 choice options, and prompted the models to perform open-ended question answering. Qwen-72B
809 can answer this set of questions, consistently generating responses with clear structural logic, ac-
curate content alignment, and a deep understanding of domain-specific mechanisms. In contrast,

810
811 Table 3: Top-5 highest-weight neighbors of 20 randomly sampled nodes. Weight (w) indicates
812 semantic similarity.

Node ID	Degree	Neighbor 1 (w)	Neighbor 2 (w)	Neighbor 3 (w)	Neighbor 4 (w)	Neighbor 5 (w)
48	191	39 (0.6531)	465 (0.6498)	9952 (0.6269)	497 (0.6089)	29 (0.5966)
4552	239	4564 (0.6253)	4538 (0.6165)	4524 (0.6103)	4587 (0.5998)	8973 (0.5913)
7441	204	7448 (0.8288)	7690 (0.7892)	2851 (0.7648)	7685 (0.7440)	7445 (0.7353)
2822	471	2824 (0.8452)	2828 (0.8393)	3419 (0.8200)	2829 (0.7956)	3416 (0.7751)
915	478	2446 (0.7431)	10071 (0.7266)	6640 (0.6843)	8843 (0.6815)	3149 (0.6744)
9216	61	9086 (0.6868)	9078 (0.6770)	9061 (0.6594)	9101 (0.6590)	9211 (0.6177)
9885	100	9735 (0.7791)	9883 (0.7493)	9881 (0.7485)	9732 (0.7007)	9739 (0.6861)
9437	195	9032 (0.7917)	9045 (0.7405)	9022 (0.7328)	7376 (0.7022)	9012 (0.6970)
9604	297	9610 (0.8237)	9955 (0.8006)	9606 (0.7000)	7740 (0.6839)	7753 (0.6775)
4134	66	4138 (0.6928)	4171 (0.6872)	4168 (0.6585)	4180 (0.6016)	4144 (0.5986)
2707	113	5536 (0.7635)	3346 (0.7352)	5531 (0.6819)	3341 (0.6663)	5899 (0.6505)
388	187	528 (0.8545)	513 (0.8285)	379 (0.8248)	550 (0.7506)	548 (0.7412)
2729	104	2752 (0.8181)	3320 (0.7863)	2739 (0.7591)	2714 (0.7580)	2721 (0.7579)
8047	116	8574 (0.7978)	8044 (0.6790)	8595 (0.6327)	8588 (0.6265)	8058 (0.6261)
1767	484	2084 (0.8085)	2066 (0.8027)	2064 (0.7842)	1785 (0.7794)	1795 (0.7515)
8622	598	8616 (0.8116)	8062 (0.7839)	8086 (0.7676)	8614 (0.7465)	8633 (0.7454)
9528	314	7740 (0.8151)	7734 (0.7978)	9410 (0.7548)	7739 (0.6999)	8164 (0.6966)
758	84	784 (0.7270)	753 (0.6624)	776 (0.6561)	783 (0.6472)	760 (0.6453)
2148	587	2108 (0.8436)	2016 (0.8381)	2001 (0.8345)	2131 (0.8325)	2129 (0.8256)
3992	169	3983 (0.7378)	3996 (0.7156)	807 (0.6854)	4007 (0.6290)	4005 (0.6283)

830
831 Table 4: Experimental Environment
832

Component	Specification
CPU	
Model	Intel(R) Xeon(R) Platinum 8336C
Total Cores	128
Total Threads	128
Max Turbo Frequency	2.30GHz
GPU	
Model	NVIDIA A800-SXM4 × 8
VRAM	80 GB GDDR6X

844 while the 7B model’s responses demonstrate some structural and organisational coherence, they still
 845 exhibit errors in certain questions, with significantly insufficient depth of understanding, expression
 846 precision, and knowledge mobilisation capabilities. For example, in the id2016 question, Qwen-7B
 847 overlooks the core mechanism of “ubiquitin-dependent transfer to autophagy” and instead provides
 848 a vague “autophagy-related” explanation. Additionally, the 7B model disregarded the role of the
 849 “MyD88-dependent myddosome complex” and erroneously assumed it influences early “NF- κ B-
 850 dependent transcription”.

851 This misunderstanding recurs in similar questions or adjacent nodes, indicating the model strug-
 852 gles to effectively reuse contextual information and lacks a robust representation of the internal
 853 structure of pathway mechanisms. Furthermore, larger-scale models demonstrate stronger per-
 854 formance in contextual understanding and domain knowledge integration, while smaller-scale mod-
 855 els often misidentify key mechanisms. This may stem from their insufficient understanding of
 856 domain-specific signalling pathways and their inability to distinguish between mechanistically sim-
 857 ilar components. Despite the five samples sharing high-frequency domain-specific keywords—such
 858 as “MyD88”, “traff6”, and “nf- κ B”, the smaller models (Qwen2.5-7B) still cannot consistently gen-
 859 eralise mechanisms across samples. This inconsistency manifests not only as factual errors but also
 860 as failures in mechanism inference—for instance, missing prior knowledge of the “ubiquitin-mediated
 861 autophagy pathway” in related cases (id2032 and id2035). As the number of parameters expanded
 862 from 7B to 72B, the Qwen model showed significant improvements in consistency and depth in
 863 its understanding of professional mechanisms. This finding aligns with the conclusions drawn in
 864 the main text regarding differences in knowledge organization coherence, thereby substantiating the
 865 efficacy of graph structure indicators in differentiating model capabilities.

864 **B LLM USAGE**
865

866 A large language model (LLM) was used for drafting and language polishing of this article. Be-
867 yond these uses, no AI tools were involved in study design, core experiments, result analysis, or
868 interpretation. The authors are fully responsible for the accuracy and integrity of the work.
869

870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917