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Abstract— While imitation learning provides a simple and
effective framework for policy learning, acquiring consistent
actions during robot execution remains a challenging task.
Existing approaches primarily focus on either modifying the
action representation at data curation stage or altering the
model itself, both of which do not fully address the scalability
of consistent action generation. To overcome this limitation, we
introduce the Diff-Control policy, which utilizes a diffusion-
based model to learn the action representation from a state-
space modeling viewpoint. We demonstrate that we can reduce
diffusion-based policies’ uncertainty by making it stateful
through a Bayesian formulation facilitated by ControlNet,
leading to improved robustness and success rates. Our exper-
imental results demonstrate the significance of incorporating
action statefulness in policy learning, where Diff-Control shows
improved performance across various tasks. Specifically, Diff-
Control achieves an average success rate of 72% and 84% on
stateful and dynamic tasks, respectively. Project page: https:
//github.com/ir-lab/Diff-Control

I. INTRODUCTION

Previous studies have explored various approaches to
learning behavioral cloning policies, such as directly out-
putting actions via regression models [1] or utilizing im-
plicit policies [2]. Notably, diffusion-based policies [3] have
emerged as a standout choice due to their ability to model
multimodal action distributions effectively, leading to en-
hanced performance.

In practice however, the concern over inconsistency in
action representation remains a persistent challenge. Such
inconsistencies can lead to noticeable disparities between the
distribution of robot trajectories and the underlying environ-
ment, thereby limiting the efficacy of control policies [4].
The primary causes of this inconsistency typically stem
from the context-rich nature of human demonstrations [5],
distribution shift problems [6], and the volatile nature of
high-dynamic environments. Previous approaches, such as
action chunking [7] and predicting closed-loop action se-
quences [3], have been proposed to address this issue. Ad-
ditionally, Hydra [8] and Waypoint-based manipulation [9]
modify action representations to ensure consistency. How-
ever, these approaches address the problem by altering the
action representation without using the actions as is.

Instead, can we learn to explicitly impose temporal con-
sistency by incorporating temporal transitions within dif-
fusion policies? In the realm of deep state-space models
(DSSMs) [10]–[12], the effective learning of a state transi-
tion model enables the identification of underlying dynamic
patterns. In this paper, we argue that such deep transition
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Fig. 1. Diff-Control Policy incorporates ControlNet, functioning as a
transition model that captures temporal transitions within the action space
to ensure action consistency.

models can easily be integrated into diffusion policies in
order to capture temporal action dynamics as a state-space
model. This integration makes the policy stateful, thereby
increasing robustness and success rates.

We propose Diff-Control, a stateful diffusion-based pol-
icy that generates actions and enables learning an action
transition model concurrently. Building upon the ControlNet
framework introduced by [13] for spatial conditioning control
in image generation, we leverage it as the transition model
to provide temporal conditioning to a base diffusion policy.
As shown in Figure 1, a prior action sequence (in blue) is
utilized as condition when generating new action sequence
(in red). The main contributions of the paper are:

• A deep, recursive Bayesian filter within diffusion-based
polices using ControlNet structure as a transition model
to ensure consistent action generation.

• Diff-Control stateful policy representation performing
dynamic and temporal sensitive tasks with at least 8%
and 48% improvement in success rate.

• Diff-Control policy exhibits notable precision and ro-
bustness against perturbations, achieving at least a 30%
higher success rate compared to state-of-the-art meth-
ods.

II. METHOD

The key objective of Diff-Control is to learn how to incor-
porate state information into the decision-making process of
diffusion policies. An illustrative example for this behavior is
shown in Figure 2: a policy learning to approximate a cosine
function. Given single observation at time t, stateless policies
encounter difficulties in producing accurate generating the
continuation of trajectories. Due to ambiguities, Diffusion

https://github.com/ir-lab/Diff-Control
https://github.com/ir-lab/Diff-Control


Diffusion Policy Diff-Control Policy Image-BC / BC-Z 

0 10 20 300 10 20 300 10 20 30

1

0

1 GT

Prior

Pred

Fig. 2. Stateful behavior: at a given state, Diff-Control policy can utilize
prior trajectories to approximate the desired function. Diffusion policy [3]
learns both modes but fails on generating the correct trajectory cosistently,
Image-BC/BC-Z [1] fails to generate the correct trajectory.

Policy [3] tends to learn multiple modes. By contrast, Diff-
Control integrates temporal conditioning allowing it to gen-
erate trajectories by considering past states. To this end, the
proposed approach leverages recent ControlNet architectures
to ensure temporal consistency in robot action generation.

In computer vision, ControlNet is used within stable
diffusion models to enable additional control inputs or extra
conditions when generating images or video sequences. Our
method extends the basic principle of ControlNet from image
generation to action generation, and use it as a state-space
model in which the internal state of the system affects the
output of the policy in conjunction with observations (camera
input) and human language instructions.

A. Recursive Bayesian Formulation

The objective of our method is to learn a policy with
conditions c and observations o as input. In this context,
we define a as the trajectory comprising the robot’s end-
effector pose. In alignment with prior approaches [3], [14],
our aim is also to take multiple conditions as input. However,
as mention in Section I, efforts have been made to explore
robust action generation in previous works [3], [7], [8],
they have not accounted for the statefulness of a. We
address the action consistency from a Bayesian perspective
by introducing transition in action spaces, our formulation is
as follows:

p(at|a1:t−1,o1:t, c)

∝ p(ot|at, c) p(at|a1:t−1,o1:t−1, c).
(1)

Let bel(at) = p(at|a1:t−1,o, c), applying the Markov prop-
erty, i.e., the assumption that the next generated trajectory is
dependent only upon the current trajectory, yields:

bel(at) = η p(ot|at, c)︸ ︷︷ ︸
observation model

t∏
t=1

transition model︷ ︸︸ ︷
p(at|at−1, c) bel(at−1), (2)

where η is a normalization factor, p(ot|at, c) is the observa-
tion model and p(at|at−1, c) is the transition model.

B. Diff-Control Policy

We now show how Bayesian formulation and diffu-
sion model can be coupled together such that one pol-
icy can generate stateful action sequences that facilitate
consistent robot behaviors. We propose Diff-Control Policy
πθθθ(a[Wt]|o,a[Wt−h], c), which is parameterized by θθθ. Here,
h stands for the execution horizon, c represents a language
condition in the form of a natural human instruction, and o
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Fig. 3. The Diff-Control Policy is implemented through the utilization of
a locked U-net diffusion policy architecture. It replicates the encoder and
middle blocks and incorporates zero convolution layers.

denotes a sequence of images captured by an RGB camera
of the scene. The policy πθθθ generates a window of trajectory
a[Wt] = [a1,a2, · · ·aW ]T ∈ R7×W , where W refers to the
window size or the prediction horizon.

The Diff-Control policy within the Bayesian formulation
comprises two crucial modules. The transition module re-
ceives the previous action a[Wt] and generates latent embed-
dings for the subsequent utilization by the base policy. Acting
as the observation model, the base policy incorporates the
temporal information associated with a[Wt] and produces a
new action a[Wt+h]. This two-module structure enables the
Diff-Control policy to adeptly capture temporal dynamics
and facilitate the generation of subsequent actions with
accuracy and consistency.

Base Policy: To begin, we train a diffusion-based pol-
icy [3] as the base policy π̄ψψψ(a[Wt]|o, c). We adopt the 1D
temporal convolutional networks from [15] and construct the
U-net backbone. The policy π̄ψψψ can autonomously execute
and generate actions without any temporal information de-
pendency.

Transition Model: The proposed framework incorporates
ControlNet as the Transition Module (depicted in Figure 3).
This utilization extends the capability of the policy network
to include temporal conditioning effectively. To achieve this,
we utilize the previously generated action sequences as the
prompt input to ControlNet. By doing so, the base policy
π̄ψψψ becomes informed about the previous actions a[Wt−h].
We implement ControlNet by creating a trainable replica of
the π̄ψψψ encoders and then freeze the base policy π̄ψψψ . The
trainable replica is connected to the fixed model with zero
convolutional layers [16]. ControlNet can then take a[Wt−h]

as the conditioning vector and reuses the trained base policy
π̄ψψψ to construct the next action sequence a[Wt].

C. Training

The training process for the base policy π̄ψψψ(a[Wt]|o, c)
follows a straightforward approach. We firstly encode the
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Fig. 4. Real-world tasks in this study: a) “Duck Scooping” task in a water
tank, b) “Drum Beats” task by hitting the drum 3 times.

TABLE I
TASK PROPERTIES.

Task Dis. HiPrec Dem. Act. Steps

Duck Scoop 0 ✓ 50 1 ∼70
Drum Beats×3 0 × 150 1 ∼70

observation o and language condition c into the same em-
bedding dimension, and then we utilize the learning objective
defined in Equation (3) to train the base policy.

LDDPM := Eo,a,τ,z

[
∥ϵ(o,a, τ)− z∥22

]
, (3)

The same learning objective is used in finetuning the Con-
trolNet:

L := Eo,c,a,a[Wt]
,τ,z

[
∥ϵθ(o, c,aT ,a[Wt], τ)− z∥22

]
, (4)

where L is the overall learning objective of the entire
diffusion model, ϵθθθ(·) is the corresponding neural network
parameterized by θθθ. The base policy and the Diff-Control
policy are trained end-to-end.

III. REAL-ROBOT TASKS

We conducted a comprehensive evaluation of the Control-
Net Policy by comparing it with four baseline methods across
two robot tasks. Table I provides a summary of the task
properties. The tasks encompassed in our evaluation include:
(a) Duck Scooping task in a dynamic scenario, (b) Drum
Beats as a periodic task.

The action of the UR5 robot arm is represented as a[Wt],
where each action is denoted as ai = [x, y, z, r, p, y, g]T ,
where i ∈ [1,W ]. It encompasses the position of the end-
effector in Cartesian coordinates (x, y, z), the orientations
(r, p, y), and the gripper’s joint angle g. For all the tasks, the
input modalities consist of two modalities: o ∈ R224×224×3,
corresponds to a RGB image. c refers to a language em-
bedding derived from natural language sequences. Task
Properties in Table I includes distractors (Dis), number of
demonstrations (Dem), number of actions (Act), and whether
high-precision is required (HiPrec).

Duck Scooping: Inspired by [17], we explore the inter-
action between the policy and fluid dynamics. In this task,
we equip the robot with a ladle and the robot’s objective
is to scoop the duck out of the water. As depicted in the
bottom right of Figure 4(a), this task presents challenges
due to perturbations caused by the entry of the ladle into the
water. The flow of water affects the position of the rubber

duck, necessitating the robot to execute precise and cautious
movements in order to successfully capture the duck.

Drum Beats: This task is specifically designed for robots
to learn periodic motions, a challenging feat due to the
unique action representation required [18]. As illustrated in
Figure 4(b), the task presents difficulty as the robot must
accurately count the number of drum beats and determine
when to cease drumming. A total of 150 expert demonstra-
tions were obtained by teleoperating the robot to strike the
drum three times in each demonstration.

IV. EVALUATION

The efficacy of the proposed policy is evaluated through
two experiments as described in Section III. These experi-
ments aim to address the following questions: (a) Can the
Diff-Control policy demonstrate generalization capabilities
across diverse tasks? (b) To what extent does the Diff-Control
policy outperform the current state-of-the-art methods in
terms of overall performance? (c) What are the distinguishing
characteristics and benefits of utilizing a stateful policy
compared to a non-stateful policy?

We propose the 4 baselines: 1) Image-BC [1], 2) Mo-
dAttn [14], 3) BC-Z LSTM, and 4) Diffusion Policy [3].
These baselines all adopt an image-to-action agent frame-
work with varied implementation details. For all experiments,
we present the results obtained from the best performing
configuration of each baseline method. All the baseline
models are reproduced and trained using the collected expert
demonstrations for a total of 3,000 epochs. Throughout the
training process, checkpoints are saved every 300 epochs. In
our analysis, we report the best results achieved from these
saved checkpoints for each baseline method.

TABLE II
RESULTS EVALUATION IN FORMS OF SUCCESS RATE (%) AND DURATION

(SEC) DURING POLICY EXECUTION

Method Duck Scoop Drum Beats
Scoop Duration Hit × 3 Duration

Image-BC 16% 21.04±1.99 0% 19.50±0.79
ModAttn 12% 20.43±0.16 0% 25.74±0.68

BC-Z LSTM 36% 21.21±1.54 0% 17.53±0.31
Diffusion Policy 76% 21.72±2.17 24% 20.60±1.64

Diff-Control 84% 23.12±3.03 72% 21.46±1.97
Means±standard errors

A. Duck Scooping Evaluation

In this task, we tested if Diff-Control policy is able to
generate consistent actions in a dynamic setting. The success
rate and task duration for the given task are presented in
Table II. Task duration was recorded as the time inter-
val starting from the policy initiation until the duck was
completely removed from the water. The experiment was
conducted over 25 trials, with the duck randomly placed in
the water for each trial. Among the state-of-the-art methods,
the Diff-Control policy achieved a commendable success rate
of 84% while performing in this dynamic task. Notably, the
Diff-Control policy demonstrated a tendency to successfully
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Fig. 5. Diff-Control for real-world tasks: The first row shows a successful duck scooping experiment. The second row displays one drum task result.
The results are best appreciated with videos on the website: https://diff-control.github.io/.
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(a) ControlNet Policy recover the trajectory 

(b) ControlNet Policy vs. Diffusion Policy against perturbation 

Diff-Control recover the trajectory Diff-Control vs. Diffusion policy 

Fig. 6. When visual occlusion is applied, Diff-Control (2nd row) manages
to scoop the duck from the water successfully. In contrast, the diffusion
policy (1st row) fails. Red shade implies perturbation.

scoop the duck out in a single attempt, reaching a low enough
position for accurate scooping. In contrast, the Image-BC and
ModAttn failed often as the robot struggled to lower the ladle
enough to reach the duck. Diff-Control shows robustness
against visual perturbation such as occlusion. In Figure 6
(right), when the view is blocked, the diffusion policy fails
immediately. However, Diff-Control can successfully scoop
the duck without relying on any visual information because
it learns an internal action transition to maintain a stateful
behavior.
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Fig. 7. Left: Analysis of the execution gap (measured in cm) for duck
scooping tasks during evaluation. Right: Assessment of the success rate for
each policy when faced with perturbations in the duck scooping task.

Robustness Evaluation: Further evaluation was con-
ducted to assess the consistency of the Diff-Control policy
in this task. One way of quantifying action consistency is to
measure the execution gap, which is the distance between
the tail and head of two consecutive execution windows.
In Figure 7(left), the 3D distance of the execution gap
is illustrated for each policy network, with Diff-Control
displaying the smallest gap. Furthermore, a supplementary
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Fig. 8. Generated action with variance from Diff-Control and Diffusion
Policy during inference time.

set of experiments was carried out for the duck scooping
task under visual occlusion. As depicted in Figure 7, Image-
BC and ModAttn only achieved a 0% success rate when
faced with perturbation, while BC-Z LSTM succeeded in 1
out of 10 trials in this scenario. Despite the diffusion policy
achieving a 50% success rate, Diff-Control demonstrated an
80% success rate, showcasing the benefits of its stateful
characteristic.

B. Drum Beat Evaluation

Each policy network was assessed in this experiment to
evaluate the impact of statefulness versus non-statefulness
on robots learning periodic motions. During testing, success
was specifically defined as the robot hitting the drum exactly
three times and then stopping. The results are presented
in Table II, with Diff-Control achieving the highest success
rate of 72%. This success rate surpasses the diffusion policy
by 48%. The majority of the baseline methods exhibit poor
performance (Image-BC, ModAttn, BC-Z LSTM with 0%
success rate) due to their inability to accurately predict the
direction of actions, such as the end-effector moving upward
instead of downward, and the lack of appropriate halting
actions. Consequently, The robot is unable to keep track
of the number of times it strikes the drum and continues
to strike the drum non-stop. While the BC-Z LSTM can
accurately count the number of hits, it encounters difficulties
in generating reliable actions initially. We visualize one test
trial in the last row of Figure 5, where the last plot shows
robot stopped after hitting the drum for 3 times.

Furthermore, we compared Diff-Control and the diffusion
policy during the inference period, as shown in Figure 8. We

https://diff-control.github.io/


sampled 10 action trajectories from each policy. Interestingly,
the diffusion policy, without any prior actions, produced two
distributions along the z-axis. This suggests that the policy
struggled to determine whether it should descend to strike
the drum or ascend after hitting the drum. In contrast, Diff-
Control successfully generated actions by striking the drum.
This observation shows using Diff-Control as a stateful
policy is beneficial for robot learning periodic behaviors.

V. CONCLUSION

This study introduces Diff-Control, a stateful action dif-
fusion policy designed for consistent action generation.
The study explores the integration of diffusion model with
ControlNet for robot action generation, demonstrating how
temporal consistency can be enforced to enhance robustness
and success rates. Furthermore, our findings underscore the
robustness and effectiveness of Diff-Control in managing
dynamic and stateful tasks while remaining resilient against
perturbations.
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