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ABSTRACT

Traditional evaluation benchmarks reduce inherently interconnected scientific
knowledge in life sciences into flat lists of questions, disregarding the underlying
topological structure of the knowledge. We introduce, the first graph-structured
benchmark for life sciences, featuring over 10,000 high-quality multiple-choice
questions across medicine, biology, and chemistry. Our approach constructs a
weighted evaluation graph using bidirectional matching and semantic similarity
algorithms, where nodes represent questions and edge weights capture their se-
mantic relationships. Leveraging this graph topology, we design two novel eval-
uation metrics. The Global Coherence Score (GCS) measures a model’s consis-
tency within semantically related neighborhoods, while Knowledge Balance Score
(KBS) analyzes how model errors are distributed across the graph to reveal con-
ceptual blind spots. LG-Bench facilitates fine-grained comparison of LLMs by
surfacing differences in conceptual coherence and patterns of knowledge orga-
nization across models. Our framework shifts the evaluation paradigm from flat
accuracy metrics to structure-aware analysis, offering a new lens for diagnosing
and improving LLM performance in the life sciences domain.

1 INTRODUCTION
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as isolated, independent facts when it natu-

rally forms interconnected webs of understand- Figure 1: A case study highlights the limita-
ing. This "flat-world illusion” is particularly tions of traditional benchmarks and the advan-
problematic in complex domains such as life tages of LG-Bench. Despite high semantic sim-
sciences (Bodenreider, 2004} Jin et al) [2021), ilarity between two related questions, large lan-
where understanding protein function requires guage models often answer only one of them cor-
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tory mechanisms, and therapeutic implications  structure, making it difficult to uncover semantic
as an integrated whole. Traditional benchmarks connections between questions. LG-Bench struc-
present evaluation questions as flat lists, ob- tures questions as a graph, enabling models to an-
scuring the rich semantic relationships that de- alyze semantic links and allowing for more effec-
fine genuine domain expertise. These limita- tive evaluation of their capabilities.
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Figure 2: Overview diagram of LG-Bench. Our LG-Bench extracts over 10,000 questions from
top-tier journals in the life sciences, covering three subfields: Medicine, Biology, and Chemistry. It
innovatively introduces graph structures into the benchmark to better capture the nuanced capabili-
ties of large language models.

tions make it hard for current metrics to distinguish between genuine understanding and mere pattern
matching.

To solve this problem, we introduce the first graph-structured benchmark for comprehensive life
sciences evaluation. Unlike traditional flat benchmarks that treat questions as isolated units, our ap-
proach reveals and exploits the inherent evaluation graph structure in evaluation datasets, as shown in
Fig.|ll We construct a large-scale benchmark containing over 10k expert-reviewed questions drawn
from recent peer-reviewed scientific literature, spanning diverse life sciences domains including
Medicine, Biology, and Chemistry. Representative sources include Nature, Science, and Cell, en-
suring coverage of both foundational knowledge and cutting-edge research. Through sophisticated
graph construction methods using bidirectional matching and semantic similarity, we transform this
question corpus into a weighted evaluation graph that captures the interconnected nature of scientific
knowledge. This graph structure enables novel evaluation approaches that distinguish true under-
standing from superficial pattern matching by measuring knowledge coherence and analyzing the
topological distribution of model errors across semantically related questions.

Our contributions are threefold:

* We introduce the first graph-structured benchmark for life sciences, containing over 10k
expert-curated questions from recent literature from leading scientific journals spanning
Medicine, Biology, and Chemistry, as shown in Fig. 2]

* We propose novel graph-based evaluation methods including the Global Coherence Score
(GCS) for measuring knowledge coherence and the Knowledge Balance Score (KBS) for
quantifying variance in local coherence patterns across the knowledge graph topology.

* We conducted a systematic evaluation of LG-Bench across large language models of vary-
ing scales, and leveraged GCS and KBS to deeply analyze performance flaws, providing
practical support for capability diagnosis and optimization of large models in the life sci-
ence.
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2 RELATED WORK

Traditional evaluation of large language models relies on accuracy-based metrics, treating each ques-
tion as an independent unit (Li et al.} 2024} Richard, [2015). This approach assumes knowledge can
be divided into isolated facts, missing the interconnected nature of true expertise. Although recent
work explores more nuanced frameworks (Mondorf & Plank, 2024} (Xu et al.l |2025; |[Zhang et al.,
2025)), current metrics still struggle to differentiate genuine understanding from sophisticated pattern
matching, a limitation particularly evident in complex scientific domains.

This challenge is amplified in the life sciences. Prominent benchmarks like UMLS (Bodenreider,
2004), MedQA (Jin et al.| 2021), PubMedQA (Jin et al., [2019), MLEC-QA (Li et al., 2021), and
BioASQ (Nentidis et al.,|2023)) suffer from critical limitations. They often rely on static knowledge,
failing to capture the rapid evolution of research in areas like personalized medicine and advanced
therapeutics (Cai et al.| 2024} |Chen et al., 2025} Zhou et al 2025)). Furthermore, their narrow focus
on medicine over foundational sciences like biology and chemistry restricts the ability to assess
comprehensive, interdisciplinary knowledge, which is essential for reliable evaluation.

A promising direction to address these structural flaws lies in graph-based knowledge representa-
tion. While knowledge graphs are extensively studied in NLP (Hogan et al., 2021} Ji et al., [2021)),
and techniques like graph embeddings (Bordes et al.| | 2013;|Wang et al., 2017)) and graph neural net-
works (Kipf], |2016; [Wu et al.||2020) have proven effective at capturing complex relationships, these
insights have not yet been applied to benchmark construction. In the life sciences, where knowledge
inherently forms interconnected networks from molecular interactions to physiological systems, the
absence of a graph-structured evaluation framework represents a significant gap. Our work bridges
this gap by introducing the first graph-structured benchmark that explicitly models and leverages
these knowledge relationships for a more meaningful and robust evaluation.

3 GRAPH-STRUCTURED BENCHMARK CONSTRUCTION

Our benchmark construction follows a two-stage pipeline shown as Fig.[3] First, we generate high-
quality evaluation questions from recent scientific literature through a sophisticated multi-stage pro-
cess with expert validation. Second, we construct a weighted evaluation graph, transforming the flat
question corpus into a structured representation that reflects the interconnected nature of scientific
knowledge.

3.1 QUESTION NODE GENERATION

We generate question sets through a sophisticated multi-stage pipeline that transforms cutting-edge
scientific literature into high-quality evaluation questions.

Document Analysis. Our pipeline begins with a multi-modal large language model (LLM) ana-
lyzer that processes recent peer-reviewed papers from leading journals in the life sciences. This
analyzer extracts structured knowledge representations from each document d € Dcorpus, identifying
core concepts along with their hierarchical and semantic relationships. It systematically extracts
knowledge pairs, consisting of concepts and their associated properties or relations, which serve as
fundamental units for downstream question generation. The analyzer also assigns each identified
concept a corresponding Bloom’s Taxonomy level (Forehand, 2010)), specifying its cognitive depth.
The system enforces explicit targets for the distribution of questions across these levels, ensuring a
balanced coverage of cognitive complexity in the final benchmark.

Guided Question Generation. The generation stage employs a specialized LLM that receives
guidance from the analyzer’s output. Each generation prompt includes:

* Domain-specific knowledge context and key concepts
 Target Bloom level with specific cognitive verbs
* Scientific accuracy constraints

* Requirements for testing conceptual relationships
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Figure 3: Two-stage Pipeline for Construction of LG-Bench.

This guidance ensures generated questions genuinely test integrated understanding rather than iso-
lated fact recall.

Multi-Model Committee Assessment. The quality assurance stage involves a committee of three
state-of-the-art large language models (GPT-40, Claude 3.7 Sonnet, and Grok-3) that independently
evaluate each generated question. The committee members assess questions across multiple dimen-
sions, including scientific accuracy, cognitive complexity, and conceptual integration. Through a
voting mechanism, questions that fail to meet quality thresholds are flagged for mandatory human
expert review. Additionally, the committee annotates the relevant knowledge sources and the ratio-
nale behind each judgment to facilitate more efficient and accurate expert verification.

Expert Validation. Our human validation team comprises 4 PhD-holding life sciences experts.
These experts conduct rigorous review by simultaneously examining both the source scientific pa-
pers and the generated questions, ensuring strict verification of knowledge accuracy and appropri-
ateness as evaluation items. They assess whether questions faithfully reflect the paper’s content
while testing meaningful understanding. This dual-verification approach—checking both scientific
correctness and QA suitability—ensures our dataset maintains the highest standards while capturing
genuinely challenging, interconnected knowledge that reflects current advances in the field.

Through this rigorous process, we construct Qcorpus = {41, ¢2, -, gn } With over 10k expert-validated
questions that form the foundation for meaningful graph construction.

3.2 GRAPH CONSTRUCTION

The core innovation of our approach lies in recovering the latent knowledge structure from the
flat question collection. We accomplish this through rigorous graph-based methods that trans-
form Qcorpus into a meaningful evaluation graph. We construct a weighted undirected graph
G = (V, E,w) where the structure emerges naturally from the semantic relationships within our
question corpus. The node set V' corresponds directly to our questions, with V' = Qcorpus and
|V | = n, establishing a one-to-one mapping between graph nodes and evaluation questions.

We first employ an LLM to extract key concepts and entities from each question, generating key-
word sets that capture the essential knowledge elements. This extraction process identifies domain-
specific terms, scientific concepts, and their semantic roles within the question context. Then we
define a hybrid similarity function sim : V' x V' — [0, 1] that captures both semantic and knowledge-
based relationships between questions through a multi-component approach. For questions v; and
v; with respective keyword sets K; and K; extracted by the LLM, we embed all keywords and
compute the similarity matrix 9;; € RIE:/XI%5l where S;;[p, q] = cos(emb(k), emb(k?)). We then
compute two complementary similarity components:



Under review as a conference paper at ICLR 2026

Bidirectional Matching: Measures mutual coverage between keyword sets. We first define direc-
tional similarities:

|Ki |

sim;_,; = ‘K 2 ZmaXS” D,q (1)
) \K-\

sim;_,; = 7] 2 ZmaXSU[ .q] )

where sim;_, ; measures how well keywords in K; are covered by K, and vice versa. The bidirec-
tional similarity is:

. 1 . .
simyi (v;, vj) = 3 (simy—; + sim;_;) 3)

Core Similarity: Focuses on the strongest connections by selecting top-k matches:
l
Slmcore Vi, vj Z S( : “4)

where Sf;) represents the [-th largest element in the flattened similarity matrix, and £ =
min(k, |K;|, | K;|) with x being a predefined parameter.

The final similarity score combines these two components:
sim(v;, vj) = 7 - SiMeore (Vi, v;5) + (1 — ) - simy; (v5, v;) )
where 7 € [0, 1] controls the balance between core similarity and bidirectional matching.

An edge (v;,v;) exists in our graph if and only if sim(v;, v;) > 6, where 6 is an adaptive threshold
determined. Each edge carries a weight w(v;, v;) = sim(v;, v;), encoding the strength of the rela-
tionship between questions. This construction ensures that our graph captures meaningful semantic
relationships while avoiding noise from spurious connections.

4 GRAPH-BASED MODEL EVALUATION

The graph structure of our benchmark enables fundamentally new approaches to model evaluation.
We leverage the evaluation graph topology to assess two core aspects of model performance—its
global coherence in understanding life sciences as an integrated knowledge domain and the distribu-
tion of its errors across the graph—and develop complementary methods to address these challenges.

4.1 GLOBAL COHERENCE SCORE (GCS)

Consider two models achieving identical 75% accuracy on a life sciences benchmark. Model A cor-
rectly answers questions about protein synthesis, translation, and ribosome function as a coherent
cluster, while Model B’s correct answers scatter randomly—answering about ATP synthesis while
missing basic cellular respiration, correctly identifying drug mechanisms while failing on the un-
derlying biochemistry. Traditional accuracy metrics see these models as equivalent, yet any domain
expert would immediately recognize Model A’s superior understanding. The Global Coherence
Score (GCS) captures this phenomenon by recognizing that genuine comprehension creates clusters
of consistent performance in the knowledge graph.

For model M evaluated on graph G = (V, E, w), let Res s (v) € {0, 1} denote whether M correctly
answers question v. We compute the neighborhood coherence for each node:

> ueN(w) W, u) - Resar(u)

Coherence s (v) = Y uen () W(v,w)
ueN (v ’

(6)

where N (v) denotes the set of nodes whose distance from v is at most 1. This represents the
weighted accuracy within v’s semantic neighborhood.
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The GCS transforms each binary correct/incorrect outcome into a continuous value that reflects
neighborhood support:

GCS(M) = ﬁ Z Resys(v) - Coherence s (v) 7
veV

Although the GCS is strongly correlated with overall accuracy, transforming each binary 0/1 out-
come into a weighted value between 0 and 1 allows it to reveal knowledge gaps even among correctly
answered nodes with low neighborhood support. This highlights cases where the model may have
guessed correctly in isolation, without demonstrating genuine understanding of the surrounding se-
mantic context—making GCS a more diagnostic measure of structured knowledge.

4.2 KNOWLEDGE BALANCE SCORE (KBS)

While GCS measures overall coherence, understanding how consistently a model maintains coher-
ence across different regions of the knowledge graph reveals deeper insights into its knowledge
organization patterns. Traditional evaluation metrics fail to capture whether a model exhibits bal-
anced understanding or demonstrates highly variable performance across semantic neighborhoods.
We introduce the Knowledge Balance Score (KBS), a novel metric that quantifies the variance in
local coherence patterns to assess knowledge stability and balance.

For a given model M evaluated on graph G = (V, E, w), we leverage the neighborhood coherence
values Coherence s (v) computed in the GCS framework. The KBS is computed as the variance of
amplified coherence values across all nodes:

KBS (M) = Var(Coherence s (v) X «) (8)
= ﬁ Z (Coherence; (v) x a — )2 )
veV

where o > 1 is an amplification factor that enhances the distinction between high and low coherence
regions, and p = ﬁ > vev (Coherence s (v) x «) is the mean amplified coherence across all nodes.

This variance-based perspective on coherence analysis enables precise identification of whether
models suffer from knowledge imbalance or systematic understanding deficits, guiding more ef-
fective training and improvement strategies.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Benchmark Details. Our dataset construction pipeline generated high-quality questions from re-
cent peer-reviewed literature spanning three major life sciences domains. For each subdomain, the
corresponding graph is a subgraph of the global evaluation graph. Table [T] presents the structural
characteristics of our constructed evaluation graph. More details can be found in Appendix

Table 1: LG-Bench: Graph-Structured Benchmark Statistics

Domain  Questions (Nodes) Semantic Edges Avg. Degree

Biology 3,630 521,890 287.50
Chemistry 3,360 318,763 189.74
Medicine 3,210 437,442 272.55

Overall 10,200 2,990,277 586.32

Models. We evaluate a comprehensive set of large language models spanning different scales, ar-
chitectures, and specializations to provide a thorough assessment of capabilities. In the case of
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open-source models , we include the Qwen2.5 series (0.5B/7B/14B/32B/72B) (Team| [2024), the
Llama family (Touvron et al.,[2023; Meta Al |2024; Dubey et al., 2024) including Llama-7B, Llama-
3-8b, Llama-3.3-70B, Llama-3.1-405B, and Llama-4-scout. We also evaluate the GLM-4 series
(9B/32B) (GLM et al.| 2024)), Gemma-3-1B (Team), 2025), and DeepSeek-v3 (DeepSeek-All[2024).
For domain-specific models, we include BioMedLM-2.7B (Bolton et al.,|2024), Medicine-LLM-7B
(Cheng et al., 2024), HuatuoGPT family (Zhang et al.,2023;|Chen et al.| 2023), and Llama3-Med42-
8B (Christophe et al.,|2024), which are specifically fine-tuned for life sciences applications.

For closed-source commercial models, we utilize the GPT series including GPT-3.5, GPT-40-mini,
GPT-40, OpenAl 03, and OpenAl o4-mini (OpenAll 2023afb), the Claude family with Claude-3.5-
sonnet and Claude-3.7-sonnet (Anthropic, [2024; 2025), and the Grok series (Grok-2/Grok-3) (xAL
2025). All models are evaluated using identical prompting strategies and evaluation protocols to
ensure fair comparison.

5.2 RESULTS

Table |2 presents comprehensive evaluation re-
sults across all models on LG-Bench using our 10:2009 id:2009
graph-based metrics. All accuracy (Acc) and
Global Coherence Score (GCS) values are re-
ported as percentages. For KBS computation, ® b

. . id:2 id:2016  id:203! id:201
we set the amplification parameter & = 100 19:2035 ' 192038 > comeat
to enhance the distinction between high and ® incorrect
low coherence regions. All experiments were Qwen2.5-7B Qwen2.5-72B
conducted three times and averaged, with more “macrophages", "p38a Inhibitor", "pam3csk4

1 1 1 1 1 id:2009  stimulation”, "tir signalling", "myd88", "tbk1", "irf5",

experlmentz.ll settings avallablg in Appendix B. e e ublaumatiom. e
Our evaluation demonstrates significant perfor- ———

.. . . "p62","myd8s8","myddosome","ubiquitination","traf6",
mance variations across models, with overall id:2016  wjpen vt b "autophagy” "signalling”,"scaffolds"
accuracy ranging from 23.93% (BioMedLM- "tbk1" "macrophages”,"nf-kb", "autophagic

_mini _ id:2032  clearance","myddosome”,"traf6","p62-dependent
2:7B) to 89.51% (OpenAl 04-mini), GCS span autophagy","myd88" "phosphorylation®. "signalling®
ning 5.67% to 80.59%, and KBS values vary- "y dB6" "barrel architecture™ " nixb"mapk
ing from 5.28 to 27.60. Notably, our graph- id:2035 activation”,"synthetic perturbation","knock

. : : d ","trafé","point tati " int I |
based metrics reveal substantial differences be- death omain® vetructural necessityr
tween models that are not cgptureq by tl'?.dl— “autophagy" "atg12 knockout",“macrophages",
tional accuracy alone, effectively distinguish- id:2124  "pam3cskd4”,"traf6","myd88","myddosome","nf-kb",

"tlr2","trafficking defects"

ing models with coherent knowledge organi-
zation from those exhibiting scattered under-
standing patterns across the life sciences do-
main. As shown in Figll] we compare the re-
sponses of Qwen2.5 within a local graph struc-
ture and observe a clear lack of understanding
of certain concepts in Qwen2.5-7B, whereas
Qwen2.5-72B demonstrates a clear and solid
grasp of these knowledge points. A more de-
tailed analysis is provided in Appendix[A.2]

Figure 4: Qwen2.5 results within a local graph
structure. Qwen2.5-7B failed on many questions
in the neighborhood-level evaluation. Red key-
words indicate areas of severe knowledge weak-
ness, while blue keywords denote relatively weak
points. In contrast, Qwen2.5-72B correctly an-
swered all relevant questions in the neighborhood
test, demonstrating a relatively good grasp of the
associated knowledge.

Open-Weight LLMs vs. Closed-Weight LLMs. The result highlights a striking contrast between
open and closed models when confronted with LG-Bench, whose items deliberately target clini-
cal guidelines, drugs, and biomolecular findings released recently. Early open models such as Hu-
atuoGPT, BioMedLM, and Llama-7B reach only 24-31% accuracy, revealing substantial blind spots
for the newest knowledge. In contrast, iterative open-source versions like HuatuoGPT2-7B, Llama-
3-8B, and Llama3-Med42-8B boost the same metric to 60-78% while staying under 10B parameters.
These improvements attest to the compounding benefits of an open ecosystem, where community-
contributed data refreshes and lightweight domain fine-tuning shorten the model-data—task loop.
Closed-source systems still occupy the top tier: OpenAl 03 and OpenAl 04-mini surpass 88% over-
all accuracy, reflecting the value of proprietary corpora and extensive RLHF (Christiano et al.,[2017).
Nevertheless, the gap is narrowing; fully open models like Qwen2.5-72B and DeepSeek-v3 trail
GPT series by less than 3 pp. In sum, while closed models presently set the performance ceil-
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Table 2: Evaluation Results on LG-Bench: Acc denotes traditional accuracy (in %), GCS measures
global coherence (in %), with higher scores indicating stronger capabilities. We use bold to highlight
the best-performing model in each domain, and italics to indicate the second-best. KBS quantifies
knowledge balance, and higher scores indicate a more uneven distribution.

| Medicine | Biology | Chemistry | Overall
| Acc© GCS KBS | Acc GCS KBS | Acc GCS KBS | Acc GCS KBS
Open-Weight LLM (Scale<10B)

Qwen2.5-0.5B 37.07 13.96 22.19 | 38.10 14.83 2634 | 37.44 1435 36.52 | 37.56 1439 16.11
Gemma-3-1b 51.56 26.73 29.42 | 5545 30.71 2197 | 52.65 2820 39.34 | 53.30 28.62 17.94
BioMedLM-2.7B | 24.14 5.80 12.85 | 23.80 5.65 9.03 | 23.87 556 13.69 | 2393 5.67 528
Llama-7B 3006  9.19 13.62 | 3091 9.60 1441 | 3220 1047 19.14 | 31.07 9.76  6.80
Medicine-LLM-7B | 38.72 1523 22.23 | 3488 1226 17.23 | 3557 12.58 23.87 | 36.31 13.29 10.65
HuatuoGPT-7B 2875 836 1594 | 2920 850 1031 | 2842 8.13 1297 | 2880 833 596
HuatuoGPT2-7B | 61.06 38.09 33.85 | 62.42 39.36 20.89 | 58.36 34.41 4445 | 60.66 37.39 20.00
Qwen2.5-7B 78.38 62.15 29.17 | 80.03 64.24 21.58 | 76.76 59.21 25.74 | 7843 62.00 15.19

Model

Llama-3-8b 7277 5411 35.65 | 75.67 57.64 17.94 | 72.53 53.16 27.97 | 73.73 55.04 14.62
Llama3-Med42-8B | 78.10 61.60 25.61 | 77.38 60.01 18.22 | 75.00 56.71 30.78 | 76.82 59.43 13.56
GLM-4-9b 76.67 59.61 30.59 | 77.47 59.82 2599 | 7545 57.50 36.28 | 76.55 5897 18.05

Open-Weight LLM (Scale>10B)

Qwen2.5-14B 83.02 69.62 20.67 | 8526 7272 18.54 | 82.62 68.64 2191 | 83.69 7042 11.73
Qwen2.5-32B 8470 7255 21.01 | 86.06 7434 15.02 | 83.75 70.38 20.78 | 84.87 72.56 11.07
GLM-4-32B 7894 63.32 2930 | 80.44 64.82 2222 | 7830 61.77 2931 | 79.26 63.33 1528
Llama-3.1-70B 72777 69.51 2430 | 83.14 69.19 19.55 | 71.67 66.78 24.67 | 82.54 68.58 12.70
Qwen2.5-72B 86.26 75.12 16.53 | 86.97 75.68 1545 | 84.85 72.44 23.04 | 86.05 74.52 10.26
Llama-3.1-405b 88.07 78.13 1398 | 88.26 78.01 10.88 | 87.14 76.18 14.98 | 87.83 77.51 7.19
Llama-4-scout 78.69 62.61 3232 | 81.79 66.95 25.66 | 80.27 64.79 28.76 | 80.31 64.89 18.65
Deepseek-v3 87.17 76.57 14.76 | 87.96 77.51 11.63 | 86.90 75.70 15.09 | 87.36 76.70  7.50

Closed-Weight LLM

Grok-2 88.54 78.71 16.61 | 89.01 79.30 11.15 | 87.23 7636 17.60 | 88.27 7820 7.78
Grok-3 86.29 75.06 14.01 | 8438 71.75 29.89 | 85.77 73.75 16.68 | 85.44 73.54 10.40
Claude-3.5-sonnet | 88.91 79.43 1251 | 88.65 78.61 10.25 | 86.93 76.03 18.69 | 88.17 78.09 7.56
Claude-3.7-sonnet | 88.41 78.76 1591 | 89.04 79.29 9.00 | 87.83 77.27 14.71 | 88.44 7852 6.97

GPT-3.5 76.42 59.35 2779 | 77.02 59.67 23.01 | 74.55 56.38 3535 | 76.02 5847 1631
GPT-40-mini 8221 68.77 2594 | 84.41 71.13 1491 | 81.70 6726 2646 | 82.82 69.19 12.68
GPT-40 88.47 7899 15.08 | 89.70 80.44 10.62 | 88.01 77.79 1329 | 88.75 79.19 6.22
OpenAl 03 90.00 81.57 10.65 | 89.26 79.84 9.94 | 89.05 79.56 11.60 | 89.42 80.34 5.83

OpenAl 04-mini | 89.75 81.09 10.69 | 89.89 81.14 7:22 88.87 79.32 946 | 89.51 80.59 4:45

ing, rapid, community-driven iteration is continuously raising the open-source floor, accelerating
progress for medical reasoning at large.

Model Scale Effects. Our empirical analysis confirms a clear parameter—performance scaling law.
Sub-10B models deliver only moderate results, with accuracies below 80% and GCS under 62%; for
instance, Qwen2.5-0.5B attains merely 37.56% accuracy and a GCS of 14.39%. Once the parameter
count exceeds 10B, every metric improves sharply. Within the Qwen2.5 family, accuracy and GCS
rise from 83.69% and 70.42% at 14B to 84.87% and 72.56% at 32B, and further to 86.05% and
74.52% at 72B. Knowledge balance benefits from scaling as well: the KBS drops monotonically
from 16.11 at 0.5B to 11.73 at 14B, 11.07 at 32B, and 10.26 at 72B, indicating progressively more
coherent knowledge organization. The Llama series exhibits the same scaling advantages, under-
scoring the generality of these trends across model families. The Coherence Score distrubution of
Qwen?2.5 family is shown as Fig. [5

Impact of Domain-Specific Training. Our graph-based metrics provide a detailed lens through
which to analyze the effects of domain-specific fine-tuning. A direct comparison between the gener-
alist Llama-3-8b and its domain-adapted counterpart, Llama3-Med42-8B, reveals that specialization
does more than just increase accuracy—it fundamentally reshapes the model’s knowledge structure.
We embed each knowledge graph with node2vec (Grover & Leskovec, 2016) into a 2-D mani-
fold and plot Coherence Score heatmaps, shown as Fig. [6] Although the overall surface becomes
brighter—corroborating the aggregate metric improvements—an inverted pattern emerges in certain
regions, revealing a migration of knowledge density rather than a uniform amplification.

In the target domain of Medicine, Llama3-Med42-8B shows a substantial improvement in its GCS,
rising to 61.60% from the base model’s 54.11%. More revealing is the impact on the KBS. The KBS
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Figure 5: Coherence Score distribution of Figure 6: Heatmap visualization of the LG-
Qwen2.5 and Llama family. As model size in- Bench, where each cell represents a node’s Co-
creases, its overall capability in the life sciences herence Score. Redder regions indicate higher
domain gradually improves, while its knowledge coherence, while bluer areas indicate lower co-
becomes more evenly distributed. herence.

for Llama3-Med42-8B in Medicine drops sharply to 25.61 from the base model’s 35.65. This signif-
icant reduction in variance demonstrates that the fine-tuning not only enhanced knowledge but also
homogenized it, leading to a more evenly distributed and balanced understanding across different
medical topics. However, this specialization comes with trade-offs that metrics can precisely iden-
tify. While its GCS shows minor improvements in the related field of Biology, Llama3-Med42-8B’s
KBS in Chemistry increases to 30.78, higher than the base model’s 27.97. This suggests that the in-
tense focus on medicine may have inadvertently created a more imbalanced and “’spiky” knowledge
representation in the less related chemical domain. This demonstrates that domain adaptation can
reshape knowledge organization both positively and negatively across different semantic regions, a
critical insight that flat accuracy metrics would completely miss.

Domain-Specific Performance Patterns. A

discipline-level decomposition reveals pro- —
nounced performance asymmetries, as il- * BT, e, R Redicne.
lustrated in Fig. Biology most often | e

emerges as the relative strong models such o 1
as GPT-4o0-mini, Qwen2.5-72B, Claude-3.7,
HuatuoGPT2-7B achieve their peak accuracies
and GCS in this domain, yet this advantage <
is not universal, varying with architecture and 5,
scale. Chemistry, by contrast, remains the chief | | | | | | | | | | | |
bottleneck: even state-of-the-art systems record 2
their lowest scores there, a deficit plausibly tied
to the field’s dense symbolic notation, hetero- !
geneous nomenclature, and high conceptual ab-  Categories.

straction. Such disciplinary disparities highlight the necessity of domain-specific evaluation frame-
works that can capture the unique challenges and knowledge structures inherent to each field.

GCS Score

Figure 7: GCS Comparison Across Models and

6 CONCLUSION AND OTHERS

Conclusion. In this work, we introduced LG-Bench, the first graph-structured benchmark designed
to address the fundamental limitations of traditional evaluations in the life sciences. By modeling
knowledge as an interconnected graph and introducing novel coherence-based metrics, we provide
the community with the tools to move beyond simple accuracy and assess the depth of a model’s
scientific reasoning.

Future Work. We will continuously update our dataset and incorporate semantic information into
the edges of the graph structure to enable more fine-grained evaluation.

Broad Impact. We believe this rigorous evaluation framework will guide LLMs beyond pattern-
matching toward becoming true scientific partners. Ultimately, more reliable and coherent Al sys-
tems will accelerate discovery and innovation across the life sciences.
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A APPENDIX

A.1 DETAILS OF LG-BENCH
A.1.1 HYPERPARAMETER SETTINGS

Each edge in our evaluation graph represents a weighted semantic relationship between questions,
computed using our bidirectional matching and core similarity algorithms. For graph construction,
we set the balance parameter v = 0.6 to weight core similarity slightly higher than bidirectional
matching, selected the top x = 3 strongest connections for core similarity computation, and applied
an adaptive edge threshold § = 0.4 to ensure meaningful semantic relationships while maintaining
graph connectivity.

A.1.2 SAMPLE QUESTIONS AND GRAPH STRUCTURE FROM LG-BENCH

Sample Questions. The following section presents several representative examples from our
dataset, including options and explanations. Correct answers are highlighted in red.

Question 48: What primary cellular phenotype links loss of keratinization genes to increased EAC
aggressiveness?

* (A) Suppression of Wnt signaling curtailing stem-cell renewal
¢ (B) Enhanced epithelial plasticity facilitating invasion
* (C) Elevated oxidative respiration reducing hypoxia tolerance

* (D) Activation of DNA damage checkpoints halting proliferation

Explanation: Loss of terminal squamous differentiation increases plasticity, enabling invasion and
aggressive tumor behavior.

Question 915: If imaging-only maps recover large assemblies better than small ones, what physical
explanation best accounts for this?

* (A) Small complexes have lower protein copy numbers, depleting peptide coverage in MS.

* (B) Spatial resolution of light microscopy limits detection of nanometre-scale com-
plexes, causing small assemblies to be visually indistinguishable.

* (C) Image segmentation algorithms preferentially crop large structures for analysis.
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* (D) Large assemblies generate brighter fluorescence signal enabling better antibody bind-
ing.

Explanation: Optical diffraction restricts resolution ( 200 nm); small complexes below this scale
cannot be visually separated, whereas larger assemblies occupy resolvable regions.

Question 1767: When donor-to-recipient cell ratios in MitoTRACER coculture increased from 1:10
to 1:1, the percentage of green-converted cancer cells rose. This demonstrates that mitochondrial
transfer probability depends mainly on which factor?

* (A) Donor cell abundance creating more contact opportunities
* (B) Recipient cell cell-cycle phase
¢ (C) Mitochondrial fission rate in recipients

* (D) Serum glucose concentration

Explanation: Higher donor proportion increases physical interactions and nanotube formation, el-
evating organelle transfer frequency.

Question 2148: What experimental evidence argues that myddosome clearance is p62-dependent?

* (A) p62 overexpression reduced IL-6 secretion
* (B) ProteoStat staining increased in p62-deficient cells

* (C) p62 knockout macrophages accumulated residual myddosome structures long af-
ter signaling subsided

* (D) Phospho-p65 levels declined faster in p62 knockout cells

Explanation: Persistence of remnants specifically in p62-null cells indicates its necessity for tar-
geting complexes to autophagy.

Question 3992: Stability studies demonstrated that folate-diketone remained bound to CovCAR at
pH 4.5, whereas folate-FITC dissociated. This finding predicts which therapeutic advantage?

* (A) Faster renal clearance of the adapter
* (B) Enhanced trafficking through acidic tumour microenvironments
* (C) Reduced requirement for lymphodepletion

* (D) Lower likelihood of cytokine release syndrome

Explanation: Retention of covalent linkage under acidic conditions supports sustained CAR-
adapter association in endosomes and acidic tumour niches.

Question 4134: Circular dichroism of the phenanthroline chromophore shows a negative Cotton
effect at 330 nm for (+)-5-[Cu][Lu]. What stereochemical element is most directly inferred from
this observation?

* (A) A-helicity at the Lu(III) helicate
* (B) A-helicity at the Cu(I)-dpp clasp
¢ (C) Presence of racemic knot mixture

* (D) Metal-free macrocycle formation
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Explanation: A negative Cotton effect for bis-dpp Cu(I) complexes corresponds to A helicity, indi-
cating that the clasp crossing in the knot adopts A configuration.

Question 7441: To evaluate whether N-0385 can block influenza A virus entry in vitro, which cell
model would best replicate the TMPRSS2-dependent activation step targeted in the Nature study,
and why?

* (A) Human Calu-3 airway epithelial cells, because they endogenously express TM-
PRSS2 and other TTSPs needed for viral fusion

* (B) BHK-21 hamster fibroblasts, because they lack serine proteases that interfere with fu-
sion assays

* (C) Vero E6 kidney cells, because they are routinely used for high-titre virus propagation
despite minimal TMPRSS2 expression

* (D) HEK-293 human embryonic kidney cells, because they overexpress ACE2 after tran-
sient transfection

Explanation: Calu-3 cells were used for their endogenous TMPRSS2 activity, allowing pep-
tidomimetic inhibitors to block spike/hemagglutinin activation.

Question 8622: Vorinostat targets class I/Il HDACs. Which downstream effect most directly in-
creases tumor immunogenicity?

* (A) Blocking VEGF secretion, thereby reducing angiogenesis.
* (B) Enhanced histone acetylation leading to up-regulation of MHC class I genes.
* (C) Suppression of DNA repair enzymes, causing mutational overload.

* (D) Direct phosphorylation of STAT3, activating immune checkpoints.

Explanation: HDAC inhibition acetylates chromatin and increases expression of antigen-
presentation molecules, improving immune recognition.

Question 9437: Which control would MOST convincingly demonstrate that the loss of stress-
granule assembly after RIOK1 shRNA is on-target?

* (A) Overexpress GFP to control for lentiviral transduction.

* (B) Re-express an shRNA-resistant RIOK1 ¢DNA and test whether SG formation is
rescued.

* (C) Add cycloheximide to dissolve granules in all samples.

* (D) Include a non-targeting shRNA vector in parallel cultures.

Explanation: Functional rescue with an shRNA-proof construct specifically attributes the pheno-
type to RIOK1 depletion.

Question 9885: A researcher cultures iPSC-derived cardiac fibroblasts on 2 kPa hydrogels and
treats them with exogenous TGFS. What combined manipulation would most effectively restore
quiescence according to the study’s findings?

* (A) Blockade of IL-1/ signalling with anakinra alone
* (B) Knockdown of YAP together with ROCK inhibition
* (C) Overexpression of SORBS2 together with blebbistatin
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¢ (D) Addition of SB431542 together with saracatinib

Explanation: Soft substrate plus TGFfS inhibition alone was insufficient after activation; adding
SRC inhibition (saracatinib) created the synergy required for full reversal toward quiescence.

Sample Graph Structure. We sample several local subgraph structures and visualize them, as
shown in Fig. [§] We alse present the neighboring information, as shown in Table 3] It can be
observed that the graph structure of our dataset captures rich semantic connections.

Figure 8: Visualization of a subset of LG-Bench, where red nodes represent sampled questions
and their top-5 semantic neighbors (orange) based on edge weights. All other nodes and edges
are displayed in gray to show overall connectivity. The blue edges indicate the strongest semantic
connections (top-5 weighted edges) for each sampled node.

A.2 DETAILS OF EVALUATION

A.2.1 EVALUATION ENVIRONMENT

For models with open weights, we downloaded the official weights and deployed tests on a cluster
with 8 nodes as shown in the Table f] We set the same default temperature parameters and tested
with the exact same prompt. For models with closed weights, we conducted tests based on the API
while maintaining the same testing configurations as the open-weight models to ensure fairness.

A.2.2 CASE STUDY

To further analyse the performance differences between pre-trained language models of varying sizes
in complex question-answering tasks, we selected a set of highly relevant questions as evaluation
samples to compare the response quality of large models (Qwen-72B) and medium-sized models
(7B) under the same input settings. We retained the original question stems, concealed the multiple-
choice options, and prompted the models to perform open-ended question answering. Qwen-72B
can answer this set of questions, consistently generating responses with clear structural logic, ac-
curate content alignment, and a deep understanding of domain-specific mechanisms. In contrast,
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Table 3: Top-5 highest-weight neighbors of 20 randomly sampled nodes. Weight (w) indicates
semantic similarity.

Node ID | Degree | Neighbor 1 (w) | Neighbor 2 (w) | Neighbor 3 (w) | Neighbor 4 (w) | Neighbor 5 (w)
48 191 39 (0.6531) 465 (0.6498) 9952 (0.6269) 497 (0.6089) 29 (0.5966)
4552 239 4564 (0.6253) 4538 (0.6165) 4524 (0.6103) 4587 (0.5998) 8973 (0.5913)
7441 204 7448 (0.8288) 7690 (0.7892) 2851 (0.7648) 7685 (0.7440) 7445 (0.7353)
2822 471 2824 (0.8452) 2828 (0.8393) 3419 (0.8200) 2829 (0.7956) 3416 (0.7751)
915 478 2446 (0.7431) | 10071 (0.7266) | 6640 (0.6843) 8843 (0.6815) 3149 (0.6744)
9216 61 9086 (0.6868) 9078 (0.6770) 9061 (0.6594) 9101 (0.6590) 9211 (0.6177)
9885 100 9735 (0.7791) 9883 (0.7493) 9881 (0.7485) 9732 (0.7007) 9739 (0.6861)
9437 195 9032 (0.7917) 9045 (0.7405) 9022 (0.7328) 7376 (0.7022) 9012 (0.6970)
9604 297 9610 (0.8237) 9955 (0.8006) 9606 (0.7000) 7740 (0.6839) 7753 (0.6775)
4134 66 4138 (0.6928) 4171 (0.6872) 4168 (0.6585) 4180 (0.6016) 4144 (0.5986)
2707 113 5536 (0.7635) 3346 (0.7352) 5531 (0.6819) 3341 (0.6663) 5899 (0.6505)
388 187 528 (0.8545) 513 (0.8285) 379 (0.8248) 550 (0.7506) 548 (0.7412)
2729 104 2752 (0.8181) 3320 (0.7863) 2739 (0.7591) 2714 (0.7580) 2721 (0.7579)
3047 116 8574 (0.7978) 8044 (0.6790) 8595 (0.6327) 8588 (0.6265) 8058 (0.6261)
1767 484 2084 (0.8085) 2066 (0.8027) 2064 (0.7842) 1785 (0.7794) 1795 (0.7515)
8622 598 8616 (0.8116) 8062 (0.7839) 8086 (0.7676) 8614 (0.7465) 8633 (0.7454)
9528 314 7740 (0.8151) 7734 (0.7978) 9410 (0.7548) 7739 (0.6999) 8164 (0.6966)
758 84 784 (0.7270) 753 (0.6624) 776 (0.6561) 783 (0.6472) 760 (0.6453)
2148 587 2108 (0.8436) 2016 (0.8381) 2001 (0.8345) 2131 (0.8325) 2129 (0.8256)
3992 169 3983 (0.7378) 3996 (0.7156) 807 (0.6854) 4007 (0.6290) 4005 (0.6283)

Table 4: Experimental Environment

Component Specification

CPU

Model Intel(R) Xeon(R) Platinum 8336C
Total Cores 128

Total Threads 128

Max Turbo Frequency 2.30GHz

GPU

Model NVIDIA A800-SXM4 x8
VRAM 80 GB GDDR6X

while the 7B model’s responses demonstrate some structural and organisational coherence, they still
exhibit errors in certain questions, with significantly insufficient depth of understanding, expression
precision, and knowledge mobilisation capabilities. For example, in the id2016 question, Qwen-7B
overlooks the core mechanism of “ubiquitin-dependent transfer to autophagy” and instead provides
a vague “autophagy-related” explanation. Additionally, the 7B model disregarded the role of the
“MyD88-dependent myddosome complex” and erroneously assumed it influences early “NF-«xB-
dependent transcription”.

This misunderstanding recurs in similar questions or adjacent nodes, indicating the model strug-
gles to effectively reuse contextual information and lacks a robust representation of the internal
structure of pathway mechanisms. Furthermore, larger-scale models demonstrate stronger perfor-
mance in contextual understanding and domain knowledge integration, while smaller-scale mod-
els often misidentify key mechanisms. This may stem from their insufficient understanding of
domain-specific signalling pathways and their inability to distinguish between mechanistically sim-
ilar components. Despite the five samples sharing high-frequency domain-specific keywords—such
as “MyD88”, “traf6”, and “nf-xB” the smaller models (Qwen2.5-7B) still cannot consistently gen-
eralise mechanisms across samples. This inconsistency manifests not only as factual errors but also
as failures in mechanism inference-for instance, missing prior knowledge of the“ubiquitin-mediated
autophagy pathway” in related cases (id2032 and id2035). As the number of parameters expanded
from 7B to 72B, the Qwen model showed significant improvements in consistency and depth in
its understanding of professional mechanisms. This finding aligns with the conclusions drawn in
the main text regarding differences in knowledge organization coherence, thereby substantiating the
efficacy of graph structure indicators in differentiating model capabilities.
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B LLM USAGE

A large language model (LLM) was used for drafting and language polishing of this article. Be-
yond these uses, no Al tools were involved in study design, core experiments, result analysis, or
interpretation. The authors are fully responsible for the accuracy and integrity of the work.
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