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Abstract

In voting theory, when voters have ranked preferences over candidates, the cele-
brated Gibbard-Satterthwaite Theorem essentially rules out the existence of rea-
sonable strategyproof methods for picking a winner. What if we weaken strate-
gyproofness to only hold for Bayesian voters with beliefs over others’ preferences?
When voters believe other participants’ rankings are drawn independently from a
fixed distribution, the impossibility persists. However, it is quite reasonable for
a voter to believe that other votes are correlated, either to each other or to their
own ranking. We consider such beliefs induced by classic probabilistic models in
social choice such as the Mallows, Placket-Luce, and Thurstone-Mosteller models.
We single out the plurality rule (choosing the candidate ranked first most often)
as a particularly promising choice as it is strategyproof for a large class of beliefs
containing the specific ones we introduce. Further, we show that plurality is unique
among positional scoring rules in having this property: no other scoring rule is
strategyproof for beliefs induced by the Mallows model when there are a sufficient
number of voters. Finally, we give examples of prominent non-scoring voting rules
failing to be strategyproof on beliefs in this class, further bolstering the case for
plurality.

1 Introduction

One of the most celebrated results in voting theory is the Gibbard-Satterthwaite Theorem [8, 22]. It
states that when voters express ordinal preferences over at least 3 candidates, there is no “reasonable”
aggregation rule that is strategy-proof : there will always exist instances where voters will be
incentivized to manipulate and lie about their preferences to achieve a better outcome.

However, one caveat about this strong negative result is that, a priori, a voter may need perfect
information about how others vote to manipulate successfully. Perhaps, if the voter is slightly
uncertain, no manipulation helps consistently enough to be worthwhile. Majumdar and Sen [13]
analyzed exactly this question when voters have independent beliefs. That is, when a voter is
considering whether or not to manipulate, they assume all others have rankings drawn independently
from a fixed distribution. The classic notion of strategyproofness no longer makes sense in this
probabilistic Bayesian setting, so they instead use the natural extension known as ordinally Bayesian
incentive compatible (OBIC), essentially that the rules are strategyproof in expectation no matter what
underlying cardinal values voters have. Their results, unfortunately, are widely negative. They show
that for a “large” set of distributions, Gibbard-Satterthwaite still holds. There do exist distributions
where many rules are OBIC, e.g., the uniform distribution over all rankings. Still, these positive
examples are extremely brittle: even a slight perturbation leads back to the impossibility.
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But independent beliefs are quite restrictive. They cannot capture several kinds of beliefs that would
likely occur in practice. For one, when the number of voters is large, the uncertainty essentially
vanishes. Suppose a distribution places probability 1/4 on other voters having the ranking a ≻ b ≻ c.
In that case, when the number of voters is large, it is extremely unlikely that the proportion of voters
with this ranking is anything other than 1/4 ± ε. In a real presidential election, a voter may quite
plausibly believe that a candidate will receive anywhere between 45% and 55% of the votes, but
this situation simply cannot be captured by a single independent ranking distribution. Second, one’s
own ranking may influence the probability placed on others. Suppose a voter, after much research,
discovers that they prefer one proposal to another; they may reasonably believe others are clever
enough to have reached a similar conclusion. In terms of their beliefs, they may place a slightly
higher probability on others voting more similarly to them than not, no matter what their realized
preferences are.

This has led follow-up work to consider the same question under correlated beliefs [1, 16, 14, 2].
However, besides some impossibilities, the work so far has largely been of the following form: for
any reasonable voting rule, there exists a set of beliefs where the rule is OBIC. But perhaps the more
natural direction is the converse: under a natural set of beliefs, is there a reasonable voting rule that is
consistently OBIC? Can this property help us distinguish between voting rules, showing that under
some reasonable beliefs, certain rules are not OBIC, thereby bolstering the case for the provably
incentive-compatible ones? These are the questions we tackle.

Our contributions. We begin by presenting various classes of beliefs induced by classic proba-
bilistic social choice models such as the Mallows [15], Thurstone-Mosteller [23, 18], and Placket-
Luce [20, 12] models. In essence, these are the beliefs a voter would have if they assume that voter
preferences were generated by such a model. Inspired by these models, we present a novel class
of mildly correlated beliefs that includes all of them. We show that, under this class of beliefs, the
plurality rule is OBIC.

Next, we provide a negative result: Among positional scoring rules (where each voter assigns a fixed
score to each position in their ranking), plurality is unique in being OBIC when voters have Mallows
beliefs. All other rules will become not OBIC when there are three candidates, at least when there are
a sufficient number of voters. In addition, we provide some robustness checks on this negative result.
A popular positional scoring rule known as Borda Count fails for any number of voters. By contrast,
we identify other positional scoring rules that are OBIC with two voters, meaning our result could
not be strengthened by relaxing the sufficient number of voters requirement.

Finally, we complement this more sweeping classification with examples of other prominent rules,
such as Copeland and maximin, which fail to be OBIC with specific Mallows beliefs and few voters.
This further bolsters the case for plurality as an unusually attractive rule when viewed through the
lens of ordinal Bayesian incentive compatibility under correlated beliefs.

Related work. As mentioned above, the analysis of OBIC voting rules began with Majumdar and
Sen [13] essentially providing the final word on independent beliefs; their notion of OBIC dates back
to work on committee selection [5].

Since then, there have been a few lines of work on correlated beliefs with slightly different goals.
The most closely related is that of Majumdar and Sen [14]. They define a large class of positively
correlated beliefs based on the Kemeny metric and then show in a similar fashion to the Gibbard-
Satterthwaite Theorem that any voting rule that is OBIC with respect to these beliefs, along with
being Pareto efficient, is necessarily dictatorial. They do present one voting rule that is both OBIC
with respect to these beliefs and nondictatorial (while not being Pareto efficient), but it is a clearly
impractical rule that is designed to make a technical point.1 Note that all the rules we consider are
Pareto efficient.

Another line of work considers local OBIC. A voting rule is locally OBIC with respect to a class
of beliefs if there exists a belief in the class such that any belief in a neighborhood of the original is
OBIC. This means the rule remains OBIC even after a slight perturbation to the underlying belief.
Bhargava et al. [1] and Bose and Roy [2] attempt to classify the set of locally OBIC voting rules with

1Their rule is called Unanimity with Status Quo . There is one default candidate x. If there is a candidate y
which every single voter places as their top choice, then y is elected, but in any other case, x wins.
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respect to a large class of correlated beliefs and show that under minimal conditions, this requirement
can be satisfied.

Mandal and Parkes [16] consider a different notion of incentive compatibility which, rather than
requiring that no manipulation can lead to a utility gain in expectation, bounds the probability under
which there is a utility gain. They again do this with respect to several different classes of beliefs,
including one that we consider based on the Mallows Model.

Further afield, there are extensive lines of research on circumventing the Gibbard-Satterthwaite
Theorem. We provide examples of three here, although there are many others. One line considers
the complexity, showing that some rules, while in principle susceptible to manipulation, have
instances where it is hard (in the worst case) to find such a manipulation [7, 3]. Another considers
strategyproofness under restricted domains, where a voter’s set of possible rankings is limited [7, 3].
A third considers the likelihood of an individual arriving in an instance where they are able to
manipulate at all [17, 25].

Finally, without considering strategyproofness, there has been much work on probabilistic social
choice, making use of the models on which our results are based, especially in learning preferences
from data [11, 24, 10, 19].

2 Model

We begin by introducing the classic social model and then later describe relevant definitions for social
choice under uncertainty.

Classic social choice model. Let N = {1, . . . , n} be a set of n voters, and let A = {a1, . . . , am}
be a set of m alternatives. Let L be the set of rankings over A, where for σ ∈ L, σ(j) is the j’th
candidate in ranking σ and σ−1(a) is the ranking index of candidate a. We use the notation a ≻σ b to
denote that σ−1(a) < σ−1(b) and a ⪰σ b to denote σ−1(a) ≤ σ−1(b), i.e., a is strictly (or weakly)
preferred to b under σ. Additionally, instead of writing σ = a ≻ b ≻ c, when it is clear from context,
we will sometimes shorten this to σ = abc. Each voter i has a ranking σi ∈ L and the tuple of these
rankings σ = (σ1, . . . , σn) ∈ Ln is called the preference profile . We let σ−i ∈ Ln−1 denote the
profile without voter i, and for a ranking σ′

i ∈ L, we let (σ−i, σ
′
i) be the profile with σi replaced with

σ′
i.

A voting rule is a function f that, given a profile σ, outputs a distribution over winning alternatives.
We define several voting rules of interest here. Our theoretical results will primarily focus on
positional scoring rules [26]. A positional scoring rule f is parameterized by a vector of (s1, . . . , sm)
where each sj ∈ Z≥0 with s1 ≥ · · · ≥ sm and s1 > sm. On a profile σ, for each voter i, their
j’th candidate σi(j) is given sj points. The points are added up over all voters, and the winning
candidate is the one with the most points. More formally, for a ranking σ ∈ L and candidate c ∈ A,
we write SCf

c (σ) = sσ−1(c) for the points (or score) given to c by σ. For a profile σ, we write
SCf

c (σ) =
∑

i SCf
c (σi) to be the total points. When f is clear from context, we may drop it from

the notation. In deterministic settings, when there is a tie, a tie-breaking rule needs to be given (i.e.,
tie-break in favor of lower index candidates). Since we will be working in a probabilistic setting, it
will be more convenient to assume uniform random tie-breaking, so that if there is a tie among k
candidates, each wins with probability 1/k. However, our results would continue to hold even with
arbitrary deterministic choices. Two rules of particular interest are plurality, parameterized by the
vector (1, 0, . . . , 0), and Borda count, parameterized by the vector (m− 1,m− 2, . . . , 1, 0).

We consider two additional rules beyond positional scoring rules, Copeland and maximin. To define
them, for a profile σ we define the pairwise margin for two candidates a and b, Nab(σ) = |{i|a ≻i b}|,
i.e., the number of voters that prefer candidate a to candidate b.

For Copeland, we define the Copeland score for a candidate a as
∑

b ̸=a I[Nab(σ) > n/2] +

(1/2)I[Nab(σ) = n/2]. In words, the candidate gets one point for every other candidate they
pairwise beat and a half point for every other candidate they pairwise tie. The Copeland winners
are those with the highest Copeland scores (with uniform tie-breaking). For maximin, we define
the maximin score for a candidate a as minb̸=a Nab(σ), i.e., the smallest margin by which a beats
another candidate. Again, the maximin winners are those with the highest maximin scores (with
uniform tie-breaking).
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A voting rule f is called strategy-proof if for all profiles σ, all voters i, and all alternative manip-
ulations σ′

i ∈ L, f(σ) ⪰σi f(σ−i, σ
′
i). That is, no voter can ever improve the outcome of the

vote by misreporting. A rule is called onto if for all candidates a ∈ A, there is a profile σ where
f(σ) = a, and is called dictatorial if there is a voter i for which f(σ) = σi(1), i.e., voter i always
gets their top choice. The Gibbard-Satterthwaite Theorem states that any rule for m ≥ 3 candidates
that is strategy-proof and onto is necessarily dictatorial. Since “reasonable” rules must be onto and
nondictatorial, this eliminates the possibility of any being strategy-proof.

These notions can also be extended to randomized rules. A utility function u is a mapping from
candidates to real numbers. We say that u is consistent with a ranking σ if u(x) > u(y) ⇔ x ≻σ y.
A (randomized) voting rule f is called SD-strategy-proof if for all profiles σ, all voters i, all
manipulations σ′

i, and all utility functions u consistent with σi, E[u(f(σ))] ≥ E[u(f(σ−i, σ
′
i))].

This says that no matter what underlying utilities an agent has, as long as they are consistent with
their ranking, they cannot improve their expected utility by manipulation. An equivalent definition
can be given with respect to stochastic dominance (hence the SD in the name). For k ≤ m, let
Bk(σ) = {σ(1), . . . , σ(k)} be the set of the k best alternatives according to σ. Then, SD-strategy-
proofness can be rephrased as requiring that for all profiles σ, all voters i, all manipulations σ′

i, and
all k ≤ m, Pr[f(σ) ∈ Bk(σi)] ≥ Pr[f(σ−i, σ

′
i) ∈ Bk(σi)].

We say a rule f is unilateral if it depends only on a single voter, i.e., there is a voter i such that for all
σ and σ′, if σi = σ′

i, then f(σ) = f(σ′). A rule f is called a duple if its range is two candidates,
i.e., there is a pair of candidates a and b such that for all σ, f(σ) ∈ {a, b}. Gibbard [9] extended
the Gibbard-Satterthwaite theorem to randomized rules as follows: Any randomized rule f that
is strategyproof is a mixture over unilateral and duple rules. Since unilateral and duple rules are
seen as undesirable, this implies that finding a reasonable, strategy-proof voting rule, even allowing
randomization, is a hopeless endeavor.

Social choice under uncertainty. A belief for voter i is a probability measure Pi over the set
of profiles Ln (when the i is clear from context we will drop it from the notation). This describes
i’s prior probability over profiles before considering their own ranking. After observing their own
ranking σ̂i, the voter can update their posterior using the conditional distribution P[· | σi = σ̂i]. For
notational convenience, we will often shorten this to P[· | σ̂i].

In this model, we need a slightly different notion of strategyproofness. A voting rule is called ordinally
Bayesian incentive compatible (OBIC) with respect to a beliefs (P1, . . . ,Pn) if for all voters i, all
rankings σ̂i, all manipulations σ′

i, and all utility functions u consistent with σ̂i, E[u(f(σ−i, σ̂i)) |
σ̂i] ≥ E[u(f(σ−i, σ

′
i) | σ̂i]. This is the natural generalization of SD-strategyproofness to a Bayesian

setting. Just as with SD-strategyproofness, an equivalent definition is for all voters i, all rankings σ̂i,
all manipulations σ′

i, and all k ≤ m, P[f(σ−i, σ̂i) ∈ Bk(σ̂i) | σ̂i] ≥ P[f(σ−i, σ
′
i) ∈ Bk(σ̂i) | σ̂i].

We now present a few possible choices of “reasonable” priors based on well-known probabilistic
models of social choice. The first is based off of a Mallows Model [15]. This model is parameterized
by a ground truth ranking τ ∈ L and a dispersion quantity φ. We define the Kendall tau distance
between rankings d(σ1, σ2) = |{(a, b) ∈ A2|a ≻σ1

b ∧ b ≻σ2
a}|, i.e., the number of pairs

of candidates on which σ1 and σ2 disagree. In a Mallows Model, each voter’s ranking is drawn
independently with probability proportional to φd(σ,τ). More formally, the probability that a specific
ranking σ is drawn is equal to φd(σ,τ)

Z where Z =
∑

σ∈L φd(σ,τ) is the normalizing constant. One
can easily check that if we extend the notion of Kendall tau distance to operate on a profile and a
ranking, with d(σ, τ) =

∑
i d(σi, τ), then the probability of sampling a profile σ is proportional to

φd(σ,τ) (this time with a Zn normalizing constant).

We convert this model into a prior in two ways. The first we call a confident Mallows prior
parameterized by φ. The agent assumes a ground truth τ is first drawn from some (arbitrary)
distribution, then, given this ground truth, σi = τ with probability 1 and the remainder of the profile
σ−i is drawn from a Mallows Model with a fixed φ using τ . Essentially, the agent believes that they
correctly know the ground truth, but all others only approximate this truth using a Mallows Model.
The conditional distribution over the remainder of the profile σ−i given σ̂i then follows a standard
Mallows model with the ground truth equal to σ̂i, so P[σ−i | σ̂i] ∝ φd(σ−i,σ̂i).2

2This is equivalent to the Conditional Mallows Model of Mandal and Parkes [16].

4



The second we call an unconfident Mallows prior. Here, the agent believes that the ground truth
τ is drawn uniformly at random, and then the entire profile (including their own ranking) is drawn
from a Mallows Model. Therefore, P[σ] = 1

m!

∑
τ∈L

φdkt(σ,τ)

Zn . Since for any σ̂i, by symmetry
Pr[σi = σ̂i] =

1
m! , we can write the conditional probability as

P[σ−i | σ̂i] =
∑
τ∈L

φd((σ−i,σ̂i),τ)

Zn
=
∑
τ∈L

φd(σ−i,τ)

Zn−1
· φ

d(σ̂i,τ)

Z
.

We will abuse notation slightly and write P[τ | σ̂i] =
φd(σ̂i,τ)

Z and P[σ−i | τ ] = φd(σ−i,τ)

Zn−1 , so that

P[σ−i | σ̂i] =
∑
τ∈L

P[σ−i | τ ] · P[τ | σ̂i].

We can interpret this as saying the voter has a posterior over ground truths, P[τ | σ̂i], and is using
this posterior to infer the probability of the rest of the profile. Intuitively, the agent is uncertain over
ground truths but, due to the observation of their ranking, places higher weight on ground truths that
are closer to their own ranking. This decomposition is possible because the rest of the profile σ−i is
conditionally independent of σ̂i given the ground truth τ .

The Thurstone-Mosteller model is defined with respect to underlying means µc for each candidate
c ∈ A. To sample a ranking, a value Xc ∼ N (µc, 1) is drawn independently for each candidate c
from a normal distribution with variance 1 around the mean. The resulting ranking is the order of
the Xc values from highest to lowest. The Placket-Luce model is defined with respect to underlying
weights wc > 0 for each candidate c ∈ A. To sample a ranking, we iteratively select a candidate c
from the remaining unchosen candidates P with probability wc∑

c′∈P w′
c
.

To convert these models to beliefs, we assume that the voter believes there are underlying distinct
means µ1 > · · · > µm (resp. weights w1 > · · · > wm) but is uncertain about which candidate has
which mean (resp. weight). To relate this to the Mallows belief, we will call this order τ , the ground
truth. In the confident version, the voter believes that their ranking is always equal to τ , but all other
votes are drawn from the corresponding model. In the unconfident version, the voter believes a priori
that τ is drawn uniformly at random, and then all voter rankings, including their own, are drawn
from the corresponding model. As with the Mallows beliefs, the voter can do a Bayesian update to
compute a posterior about which candidate was assigned to which weight. We can again decompose

P[σ−i | σ̂i] =
∑
τ

P[σ−i | τ ] · P[τ | σ̂i],

where, by Bayes’ rule, P[τ | σ̂i] ∝ P[σ̂i|τ ], the probability of generating σ̂i under the model with
ground truth τ .

Note that to make this more general, it would also make sense for the voter to believe there is a
distribution over means or weights; our results continue to hold with this more general class; however,
for ease of presentation, we focus on the more restricted form.

3 Plurality is OBIC

We start by defining a class of beliefs that we call top-choice correlated. The class is similar in spirit
(although incomparable) to the class of top-set correlated beliefs introduced by Bhargava et al. [1].

To define the class, given a profile σ and a candidate c ∈ A, we let PLUc(σ) = |{i | σi(1) = c}|
be the plurality score of c, i.e., the number of voters that rank c first. Further, we let PLU(σ) be
the vector of plurality scores indexed by the candidates. A belief Pi is top-choice correlated if the
following holds. Fix a ranking σ̂i and let a = σ̂i(1). Then, for all candidates b ̸= a and all pairs
of plurality vectors r and r′ such that rc = r′c for all c ̸= a, b, ra = r′b, rb = r′a, and ra > rb,
P[PLU(σ−i) = r | σ̂i] ≥ P[PLU(σ−i) = r′ | σ̂i]. This says that if the voter is told the remaining
plurality scores of all other candidates except a and b, as well as possible scores for a and b, they
would think it is more likely that a (their top choice) has the higher score. In other words, all else
being equal, the voter’s top choice is more likely to perform better than other candidates.

We now claim that all of the specific beliefs we have introduced are top-choice correlated, suggesting
that this condition is quite weak.
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Lemma 1. The confident and unconfident versions of Mallows, Thurstone-Mosteller, and Placket-
Luce beliefs under any parameter settings are top-choice correlated.

The proof of Lemma 1 can be found in Appendix A. For confident versions of these beliefs, this is
relatively straightforward as the models directly place higher mass on the voter’s top choice being
chosen. For the unconfident versions, slightly more intricate analysis is necessary to show that more
mass is placed on ground truth rankings where the voter’s top choice is higher, and from this, we can
reach the same conclusion.

Despite the breadth of the class of top-choice correlated beliefs, it turns out that plurality is OBIC for
all beliefs in this class.

Lemma 2. Under any top-choice correlated beliefs, plurality is OBIC.

Proof. Let f be the plurality voting rule, i be an agent, and P be their top-choice correlated belief.
Suppose i observes σ̂i, and let u be an arbitrary utility function that is consistent with σ̂i. Let
a = σ̂i(1) be their top-ranked alternative.

Let σ′
i be a possible manipulation for voter i, and let b = σ′

i(1) be the top-ranked alternative. Notice
that if a = b, then the outcome under plurality is identical, and this manipulation cannot be an
improvement. Hence, from now on, we assume that b ̸= a.

For σ−i, let UG(σ−i) = E[u(f(σ−i, σ
′
i))] − E[u(f(σ−i, σ̂i))] be the expected utility gain of

switching from σ̂i to σ′
i when others report σ−i. We wish to show that E[UG(σ−i)|σ̂i] ≤ 0, where

the expectation is over the belief P. To simplify notation, we will allow the utility function u to
operate on (nonempty) sets of candidates S as u(S) = 1

|S|
∑

c∈S u(c). Note that when the set of
plurality winners on a profile is S, the expected utility is u(S).

We now partition the possible σ−i based on their utility gain. Let C ⊆ A \
{a, b} be a (nonempty) set candidates not including a and b. For each set C, we de-
fine eight sets of profiles σ−i depending on the winners under (σ−i, σ̂i) and (σ−i, σ

′
i),

E1(C)a, E1(C)b, E2(C)a, E2(C)b, E3(C)a, E3(C)b, E4(C), E5(C). In each E(C) set, C will be
the set of candidates excluding a and b with the highest plurality score. We abuse notation slightly
and write PLU(C) for the (tied) plurality score of each of these candidates and PLU(a) and PLU(b)
for the plurality scores of a and b, respectively. The sets are otherwise defined by the set of plurality
winners in (σ−i, σ̂i) and (σ−i, σ

′
i). The definitions can be found in Table 1. One can check that

these (disjoint) sets collectively cover all possible σ−i where UG(σ−i) is nonzero.

We can now rewrite the expected utility gain in terms of these sets. For each set E(C), we write
UG(E(C)) for the expected utility gain for profiles σ−i ∈ E(C) (which will always be the same for
all σ−i ∈ E(C)). From this, we have

E[UG(σ−i)|σ̂i] =
∑

C⊆A\{a,b}
C ̸=∅

(
3∑

j=1

(
P[Ej(C)a|σ̂i]UG(Ej(C)a) + P[Ej(C)b|σ̂i]UG(Ej(C)b)

)

+ P[E4(C)|σ̂i]UG(E4(C)) + P[E5(C)|σ̂i]UG(E5(C))

)

Our goal, again, is to show that this expression is at most 0. Notice that for each C, UG(E4(C)) =
u(b) − u(a) < 0 and UG(E5(C)) = 1

|C| (u(b) − u(a)) < 0 because u(a) > u(c) for all other
candidates c. In what remains, we show that for all C and each j ≤ 3,

P[Ej(C)a]UG(Ej(C)a) + P[Ej(C)b]UG(Ej(C)b) ≤ 0. (1)

Fix an arbitrary C. To do this, we show that for each j, UG(Ej(C)a) ≤ 0, −UG(Ej(C)a) ≥
UG(Ej(C)b), and P[Ej(C)a] ≥ P[Ej(C)b]. Together, these imply (1).

We analyze the case of j = 1; the arguments for j = 2 and j = 3 are very similar. Notice that

UG(E1(C)a) = u(C ∪ {a})− u(a) =
|C|

|C|+ 1
(u(C)− u(a)),
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Set Condition (σ−i, σ̂i) Winners (σ−i, σ
′
i) Winners

E1(C)a PLU(a) = PLU(C) > PLU(b) + 1 a C ∪ {a}
E1(C)b PLU(b) = PLU(C) > PLU(a) + 1 C ∪ {b} b
E2(C)a PLU(a) = PLU(C) = PLU(b) + 1 a C ∪ {a, b}
E2(C)b PLU(b) = PLU(C) = PLU(a) + 1 C ∪ {a, b} b
E3(C)a PLU(C) = PLU(a) + 1 > PLU(b) + 1 C ∪ {a} C
E3(C)b PLU(C) = PLU(b) + 1 > PLU(a) + 1 C C ∪ {b}
E4(C) PLU(a) = PLU(b) ≥ PLU(C) a b
E5(C) PLU(C) = PLU(a) + 1 = PLU(b) + 1 C ∪ {a} C ∪ {b}

Table 1: Definition of the sets E1(C)a, E1(C)b, E2(C)a, E2(C)b, E3(C)a, E3(C)b, E4(C), and
E5(C). They contain all σ−i that satisfy the corresponding condition. In each set, the contained σ−i

all have the same winners in both (σ−i, σ̂i) and (σ−i, σ
′
i) as seen in the corresponding columns.

and symmetrically

UG(E1(C)b) = u(b)− u(C ∪ {b}) = |C|
|C|+ 1

(u(b)− u(C)).

Since u(a) is maximal, UG(E1(C)a) ≤ 0. Further,

−UG(E1(C)a)− UG(E1(C)b) =
|C|

|C|+ 1
(u(a)− u(b)) ≥ 0.

Finally, to show P[E1(C)a] ≥ P[E1(C)b], we consider the vectors of plurality scores (indexed by
candidates) ra and rb that lead a profile σ−i to end in up in E1(C)a and E1(C)b, respectively. Due
to the symmetry, there is a natural bijection between these two sets of vectors obtained by swapping
the a and b components. Further, by the definition of E1(C)a and E1(C)b, the a component of ra is
always strictly larger than the b component. Since P is top-choice correlated, for any two vectors that
differ by swapping the a and b components, P[·|σ̂i] always places higher mass on the vector in ra.
Therefore, P[E1(C)a|σ̂i] ≥ P[E1(C)b|σ̂i], as needed.

From these two lemmas, we immediately derive our main positive result.
Theorem 1. When voters have beliefs that are any of the confident or unconfident versions of Mallows,
Thurstone-Mosteller, or Placket-Luce under any parameter settings, plurality is OBIC.

4 Other Voting Rules Are Not OBIC

From the positive result about plurality, one might wonder whether satisfying OBIC with respect to
these beliefs is a relatively weak condition. If several rules satisfy it, this property is not useful for a
mechanism designer who is comparing between rules to implement. In this section, we show this is
not the case. Specifically, we focus on both the confident and unconfident variants of Mallows beliefs.
Our main theoretical negative result is that plurality is uniquely OBIC among positional scoring rules
in certain regimes of Mallows beliefs.
Theorem 2. Let f be a non-plurality positional scoring rule on three candidates. If a voter has
unconfident or confident Mallows beliefs with φ ≤ .988, for a sufficiently large n, f is not OBIC.

Below we provide a detailed proof sketch. However, we shunt some unwieldy technical derivations
into two lemmas relegated to the appendix.

Proof sketch of Theorem 2. Fix a non-plurality scoring vector (s1, s2, s3). Without loss of generality,
we can translate and scale the vector such that s3 = 0 and s1 and s2 are relatively prime integers with
s2 > 0. Fix a voter i with unconfident Mallows beliefs P with parameter φ ≤ .988; we will describe
later how to extend it to a confident Mallow’s belief. Suppose they observe ranking σ̂i = a ≻ b ≻ c.
We will show that for sufficiently large n, it will be beneficial to switch to σ′

i = a ≻ c ≻ b. More
specifically, we will show that this manipulation increases the probability that candidate a wins,
which means the rule cannot be OBIC with respect to these beliefs. Formally, we will show that,

Pr[f(σ−i, σ
′
i) = a | σ̂i] > Pr[f(σ−i, σ̂i) = a | σ̂i],
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or equivalently,
Pr[f(σ−i, σ

′
i) = a | σ̂i]− Pr[f(σ−i, σ̂i) = a | σ̂i] > 0.

Notice that since we are looking at the difference in probabilities of two events, we can ignore their
intersection when both reports lead to a as the winner. That is, the left-hand side is equal to3

Pr[f(σ−i, σ
′
i) = a ∧ f(σ−i, σ̂i) ̸= a | σ̂i]− Pr[f(σ−i, σ̂i) = a ∧ f(σ−i, σ

′
i) ̸= a | σ̂i].

To shorten notation, we will label the events of interest as Ecb = {f(σ−i, σ
′
i) = a ∧ f(σ−i, σ̂i) ̸=

a | σ̂i]} (i.e., ranking c above b causes a to win) and Ebc = {f(σ−i, σ̂i) = a∧f(σ−i, σ
′
i) ̸= a | σ̂i]}

(i.e., ranking b above c causes a to win), so we wish to show that

P[Ecb|σ̂i]− P[Ebc|σ̂i] > 0.

Using the definition of the Mallows belief model, we can expand the left-hand side using ground
truths to ∑

τ∈L

(
P[Ecb | τ ]− P[Ebc | τ ]

)
P[τ | σ̂i]. (2)

Consider the τ = a ≻ c ≻ b term. Notice that, by symmetry P[Ecb | a ≻ c ≻ b] = P[Ebc | a ≻ b ≻
c] and P[Ebc | a ≻ c ≻ b] = P[Ecb | a ≻ b ≻ c]. Further P[a ≻ c ≻ b | σ̂i] = φ · P[a ≻ b ≻ c | σ̂i]
as d(a ≻ c ≻ b, σ̂i) = d(a ≻ b ≻ c, σ̂i) + 1. Hence,(

P[Ecb | τ = a ≻ c ≻ b]− P[Ebc | τ = a ≻ c ≻ b]
)
P[a ≻ c ≻ b | σ̂i]

= −φ·
((
P[Ecb | τ = a ≻ b ≻ c]− P[Ebc | τ = a ≻ b ≻ c]

)
P[a ≻ b ≻ c | σ̂i]

)
,

or in words, the τ = a ≻ c ≻ b term is exactly equal to −φ times the τ = a ≻ b ≻ c term. In fact,
this same property holds for the other two pairs of ground truth rankings where a remains in the same
position and b is swapped with c, so b ≻ a ≻ c with c ≻ a ≻ b and b ≻ c ≻ a with c ≻ b ≻ a.
Hence, we can write the entire expression (2) as

(1− φ) ·
((

P[Ecb | τ = a ≻ b ≻ c]− P[Ebc | τ = a ≻ b ≻ c]
)
P[a ≻ b ≻ c | σ̂i]

+
(
P[Ecb | τ = b ≻ a ≻ c]− P[Ebc | τ = b ≻ a ≻ c]

)
P[b ≻ a ≻ c | σ̂i]

+
(
P[Ecb | τ = b ≻ c ≻ a]− P[Ebc | τ = b ≻ c ≻ a]

)
P[b ≻ c ≻ a | σ̂i]

)
.

Notice that since we wish to show this is strictly larger than 0 and 1− φ > 0, we show only that the
sum of the probability terms is positive. Additionally, subbing in the values of P[τ | σ̂i] with the
corresponding Kendall tau distances, the above simplifies to(

P[Ecb | τ = a ≻ b ≻ c]− P[Ebc | τ = a ≻ b ≻ c]
)

+ φ
(
P[Ecb | τ = b ≻ a ≻ c]− P[Ebc | τ = b ≻ a ≻ c]

)
+ φ2

(
P[Ecb | τ = b ≻ c ≻ a]− P[Ebc | τ = b ≻ c ≻ a]

)
.

(3)

We will now show that for some c1 > c2 to be chosen later, the first positive term P[Ecb | τ = a ≻
b ≻ c] ∈ Ω(cn1 ) and each negative term P[Ebc | τ ] ∈ O(cn2 ), which implies that for sufficiently large
n, the entire sum is positive, as needed. In addition, for the result to hold with confident Mallows
rather than unconfident, it is only required that the first difference be positive, i.e.,

P[Ecb | τ = a ≻ b ≻ c]− P[Ebc | τ = a ≻ b ≻ c] > 0.

This is also directly implied by showing the above bounds.

We relegate these arguments to the following two lemmas, established in Appendices B and C,
respectively.

Lemma 3. P[Ebc | τ ] ∈ O(cn2 ) for c2 = e
1−φ2

2(1+φ+φ2)

√
φ(1+2φ)
1+φ+φ2 .

3Note that since f is randomized, to make this precise, we would need to specify the joint distribution of its
outputs on different inputs. However, the remainder of the proof will not rely on how this is done, so the joint
distribution can be arbitrary.
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Lemma 4. P[Ecb | τ = a ≻ b ≻ c] ∈ Ω(cn1 ) for c1 > e
1−φ2

2(1+φ+φ2)

√
φ(1+2φ)
1+φ+φ2 .

Together, the two lemmas imply the desired result.

We now complement this result with some additional robustness checks. First, even though the result
is asymptotic, in special cases of interest, this is, in fact, not necessary.
Theorem 3. With three candidates, when a voter has unconfident or confident Mallows beliefs with
φ < 1, Borda Count is not OBIC for any n ≥ 2.

Notice that n = 1 is a degenerate case with no other voters, so n ≥ 2 is the strongest we can hope
for. The proof of Theorem 3 can be found in Appendix D. The beginning is nearly identical to the
proof sketch of Theorem 2, but they diverge after this point. While Lemmas 3 and 4 are asymptotic in
nature, the corresponding portion for Theorem 3 requires careful counting of the number of profiles
satisfying different conditions to ensure that for any fixed n, the inequalities hold.

In light of Theorem 3, it may seem plausible that Theorem 2 could be strengthened to hold for all n
rather than just asymptotically. However, we can give examples where this is not the case, suggesting
that a “sufficiently large n” requirement may be necessary. In particular, there are scoring rules that,
while not being plurality, are “close” to plurality in the sense that s2 is so tiny it only matters when
there is a tie among the plurality winners. For example, say we have the scoring rule (4, 1, 0) with
n = 3 voters. If any candidate receives two first-place votes, they immediately have 8 out of the 15
available points, so they necessarily win. Only when each candidate is ranked first by one voter is
there any difference. We show in Appendix E that such close-to-plurality rules, at least for n = 3, are
OBIC for confident Mallows beliefs with any φ < 1.

Finally, we consider other prominent non-scoring rules, namely Copeland and maximin. Note that
for explicitly-defined beliefs and a number of voters n, we can determine whether or not a rule is
OBIC by computing the probabilities of winners under all possible manipulations. We do so for the
aforementioned rules under both confident and unconfident Mallows beliefs with φ = 0.25, 0.5, 0.75,
n = 2, . . . , 50, and m = 3. The results can be found in Table 2. Although slightly mixed in the sense
that in a few specific cases, OBIC holds, the key takeaway is that none of the rules considered are as
consistently OBIC as plurality.

Copeland maximin with φ = 0.25, 0.5 maximin with φ = 0.75
confident Mallows even n n ̸= 3 n ̸= 3
unconfident Mallows all all n ̸= 6

Table 2: Scenarios where the Copeland and maximin rules fail to be OBIC with respect to Confident
and Unconfident Mallows beliefs with φ = 0.25, 0.50, 0.75, n = 2, . . . 50, and m = 3.

5 Discussion

In summary, we have considered the problem of strategic voting when voters have certain correlated
beliefs over others. We have singled out plurality as an auspicious choice, being incentive compatible
for a large class of beliefs, and have complemented this with negative results showing other prominent
voting rules do not satisfy this property. However, our work is certainly not the final word on this
topic. The current negative results are only for three candidates, and although we believe they should
extend to a larger number, the technical work in showing this seems to get quite messy. Further,
although we have checked many prominent voting rules, we have not ruled out the existence of other
“reasonable” rules that perform as well as plurality while simultaneously satisfying other desiderata.

Finally, taking a more practical viewpoint, although OBIC is a theoretically compelling condition, it
is susceptible to common criticisms of models of voter behavior. As with many models of this form,
the utility difference of misreporting, or of choosing any vote for that matter, can be very low, and it
is debatable whether this is the driving force in how voters make decisions. It raises questions similar
in spirit to the so-called Paradox of Voting [6]: why would any rational agent choose to vote if the
cost almost certainly outweighs the expected benefits? Despite these challenges, we do believe that
the exploration and refinement of models such as OBIC can lead to an improved understanding of
voter behavior and, ultimately, to the development of more effective voting systems.
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