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Abstract

Histology imaging is an important tool in medical diagnosis and research, en-
abling the examination of tissue structure and composition at the microscopic
level. Understanding the underlying molecular mechanisms of tissue architecture
is critical in uncovering disease mechanisms and developing effective treatments.
Gene expression profiling provides insight into the molecular processes underlying
tissue architecture, but the process can be time-consuming and expensive. We
present BLEEP (Bi-modalL Embedding for Expression Prediction), a bi-modal
embedding framework capable of generating spatially resolved gene expression
profiles of whole-slide Hematoxylin and eosin (H&E) stained histology images.
BLEEP uses contrastive learning to construct a low-dimensional joint embedding
space from a reference dataset using paired image and expression profiles at mi-
crometer resolution. With this approach, the gene expression of any query image
patch can be imputed using the expression profiles from the reference dataset. We
demonstrate BLEEP’s effectiveness in gene expression prediction by benchmarking
its performance on a human liver tissue dataset captured using the 10x Visium
platform, where it achieves significant improvements over existing methods. Our
results demonstrate the potential of BLEEP to provide insights into the molecular
mechanisms underlying tissue architecture, with important implications in diag-
nosis and research of various diseases. The proposed approach can significantly
reduce the time and cost associated with gene expression profiling, opening up new
avenues for high-throughput analysis of histology images for both research and
clinical applications.

Code available at https://github.com/bowang-1lab/BLEEP

1 Introduction

Histology imaging of whole-slide Hematoxylin and eosin (H&E) stained tissues has long been used
in academic and clinical settings for research and diagnosis. It provides useful information pertaining
to tissue architecture and composition at the microscopic level, which are critical for understanding
disease mechanisms and developing effective treatments. Gene expression profiling is a powerful
tool that offers deeper insights into the molecular processes underlying tissue architecture. However,
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bulk RNA sequencing does not capture heterogeneity within one sample whereas single-cell RNA
sequencing (scRNA-seq) or single-nucleus RNA sequencing (snRNA-seq) captures heterogeneity
without spatial context.

In recent years, various spatial transcriptomics methods such as Visium[22]], MERFISH [4]],
seqFISH+[8], STARmap[23]], smFISH[6l], and Targeted ExSeq[l] have emerged as a promising
direction to bridge the gap between histology imaging and gene expression profiling. However, these
methods are often low throughput or low content. They also tend to be time-consuming, expensive
and require specialized equipment and extensive domain expertise to optimize.

With the availability of these bi-modal datasets, a unique opportunity arises to explore the possibility
of predicting spatially resolved expression profiles of whole tissues solely from their histology image.
ST-Net and HisToGene are two methods developed for this purpose [[14} 9] but so far have achieved
limited success. Current progress has been limited due to three significant challenges. Firstly, the
problem is ill-posed. While the histology images share some information with their paired spatial
transcriptomics, it is likely that the image features can not be used to predict the expression of all
genes and vice versa. However, expression of marker genes for cell types or subtypes (MG), highly
expressed genes (HEG), and highly variable genes (HVG) should be prioritized as they tend to be
the most biologically relevant candidates for disease diagnosis and drug development. Secondly,
the problem is dimensionally cursed. It is estimated that typical mammalian cells express around
5,000 to 15,000 genes. Existing solutions often only predict the expression of a limited panel of
genes (~200) and often fail to preserve the variance and heterogeneity in the original dataset. This
obfuscates the biological signals intrinsic in the original data, rendering the predictions ineffective
for practical use. Thirdly, due to the developing landscape of spatial transcriptomic methods, existing
datasets are prone to experimental artifacts both within one sample and across different samples,
which complicates the training of expression prediction models. Furthermore, the measured gene
expressions often show poor agreement with their protein profiles, which could be reflected during
H&E staining.

We present BLEEP (Bi-modal. Embedding for Expression Prediction), a novel bi-modal embedding
framework designed to address the aforementioned challenges associated with predicting gene
expression from histology images. BLEEP uses contrastive learning, which effectively aligns paired
image and expression representations from a reference dataset in a low-dimensional joint embedding
space. Using this joint embedding space, BLEEP accurately imputes the gene expression of any
query image patch by leveraging the expression profiles from the reference dataset.

We demonstrate the effectiveness of BLEEP by benchmarking its performance using a challenging
human liver tissue dataset captured via the 10x Visium platform, where it significantly outperforms
existing methods such as HisToGene and ST-Net in terms of the average correlation to original
expressions across marker genes (MG), highly expressed genes (HEG) and highly variable genes
(HVG). BLEEP also preserves heterogeneity in the predicted expression profiles and recaptures and
denoises the gene-gene correlations present in the original dataset.

The proposed approach alleviates the ill posed nature of the expression prediction problem by
implicitly encouraging shared features to be learned between image and expression modalities
via a contrastive objective which could prevent modality specific information from disorienting
the joint embedding space. The novel query-reference imputation process from the learned joint
embedding serve to mitigate the curse of dimensionality of the expression prediction problem as the
gene expression profiles of query image patches are no longer predicted independently, but rather
calculated from k closest reference expression profiles in the joint space. Lastly, we demonstrate
that the resulting expression prediction is resilient to experimental artifacts both within one sample
and across different samples, in addition to outperforming existing solutions on the aforementioned
metrics.

To our knowledge, this is the first bi-modal embedding-based framework proposed for the task of
expression prediction from histology images. The proposed approach has the potential to significantly
reduce the time and cost associated with gene expression profiling, opening up new avenues for
high-throughput analysis of histology images for both research and clinical applications.



2 Related Works

2.1 Existing histology expression prediction approaches

Several existing approaches have shown promising results in predicting expression from histology
images including HE2RNAJ20], ST-Net[9], HisToGene[14]], hist2rna[13], Hist2ST[26] and others|[[7}
24]).

ST-Net and HisToGene are two of the most popular methods for predicting spatially resolved
expression from H&E images. Both of these approaches frame the task of expression prediction as
regression tasks trained in a feed-forward fashion. ST-Net uses a resnet50 image encoder followed
by a fully connected layer where as HisToGene leverages a vision transformer backbone and an
increased field of view.

Methods that predict tissue-level expression generally achieve good correlation but lack the ability
to generate spatially resolved expression profiles (HE2RNA). Existing methods that are capable
of generating spatially resolved expression predictions were either not quantitatively evaluated
(hist2RNA), limited in terms of the predicted panel (ST-Net, Hist2ST, HisToGene), or prone to
overfitting [24].

Both HisToGene and Hist2ST utilize spot-spatial relations to improve performance. However, our
work challenges the necessity of this information, particularly in tissues with distinct and repetitive
spatial patterns like human liver tissue. The implicit assumption that spatially adjacent regions
should have similar representations compared to spatially distant regions may not be beneficial
for performance in such cases. Hard coding position information could also lead to overfitting in
data-scarce scenarios.

2.2 Contrastive representation learning

Contrastive learning plays a pivotal role in advancing the capabilities of deep learning models,
particularly in recent visual language models [J5, [18} [17, [15]. One notable application that has
emerged from contrastive learning is the Contrastive Language-Image Pretraining (CLIP) framework
[L5]. CLIP bridges the gap between language and vision domains by learning joint representations of
paired images and textual descriptions, enabling cross-modal understanding and reasoning.

BLEEP draws inspiration from CLIP with modifications to learn a similar joint embedding between
spot expression profiles captured by the 10x Visium platform and their spatially paired image patch
spanning roughly 55um. However, unlike CLIP’s usage setting, BLEEP directly interpolates in the
joint embedding space to produce expression predictions, which is unfeasible for image and text
domains where a domain-specific decoder is required to produce the final prediction.

2.3 Query-reference imputation

The query-reference imputation of BLEEP is partly inspired by SeuratV3’s [19] integration process,
where the expression profiles are calculated from a linear combination of the closest anchors in the
reference dataset given a query. However, Seurat requires a shared expression panel across modalities
to integrate, whereas BLEEP is able to make spatially resolved expression predictions based on the
morphological features present in the histology image alone.

3 Methods

3.1 Data and preprocessing

The dataset [2], 3] used to train and benchmark BLEEP, HisToGene, and ST-Net consists of four
consecutive 16 micrometer thick slices of human liver tissue from neurologically deceased donor
livers suitable for transplantation that were OCT embedded, frozen, sliced with a cryostat and imaged
using the 10x Genomics Visium platform [3]. Samples were collected with institutional ethics
approval from the University Health Network (REB# 14-7425-AE). After quality control, the slices
contain 2378, 2349, 2277, and 2265 spots respectively. A 224 x224 image patch centered around
each spot roughly 55pm each side is extracted from the whole slide H&E image and paired with the
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Figure 1: BLEEP achieves gene expression prediction from H&E image through (a) BLEEP learns
a bimodal embedding from expression profiles and H&E image patches, (b) images patch queries
are projected into the joint embedding space to index the k nearest reference expression profiles,
and (c) the indexed reference expression profiles are linearly combined to produce the imputed gene
expressions for queries.

corresponding gene expression profile of each spot. The data is publicly available for download at
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE240429,

Each spot is normalized to the total count and log normalized before highly variable genes are
computed using the Scanpy[25] package. The union of the top 1000 most highly variable genes from
each of the 4 slices was used for training and prediction, amounting to 3467 genes in total. Finally,
the expression data of these four samples are batch corrected using Harmony [11]] before one of the
slices (slice #3) is randomly selected to be held out for testing.

3.2 Learning bimodal embedding for expression prediction

As illustrated in Figure [Th, the first step towards learning a bimodal embedding for expression
prediction is to extract features from the two modalities respectively using the image encoder and
the expression encoder. Given a batch of B paired image patches (V € NB>*L>L) and normalized
expression profiles (X € NBXC) where L is the image patch size and C is the gene set size,
we use an image encoder fj,,, and an expression encoder fe.p, to project the inputs into h-dim
image embeddings and expression embeddings through H, = fi,,(H) € NB*h and H, =
feapr(X)N Bxh We use contrastive learning to further align the latent space for H, and H,.

Our contrastive learning approach is inspired by CLIP [16] 21]], but the adjusted loss function better
smooths out the loss landscape for our specific use case. Unlike natural images, multiple spots with
similar expression profiles or image morphology are often expected to be sampled in the same batch.
The modification will prevent the model from pulling apart spots with similar expression profiles
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Algorithm 1 Bimodal Embedding for Expression Prediction

Input: Paired image patches (V' € NBXLXL) normalized expression profiles (X € NZ*C) image
encoder fi,4, expression encoder fez,,, temperature 7
Output: Joint embedding space (H,,, H,)

1: function BIMODALEMBEDDING(V, X, fimg, fexpr: T)

2: Hy, Hy < fimg(V), feapr(X) > Image and Expression embeddings
3 sim(Hy,, H;) < H, - HT > Paired similarity
4: sim(H,,H,) + H, - H? > Internal similarities (image)
5: sim(Hy, H,) + H, - HF > Internal similarities (expression)
6: target < softmax((sim(Hy, Hy) + sim(H,, H,))/2 - T) > Similarity-adjusted target
7 L «+ mean(ce(sim(H,, H,), target) + ce(sim(H,, H;)T , target™)) > Cross entropy loss
8: return H,, H,, L

9: function QUERYREFERENCEIMPUTATION(Image, fimg, Hy, X, k)
10: V' + split(Image) > Split into image patches
11: Q. fimg(V") > Project patches(queries) into embedding space
12: distances « dist(¢’, H, ,l2) for ¢’ € Q/, > Compute 12 distance for each query
13: indices <— topk(distances) > Get indices of top K matched expression from reference
14: reference_profiles <— X[indices]
15: return weighted_avg(reference_profiles) > Return prediction

within the same batch, thereby increasing the coherence of the resulting joint embedding. We use
an existing implementation of this loss variant[21]]. In detail, we first generate the paired similarity
through sim(H,, H,) = H,HI. To take into account the pairs with similar morphological features
or expression landscapes, we begin with calculating the internal similarities, sim(H,,, H,) = H,H!
and sim(H,, H,) = H,HY, then a similarity adjusted target matrix is denoted as:

target = (softmax(sim(Hy, H,) + sim(H,, H,))/2 - T)

where T is a temperature hyperparameter. Cross entropy(ce) loss is applied to align the image features
and expression features to produce the final loss L:

L = mean(ce(sim(H,, H,), target) + ce(sim(H,, H,)T , target™))

For BLEEP, we use the pretrained ResNet50[10] as the image encoder and a fully connected network
(FCN) with an output dimension of 256 as the expression encoder, which doubles as a projection head.
The image features from the image encoder are passed through a separate projection head to bring the
two modalities to the same dimension before applying the contrastive loss similar to CLIP[15]], where
the model learns to pull the paired representations together while pushing other representations apart.
We find that the ResNet50 image encoder with fewer trainable parameters obtained more favorable
results compared to various pretrained vision-transformer (ViT) encoders (Supplementary Table 1).
Larger models in conjunction with a relatively small training dataset may encourage information to
be memorized in the weights of the network rather than being encoded in the projections, therefore
rendering the learned joint embedding ineffective for downstream imputation for our use case.

BLEERP is trained using 4 NVIDIA V100 GPUs with the AdamW optimizer[12], a batch size of 512
and a learning rate of 0.001 for 150 epochs.

3.3 Query-Reference imputation

As illustrated in Figure[Ip, the process starts by first splitting the H&E image into N small image
patches to be encoded by the trained image encoder. Once the image patches are represented in the
joint embedding space, the k nearest expression profiles from the reference are selected based on their
proximity (by Euclidean distance) in the joint embedding space to each patch. Finally, the expression
profiles of the query patches are imputed as a linear combination of the selected expression profiles
in the reference[Tk. Refer to supplementary materials for implementation details.



Table 1: Average correlation of predicted expression for 8 marker genes derived from Andrews et al.
[2]] (MG), top 50 most highly expressed genes (HEG) and top 50 most highly variable genes (HVG)
compared to ground truth expressions on held out dataset.

Method MG HEG HVG
HisToGene 0.097£0.015 0.072£0.018 0.071%0.011
ST-Net 0.0994+0.020  0.126+0.005 0.091+£0.007

BLEEP 0.217+0.002  0.175+0.016  0.173+0.011

Table 2: Predicted gene expression values with top 5 correlations with original profile for each method
from one representative replicate.

HisToGene ST-Net BLEEP
Gene Name r Gene Name r Gene Name r

CYP3A4 0.549 CYP3A4 0.549 CYP3A4 0.741
CYP1A2 0.542 CYPI1A2 0.532 CYP1A2 0.681

GLUL 0.488 CYP2EI1 0.530 CYP2EI 0.675
CYP2E1 0.330 GLUL 0.463 GLUL 0.656
FABPI 0.328 SLCOIB3  0.375 FABPI 0.503

4 Experiments

4.1 BLEEP predicts spatially resolved gene expression profiles that correlate well with
original expression

Table [T| shows the performance of HisToGene, ST-Net and BLEEP for predicting a marker gene set
(MG) derived from literature by Andrews et al. [2], the top 50 most highly expressed genes (HEG)
and the top 50 most highly variable genes (HVG). The BLEEP predicted expression profiles show the
highest correlation with ground truth across all three gene sets, achieving an increase of 120%, 39%
and 90% in r value across the three gene sets, respectively, compared to the second scoring method.

Furthermore, Table [2| shows the top 5 predicted genes from each method. We observed that the most
well-predicted genes are relatively consistent across methods. These genes are known to be spatially
zonated, with CYP3A4, CYP1A2, CYP2E1, GLUL being pericentrally zonated and FABP1 being
periportally zonated. We also observe that BLEEP consistently achieved higher correlation values for
these genes compared to HisToGene and ST-Net, further demonstrating the effectiveness of BLEEP
in expression prediction.

Despite the good prediction of select genes in Table 2} we note that the overall absolute correlation in
Table [ remains low, highlighting the difficulty of the prediction task for most genes. The low scores
could be attributed to several causes, including the expression of certain genes being poorly correlated
with morphological features; the poor detection of certain genes by the Visium platform causing
their expression to be less predictable; and experimental artifacts that could introduce non-biological
variance to the data independent of the image.

4.2 BLEEP retains biological heterogeneity

Figure 2] highlights the key advantage of BLEEP compared to supervised regression-based approaches
such as HisToGene and ST-Net. We observe that while BLEEP only narrowly outperforms HisToGene
and ST-Net in correctly predicting the mean expression of genes within one sample, both HisToGene
and ST-Net fail to recapitulate the variance of the genes being predicted.

While the variance of BLEEP expression predictions is in general underestimated, they still maintain
sufficient biological heterogeneity particularly when the predicted expressions are plotted in fixed
scale with the original expression[3] Additional figures depicting the spatial expression of other genes
are available in (Supplementary Figure 1). Both HisToGene and ST-Net fail to resemble the original
expression, likely due to the curse of dimensionality of the prediction task, resulting in the model
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Figure 3: Original and predicted spatially resolved expression levels for CYP3A4 overlaying the
H&E image, visualized with variable (Top) and fixed (Bottom) color scale.

learning mean expressions as a shortcut, with each gene having roughly the same variance regardless
of their mean expression, which is undesirable.

Figure [ demonstrates the effectiveness of BLEEP in preserving gene-gene correlations (GGCs) as
further testament to its ability to preserve relevant biological heterogeneity.

4.3 BLEEP inferred expression is robust to experimental artifacts and batch effects

Supplementary Table 2 illustrates the clustering statistics of the unsupervised clusters resulting from
the predicted expression profiles. When the resulting unsupervised clusters are projected onto the
histology image in Figure [5| we make two observations. Firstly, perhaps unsurprisingly, all three
methods are robust to experimental artifacts within one slice (The red regions) as the histology image
surrounding the region was not affected. The low-quality regions are characterized by a lower-than-
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Figure 4: Gene-gene correlation heatmap calculated using the predicted expressions for each method.

normal number of counts detected and a higher-than-normal fraction of mitochondrial genes. Their
expression profiles can be rescued by any method that predicts expression from the image. Secondly,
all three methods are capable of capturing the zonation patterns across the tissue slice to a reasonable
extent. While HisToGene has the best clustering agreement out of the three methods according to
Table (Supplementary Table 2) with BLEEP and ST-Net following close behind, for this particular
dataset, the clustering metrics such as NMI and ARI are likely not accurate measures of prediction
quality because the hepatocytes already closely resemble each other and lie along a continuous
gradient. Hence, the resulting clusters will be very sensitive to the choice of the clustering method or
the hyperparameters of the method.

However, unlike HisToGene and ST-Net, BLEEP is the least prone to potentially introduce batch
effects between samples during the prediction process owing to the imputation strategy. We see
from Supplementary Figure 1 that both ST-Net and especially HisToGene predictions are a bit out of
distribution when their predicted expression profiles are plotted alongside that of all the reference
expression profiles.

4.4 BLEEP ablation experiments

Here we present the ablation experiments conducted in Table[3] From these experiments we make a
few important observations:

The choice of K during the query-reference imputation process influences the prediction quality quite
negatively when a low value is selected (K = 10). Values of K above our default value could provide
some small improvements to correlation of the resulting predicted expression values for the HVG
and HEG gene sets, but the differences were not pronounced. This is inline with what one might
expect from taking the pseudo-bulk of the top K most likely expression profiles given any query
image. However, the MG gene set did not show much improvement with increasing K. Furthermore,
doing so may carry a trade off of further systematically deviating from the original variance of the
dataset due to the increased averaging effect. With this in mind, we feel our default value of K = 50
remains adequate.

We also observe that the most similar match between query and reference is usually not the best
prediction (as seen from the 3rd row of the ablation table and indirectly the 4th row when predictions
are weighted by their similarity). We suspect the gap may close to some degree as the reference grows
further in size, but in general some amount of averaging is desired for query-reference imputation
to remove some noise intrinsic in the Visium platform. In addition, as no reference expression
profile will perfectly match that of the query image, averaging multiple profiles is required to more
appropriately describe the query expression profile. Nevertheless, we also highlight the possibility
of genuine biological signals being averaged out, which is an important consideration to be further
investigated.

Smoothing the contrastive loss objective to take into account patch similarity showed modest increase
in performance. The gain in performance may be due to the fact that relaxing the contrastive objective
is more compatible with the similarity based inference strategy. The smoothing may help lessen the
extent similar references are pushed apart in embedding space during training, resulting in improved



Original

HisToGene ST-Net

e 00
w N = o

Figure 5: Leiden clusterings for original and predicted expressions overlaying the H&E image.
Image-only expression predictions are invariant to low quality regions (red) during actual experiment.

Table 3: BLEEP ablation experiments. Variables tested include: smoothed objective versus the
original CLIP objective, choice of top K and the method of aggregation. Pearson correlation values
are reported from the marker gene set (MG), the top 50 highly variable genes (HVG) and the top 50
highly expressed genes (HEG). The correlation values show the average of 3 replicates. Accompanied
uncertainty values denote the maximum difference from the mean of the 3 replicates.

Average Pearson Correlation

Smoothed Obj. K  Aggregation MG HVG HEG
Yes 10 average 0.179£0.020  0.146 £0.008  0.148 +0.022
Yes 100 average 0.2154+0.011 0.180£0.012 0.181+0.015
Yes - simple 0.079£0.032  0.075£0.016  0.084 £+ 0.023
Yes 50 weighted 0.186 £0.018  0.161 £0.015  0.157 £ 0.026
No 50 average 0.209£0.017  0.165£0.007  0.170 = 0.005
Yes 50 average 0.217£0.002 0.175+0.016 0.173+0.011

querying of the top K most likely expression profiles given a query image patch during the inference
stage.

5 Discussion and Conclusion

In this study, we introduced BLEEP (Bi-modalL Embedding for Expression Prediction), a novel frame-
work for predicting gene expression from histology images. BLEEP constructs a joint embedding
space from paired image and expression features in a reference dataset and subsequently utilizes the
k most similar expression profiles in the joint space to impute the expression for any given image
query. To the best of our knowledge, this is the first bi-modal embedding-based framework proposed
for the task of expression prediction from histology images. We also show that the query-reference



imputation process is effective and well suited for the task of expression prediction from the bi-modal
joint embedding.

We demonstrated that BLEEP effectively addresses three major challenges in the H&E image to
expression prediction task. Firstly, the ill-posed nature of the problem is alleviated by the proposed
joint image and expression embedding space, optimized using a contrastive learning objective inspired
by CLIP. This encourages the shared features between the two modalities to be preferentially encoded
in the joint space. Secondly, the curse of dimensionality is tackled by the query-reference imputation
process, which predicts the entire expression profile jointly through linear combination rather than
predicting each individual gene separately using supervised regression tasks. Lastly, we showed that
BLEEP’s expression prediction is resilient to experimental artifacts, both within a single sample and
across different samples.

We further observed that the correlation matrix of BLEEP’s predicted expressions not only captures
existing patterns in gene-gene correlations (GGCs) but also accentuates more subtle positive and
negative GGCs. This could be attributed to the ability of BLEEP’s imputation process to average
out the noise intrinsic in the 10x Visium platform, thereby increasing the absolute values of these
correlations. This is consistent with the results presented in Figure [2| where the predicted gene
expressions by BLEEP exhibit lower variance compared to the original dataset. This highlights
BLEEP’s capability to combine expression profiles of similar-looking spots in the dataset and
generate expression profiles with reduced noise and enhanced biological signal compared to the
original dataset. Ongoing work is evaluating BLEEP’s ability to detect new spatially resolved gene
modules in response to this observation.

However, an alternate explanation for the observed results could be that averaging during imputation
removes genuine, abrupt biological signals, resulting in artificially smoothed expression patterns. It
is possible that this may be true for certain genes, especially ones that correlate poorly with image
features. Increasing the size of the reference dataset may mitigate this issue by reducing the distance
between any query patch and the reference expression profiles. In practice, once the expression
encoder is trained, it can be quickly used to integrate new datasets to the shared embedding space as
reference. Furthermore, imputed expressions from query datasets could be subsequently integrated,
making the process of improving BLEEP prediction natural.

Nevertheless, the improvement offered by BLEEP over existing methods is substantial. We achieved
significantly higher correlation with actual expression profiles across the marker gene set (MG),
top 50 highly expressed genes (HEG), and top 50 highly variable genes (HVG) (Figure [I)), with
improvements ranging between 39% to 120% compared to the second highest scoring method. The
top predicted genes from BLEEP are consistent with those from ST-Net and HisToGene, but the
correlation values (r) are higher by up to 35% compared to the second-highest scoring method.
BLEERP also excel in retaining the biological heterogeneity of the original sample as shown in Figures

2Bl Aand]5]

Overall, our proposed framework, BLEEP, has the potential to significantly reduce the time and cost
associated with gene expression profiling, opening up new avenues for high-throughput analysis of
histology images for both research and clinical applications.

6 Acknowledgements

All authors thank the Vector Institute, Calcul Québec, and the Digital Research Alliance of Canada
for their support. This research has been made possible in part by a grant to G.D.B. from the Chan
Zuckerberg Initiative DAF, an advised fund of Silicon Valley Community Foundation. B.W. is
supported by the NSERC discovery grant and CIFAR chair programs [RGPIN-2020-06189, DGECR-
2020-00294]. R.X. is supported by the Ontario Graduate Scholarship.

10



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

Shahar Alon, Daniel R Goodwin, Anubhav Sinha, Asmamaw T Wassie, Fei Chen, Evan R
Daugharthy, Yosuke Bando, Atsushi Kajita, Andrew G Xue, Karl Marrett, et al. Expansion
sequencing: Spatially precise in situ transcriptomics in intact biological systems. Science,
371(6528):eaax2656, 2021.

Tallulah S Andrews, Jawairia Atif, Jeff C Liu, Catia T Perciani, Xue-Zhong Ma, Cornelia
Thoeni, Michal Slyper, Gokcen Eraslan, Asa Segerstolpe, Justin Manuel, et al. Single-cell,
single-nucleus, and spatial rna sequencing of the human liver identifies cholangiocyte and
mesenchymal heterogeneity. Hepatology Communications, 6(4):821-840, 2022.

Tallulah S Andrews, Diana Nakib, Catia Perciani, Xue Zhong Ma, Lewis Liu, Erin Winter,
Damra Camat, Sai Chung, Justin Manuel, Shantel Mangroo, et al. Single-cell and spatial

transcriptomics reveals the human liver immunological landscape and myeloid dysfunction in
psc. bioRxiv, pages 2023-07, 2023.

Kok Hao Chen, Alistair N Boettiger, Jeffrey R Moffitt, Siyuan Wang, and Xiaowei Zhuang.
Spatially resolved, highly multiplexed rna profiling in single cells. Science, 348(6233):aaa6090,
2015.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. In International conference on machine
learning, pages 1597-1607. PMLR, 2020.

Simone Codeluppi, Lars E Borm, Amit Zeisel, Gioele La Manno, Josina A van Lunteren,
Camilla I Svensson, and Sten Linnarsson. Spatial organization of the somatosensory cortex
revealed by osmfish. Nature methods, 15(11):932-935, 2018.

Charles Comiter, Eeshit Dhaval Vaishnav, Metamia Ciapmricotti, Bo Li, Yiming Yang, Scott J
Rodig, Madison Turner, Kathleen L Pfaff, Judit Jané-Valbuena, Michal Slyper, et al. Inference
of single cell profiles from histology stains with the single-cell omics from histology analysis
framework (schaf). bioRxiv, pages 2023-03, 2023.

Chee-Huat Linus Eng, Michael Lawson, Qian Zhu, Ruben Dries, Noushin Koulena, Yodai Takei,
Jina Yun, Christopher Cronin, Christoph Karp, Guo-Cheng Yuan, et al. Transcriptome-scale
super-resolved imaging in tissues by rna seqfish+. Nature, 568(7751):235-239, 2019.

Bryan He, Ludvig Bergenstrahle, Linnea Stenbeck, Abubakar Abid, Alma Andersson, Ake
Borg, Jonas Maaskola, Joakim Lundeberg, and James Zou. Integrating spatial gene expression

and breast tumour morphology via deep learning. Nature biomedical engineering, 4(8):827-834,
2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770-778, 2016.

Ilya Korsunsky, Nghia Millard, Jean Fan, Kamil Slowikowski, Fan Zhang, Kevin Wei, Yuriy
Baglaenko, Michael Brenner, Po-ru Loh, and Soumya Raychaudhuri. Fast, sensitive and
accurate integration of single-cell data with harmony. Nature methods, 16(12):1289-1296,
2019.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Raktim Kumar Mondol, Ewan KA Millar, Peter H Graham, Lois Browne, Arcot Sowmya, and
Erik Meijering. hist2rna: An efficient deep learning architecture to predict gene expression
from breast cancer histopathology images. Cancers, 15(9):2569, 2023.

Minxing Pang, Kenong Su, and Mingyao Li. Leveraging information in spatial transcriptomics
to predict super-resolution gene expression from histology images in tumors. bioRxiv, pages
2021-11, 2021.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748-8763. PMLR, 2021.

11



[16] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning,
2021.

[17] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical
text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

[18] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark
Chen, and Ilya Sutskever. Zero-shot text-to-image generation. In International Conference on
Machine Learning, pages 8821-8831. PMLR, 2021.

[19] Rahul Satija, Jeffrey A Farrell, David Gennert, Alexander F Schier, and Aviv Regev. Spatial
reconstruction of single-cell gene expression data. Nature biotechnology, 33(5):495-502, 2015.

[20] Benoit Schmauch, Alberto Romagnoni, Elodie Pronier, Charlie Saillard, Pascale Maillé, Julien
Calderaro, Aurélie Kamoun, Meriem Sefta, Sylvain Toldo, Mikhail Zaslavskiy, et al. A deep
learning model to predict rna-seq expression of tumours from whole slide images. Nature
communications, 11(1):3877, 2020.

[21] M. Moein Shariatnia. Simple CLIP, 4 2021.

[22] Patrik L Stéahl, Fredrik Salmén, Sanja Vickovic, Anna Lundmark, José Fernandez Navarro,
Jens Magnusson, Stefania Giacomello, Michaela Asp, Jakub O Westholm, Mikael Huss, et al.
Visualization and analysis of gene expression in tissue sections by spatial transcriptomics.
Science, 353(6294):78-82, 2016.

[23] Xiao Wang, William E Allen, Matthew A Wright, Emily L Sylwestrak, Nikolay Samusik, Sam
Vesuna, Kathryn Evans, Cindy Liu, Charu Ramakrishnan, Jia Liu, et al. Three-dimensional
intact-tissue sequencing of single-cell transcriptional states. Science, 361(6400):eaat5691, 2018.

[24] Yinxi Wang, Kimmo Kartasalo, Philippe Weitz, Balazs Acs, Masi Valkonen, Christer Larsson,
Pekka Ruusuvuori, Johan Hartman, and Mattias Rantalainen. Predicting molecular phenotypes
from histopathology images: a transcriptome-wide expression—-morphology analysis in breast
cancer. Cancer Research, 81(19):5115-5126, 2021.

[25] F Alexander Wolf, Philipp Angerer, and Fabian J Theis. Scanpy: large-scale single-cell gene
expression data analysis. Genome biology, 19:1-5, 2018.

[26] Yuansong Zeng, Zhuoyi Wei, Weijiang Yu, Rui Yin, Yuchen Yuan, Bingling Li, Zhonghui
Tang, Yutong Lu, and Yuedong Yang. Spatial transcriptomics prediction from histology jointly
through transformer and graph neural networks. Briefings in Bioinformatics, 23(5), 2022.

12



	Introduction
	Related Works
	Existing histology expression prediction approaches
	Contrastive representation learning
	Query-reference imputation

	Methods
	Data and preprocessing
	Learning bimodal embedding for expression prediction
	Query-Reference imputation

	Experiments
	BLEEP predicts spatially resolved gene expression profiles that correlate well with original expression
	BLEEP retains biological heterogeneity
	BLEEP inferred expression is robust to experimental artifacts and batch effects
	BLEEP ablation experiments

	Discussion and Conclusion
	Acknowledgements

