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ABSTRACT

Rewiring the input graph of graph neural networks (GNNs) has been proposed as
a pre-processing step to address issues like over-squashing and over-smoothing.
However, most existing techniques rely solely on topology-based modifications,
neglecting performance-critical node label information. To fill this gap, we propose
SoLAR (Surrogate Label Aware Rewiring), a method that rewires the graph based
on predicted node labels from a surrogate model. We prove its effectiveness in
a theoretically tractable setting highlighting two key mechanisms that enable its
success. The first is a denoising effect, while the second is a novel knowledge
distillation-inspired process, where information from a surrogate model is encoded
into the graph structure. Extensive experiments demonstrate consistent improve-
ments of SoLAR across various datasets. Notably, the best surrogate models arise
from iterative SoLAR, and reusing the same model class is a competitive strategy.

1 INTRODUCTION

Graph Neural Networks (GNNs) have emerged as powerful tools for analyzing and learning from
graph-structured data, which is ubiquitous in real-world applications. Many complex systems can
be naturally represented as graphs, and GNNs excel at capturing the relational information inherent
in these data.We focus in this work on node classification, a fundamental task in graph learning
which has numerous practical applications ranging from user profiling and interest prediction in
social networks (Purificato et al., 2023), warning potentially infected nodes during a pandemic (Tomy
et al., 2022; Burkholz & Quackenbush, 2021) to predicting protein functions within protein-protein
interaction networks (Jha et al., 2022), to give a few examples.

Despite their success, GNNs face challenges like over-smoothing (Li et al., 2019; Oono & Suzuki,
2020) and over-squashing (Alon & Yahav, 2021; Topping et al., 2022), which limit their effectiveness
on complex graph structures. Several studies argue that the input graph plays a crucial role during
training, influencing the predictions even when the graph structure is uninformative (Bechler-Speicher
et al., 2024). This suggests that graph rewiring as a pre-processing step to obtain a suitable compu-
tational structure holds great promise, and recent studies have proposed different rewiring criteria
(Nguyen et al., 2023; Jamadandi et al., 2024) —mostly based on topological modifications such as
the spectral gap, overlooking the importance of node label information.

But which edges should be rewired? According to Yang et al. (2024), GNN training dynamics tend
to align with the structure of the graph, suggesting that an optimal input graph would closely align
with the label distribution. In line with these findings, we study a theoretical setting in which GNN
accuracy explicitly depends on the homophily level of the learning task and thus the tendency of
connected nodes to share similar labels. The empirical strong correlation between homophily and
message-passing GNN performance (Ma et al., 2022) has also motivated other efforts to improve
homophily. As homophily cannot be measured without test labels, it is typically promoted during
training (Jiang et al., 2024; Dai et al., 2022), or substituted by similarity measures (Bi et al., 2024).

In this work, we therefore ask the following questions: Can a better input graph be discovered such
that it aligns more closely with the test labels without having access to them? Can this improve
performance over the original graph, even when the modifications are dictated by the original
predictions? We further study how a model can encode and transmit additional information by
modifying its input graph, so that a second model can use it to outperform the first model. Moreover,
a similar mechanism should be effective for both homophilic and heterophilic graphs.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

To positively answer these questions, we propose SoLAR (Surrogate Label Aware Rewiring), a
method that rewires the input graph to increase the predicted homophily based on a surrogate model
—that is, by adding same-prediction edges and/or deleting different-label edges—, which is then used
as the message-passing structure for a second model. We prove that rewiring based on predicted
homophily can improve true homophily, and therefore accuracy. We show this to be true empirically
and theoretically for both homophilic and heterophilic graphs. In addition, we demonstrate that the
modified input graph can transfer extra information from the first model to the second one, ultimately
leading to improved overall performance. This could be interpreted as a novel form of knowledge
distillation, where information from a teacher model is encoded in the input graph of a student model.
Yet, as our theory suggests, SoLAR rewiring goes beyond knowledge distillation, as the resulting
model can learn more than the combination of the surrogate and the original model. We evaluate
SoLAR on various GNN benchmarks with different model combinations, both in a one-shot approach
and an iterative prediction-pruning process, and find performance boosts that align with our theory.

In summary, our contributions are as follows:

1. We propose SoLAR, a predicted-label aware rewiring mechanism that leverages a surrogate
GNN model’s predictions to modify the input graph of a second model. Iterative SoLAR, which
alternates between model training and graph rewiring cycles, yields further performance boosts.

2. We develop a theoretical framework to show that rewiring based on predicted homophily will
increase the true homophily and, consequently, improve GNN accuracy. Our analysis, grounded
in mean field theory, finds this holds for both homophilic and heterophilic graphs.

3. SoLAR can be interpreted as a form of knowledge distillation, where information from the
surrogate (teacher) model is encoded into the input graph to enable a subsequent (student) model
to outperform the surrogate’s performance. This mechanism offers a novel approach to information
transfer between GNNs, namely through graph rewiring. Our theory highlights another mechanism
that explains why, beyond knowledge distillation, the resulting GNN model can perform better
than a combination of the original and the surrogate model.

4. We provide comprehensive experimental validation for SoLAR on a diverse set of benchmark
datasets for both homophilic and heterophilic graphs. Our results show consistent improvements
over existing baselines for graph rewiring.

1.1 RELATED WORK

Graph rewiring. Real-world graphs often contain noise or sub-optimal connections, leading to
challenges such as over-squashing (Alon & Yahav, 2021; Topping et al., 2022; Giovanni et al., 2023),
where bottlenecks cause an exponential amount of information to be squashed and potentially lost,
and over-smoothing (Li et al., 2019; NT & Maehara, 2019; Oono & Suzuki, 2020; Zhou et al.,
2021; Keriven, 2022), where nodes become more indistinguishable as the depth of the network
increases. Graph rewiring is regarded as a standard strategy for addressing these challenges. Our
work focuses on modifying the graph’s edges prior to training, which can be done using a variety
of criteria. For example, some methods aim to maximize the spectral gap to improve connectivity
(Karhadkar et al., 2023) or to maximize other measures to mitigate over-squashing (Nguyen et al.,
2023). While primarily edge additions have been considered, deletions also achieve competitive
results, in particular on heterophilic graphs, where nodes tend to be connected to nodes with different
labels (Jamadandi et al., 2024). Even though GNNs should learn to cut ties with neighbors when
it aids their performance, in practice they often face difficulties in doing so (Mustafa et al., 2023;
Mustafa & Burkholz, 2024), which explains why edge deletions can also help.

Promoting homophily based on soft labels. The optimization of homophily by means of soft label
predictions has been empirically explored in the context of self-training (Li et al., 2018), where the
training set is repeatedly enlarged based on the confidence of the pseudo-labels and the same model is
trained. A variant of this approach (Nagarajan & Raghunathan, 2023) enhances the observed tendency
of a graph, making homophilic graphs more homophilic and heterophilic graphs more heterophilic.
Contrarily, our proposed approach follows a different principle: firstly, it is more general as it allows
for different kinds of surrogate and student models and thus proposes a novel variant of knowledge
distillation. Furthermore, the training data remains the same as we only use the predictions of the
surrogate model to modify the edge structure. Our approach can also be repeated for a flexible number
of iterations, and promotes homophily in both homophilic and heterophilic settings.
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GNN
Model A ☼ GNN

Model B

(1.1) Train A (1.2) Predict (2) SoLAR (3.1) Train B (3.2) Predict

Figure 1: SoLAR: Surrogate Label Aware Rewiring. Model A is trained (1.1) and used to predict its
test labels (1.2). Its graph is then rewired (2) based on these predictions: adding same-class and/or
deleting different-class edges. Model B is trained on the new input graph (3.1). This can be used to
test performance (3.2), but also to circle back to step (2) for Iterative SoLAR.

Knowledge distillation. Although we highlight that one of the key mechanisms for SoLAR’s effec-
tiveness is knowledge distillation, there are notable differences between our strategy and approaches
related to knowledge distillation and pre-training. We do not have a separate objective function
that tries to minimise the prediction discrepancy between the teacher and the student model(Yang
et al., 2020; 2023; Tian et al., 2023) nor do we use context prediction or attribute masking (Hu et al.,
2020) usually used in pre-training GNNs. SoLAR proposes a novel way to share knowledge, as the
surrogate (teacher) model encodes its predictions in the input graph of another (student) model. Yet,
the performance-boosting mechanism of SoLAR goes beyond the information transfer or knowledge
distillation effect, as the resulting model can achieve a performance greater than the combination of
the surrogate and the original model.

2 SOLAR: SURROGATE LABEL AWARE REWIRING

Basic setup and notation. In message-passing Graph Neural Networks (GNNs) (Gori et al., 2005;
Scarselli et al., 2009), nodes exchange and aggregate information from their neighbors over multiple
iterations, where each iteration corresponds to a graph neural network layer. This process enables
GNNs to learn node representations that are used to solve tasks at the node or graph level. A typical
setting for node classification is transductive or semi-supervised learning, where the input graph
—and thus all nodes and edges— remains fixed throughout training and testing. More formally, let
G = (V, E) be an undirected and unweighted graph with |V| nodes and |E| edges. The adjacency
matrix A ∈ R|V|×|V| encodes the graph topology. The goal in transductive node classification is to
correctly classify the labels of the nodes in the test set by learning from nodes in the training set as
well as their neighbors, whose labels are not necessarily known (but usually their features). That
is, given a set of nodes Vtrain with available labels Ytrain, we need to predict the labels of nodes
Vtest = V\Vtrain. To solve the task, we train any message-passing GNN model that operates on
node features X and on the adjacency matrix A of the input graph, or, more commonly, on the degree
normalized adjacency matrix with added self-loops: Â = D̃−1/2(A+ I)D̃−1/2, where D denotes a
diagonal matrix that carries the degrees di of nodes i ∈ V and I the identity matrix.

GNN architectures. In the message-passing paradigm, each layer of the network obtains node
representations as a learnt function of the previous layer’s representation and the node’s aggregated
neighbourhood. While several types of aggregation schemes are possible, we center our study on
mean aggregation models, but SoLAR applies to general GNNs. Our main baseline is the Graph
Convolutional Neural Network (GCN) (Kipf & Welling, 2017; Chen et al., 2021), where node
representations in Layer l take the following form:

H(l+1) = f(H(l), A) = σ(ÂH(l)Θ(l)), h
(l+1)
i = σ

 ∑
j∈N(i)

1√
|N(i)||N(j)|

h
(l)
j Θ(l)

 ,

where σ(·) is a non-linear activation function such as a ReLU and Θ the learnt weight matrix. This is
equivalent to computing the normalized sum of each node i’s neighbourhood N(i) (which includes
i). The second model class that we consider is GATv2 (Brody et al., 2022), an improvement over
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Graph Attention Networks (GATs) (Veličković et al., 2018). Its self-attention (a) applies learnable
weights to neighbors, and is therefore considered more powerful than GCNs. Concretely, GATv2
takes the following form:

h
(l+1)
i = σ

 ∑
j∈N(i)

α
(l)
ij Θ

(l)h
(l)
j

 , α
(l)
ij =

exp(e
(l)
ij )∑

k∈N(i)

exp(e
(l)
ik )

, e
(l)
ik = a⊤σ

(
Θ(l)(h

(l)
i ||h(l)

j )
)

SoLAR. To increase the homophily of a learning task, we propose SoLAR, which uses predictions
made by a surrogate GNN model as proxy labels for rewiring the input graph of a second model, as
illustrated in Figure 1. Specifically, the process works in three stages. In the first stage, we instantiate
the surrogate GNN model fsurrogate(G,Θ) and train it to convergence obtaining a set of predicted
labels. In the second stage, we use the predicted labels, Ysurrogate, to rewire the graph by either
deleting (predicted) inter-class edges and/or adding (predicted) intra-class edges to obtain a rewired
graph Ĝ = (V, Ê). We use the predictions only on the test and validation sets, as we already have
access to the ground truth labels on the train set. In the last stage, we instantiate a second ‘training’
or ‘student’ GNN model ftrain(Ĝ,Θ), which operates on the rewired graph. The above outlined
rewiring can either be applied in a one-shot way, or iteratively, where the model from the previous
round becomes the surrogate model of the next round.

3 CONCEPTUAL ANALYSIS

At first glance, it is not apparent why SoLAR should improve the performance of a model beyond a
knowledge distillation mechanism, where a surrogate model has access to information that comple-
ments another model. If we rewired the input graph based on a surrogate model M and then retrained
the same model M on the rewired graph, would we not simply enhance our original findings and,
for instance, increase our certainty but not gain additional information? Against this intuition, our
conceptual analysis of the next sections negates this question and highlights a simple mechanism for
how SoLAR can still obtain performance gains in this setting. In fact, we show that M does not even
need to be retrained on the rewired graph. Only deleting edges according to SoLAR can improve the
node classification task.

Theoretical setup. We study a simplified, theoretically tractable 2-class classification problem, where
pn of the n nodes are assigned to class c = c1 and (1 − p)n to class c = c2. For simplicity, we
consider 1-dimensional independently, normally distributed features as visualized in Figure 2(b), i.e.,
X

(0)
i ∼ N (0, 1) given that a node i has class ci = c1 and X

(0)
i ∼ N (µ, 1) if it has class ci = c2.

Their exact distribution and dimensionality are not relevant to our general argument. We only require
their distributions to partially overlap to create a sufficiently difficult learning problem, where nodes
get misclassified (as illustrated by the shaded regions in the figure). In addition, we assume that nodes
are connected by a graph with normalized adjacency matrix Ã = (D + I)−1(I +A).

3.1 THE CONCEPTUAL BASIS BEFORE SOLAR REWIRING

Classification without graph. In this context, without considering any graph structure, it is easy
to verify that the Bayes optimal decision threshold to classify nodes based on their features, which
maximizes the expected classification accuracy, is θ = µ/2. Accordingly, nodes with features
X

(0)
i ≤ θ receive the predicted label ĉi = c1 and c2 otherwise. The resulting accuracy is binomially

distributed as A ∼ 1
nBin(n,Φ(µ2 )) with expected value E(A) = Φ(µ2 ), where Φ denotes the

cumulative distribution function of the standard normal. Figure 3 labels this scenario as ‘initial’. Can
this approach be improved with the help of a known graph structure?

Classification with mean aggregation. As an analytically tractable proxy of a GNN layer (with
mean aggregation), we consider one round of mean aggregation where we do not learn the aggregation
weights. Specifically, we consider node features that are updated as X

(1)
i = 1/(di + 1)(X

(0)
i +∑

j∈N(i) X
(0)
j ). The question is whether these updated features are better suitable for solving the

node classification problem, which is investigated by the following theorem.
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(a) Model for d = 3, k = 1, where orange
circles are c1 nodes and purple squares are
c2 nodes. The central node is highlighted.

0 θ µ
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(b) Distribution of features before aggregation for class c1
(orange, ∼N (0, 1)) and class c2 (purple, ∼N (µ, 1)).
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d+1

θ µ(d+1−k)
d+1
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(c) Distribution of features after aggregation for class c1 (orange,
∼N

(
µk
d+1

, 1
d+1

)
) and class c2 (purple, ∼N

(µ(d+1−k)
d+1

, 1
d+1

)
).

Figure 2: For each (d, k, µ) we instantiate 15000 graphs like the one in 2(a) with initial features
drawn from the distributions in 2(b). After one step of aggregation, they follow the ones in 2(c).

Theorem 1. After one step of mean aggregation, the expected accuracy of node classification is

E(A) =
1

n

∑
i,ci=c1

Φ

θd+i − kiµ√
d+i

+
1

n

∑
i,ci=c2

1− Φ

θd+i − (d+i − ki)µ√
d+i

 ,

where θ is the decision threshold, ki the number of neighbors that have the opposite class of i, and
d+i = di + 1 denotes the degree of a node including self-loops.

Proof. As the initial features are normally distributed, their sum follows a joint multivariate normal
distribution, which is simple to derive with probabilistic calculus. The vector X(1) follows the
multivariate normal distribution N (µ(1),Σ(1)) with mean µ(1) = Ãµ(0), where µ(0) denotes the
vector of initial means, i.e., its first p · n entries are zero and the last (1− p) · n entries are µ. The
covariance is given by Σ(1) = ÃÃ⊤. Accordingly, the marginal feature distribution of a node of
class c1 is X(1)

i ∼ N ((µki)/d+
i , 1/d

+
i ), while it is X(1)

i ∼ N ((µ(d
+
i −ki))/d+

i , 1/d
+
i ) for a node of class

c2. The stated formula follows from the fact that the expected accuracy is simply the average of all
probabilities that a node is correctly classified.

The above derivation provides clear insights into the potential benefits of neighborhood aggregation,
as the variance of the features is reduced from 1 to 1/d+i , so that the features get more concentrated
around their mean, which makes it potentially easier to differentiate the classes.

Benefits of homophily. Unfortunately, the feature means get potentially diluted, as the means of
nodes of different classes move closer together: they are shifted by ki/d+

i , which is determined by the
overall homophily of the task. ki is generally small if nodes are primarily connected to nodes with
the same label; thus, the mean shift of the distributions is negligible. As a remark, note that, in this
simple 2-class scenario, also extreme heterophily —where nodes are almost exclusively connected to
nodes of a different class— would be helpful. The attributed label decision would simply need to
be reversed, but nodes would receive well separable features. Figure 2(c) visualizes our insight for
a highly symmetric and homophilic scenario (with p = 0.5 and ki = k), where the Bayes optimal
threshold remains θ = µ/2. Note that the misclassification rate (i.e. the size of the shaded area) is
smaller compared with no mean aggregation in Figure 2(b). In the following sections, we label the
discussed scenario of one-step mean aggregation based on the original graph as ‘one-step’.

SoLAR rewiring increases dependencies. A general analysis of the effect of SoLAR rewiring is
challenging, as it introduces and requires capturing higher-order dependencies of feature distributions.
After one step of mean aggregation, the node features are already not distributed independently
anymore, and neither are the resulting node labels. To obtain a theoretically tractable setting, instead
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of considering arbitrary finite graphs A, we further focus our analysis on the (heterogenous) mean
field limit, where we send the number of nodes to infinity and can study the effect of SoLAR pruning.

3.2 MEAN FIELD ANALYSIS

The mean field limit, also known as branching process approximation, is a common tool in complex
network science and theoretical physics to obtain theoretically tractable insights (Dorogovtsev et al.,
2008; Gleeson & Cahalane, 2007; Burkholz & Schweitzer, 2018) and emerges in the large graph
limit of the configuration model (Molloy & Reed, 1995; Newman et al., 2001), where the graph
structure is characterized by a degree distribution pD (and, potentially, degree-degree correlations
of connected nodes, which we do not need here). The graph neural tangent kernel (Du et al., 2019)
can be considered as a special case of similar assumptions. Most importantly, in the limit n → ∞,
the graph structure becomes locally tree-like, which allows us to treat the states of neighbors as
independent, and often also results in a good approximation of sparse, finite graphs in practice.
Theorem 2. In the heterogenous mean field limit, where nodes are equipped with degree distribution
pD, and k out of the d neighbors have a different label with probability p(d, k), the expected accuracy
after one round of mean aggregation is

E(A) =
∑
d

pD(d)

d∑
k=0

p(d, k)

[
pΦ

(
θd+ − kµ√

d+

)
+ (1− p)

(
1− Φ

(
θd+ − (d+ − k)µ√

d+

))]
.

The derivation of this formula is presented in the appendix (§A), but is straightforward as it follows
similar arguments as the proof of Theorem 1 and averages over the relevant cases. Similarly to our
previous analysis, we see that nodes with high degree and few neighbors of a different class have the
highest chance of getting classified correctly.

To obtain the Bayes optimal threshold θ for this setting, we would need to differentiate the above
accuracy with respect to θ, which would require us to solve a fixed point equation, whose result is dif-
ficult to interpret. To further simplify our analysis (for improved interpretability but general insights),
we further specialize our study to regular random graphs. An exemplary two-step neighbourhood of
this setting is illustrated in Figure 2(a). Because of the symmetry in this graph, the expected accuracy
for this representative central node after a step of aggregation also corresponds to the overall average
accuracy, as the following theorem states.
Theorem 3. In the homogeneous mean field case, where each node has the same degree d and is
connected to a fixed number k of neighbors with a different class label and the class memberships is
balanced with p = 0.5, the expected accuracy after one round of mean aggregation is

E(A) = Φ

(
θd+ − kµ√

d+

)
. (1)

The Bayes-optimal classification threshold is θ = µ
2 .

Proof. Setting the degree distribution in by pD(d) = 1 and pD(x) = 0 otherwise, setting p(d, k) = 1
and p(x, y) = 0 otherwise, and using p = 0.5 in Theorem 2 leads to the stated expression, as the clas-
sification accuracy of nodes of different classes is symmetric Φ

(
θd+−kµ√

d+

)
= 1−Φ

(
θd+−(d+−k)µ√

d+

)
.

From the symmetry, it also follows that the Bayes optimal threshold is θ = (µ1 + µ2)/2, where
µ1 = kµ/d+ and µ2 = (d+ − k)µ/d+. Setting the derivative of the expected accuracy above to zero
would lead to the same conclusion.

We thus have obtained a setting, in which we can analyze the effect of deleting edges according to
the SoLAR criterion. Thus, all edges between nodes that have different predicted labels after one
round of mean aggregation are deleted. Mean aggregation with respect to the new input graph then
defines our SoLAR accuracy.
Theorem 4. After one round of mean aggregation and deleting edges between nodes that do not
share the same predicted label, the expected SoLAR accuracy of mean aggregation with respect to
the rewired graph becomes

E(A) = P

(
X

(0)
0 +

d∑
i=1

SiX
(0)
i ≤

(
d∑

i=1

Si + 1

)
µ

2

)
,
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(a) Average accuracy for each (d, k, µ) in the three
settings: predictions with initial features (green), after-
one-step features (orange—on the diagonal), and after-
pruning features (purple). The x-axis is the theoretical
average accuracy for one-step (given by Eq. 1).

(b) Homophilic (d, k, µ) combinations.

(c) Heterophilic (d, k, µ) combinations.

Figure 3: Homogenous mean field simulations for the frequency of correct central node prediction
after SoLAR pruning. In 3(a), each point shows the average accuracy of each (d, k, µ) combination
in comparison to one step of aggregation. The histograms of the difference between ‘prune’ and
‘one-step’ are plotted in Figures 3(b) (homophilic) and 3(c) (heterophilic).

where Si ∈ {0, 1} indicates whether the respective node is pruned (Si = 0) or not (Si = 1). The
messages Zi = SiX

(0)
i sent by neighbors are only independent given the initial node feature X

(0)
0

and neighbor features X(0)
j . We have Si = 1 if X(0)

0 +
∑d

i=1 X
(0)
i ≤ µ

2 d
+ and X

(1)
i = (X

(0)
0 +

X
(0)
i + Yi) ≤ d+µ/2 or if X(0)

0 +
∑d

i=1 X
(0)
i > µ

2 d
+ and X

(1)
i = (X

(0)
0 +X

(0)
i + Yi) > d+µ/2,

where Yi ∼ 0.5N (µk, d− 1) + 0.5N (µ(d− k + 1), d− 1). Zi = Si = 0 otherwise.

The proof is presented in the appendix (§A). As the expression does not have a simple closed form
solution, we evaluate it approximately by sampling and report the results in Figure 3.

SoLAR in homogeneous setting. Note that Theorem 4 encompasses different cases in which the
expected label accuracy of a node is increased or decreased. The question is which mechanisms are
dominating: it depends on the specific choices of (d, k, µ), which we vary in our evaluations. For
each combination of d ∈ {1, . . . , 9}, k ∈ {0, . . . , d}, and µ ∈ {0.25, 0.5, 1, 1.5}, we draw 15000
instances of a tree-like graph, drawing the node’s features from the distributions respecting their
random classes, N (0, 1) and N (µ, 1). Figure 3(a) reports the average accuracy with respect to the
theoretical accuracy of the original model (Eq. (1)) of each (d, k, µ) combination in the three relevant
settings: initialization —which shows how informative the original features are—, after one step
of aggregation —which follows Eq. (1)—, and after SoLAR pruning. We observe that heterophilic
cases (on the left of x = 0.5) behave differently than homophilic ones (on the right of x = 0.5). In
heterophilic cases, the original features (green) are more informative than the aggregated features
(orange). Thus, pruning some of the neighbours assigns more importance to the self-feature. In
homophilic cases, the neighbourhood usually agrees with the self-feature and the class, but pruning
will aid in special cases where the neighbourhood noise is detrimental. This overall improves the
average accuracy for all (d, k, µ) combinations, as illustrated in Figures 3(b) and 3(c). For instance,
the probability is higher to have a same-class neighbour with a feature that resembles one from the
other class than to have a self-feature with this property. Therefore, there are more cases in which a
conflicting neighbour is detrimental to the aggregation and its removal aids the classification task.

3.3 REAL-WORLD GRAPH SIMULATIONS OF SOLAR

To account for degree-heterogeneous real-world graph structures, we perform a similar set of ex-
periments on two homophilic (Cora (McCallum et al., 2000), Citeseer (Sen et al., 2008)) and two
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(a) Cora (1132 nodes) (b) Citeseer (995 nodes) (c) Squirrel (1272 nodes) (d) Chameleon (451 nodes)

Figure 4: Distribution of accuracy differences between the after-pruning and after-one-step settings
for different µ for 1500 seeds each. Positive values indicate that pruning was more successful.

heterophilic (Squirrel, Chameleon (Platonov et al., 2023b)) graphs and focus on the subgraph that
is induced by the two largest classes. This preserves their homophilic tendency. The nodes’ initial
features are instantiated according to their class and are thus drawn from N (0, 1) or N (µ, 1), as
before. We generate 1500 of these instances per graph and choice of µ ∈ {0.25, 0.5, 1, 1.5}. Then,
we count the number of correctly predicted nodes using the decision threshold µ

2 in the three settings
described before. The number of nodes for each graph is 1132 (Cora), 995 (Citeseer), 1272 (Squirrel),
and 451 (Chameleon).

Figure 4 shows the difference between the accuracy resulting from SoLAR pruning and the accuracy
after one-step mean aggregation. The mostly positive values indicate that SoLAR usually improves
accuracy. In homophilic graphs, µ changes the variance of the distributions. In the heterophilic cases,
it affects more evidently the mean of the distributions. In both cases, SoLAR pruning is statistically
more successful than neighborhood aggregation based on the original graph.

Next, we examine what kind of edges are most usually recovered or corrupted comparing the one-step
aggregation with the SoLAR predictions. We expect that pruning an edge improves more than it
corrupts; meaning that the nodes it connects have their predictions corrected if this edge disappears.
Note that we count the same node multiple times depending on its degree, which is not accounted for
in the following analysis but can influence the results of Figure 4.

We first consider the homophilic graph Cora. Taking a mean across all considered µ values, we
find that on average 21% of the edges are pruned, of which 92% one node was originally correctly
predicted and one not. This means we have pruned same-label edges, but some should have been
confusing for one of the neighbours. In 22% of cases, we improve the wrong node’s prediction after
pruning. In 68% of the cases, we maintain the original predictions, in 5% we flip both labels, and
in 4% we corrupt the originally right node. This indicates where the performance improvements
come from: we are denoising the neighbourhoods of some of the nodes (22% > 4%). Among the
non-pruned edges (79% of all edges), SoLAR leaves the corresponding labels of 97% unchanged.

Let us now consider the heterophilic case based on Squirrel, where we prune 20% of edges on average.
Of them, 24% had both nodes rightly predicted with only one-step neighborhood aggregation, 26%
had both wrongly predicted, and the remaining 50% had one well predicted and one wrongly predicted.
It is clear that the distribution of edge predictions is different from the previous homophilic case
because of the heterophily. When both nodes adjacent to an edge were rightfully predicted, pruning
corrupts one of them in 16% of cases, and both in 6%. When both have been wrongly predicted,
pruning improves one in 28% of the cases, and both in 12%. This leaves us with more improved
than corrupted cases after SoLAR pruning. As for the edges with one good and one bad prediction
(the other 50%), we improve the wrong one in 12% and corrupt the right one in 10% of the cases,
which is comparable. The trends are similarly maintained in Chameleon, but this last comparison
yields 14% against 7%, which is again favorable for pruning. More detailed results that distinguish
the separate values of µ and the 4 studied datasets can be found in §B.

4 EXPERIMENTS

We perform node classification on the following homophilic datasets: Cora (McCallum et al., 2000),
Citeseer (Sen et al., 2008) and Pubmed (Namata et al., 2012), Co-author CS, Physics and Amazon
Photos (Shchur et al., 2019) and consider the heterophilic graphs Chameleon, Squirrel, Actor and the
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Table 1: Node classification using one-shot SoLAR on large heterophilic graphs.
Method Roman-Empire Amazon-Ratings Penn94

GCN 77.74±0.60 47.66±0.54 82.29±0.77
GATv2 82.52±0.50 47.66±0.95 81.85±3.02

GCN+FoSR 73.60±1.11 49.68±0.73 69.73±7.83
GATv2+FoSR 81.88±1.07 51.36±0.62 72.56±5.55

GCN☼GCN+Delete 80.90±0.14 50.30±0.09 83.59±1.40
GCN☼GCN+Add 81.13±0.21 49.86±0.11 83.65±1.69

GATv2☼GATv2+Delete 84.32±0.80 52.06±0.00 83.58±1.60
GATv2☼GATv2+Add 84.27±0.40 52.08±0.09 83.60±1.32

Table 2: Node classification on homophilic graphs using one-shot SoLAR.
Method Cora Citeseer Pubmed CS Physics Photo

GCN 87.94±3.35 79.38±3.48 81.99±1.42 92.44±0.67 93.64±0.16 92.89±1.23
GATv2 89.13±3.13 81.92±4.81 81.83±1.04 91.90±1.59 94.07±0.44 91.22±2.18

GCN+FoSR 88.74±2.70 79.48±3.77 82.22±1.24 93.54±0.80 94.72±0.21 90.57±3.82
GATv2+FoSR 89.72±2.91 81.75±4.86 81.29±2.31 92.35±1.21 93.96±0.40 90.48±2.57

GCN☼GCN+Delete 90.17±2.82 82.22±4.01 82.61±1.16 93.00±0.21 93.96±0.10 93.75±0.99
GCN☼GCN+Add 90.06±2.56 83.26±4.44 83.05±2.50 92.46±0.56 95.47±0.31 92.13±0.32

GATv2☼GATv2+Delete 90.06±3.31 83.01±4.32 82.41±2.46 94.16±1.79 95.01±0.54 93.78±1.30
GATv2☼GATv2+Add 89.63±3.16 81.78±4.44 81.32±1.66 92.79±1.58 94.25±0.46 93.36±1.93
GCN☼GATv2+Delete 90.23±0.59 81.48±0.77 83.15±0.26 93.96±0.15 87.01±2.09 94.80±0.03
GCN☼GATv2+Add 90.01±0.58 81.42±0.85 82.29±0.31 93.41±0.22 84.61±2.51 94.30±0.05

GATv2☼GCN+Delete 90.42±0.65 83.93±0.90 83.20±0.28 93.38±0.26 92.08±0.62 94.56±0.04
GATv2☼GCN+Add 90.47±0.60 83.44±0.86 82.71±0.27 93.65±0.17 92.47±0.44 94.67±0.03

WebKB datasets consisting of Cornell, Wisconsin and Texas (Platonov et al., 2023b). Additionally,
we study three large heterophilic graphs: Roman-empire and Amazon-ratings introduced in (Platonov
et al., 2023b), and Penn94 (Lim et al., 2021). In contrast to the other rewiring approaches (Topping
et al., 2022; Karhadkar et al., 2023; Nguyen et al., 2023; Giraldo et al., 2023; Jamadandi et al., 2024)
that tune the number of rewired edges, we rewire all possible edges, which we can assess based on
train set ground truth labels and predicted test and validation set labels.

We adopt 60/20/20 splits for training, validation and testing respectively. The final test accuracy is
reported as an average over 100 splits of the data. (see §E for details and hyperparameters). The top
performance is highlighted in bold. We compare GCN and GATv2 as baselines and in combination
with FoSR (Karhadkar et al., 2023), PROXYADDMAX, PROXYDELMAX (Jamadandi et al., 2024),
which add or delete edges that maximize a proxy of the spectral gap. Our proposed SoLAR rewiring
method is denoted as M1☼M2, where the first model M1 provides the surrogate labels for rewiring
and the second model uses the rewired graph for training on the downstream task. We report results
for both predicted-inter-class edge deletions and predicted-intra-class edge additions. When deleting
inter-class edges, we ensure we do not disconnect the graph and leave a few edges to preserve the
original structural integrity of the graph.

One-shot experiments. Table 2 presents our results for homophilic graphs, and Tables 1 and 3
for heterophilic graphs. Evidently, our proposed rewiring boosts the GNN performance across all
studied datasets. On large heterophilic datasets like Roman-empire and Amazon-ratings, especially
GATv2☼GATv2 performs well. This supports our theoretical insight that SoLAR can improve
performance even if the surrogate and student models belong to the same model class, which
suggests benefits beyond pure knowledge distillation. In some homophilic cases, the combination
of GATv2☼GCN is even stronger. These results indicate that a powerful model (like GATv2) is
particularly effective in the position of the surrogate model, which has to be responsible for reliable
rewiring decisions.

Iterative SoLAR. Multiple SoLAR cycles boost the performance even further, as shown by Table 4.
It achieves the overall best result on 10 out of 12 datasets. Additional experimental results are reported
in §D, where also more GNN architectures are considered.
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Table 3: Node classification on heterophilic graphs using one-shot SoLAR.
Method Cornell Texas Wisconsin Chameleon Squirrel Actor

GCN 68.31±8.13 73.47±10.13 66.14±9.23 54.64±6.94 43.25±6.32 28.26±3.22
GATv2 86.84±9.78 89.01±10.43 87.56±9.20 61.79±10.20 45.71±5.12 29.41±2.98

GCN+FoSR 71.64±9.80 73.93±10.23 65.85±7.73 54.40±6.58 42.80±6.40 28.66±3.21
GATv2+FoSR 76.12±6.51 78.15±7.81 74.08±9.01 46.48 ± 4.97 47.40±7.17 27.45±3.61

GCN+ProxyAddMax 67.57±1.71 81.08±1.75 70.00±1.61 56.74±0.90 33.26±0.39 27.57±0.22
GCN+ProxyDelMax 62.16±1.83 72.97±1.70 76.00±1.56 56.74±0.95 32.58±0.43 27.96±0.21

GCN☼GCN+Delete 68.35±8.54 74.12±9.89 67.85±7.14 57.19 ± 6.45 44.50±6.29 29.25±3.50
GCN☼GCN+Add 69.42±8.93 74.20±10.26 68.51±7.20 56.43 ± 6.16 44.04±6.34 28.16±3.22

GATv2☼GATv2+Delete 87.40±9.89 90.14±10.64 88.32±9.08 68.89±11.50 49.10±5.59 30.31±4.29
GATv2☼GATv2+Add 87.12±9.59 87.97±10.95 87.76±9.57 66.35±11.18 46.44±6.00 29.46±4.67
GCN☼GATv2+Delete 84.03±2.12 86.91±2.23 84.53±1.95 60.11±1.59 47.98±1.17 30.02±0.73
GCN☼GATv2+Add 83.11±1.88 85.01±2.10 85.96±1.70 54.99±1.42 43.17±1.10 30.09±0.93

GATv2 ☼GCN+Delete 78.63±2.01 84.65±2.12 77.65±1.86 68.60±2.20 47.89±1.36 30.91±0.94
GATv2 ☼GCN+Add 85.37±2.22 87.43±2.28 83.00±1.96 68.27±2.34 47.70±1.23 29.15±0.85

Table 4: Accuracy of iterative SoLAR for homophilic and heterophilic graphs
Homophilic Cora Citeseer Pubmed CS Physics Photo

GCN 87.94±3.35 79.38±3.48 81.99±1.42 92.44±0.67 93.64±0.16 92.89±1.23
GATv2 89.13±3.13 81.92±4.81 81.83±1.04 91.90±1.59 94.07±0.44 91.22±2.18

Best one-shot (Table 2) 90.47±0.60 83.93±0.90 83.20±0.28 94.16±1.79 95.01±0.54 94.80±0.03
GCN☼GCN+Delete 90.72±0.56 82.61±0.88 82.86±0.42 94.23±0.20 94.48±0.18 94.23±0.24
GCN☼GCN+Add 91.95±0.59 82.29±0.88 82.98±0.41 94.41±0.22 94.51±0.18 94.24±0.27

GCN☼GATv2+Delete 92.20±0.68 84.49±0.91 83.06±0.38 94.85±0.19 94.90±0.16 93.59±1.09
GCN☼GATv2+Add 92.87±0.67 85.41±0.97 82.88±0.45 94.89±0.35 94.91±0.21 93.86 ± 1.38

Heterophilic Cornell Texas Wisconsin Chameleon Squirrel Actor

GCN 68.31±8.13 73.47±10.13 66.14±9.23 54.64±6.94 43.25±6.32 28.26±3.22
GATv2 86.84±9.78 89.01±10.43 87.56±9.20 61.79±10.20 45.71±5.12 29.41±2.98

Best one-shot (Table 3) 87.40±9.89 90.14±10.64 88.32±9.08 68.89±11.50 49.10±5.59 30.91±0.94

GCN☼GCN+Delete 77.27±2.13 82.66±2.06 75.50±1.83 61.45±1.43 50.19±1.44 32.78±0.83
GCN☼GCN+Add 78.52±2.25 84.55±2.26 75.01±1.94 62.14±1.54 49.87±1.42 31.69±0.80

GCN☼GATv2+Delete 92.90±1.93 94.07±1.82 93.87±1.74 71.72±2.38 54.37±1.54 34.01±0.93
GCN☼GATv2+Add 81.00±2.15 87.41±2.12 81.54±1.87 65.23±1.94 49.14±1.36 34.61±1.18

5 DISCUSSION

Both our theoretical analysis (§3) and extensive experiments (§4) have established that our proposed
graph rewiring strategy significantly boosts GNNs. SoLAR not only distills knowledge but also
obtains models that can outperform the combination of the surrogate and initial model. It works
seamlessly for both homophilic and heterophilic settings, contrary to methods which use non-robust
feature similarity measures (Huang et al., 2020; Bi et al., 2024) or require expensive k-hop rewiring
during training (Gutteridge et al., 2023). Different from methods that rely purely on topological
characteristics, our approach optimizes homophily (cf. §C), a critical predictor of GNN performance.
However, the impact of rewiring largely depends on the quality of the surrogate. If the predicted
labels are too noisy, they might amplify issues that were already present in the initial model. In such
scenarios, it could be interesting to take features and the uncertainty of predictions into account.
Furthermore, SoLAR rewiring does not explicitly address over-squashing and over-smoothing, which
relate to problems with trainability and information propagation. Combining SoLAR with topological
considerations could be another direction for future extensions.
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APPENDIX

A PROOFS

Theorem (Theorem 2 in main paper). In the heterogenous mean field limit, where nodes are equipped
with degree distribution pD, and k out of the d neighbors have a different label with probability
p(d, k), the expected accuracy after one round of mean aggregation is

E(A) =
∑
d

pD(d)

d∑
k=0

p(d, k)

[
pΦ

(
θd+ − kµ√

d+

)
+ (1− p)

(
1− Φ

(
θd+ − (d+ − k)µ√

d+

))]
.

Proof. In the mean field limit, the expected accuracy can also be interpreted as the probability that
a random node in the network is correctly classified. We call this random node also the center or
focal node, as it is highlighted in Figure 2(a). Its neighbors are not connected and can be considered
independent given the focal node. The probability that a focal node is correctly classified depends then
on its class membership C and its features X(1) after one round of mean neighborhood aggregation,
which in turn depends on the focal node’s degree D, and the number of different class neighbors
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K. Thus, using the tower property of conditional expectation, these different variables have to be
considered resulting in

E(A) = E(A | C = c1)P(C = c1) + E(A | C = c2)P(C = c2)

=E(A | C = c1)p+ E(A | C = c2)(1− p) = P(X(1) ≤ θ | C = c1)p+ P(X(1) > θ | C = c2)(1− p)

=
∑
d

P(D = d)
(
P(X(1) ≤ θ | C = c1, D = d)p+ P(X(1) > θ | C = c2, D = d)(1− p)

)
=
∑
d

pD(d)

d∑
k=0

p(d, k)
(
P(X(1) ≤ θ | C = c1, D = d,K = k)p

+ P(X(1) > θ | C = c2, D = d,K = k)(1− p)
)
.

Now, P(X(1) ≤ θ | C = c1, D = d,K = k) is a probability that we have derived before. Note that

X(1) | D = d,K = k =
1

d+

(
X

(0)
0 +

d∑
i=1

X
(0)
i

)
,

where the initial features of the focal node received the index 0. As the initial features are all
normally distributed and independent, their sum is again normally distributed, as previously discussed.
Using the same arguments as in Theorem 1, we obtain P(X(1) ≤ θ | C = c1, D = d,K = k) =

Φ
(

θd+−kµ√
d+

)
and P(X(1) > θ | C = c2, D = d,K = k) = Φ

(
θd+−(d+−k)µ√

d+

)
. Plugging these

results into the above derivation completes the proof.

Theorem (Theorem 4 in main paper). After one round of mean aggregation and deleting edges
between nodes that share not the same predicted label, the expected SoLAR accuracy of mean
aggregation with respect to the rewired graph becomes

E(A) = P

(
X

(0)
0 +

d∑
i=1

SiX
(0)
i ≤

(
d∑

i=1

Si + 1

)
µ

2

)
,

where Si ∈ {0, 1} indicates whether the respectice is pruned (Si = 0) or not (Si = 1). The messages
Zi = SiX

(0)
i sent by neighbors are only independent given the initial node feature X(0)

0 and neighbor
features X(0)

j . We have Si = 1 if X(0)
0 +

∑d
i=1 X

(0)
i ≤ µ

2 d
+ and X

(1)
i = (X

(0)
0 +X

(0)
i + Yi) ≤

d+µ/2 or if X(0)
0 +

∑d
i=1 X

(0)
i > µ

2 d
+ and X

(1)
i = (X

(0)
0 + X

(0)
i + Yi) > d+µ/2, where

Yi ∼ 0.5N (µk, d− 1) + 0.5N (µ(d− k + 1), d− 1). Zi = Si = 0 otherwise.

Proof. As the setting is completely symmetric, nodes of class c1 have exactly the same probability to
be correctly classified as nodes of class c2. Furthermore, the shape of their feature distributions after
one round of mean aggregation (with respect to the rewired graph) is also identical and their means
maintain the same distance to µ/2. In consequence, the Bayes optimal decision threshold remains
θ = µ/2 and, without loss of generality, we can focus on the correct classification probability of a
class c1 node, which is given by the stated formula for the average accuracy, which is equivalent to
P(X(1) ≤ θ), where θ = µ/2.

In comparison to the structure before SoLAR pruning, the distribution of the messages received by
the original neighbors has changed from X

(0)
i to Zi = SiX

(0)
i with binary Si ∈ {0, 1} indicating

whether the edge to the respective neighbor has been pruned (Si = 0) or still remains intact (Si = 1).
Accordingly, the degree of the node has become a random variable Ds =

∑d
i=1 Si. The main

challenge is that the pruning decision and thus the Si depend on all the initial features of the
neighbors so that the messages Zi = SiX

(0)
i become dependent random variables, whose distribution

we cannot simply compute with convolutions.

The theorem thus states the conditions when Si = 1 and thus the edge stays intact because the
focal node with index 0 has received the same label as its neighbour i. This is the case in two
scenarios, either both the node and the neighbor receive both class c1 or both class c2. These
scenarios correspond to the stated conditions.
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Only the distribution of the random variable Yi in the statement is left to derive. Yi accounts for the
messages that the neighbor has received from its own neighbors (in addition to the message from the
focal node X

(0)
0 and its own initial feature X

(0)
i ) before SoLAR rewiring. We only have to consider

the neighbour’s state before SoLAR rewiring, because the label before SoLAR was used to decide
whether an edge is pruned or not. The remaining messages are independently normally distributed. If
the neighbor i of the focal node has true label c1 with probability p = 0.5, then k of its neighbors
have label c2. One of its neighbors, the focal node, has class c1. Thus, still k of the other d − 1
neighbors have class c2 with initial features with mean µ. The second normal distribution in the
mixture of the distribution of Yi corresponds to the case where i has true label c2 so that d − k of
its neighbors have true label c2. The focal node (one of its neighbors) has true class c1. Thus d− k
neighbors and the initial features of i are all distributed according to normal distributions with mean
µ.

B TYPES OF EDGE IMPROVEMENTS FROM ONE-STEP TO AFTER-PRUNING

Below we detail statistics for the proportion of edges pruned and not pruned for the 4 real-world
graphs (Cora, Citeseer, Squirrel, Chameleon) which compare one step of mean aggregation with
the SoLAR-like pruning based on the one-step predictions. The most important trends of this data
are discussed in subsection 3.3. Within the pruned/not pruned sets of edges, we count the amount
of them such that they connect nodes originally well predicted, wrongly predicted, or one of each,
after one step of mean aggregation. Next, we compare these predictions to the predictions made after
the pruning process described in subsection 3.2. Concretely, we subdivide the previous edge sets
depending on whether we flipped each nodes’ predictions or if they remained the same. This uncovers
which kind of nodes we are able to correctly classify after pruning, and which are misclassified after
the process. We report each value as a proportion of edges with respect to the previous category in a
tree-like structure. We provide a list to account for all values of µ considered, and next to it the mean
of this list. In subsection 3.3 we only describe the relevant scenarios according to these averages, but
all trends persist in general.

Cora
m=[0.25, 0.5, 1.0, 1.5]
|-- Pruned edges: [0.32, 0.27, 0.17, 0.09]: 0.21
| |-- Originally both right: [0.02, 0.03, 0.07, 0.16]: 0.07
| | |-- Maintained both right: [0.82, 0.87, 0.94, 0.98]: 0.9
| | |-- One corrupted: [0.15, 0.11, 0.05, 0.02]: 0.08
| | +-- Both corrupted: [0.03, 0.02, 0.01, 0.0]: 0.02
| |-- Originally both wrong: [0.01, 0.01, 0.01, 0.01]: 0.01
| | |-- Improved both right: [0.11, 0.17, 0.27, 0.28]: 0.21
| | |-- One improved: [0.27, 0.3, 0.32, 0.32]: 0.3
| | +-- None improved: [0.62, 0.54, 0.42, 0.4]: 0.5
| +-- One right, one wrong: [0.97, 0.96, 0.92, 0.84]: 0.92
| |-- Improved the wrong: [0.16, 0.19, 0.25, 0.28]: 0.22
| |-- Maintained: [0.71, 0.69, 0.67, 0.66]: 0.68
| |-- Opposite: [0.06, 0.06, 0.05, 0.05]: 0.05
| +-- Corrupted the right: [0.07, 0.05, 0.03, 0.02]: 0.04
+-- Not pruned edges: [0.68, 0.73, 0.83, 0.91]: 0.79

|-- Both right: [0.68, 0.81, 0.93, 0.97]: 0.85
| |-- Maintained both right: [0.95, 0.97, 0.99, 1.0]: 0.98
| |-- One corrupted: [0.04, 0.03, 0.01, 0.0]: 0.02
| +-- Both corrupted: [0.01, 0.0, 0.0, 0.0]: 0.0
|-- Both wrong: [0.29, 0.17, 0.05, 0.01]: 0.13
| |-- Improved both right: [0.02, 0.03, 0.05, 0.06]: 0.04
| |-- One improved: [0.07, 0.07, 0.07, 0.05]: 0.06
| +-- None improved: [0.91, 0.89, 0.88, 0.89]: 0.89
+-- One right, one wrong: [0.02, 0.02, 0.02, 0.01]: 0.02

|-- Improved the wrong: [0.04, 0.05, 0.05, 0.04]: 0.05
|-- Maintained: [0.93, 0.93, 0.94, 0.95]: 0.94
|-- Opposite: [0.01, 0.01, 0.0, 0.0]: 0.0
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+-- Corrupted the right: [0.02, 0.01, 0.01, 0.0]: 0.01
Citeseer
m=[0.25, 0.5, 1.0, 1.5]
|-- Pruned edges: [0.32, 0.26, 0.15, 0.07]: 0.2
| |-- Originally both right: [0.01, 0.02, 0.03, 0.06]: 0.03
| | |-- Maintained both right: [0.72, 0.79, 0.88, 0.94]: 0.83
| | |-- One corrupted: [0.21, 0.16, 0.11, 0.06]: 0.14
| | +-- Both corrupted: [0.07, 0.05, 0.02, 0.01]: 0.04
| |-- Originally both wrong: [0.01, 0.01, 0.02, 0.03]: 0.02
| | |-- Improved both right: [0.13, 0.16, 0.2, 0.22]: 0.18
| | |-- One improved: [0.26, 0.28, 0.33, 0.41]: 0.32
| | +-- None improved: [0.61, 0.55, 0.47, 0.37]: 0.5
| +-- One right, one wrong: [0.98, 0.97, 0.95, 0.91]: 0.95
| |-- Improved the wrong: [0.16, 0.2, 0.26, 0.29]: 0.23
| |-- Maintained: [0.71, 0.69, 0.66, 0.65]: 0.68
| |-- Opposite: [0.06, 0.06, 0.05, 0.05]: 0.05
| +-- Corrupted the right: [0.07, 0.05, 0.02, 0.01]: 0.04
+-- Not pruned edges: [0.68, 0.74, 0.85, 0.93]: 0.8

|-- Both right: [0.69, 0.82, 0.93, 0.97]: 0.85
| |-- Maintained both right: [0.96, 0.97, 0.99, 1.0]: 0.98
| |-- One corrupted: [0.04, 0.03, 0.01, 0.0]: 0.02
| +-- Both corrupted: [0.01, 0.0, 0.0, 0.0]: 0.0
|-- Both wrong: [0.29, 0.16, 0.05, 0.01]: 0.13
| |-- Improved both right: [0.02, 0.03, 0.04, 0.05]: 0.04
| |-- One improved: [0.07, 0.07, 0.05, 0.03]: 0.06
| +-- None improved: [0.92, 0.91, 0.91, 0.92]: 0.92
+-- One right, one wrong: [0.03, 0.02, 0.02, 0.02]: 0.02

|-- Improved the wrong: [0.02, 0.02, 0.02, 0.02]: 0.02
|-- Maintained: [0.96, 0.96, 0.97, 0.98]: 0.97
|-- Opposite: [0.01, 0.0, 0.0, 0.0]: 0.0
+-- Corrupted the right: [0.01, 0.01, 0.01, 0.0]: 0.01

Squirrel
m=[0.25, 0.5, 1.0, 1.5]
|-- Pruned edges: [0.21, 0.21, 0.2, 0.17]: 0.2
| |-- Originally both right: [0.24, 0.24, 0.23, 0.25]: 0.24
| | |-- Maintained both right: [0.7, 0.73, 0.8, 0.86]: 0.77
| | |-- One corrupted: [0.21, 0.19, 0.15, 0.11]: 0.16
| | +-- Both corrupted: [0.1, 0.08, 0.05, 0.03]: 0.06
| |-- Originally both wrong: [0.25, 0.26, 0.26, 0.26]: 0.26
| | |-- Improved both right: [0.12, 0.12, 0.13, 0.12]: 0.12
| | |-- One improved: [0.25, 0.27, 0.28, 0.3]: 0.28
| | +-- None improved: [0.63, 0.61, 0.58, 0.58]: 0.6
| +-- One right, one wrong: [0.51, 0.51, 0.5, 0.49]: 0.5
| |-- Improved the wrong: [0.12, 0.12, 0.12, 0.11]: 0.12
| |-- Maintained: [0.66, 0.66, 0.68, 0.72]: 0.68
| |-- Opposite: [0.12, 0.11, 0.1, 0.07]: 0.1
| +-- Corrupted the right: [0.11, 0.11, 0.1, 0.09]: 0.1
+-- Not pruned edges: [0.79, 0.79, 0.8, 0.83]: 0.8

|-- Both right: [0.3, 0.32, 0.37, 0.4]: 0.35
| |-- Maintained both right: [0.92, 0.93, 0.95, 0.96]: 0.94
| |-- One corrupted: [0.04, 0.04, 0.03, 0.02]: 0.03
| +-- Both corrupted: [0.04, 0.03, 0.03, 0.02]: 0.03
|-- Both wrong: [0.23, 0.2, 0.16, 0.13]: 0.18
| |-- Improved both right: [0.05, 0.05, 0.05, 0.04]: 0.05
| |-- One improved: [0.06, 0.06, 0.07, 0.05]: 0.06
| +-- None improved: [0.9, 0.89, 0.88, 0.91]: 0.9
+-- One right, one wrong: [0.48, 0.48, 0.48, 0.47]: 0.48

|-- Improved the wrong: [0.03, 0.02, 0.02, 0.02]: 0.02
|-- Maintained: [0.91, 0.91, 0.92, 0.94]: 0.92
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|-- Opposite: [0.04, 0.04, 0.03, 0.02]: 0.03
+-- Corrupted the right: [0.03, 0.03, 0.02, 0.02]: 0.02

Chameleon
m=[0.25, 0.5, 1.0, 1.5]
|-- Pruned edges: [0.16, 0.14, 0.11, 0.09]: 0.12
| |-- Originally both right: [0.16, 0.17, 0.23, 0.28]: 0.21
| | |-- Maintained both right: [0.73, 0.79, 0.87, 0.93]: 0.83
| | |-- One corrupted: [0.17, 0.14, 0.09, 0.05]: 0.11
| | +-- Both corrupted: [0.1, 0.08, 0.04, 0.02]: 0.06
| |-- Originally both wrong: [0.16, 0.17, 0.17, 0.18]: 0.17
| | |-- Improved both right: [0.16, 0.2, 0.24, 0.28]: 0.22
| | |-- One improved: [0.23, 0.24, 0.29, 0.33]: 0.27
| | +-- None improved: [0.61, 0.56, 0.47, 0.4]: 0.51
| +-- One right, one wrong: [0.68, 0.66, 0.61, 0.54]: 0.62
| |-- Improved the wrong: [0.12, 0.14, 0.16, 0.14]: 0.14
| |-- Maintained: [0.66, 0.66, 0.68, 0.72]: 0.68
| |-- Opposite: [0.12, 0.13, 0.09, 0.08]: 0.1
| +-- Corrupted the right: [0.09, 0.08, 0.06, 0.06]: 0.07
+-- Not pruned edges: [0.84, 0.86, 0.89, 0.91]: 0.88

|-- Both right: [0.41, 0.47, 0.54, 0.57]: 0.5
| |-- Maintained both right: [0.95, 0.96, 0.98, 0.99]: 0.97
| |-- One corrupted: [0.02, 0.02, 0.01, 0.01]: 0.02
| +-- Both corrupted: [0.02, 0.02, 0.01, 0.0]: 0.01
|-- Both wrong: [0.24, 0.19, 0.12, 0.1]: 0.16
| |-- Improved both right: [0.05, 0.06, 0.06, 0.07]: 0.06
| |-- One improved: [0.03, 0.03, 0.02, 0.01]: 0.02
| +-- None improved: [0.92, 0.91, 0.92, 0.92]: 0.92
+-- One right, one wrong: [0.34, 0.34, 0.33, 0.33]: 0.34

|-- Improved the wrong: [0.01, 0.01, 0.01, 0.01]: 0.01
|-- Maintained: [0.94, 0.95, 0.96, 0.96]: 0.95
|-- Opposite: [0.03, 0.03, 0.03, 0.03]: 0.03
+-- Corrupted the right: [0.01, 0.01, 0.01, 0.01]: 0.01

C EFFECT ON HOMOPHILY

Graph neural networks provably perform better on homophilic graphs and some good-heterophilic
graphs (Ma et al., 2022). We investigate the effect our one-shot rewiring strategy (GCN☼GCN)
has on Edge label informativeness (ELI) and adjusted homophily score proposed in (Platonov et al.,
2023a) and report the Normalized Mutual Information between the node ground truth labels and
community membership labels after performing modularity maximization (Clauset et al., 2004) on
the rewired graph in Figure 5. Evidently, our rewiring strategy improves the homophily score, as
well as the edge label informativeness (denoted by ELI), which is also found to have high correlation
to GNN performance (Platonov et al., 2023a). We also better align the node ground truth labels to
community labels, as we delete inter-community edges (denoted by NMI).

We also visualize a T-SNE plot in Figure 6 of the node embeddings after training on the original graph
and the rewired graph (GCN☼GCN) on Cora and Squirrel datasets. From the figure, we can see that
the classes are more separable in the embedding space on the rewired graph, the class separability is
more evident in a homophilic graph like Cora (Figure 6(b) than in a heterophilic graph like Squirrel
(6(d)), highlighting the fact that GNNs are usually more useful in homophilic settings and if the
surrogate model gives noisy labels for rewiring, the performance on the downstream is also affected.

D ADDITIONAL RESULTS

In Table 5 we compare our results with an additional baseline (Bi et al., 2024) (DHGR), which
uses a feature similarity based rewiring for heterophilic graphs. As there is no code available to
reproduce the results, we take the results reported from the paper. We also report results with SGC
(Wu et al., 2019), which is a simplified version of the GCN (Kipf & Welling, 2017) with weight
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(a) ELI, Homophily, NMI for Cora and Citeseer
with GCN☼GCN.

(b) ELI, Homophily, NMI for Chameleon and
Squirrel with GCN☼GCN.

Figure 5: The effect of one-shot rewiring on ELI, homophily and NMI on Cora, Citeseer, Chameleon
and Squirrel datasets.

matrices collapsed and non-linearities removed in Tables 6 and 7. In Table 8 we give results for
simultaneous additions and deletions.

Table 5: Node classification on heterophilic graphs using one-shot rewiring.
Method Cornell Texas Wisconsin Chameleon Squirrel Actor

GCN 68.31±8.13 73.47±10.13 66.14±9.23 54.64±6.94 43.25±6.32 28.26±3.22
GATv2 86.84±9.78 89.01±10.43 87.56±9.20 61.79±10.20 45.71±5.12 29.41±2.98

GCN+FoSR 71.64±9.80 73.93±10.23 65.85±7.73 54.40±6.58 42.80±6.40 28.66±3.21
GATv2+FoSR 76.12±6.51 78.15±7.81 74.08±9.01 46.48 ± 4.97 47.40±7.17 27.45±3.61

GCN+ProxyAddMax 67.57±1.71 81.08±1.75 70.00±1.61 56.74±0.90 33.26±0.39 27.57±0.22
GCN+ProxyDelMax 62.16±1.83 72.97±1.70 76.00±1.56 56.74±0.95 32.58±0.43 27.96±0.21

GCN+DHGR 67.38±5.33 81.78±0.89 76.47±3.62 70.83±2.03 67.15±1.43 36.29±0.12
GATv2+DHGR 70.09±6.77 83.78±3.37 73.20±4.89 72.11±2.87 62.37±1.78 34.71±0.48

GCN☼GCN+Delete 68.35±8.54 74.12±9.89 67.85±7.14 57.19 ± 6.45 44.50±6.29 29.25±3.50
GCN☼GCN+Add 69.42±8.93 74.20±10.26 68.51±7.20 56.43 ± 6.16 44.04±6.34 28.16±3.22

GATv2☼GATv2+Delete 87.40±9.89 90.14±10.64 88.32±9.08 68.89±11.50 49.10±5.59 30.31±4.29
GATv2☼GATv2+Add 87.12±9.59 87.97±10.95 87.76±9.57 66.35±11.18 46.44±6.00 29.46±4.67

Table 6: Node classification results on homophilic graphs with SGC.
Method Cora Citeseer Pubmed CS Physics Photo

SGC 88.78±0.48 80.51±0.59 82.47±0.41 93.39±0.18 95.21 ± 0.06 86.48±1.00
GCN 87.94±3.35 79.38±3.48 81.99±1.42 92.44±0.67 94.49 ± 0.04 92.89±1.23

GCN☼SGCDelete 88.10±0.48 80.14±0.64 82.12±0.32 93.68±0.13 94.97±0.03 89.93±0.83
GCN☼SGCAdd 89.02±0.48 79.14±0.72 82.06±0.37 93.43±0.18 OOM 87.15±0.98

GATv2☼SGCDelete 89.55±0.56 82.28±0.89 82.55±0.36 93.77±0.22 94.48±0.07 89.96±0.89
GATv2☼SGCAdd 89.16±0.50 80.85±0.83 81.96±0.38 93.44±0.18 OOM 87.26±0.98

E TRAINING DETAILS

We use PyTorch-Geometric (Fey & Lenssen, 2019) and DGL library (Wang et al., 2019) for all our
experiments. We use a 2-layered GCN (Kipf & Welling, 2017) and GATv2 (Brody et al., 2022)
with {8, 16} attention heads. For datasets Cora, Citeseer, Pubmed, Cornell, Texas, Wisconsin,
Chameleon, Squirrel, Actor, CS, Physics and Photo the final test accuracy is reported averaged over
100 splits, run for 100 epochs. We use the split mechanism introduced in (Shchur et al., 2019).
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(a) GCN trained on the original Cora
graph.

(b) GCN☼GCN trained on Cora with
1500 inter-class edge deletions.

(c) GCN trained on the original Squir-
rel graph.

(d) GCN☼GCN trained on Squirrel
with 20K inter-class edge deletions.

Figure 6: We plot T-SNE for Cora and Squirrel datasets after training a GCN on the original graph
and the rewired graph.

Table 7: Node classification results on heterophilic graphs with SGC.
Method Cornell Texas Wisconsin Chameleon Squirrel Actor

SGC 65.14±1.70 73.70±1.70 66.04±1.40 55.26±1.12 45.16±1.12 29.23 ±0.55
GCN 68.31±8.13 73.47±10.13 66.14±9.23 54.64±6.94 43.25±6.32 28.26±3.22

GCN☼SGCDelete 67.89±1.75 74.89±2.04 69.37±1.19 57.79±1.29 45.85±1.35 28.32±0.57
GCN☼SGCAdd 68.39±1.89 74.63±1.95 67.53±1.38 53.87±1.26 43.08±1.25 26.85±0.52

GATv2☼SGCDelete 75.86±1.86 83.13±2.13 74.04±1.40 66.82±2.11 47.71±1.35 30.32±0.83
GATv2☼SGCAdd 83.73±2.16 86.40±2.28 81.09±1.83 64.20±2.07 45.45±1.22 27.01±0.60

The weight decay and dropout are set to 0. The hidden dimension sizes we experimented with are
{32,128,512} and learning rate {0.01,0.001}. The heterophilic graphs (Cornell, Texas, Wisconsin,
Chameleon, Squirrel and Actor) are taken from (Platonov et al., 2023b). For experiments on Roman-
empire and Amazon-ratings, we use the code base provided by (Platonov et al., 2023b), where the
datasets are split into 50/25/25 for train/test/validation respectively. The accuracy is averaged over
10 runs run for 1000 epochs. We use a 5-layered GCN and GATv2 for these experiments, which
are further augmented with skip connections, layernorm (Ba et al., 2016) and batchnorm Ioffe &
Szegedy (2015) to facilitate training them better. For the Penn94 dataset introduced in (Lim et al.,
2021), we use hidden dimension size of 32, learning rate set to 0.01, weight decay 1e − 3 and
also batchnorm. All the experiments were done on 2 V100 GPUs. The hyperparameters used for
our experiments are provided in the tables below. The runtime is provided in seconds for one-shot
rewiring. The statistics for the datasets used are given in Table 9. Our code is available here:
https://anonymous.4open.science/r/SoLAR4356/README.md.
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Table 8: Experiments for simultaneous additions and deletions.
Method Cora Citeseer Pubmed CS Photo Physics Cornell Texas Wisconsin Chameleon Squirrel Actor

GCN 87.94
±3.35

79.38
±3.48

81.99
±1.42

92.44
±0.67

92.89
±1.23

93.64
±0.16

68.31
±8.13

73.47
±10.13

66.14
±9.23

54.64
±6.94

43.25
±6.32

28.26
±3.22

GATv2 89.13
±3.13

81.92
±4.81

81.83
±1.04

91.90
±1.59

91.22
±2.18

94.07
±0.44

86.84
±9.78

89.01
±10.43

87.56
±9.20

61.79
±10.20

45.71
±5.12

29.41
±2.98

GCN☼GCN 89.10
±0.51

78.81
±0.80

81.73
±0.26

93.30
±0.12

93.28
±0.18

94.26
±0.04

68.11
±2.04

75.45
±1.89

68.01
±1.52

55.06
±1.31

43.11
±1.29

27.33
±0.57

GATv2☼GATv2 89.16
±0.60

81.13
±0.95

81.13
±0.27

93.42
±0.21

93.89
±0.31

94.15
±0.09

86.72
±2.02

88.96
±2.05

87.17
±1.89

68.29
±2.32

47.63
±1.23

29.70
±0.95

GCN☼GATv2 90.10
±0.57

81.43
±0.81

82.99
±0.27

93.94
±0.15

86.62
±2.19

94.62
±0.03

79.93
±2.08

85.05
±2.24

84.05
±1.78

56.15
±1.29

48.26
±1.18

29.92
±0.72

GATv2☼GCN 89.25
±0.56

81.09
±0.96

81.63
±0.26

93.59
±0.20

93.48
±0.48

94.49
±0.06

85.55
±2.13

89.16
±2.16

85.45
±1.94

67.75
±2.27

48.36
±1.28

29.78
±0.95

Table 9: Statistics of the graphs used. We use the largest connected component for all our experiments.
Dataset #Nodes #Edges

Cora 2,708 10,138
Citeseer 3,327 7,358
Pubmed 19,717 88,648
Cornell 183 277
Texas 183 279

Wisconsin 251 450
Chameleon 890 8,854

Squirrel 2,223 57,850
Actor 7,600 26,659

CS 18,333 1,63,788
Physics 34,493 4,95,924
Photo 7,650 2,38,162

Roman-empire 22,662 32,927
Amazon-ratings 24,492 93,050

Penn94 41,554 13,62,229

Table 10: Hyperparameters for GCN☼GCN+Del
Dataset EdgesDeleted LR HiddenDimension Runtime

Cora 1500 0.01 32 71.43
Citeseer 1500 0.01 32 84.08
Pubmed 10000 0.01 32 90.79
Cornell 100 0.001 128 86.76
Texas 100 0.001 128 73.94

Wisconsin 100 0.001 128 77.23
Chameleon 5400 0.001 128 76.82

Squirrel 310000 0.001 128 78.70
Actor 16000 0.001 128 80.12

CS 22000 0.01 128 200.90
Physics 30000 0.01 128 412.47
Photo 35000 0.01 512 263.11

Table 11: Hyperparameters for GCN☼GCN+Add
Dataset EdgesAdded LR HiddenDimension Runtime

Cora 6929 0.01 32 89.43
Citeseer 7168 0.01 32 70.88
Pubmed 352 0.01 32 94.07
Cornell 55 0.001 128 88.76
Texas 54 0.001 128 74.33

Wisconsin 41 0.001 128 86.68
Chameleon 4088 0.001 128 70.35

Squirrel 12349 0.001 128 74.85
Actor 12215 0.001 128 78.38

CS 8680 0.01 32 129.36
Physics 45991 0.01 32 351.85
Photo 26846 0.01 32 108.79

Table 12: Hyperparameters for GATv2☼GATv2+Add
Dataset EdgesAdded LR HiddenDimension Runtime

Cora 9711 0.001 32 149.73
Citeseer 11996 0.001 32 192.35
Pubmed 17647 0.001 32 594.85
Cornell 37 0.001 32 134.70
Texas 55 0.001 32 123.80

Wisconsin 49 0.001 32 135.06
Chameleon 4167 0.001 32 105.65

Squirrel 20754 0.001 32 313.19
Actor 30251 0.001 32 388.99

CS 27592 0.001 32 2292.85
Physics 46700 0.001 32 1761.90
Photo 27713 0.01 32 456.02

Table 13: Hyperparameters for GATv2☼GATv2+Del
Dataset EdgesDeleted LR HiddenDimension Runtime

Cora 1700 0.001 32 105.27
Citeseer 1500 0.001 32 116.28
Pubmed 14126 0.001 32 395.73
Cornell 120 0.001 32 100.89
Texas 120 0.001 32 131.33

Wisconsin 120 0.001 32 131.69
Chameleon 6000 0.001 32 169.09

Squirrel 35000 0.001 32 212.64
Actor 30000 0.001 32 139.54

CS 30000 0.001 32 1579.53
Physics 30000 0.001 32 3766.81
Photo 40264 0.001 32 450.34
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