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Abstract

Computed Tomography (CT) cardiac imaging is among the most complex visu-
alization techniques within CT organ imaging procedures, primarily due to the
dynamic nature of human hearts that are constantly working and pumping blood.
To accurately capture the organs, CT scanners must perform fast scans to produce
a "snapshot" of a human heart, yet their temporal resolution remains limited by CT
systems’ mechanical constraints. Recently, Generative AI has gained considerable
attention, with extensive research exploring its potential to generate detailed syn-
thetic images. In medical imaging, these techniques potentially offer a promising
solution to the scarcity of CT cardiac data stemming from the aforementioned
challenges. While these synthetic images appear highly realistic, an important
question arises: Can they effectively support downstream tasks, such as semantic
image segmentation? In this paper, we introduce a novel latent diffusion model as
a generative model for 3D CT cardiac imaging, capable of producing multi-modal
data including synthetic CT cardiac images alongside corresponding heart sub-
structures. These multi-modal synthetic data are utilized in both the pre-training
phase (via Self-Supervised Learning) and the fine-tuning phase (via Supervised
Learning). Through extensive experimentation, we demonstrate that the synthetic
data generated by our generative model significantly enhances 3D CT cardiac image
segmentation performance, contributing to more accurate and robust diagnoses.

1 Introduction

Computed Tomography (CT) imaging has celebrated its 50th anniversary recently. The technology
is still rapidly evolving as of this writing in 2024. With this medical imaging technique, clinicians
can have detailed visualization of the internal structures of human bodies including bones, organs,
blood vessels, and soft tissues (Hsieh, 2009; Buzug, 2008; Ikuta and Zhang, 2023b). CT imaging
can be used to take scans of many human organs. CT cardiac imaging remains one of the most
challenging visualization techniques among numerous CT organ imaging procedures. This is because
of the dynamic nature of human hearts, constantly moving and pumping blood (Hsieh, 2009; Buzug,
2008; Ikuta and Zhang, 2022). Organ segmentation is a critical task in medical imaging. CT cardiac
image segmentation is to specify and classify different structures and parts of human hearts. CT
cardiac chamber image segmentation is one of the most challenging tasks in medical image semantic
segmentation tasks due to the complex anatomy of the human heart, variability in heart size among
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patients, difficulties with temporal resolution, and the dynamic motions of the heart, among other
factors.

Recently, there has been a substantial advancement in the use of Deep Learning (DL) techniques for
medical image segmentation. The performance of these models largely hinges on access to large,
high-quality annotated datasets (Ikuta and Zhang, 2023a; Hosseinzadeh Taher et al., 2021). However,
obtaining such datasets, especially for 3D CT cardiac image segmentation, is often expensive and time-
consuming due to the inherent challenges involved in each image annotation process. A promising
way to overcome the shortage of annotated data in CT cardiac imaging is the Self-Supervised Learning
(SSL) approach (Hosseinzadeh Taher et al., 2023, 2021), which has achieved tremendous success in
fields like Natural Language Processing (NLP) (Ray, 2023; Liu et al., 2023) and Computer Vision
(CV) (Chen et al., 2020b; Grill et al., 2020; Misra and Maaten, 2020). SSL techniques seek to derive
general representations from unlabeled data, which can then be fine-tuned for various tasks, even
when labeled data is scarce (Haghighi et al., 2021). Despite the growing number of self-supervised
algorithms in medical imaging (Azizi et al., 2023; Haghighi et al., 2020; Hosseinzadeh Taher et al.,
2022), existing SSL methods struggle to capture meaningful representations from 3D CT cardiac
image volumes due to the lack of consideration for the dynamic nature of the human heart in the
design of their pre-text tasks.

The latent Diffusion Model (LDM) (Ho et al., 2022; Rombach et al., 2021) is a type of generative
model used in DL. It uses the concept of a diffusion process (Ho et al., 2022) to generate new
image data. This diffusion process is an image generation technique developed based on a stochastic
process that describes how data changes over time. It gradually converts from a simple probability
distribution such as Gaussian noise to an image (or an image volume if it is three-dimensional).
While a conventional diffusion process is performed on the input image space, the LDM performs
the diffusion process in a latent space. There are a couple of advantages of using the LDM. The
first advantage is GPU (Graphical Processing Unit) memory efficiency. By artificially introducing
and removing noises in the latent space, we can reduce the GPU memory consumption required
for training and validation. This leads to faster training and validation or enables to use a larger
image matrix size. The second advantage is image quality. We can generate visually striking image
samples from complex data distributions, especially those found in medical imaging. In its training
process, the LDM learns how to reverse the diffusion process. In other words, it learns how to
gradually recover original images from an artificially added Gaussian noise in the latent space. Once
training is completed, a trained LDM can start generating images. Images can be generated by
converting random noise in the latent space into samples of the learned data distribution through
the learned de-noising process. LDMs are currently used in many computer vision and medical
image processing applications, such as image synthesis, image restoration, and super-resolution (Ho
et al., 2022; Rombach et al., 2021). However, they have not yet been extensively used in CT cardiac
imaging applications.

In this paper, we introduce a novel Latent Diffusion Model (LDM) as a generative model for CT
cardiac imaging, designed to produce multi-modal data, including synthetic CT cardiac images along
with their corresponding cardiac sub-structures. These generated sub-structures are transformed
into segmentation labels and used to train a semantic image segmentation model. Given that CT
cardiac imaging is inherently three-dimensional, our LDM is developed as a 3D image generator.
The generative model learns complex data distributions from ground truth data, and the generated
synthetic data are combined with ground truth data to enhance the size of the training and validation
datasets. This approach offers a promising solution to the scarcity of CT cardiac data caused by
the inherent challenges of CT cardiac scans, ultimately contributing to more accurate and robust
diagnoses.

In summary, the main contributions of this work are:

• We present a new 3D Latent Diffusion Model (LDM) as a generative model for CT cardiac
imaging. The model generates synthetic CT cardiac images as well as corresponding human
heart sub-structures. The sub-structure data are converted to segmentation labels. Generated
data are used in a cardiac chamber image semantic segmentation to enhance training and
validation data.

• In addition, we propose a new Self-Supervised Learning (SSL) training framework with
the LDM, where we have distinct data augmentation techniques to enhance the variety
of diffusion-generated data. The generated images are used along with Masked Image
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Modeling (MIM) as part of SSL to help our semantic segmentation model learn the visual
representation of 3D cardiac image volumes more efficiently.

• Furthermore, we conduct qualitative image analysis on diffusion-generated images and
segmentation labels and scrutinize the data for positives and negatives in terms of CT cardiac
imaging.

• Finally, we conduct extensive experiments to verify the superior performance of our proposed
framework.

2 Related Work

In this section, we discuss related work and relevant topics to our research.

CT Cardiac Image Segmentation is a challenging problem. Although deep learning techniques
have been widely applied to cardiac image segmentation in MRI and ultrasound (Chen et al., 2020a),
there has been comparatively little research focused on CT images. Dormer et al. (2018) used a
2D CNN model to segment four heart chambers from patches extracted from 3D CT scans. Other
methods (Tong et al., 2018; Wang and Smedby, 2018) have integrated a 3D fully convolutional
network (FCN) with a localization network to first detect the region of interest for whole heart
segmentation in multi-modal settings. Morris et al. (2020) proposed a 3D U-Net-based design
with multiple enhancements to segment cardiac substructures in MRI and CT pairs, while Harms
et al. (2021) developed a segmentation network leveraging regional convolutional neural networks.
Wang et al. (2022) introduced a hybrid model that combines CNNs and transformers for cardiac
segmentation, and Momin et al. (2022) designed a method using mutually enhancing networks to
localize and segment cardiac substructures simultaneously in a bootstrapping manner. A common
issue across these studies is the limited availability of annotated data for training deep models in
cardiac chamber segmentation. Unlike previous work, our approach addresses this challenge by
introducing a self-supervised learning method with a latent diffusion model for 3D cardiac CT image
segmentation.

Self-Supervised Learning (SSL) is a promising approach. Given the limited availability of large-
scale annotated datasets, as discussed in the previous section, the SSL holds significant assurance for
medical imaging applications. In this framework, a neural network is trained on a carefully designed
pre-text task using unlabeled data, and the learned representations are later fine-tuned for specific
tasks with annotated data (Haghighi et al., 2021; Hosseinzadeh Taher et al., 2021). State-of-the-art
SSL approaches can be roughly divided into two categories: Instance Discrimination Learning (IDL)
and Masked Image Modeling (MIM). Instance discrimination methods (He et al., 2020; Azizi et al.,
2023; Chen et al., 2020c; Chaitanya et al., 2020; Haghighi et al., 2023) treat each image as a unique
class and aim to learn image representations that are robust to image distortions. In contrast, MIM
methods (Xie et al., 2022; He et al., 2022; Zhou et al., 2021) mask random regions of an image and
train a model to predict the masked areas. Unlike these existing SSL techniques, we introduce an
SSL approach using a latent diffusion model, where the diffusion process learns the data distribution
of GT images and generates new synthetic data. Self-supervised learning is then applied using the
synthetic data, enabling the model to acquire general knowledge from a larger pool of generated
images. This process provides valuable contextual information for tackling more complex tasks and
results in more generalizable features for cardiac CT imaging.

Latent Diffusion Model is an active research area in recent years. Ho et al. (2022) proposed a novel
high-quality image synthesis technique using diffusion probabilistic models. Their diffusion process
is conducted in the image space. The target applications are computer vision sample generations.
Therefore, the method is limited to 2D image generation. Rombach et al. (2021) proposed a new
high-quality image synthesis technique using diffusion models. Their method is to conduct the
diffusion process in the latent space rather than in the image space for computational efficiency. It
turns out that the latent diffusion model can create more striking image quality than the ones using
the image space. This technique again targets computer vision applications. Therefore, the method is
limited to 2D image generation as well. Txurio et al. (2023) applied the latent diffusion models to CT
imaging applications. While the method is proven effective in generating high-quality CT images, it
is limited to 2D image generation. Nor the method cannot create segmentation labels. Khader et al.
(2023) proposed a new latent diffusion model for CT imaging applications where their method creates
3D imaging volumes. These images are used in their self-supervised learning (SSL) to increase their
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Figure 1: An example of a CT cardiac chamber image annotated by clinical experts. Each unique
color represents different heart substructures, including the left atrium (LA), left ventricle (LV), right
atrium (RA), right ventricle (RV), myocardium (MYO), aorta (AO), pulmonary artery (PA), and left
atrial appendage (LAA).

image segmentation performance. However, their method only creates images and is not scalable to
create segmentation labels. In this paper, we propose a new latent diffusion model for CT cardiac
imaging where the model produces both images and labels. It learns a complex data distribution from
ground truth images and labels. These generated data are supplement to ground truth data to boost
the amount of training and validation data. CT cardiac imaging is three-dimensional in nature, thus,
we create the latent diffusion model as a 3D image generator.

3 Method

In this section, we discuss our data preparation followed by our method in three parts, synthetic data
generation by the latent diffusion model, self-supervised learning as a pre-training, and finally our
fine-tuning process for the 3D image segmentation.

3.1 Data preparation

In this research, we use one of our proprietary data sets of 3D CT cardiac imaging. The data set has
been collected from 32 different hospitals in 10 different countries worldwide. In the data set, there
are eight heart substructures, that are left atrium (LA), left ventricle (LV), right atrium (RA), right
ventricle (RV), myocardium (MYO), aorta (AO), pulmonary artery (PA), and left atrial appendage,
(LAA) which were manually annotated by clinical experts on 262 cardiac CT Angiography series.
The total number of patients is 262. The total number of images in the data set is 65418. The size of
each 3D image volume is 512x512 matrix size with different numbers of images in the z-direction.
The z size varies from a minimum of 140 to a maximum of 560 where the median number of images
is 224. Each image volume is normalized to [0, 1] by -1000 Hounsfield Unit (HU) and +2000 HU.
Among them, 168 series were used for training, and 43 series were used as the validation data set
for saving the best checkpoint models. In addition, a separate, fully annotated set of 51 cases served
as an independent test data set for a model evaluation. Furthermore, we resize 512x512 images and
masks to 256x256 to reduce memory footprints. Regarding lables, the original labels have 8 channels.

3.2 Latent Diffusion Model

We consider the well-known latent diffusion model (LDM) (Rombach et al., 2021) for the data
generation due to its efficiency in terms of computational resources and high quality of generative
images. The training of LDM has two phases. First, we train an autoencoder to encode the original
input images onto a lower-dimensional representative space, which is a latent representation of the
pixel space. Then, we train a diffusion model on the learned latent space. As a result, LDM is much
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Figure 2: Three Dimensional Latent Diffusion Model Training and Image Generation Process for 3D
CT Cardiac Chamber Image Segmentation.

more efficient than training diffusion models directly on the pixel space. However, the original LDM
we use is designed for generating 2D images. To adapt it to 3D image volumes, we add the depth
dimension to the model so that, during the training process, the output of the encoder has the shape
of (width=256, length=256, depth=Z, channels=3) where Z is the number of images in the z-direction
and we set it to 160 in our case. The original number of channels in segmentation labels is eight. To
generate synthetic human cardiac sub-structures that are later converted to segmentation labels, we
encode eight channels into three channels (RGB) without compromising the VAE performance. This
is also helpful in reducing the memory footprint and GPU memory usage. These dimension data are
encoded into the latent space, and they are the input to the diffusion model.

Moreover, to better assist the segmentation training, we modify the architecture of the autoencoder so
that the LDM can generate a 3D image volume with its corresponding human cardiac sub-structures
(that are later converted to segmentation mask volumes) simultaneously. Figure 2 shows our three-
dimensional latent diffusion model architecture for the 3D CT cardiac chamber image segmentation.
During training, we first convert the image xi and the mask xm into vectors x̃i, x̃m of the same shape
by two one-layer encoders (i.e., εi and εm) separately. Then we take the summation of the encoded
image and mask and encode it onto the latent space, i.e., z = ε0(x̃i+ x̃m). As part of the architecture
design, we also explore both an addition and a concatenation to get the unified z vector, however,
both produce the same level of final reconstruction performances in the 3D VAE. Thus, we choose
the addition over the concatenation for, again, GPU memory efficiency.

3.3 Self-Supervised Learning as a Pre-training

Given generative images and masks sampled from the LDM, we conduct self-supervised learning
to pre-train our model before fine-tuning it for the 3D image segmentation task. Recently, Taher
et al. (2023) has shown that the SSL pretraining on ground truth images can greatly improve the
segmentation performance on 3D cardiac CT images. Moreover, Khader et al. (2023) mentioned that
the SSL on synthetic images can also improve segmentation performance on 3D medical images in
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Figure 3: Zero masking process in Self-Supervised Learning (pre-train).

general. However, since there is no implementation nor results for CT images available in Khader et al.
(2023), we are motivated to explore a better way to leverage the generative data for SSL pretraining
and segmentation finetuning on 3D cardiac CT images.

For the SSL pretraining, following the work Taher et al. (2023), we first mask a portion of the original
image with zeros, and then we train the model to reconstruct the original image. The zero masking
process is illustrated in Figure 3. The model is trained by minimizing the L2 norm of pixel value
difference between the original image and the reconstructed image, i.e.,

LSSL = Ex∼X∥x− f(x̃)∥2 (1)

where x is an image from the dataset X , x̃ is the image x with zero masks, and f is the model we
aim to train.

Following the method Khader et al. (2023), we conduct the self-supervised learning with diffusion-
generated data. Specifically, we employ a 3D U-Net (Ronneberger et al., 2015) as the primary
architecture of our proxy model; nevertheless, alternative architectures, such as vision transform-
ers (Tang et al., 2022), can also be used seamlessly. We mask out 25 blocks with a probability of 0.8.
We utilize the minimum of 8x8 pixels, and the maximum of 16x16 pixels for the block’s spatial sizes.
The masking block sizes and locations are randomly selected. We use the AdamW optimizer with
a learning rate of 0.001. We use the early-stopping technique with a patience of 50 using 10% of
training data as the validation set. We save the best model based on the validation loss and transfer
the best model to the target task.

3.4 Three Dimensional Image Segmentation as a Fine-tuning process

In the fine-tuning phase (the target task), we mix the diffusion-generated data with the ground truth
data and train the segmentation model, where we keep the encoder weights and randomize the
de-coder weights from the pre-training phase. In this phase, all the downstream model’s parameters
are fine-tuned. This mixed dataset is distinct from the state-of-the-art method (Khader et al., 2023),
where they use the ground truth dataset in the fine-tuning phase. Our fine-tuning with the mixed
dataset only becomes possible because our latent diffusion model generates both image volumes and
segmentation masks while their method (Khader et al., 2023) only produces image volumes. We again
use the AdamW with a learning rate of 0.001. To prevent over-fitting, we employ an early-stopping
technique with a patience of 10 using 10% of the training data as the validation set. We evaluate the
segmentation performance using the Dice coefficient.

4 Experiments

In this section, we present our experimental results, where we show some example images and labels
from our latent diffusion model followed by example results of our data augmentation strategies,
some observations on them, and finally our quantitative results compared to our baseline methods.
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Figure 4: Examples of Ground Truth (GT) images, diffusion-generated images, and the corresponding
segmentation labels. The GT images and diffusion-generated images are not necessarily pairs in this
figure. There are three different GT image examples from different patients and different anatomy
locations. We pick four different diffusion-generated images from similar locations for each GT
example.

Figure 5: Data augmentation: generative images with shifted contrast under soft tissue view.

First of all, figure 4 shows examples of diffusion-generated images and the corresponding segmen-
tation labels. As we can see, these generative images are striking, and they signify the promising
capability of the latent diffusion model.

Second, in the latent diffusion model, we use some data augmentation techniques to increase the
varieties of the dataset so that the model can produce more diverse data rather than creating replicas
of the GT data. We perform a center crop on each image volume and resize them back to the original
sizes in the xy-axis. The location of the center crop is randomized. In addition, we conduct a
horizontal and vertical flip on input data with a probability of 20%. Furthermore, we boost pixel
values by about 50 Hounsfield Units (HU) with a probability of 5%. Figure 5 shows examples of
shifted contrast. The left-hand side of the figure shows some ground truth images. The right-hand
side shows diffusion-generated images. They are the results of our contrast boosts. These contrast
boosts only happen on 5% of generative images because the data augmentation is used with 5%
probability. They are great additions to our dataset for the following reasons. In real clinical settings,
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Figure 6: In the generative masks, we observe boundary mislabeling issues

Figure 7: Example of smoother soft tissues on diffusion-generated images

clinicians often use contrast agents (chemical liquid injected into blood vessels) to create contrasts in
blood flows from surrounding soft tissues. This makes it easier for clinicians to visualize blood flow
in cardiac chambers. However, some patients are allergic to these chemical agents, and clinicians
choose not to inject the chemical liquid. As a result, blood vessels in these patients do not have
contrast boosts. Therefore, it is hard to visualize their blood vessels. Usually, many cardiac images
have contrast boosts, but some of them do not have the boosts. Thus, using such a data augmentation
technique will help increase the variety of diffusion-generated cardiac datasets.

Furthermore, figure 6 shows some minor problems on the diffusion-generated segmentation labels.
As we can see, some boundary pixels on segmentation labels are not necessarily cut and clean.
For example, the boundary pixels of the purple (or blue) segment on the center image in figure 6
have many red dots. We believe this may come from the fact that there are always gaps among
segmentation labels on the GT data, and our latent diffusion model might get confused about how
to segment boundary pixels. The examples in figure 6 show many red dots, however, we saw the
problem is not limited to the red label. This problem can happen with any segmentation labels. While
we do not believe this problem influences our fine-tuning segmentation performance, we want to
make a note of this phenomenon in this article.

Moreover, there are some more interesting observations on our diffusion-generated images, particu-
larly on soft tissues. In practice, the latent diffusion model seems to be struggling to remove how
much Gaussian noise it should remove from images. The original GT images already have some
Gaussian noises due to equipment electronic noise at the time of patient scanning. The model needs
to keep these Gaussian noises and should only remove the Gaussian noises we add as part of the
diffusion process. However, the model seems struggling with noise removal operations. Of course, we
add noise not on images themselves, but on the latent embeddings. However, added Gaussian noises
on the latent space seem to influence “look and feel” on image space, and the latent diffusion model
tends to get confused with Gaussian noises that have different origins. As a result, diffusion-generated
images tend to have smoother surfaces on soft tissues on images. Figure 7 shows some examples of
such a problem. On the left-hand side, some GT examples are shown where soft tissues have realistic
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Table 1: Segmentation model performance from

Method Average AO LAA LA LV MYO PA RA RV
Baseline 0.7743 0.9275 0.5790 0.8061 0.8298 0.8026 0.6888 0.7705 0.7902

Medical Diffusion 0.7855 0.9365 0.6093 0.8061 0.8278 0.8141 0.6976 0.7850 0.8078
Ours 0.7908 0.9396 0.6109 0.8288 0.8190 0.8094 0.7069 0.8021 0.8100

noise characteristics. In contrast, the right-hand side shows diffusion-generated images where soft
tissue pixels have smoother surfaces, and they are not necessarily realistic look-and-feel. While it
is hard to know how this phenomenon influences our fine-tuning phase, we want to look into this
problem in the near future.

Finally, we conduct a few experiments to demonstrate the effectiveness of our method. The experi-
mental results are shown in Table 1. First, we trained our network with only GT data. We set the
maximum epochs to be 300. However, our early-stopping criteria met at the 25th epoch, and the
best model was picked from the 15th epoch, where the patience of the early-stopping was set to 10
epochs. We use this result as our baseline performance. Next, we try to reproduce the state-of-the-art
method called Medical Diffusion (Khader et al., 2023). Because their diffusion implementation is not
available in the public domain, we use our latent diffusion model to generate images. Our diffusion
model does create the corresponding segmentation labels as well. However, medical diffusion is
limited to producing only images. Thus, we throw away segmentation labels to reproduce their
method. In the fine-tuning process, we only use the ground truth data for the medical diffusion. In
this fine-tuning phase, the training is done with the 28th epoch, and the best model is picked from the
18th epoch, where the patience of the early stopping is again set to 10 epochs. We use this result as
our state-of-the-art baseline performance. Now, regarding our method, we pre-train our model with
diffusion-generated data as the SSL. In the fine-tuning phase, we use the mixed dataset, including
diffusion-generated images, and diffusion-generated segmentation labels as well as the GT data. The
number of image volumes of the ground truth is 167. We generated three times more data by the
latent diffusion model. Therefore, the total number of image volumes is 668. In the fine-tuning phase,
the training is done with the 35th epoch, and the best model is picked from the 25th epoch, where the
patience of the early stopping is again set to 10 epochs.

Table 1 shows our quantitative results compared to our baseline methods. First, the medical diffusion
(Khader et al. (2023), the second row in the table) produces a nice improvement of DICE 1.12%
over the baseline (the first row, trained from scratch). The standard deviation of the baseline method
is about 0.27%. Therefore, the medical diffusion has a statistically significant improvement on the
average DICE score. This signifies the effectiveness of the pre-train phase with diffusion-generated
data. Now, regarding our method, there is again a meaningful improvement on the average DICE score
over the medical diffusion (Khader et al., 2023), where the average DICE score improvement over the
medical diffusion is 0.53%. Thus, this is also a statistically significant difference. This improvement
comes from the fact that our diffusion-generated data (both image volumes as well as segmentation
labels) are used along with the GT data (we call them “mixed dataset”) in the fine-tuning phase. This
indicates the latent diffusion model does create meaningful segmentation labels in addition to images
over the GT data. One interesting observation is that the primary improvement of our method over
the medical diffusion comes from two cardiac chambers, which are the Left Atrium (LA) and the
Right Atrium (RA). They are two of the four biggest cardiac chambers, and they are relatively easy
to spot in images. On the other hand, our method does not necessarily improve the segmentation
performance on minor cardiac chambers such as Pulmonary Artery (PA) and Left Atrial Appendage
(LAA). This is in contrast to what we have hoped, and we want to work on this area in the future.

5 Conclusion

In this paper, we present a novel latent diffusion model for CT cardiac imaging, where the generative
model produces multi-modal data, including synthetic CT cardiac images and their corresponding
cardiac sub-structures. The model is trained using diverse data augmentation techniques to increase
the variety of the generated data. These synthetic data are utilized in both the pre-training and the
fine-tuning phase. During fine-tuning, we use three times more synthetic data than ground truth (GT)
data, resulting in the training dataset being four times the size of the original GT dataset. We also
perform a qualitative analysis of the diffusion-generated images and segmentation labels, discussing
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both the strengths and limitations in the context of CT cardiac imaging. Our approach improves the
final segmentation performance, achieving a 1.65% average increase in DICE score over the baseline
(trained from scratch) and a 0.53% improvement over the current state-of-the-art medical diffusion
method Khader et al. (2023). This technique provides a promising solution to the scarcity of CT
cardiac data due to the challenges of cardiac imaging, leading to more accurate and robust diagnoses.
Looking ahead, we plan to extend this 3D latent diffusion model to other CT organ datasets and
explore its application across other medical imaging modalities such as MRI, X-ray, and ultrasound.

PII and IRB Information

This study is conducted in accordance with ethical standards. Due to the nature of the study, which
uses the existing data set mentioned above and does not contain Personal Identifiable Information
(PII), no Institutional Review Board (IRB) review is required.
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