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Abstract

Training a referring expression comprehension001
(ReC) model for a new visual domain requires002
collecting referring expressions, and potentially003
corresponding bounding boxes, for images in004
the domain. While large-scale pre-trained mod-005
els are useful for image classification across006
domains, it remains unclear if they can be ap-007
plied in a zero-shot manner to more complex008
tasks like ReC. We present ReCLIP, a simple009
but strong zero-shot baseline that repurposes010
CLIP, a state-of-the-art large-scale model, for011
ReC. Motivated by the close connection be-012
tween ReC and CLIP’s contrastive pre-training013
objective, the first component of ReCLIP is a014
region-scoring method that isolates object pro-015
posals via cropping and blurring, and passes016
them to CLIP. However, through controlled ex-017
periments on a synthetic dataset, we find that018
CLIP is largely incapable of performing spatial019
reasoning off-the-shelf. Thus, the second com-020
ponent of ReCLIP is a spatial relation resolver021
that handles several types of spatial relations.022
We reduce the gap between zero-shot baselines023
from prior work and supervised models by as024
much as 30% on RefCOCOg, and on RefGTA025
(video game imagery), we outperform super-026
vised ReC models trained on real images by an027
absolute 12%.028

1 Introduction029

Visual referring expression comprehension (ReC)—030

the task of localizing an object in an image given031

a textual referring expression—has applications in032

a broad range of visual domains. For example,033

ReC is useful for guiding a robot in the real world034

(Shridhar et al., 2020) and also for creating natu-035

ral language interfaces for software applications036

with visuals (Wichers et al., 2018). Though the037

task is the same across domains, the domain shift038

is problematic for supervised referring expression039

models, as shown in Figure 1: the same simple040

referring expression is localized correctly in the041

training domain but incorrectly in a new domain.042

(a) RefCOCO+ (Yu et al., 2016)

(b) RefGTA (Tanaka et al., 2019)

Figure 1: Predictions from ReCLIP (blue) and UNITER-
Large (Chen et al., 2020) (red) for the same referring ex-
pression on images from two visual domains. UNITER-
Large fails on the GTA (video game) domain, while
ReCLIP selects the correct proposal in both cases.

Collecting task-specific data in each domain 043

of interest is expensive. Weakly supervised ReC 044

(Rohrbach et al., 2016) partially addresses this is- 045

sue, since it does not require the ground-truth box 046

for each referring expression, but it still assumes 047

the availability of referring expressions paired with 048

images and trains on these. Given a large-scale pre- 049

trained vision and language model and a method 050

for doing ReC zero-shot—i.e. without any addi- 051

tional training—practitioners could save a great 052

deal of time and effort. Moreover, as pre-trained 053

models have become more accurate via scaling (Ka- 054

plan et al., 2020), fine-tuning the best models has 055

become prohibitively expensive–and sometimes in- 056

feasible because the model is offered only via API, 057

e.g. GPT-3 (Brown et al., 2020). 058
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Figure 2: Overview of ReCLIP. Given object proposals, we isolate the corresponding image regions by cropping
and blurring (only cropping shown here). Using a parser, we extract the noun chunks of the expression. For each
noun chunk, CLIP outputs a distribution over proposals. The relations from the parser and CLIP’s probabilities are
combined by a spatial relation resolver to select the final proposal. In this example, CLIP ranks b3 highest for both
noun chunks, but using the relation resolver we obtain the correct answer b4.

Pre-trained vision and language models like059

CLIP (Radford et al., 2021) achieve strong zero-060

shot performance in image classification across061

visual domains (Jia et al., 2021) and in object de-062

tection (Gu et al., 2021), but the same success has063

not yet been achieved in tasks requiring reason-064

ing over vision and language. For example, Shen065

et al. (2021) show that a straightforward zero-shot066

approach for VQA using CLIP performs poorly.067

Specific to ReC, Yao et al. (2021) introduce a zero-068

shot approach via Colorful Prompt Tuning (CPT),069

which colors object proposals and references the070

color in the text prompt to score proposals, but071

this has low accuracy. In both of these cases, the072

proposed zero-shot method is not aligned closely073

enough with the model’s pre-training task of match-074

ing naturally occurring images and captions.075

In this work, we propose ReCLIP, a simple but076

strong new baseline for zero-shot ReC. ReCLIP,077

illustrated in Figure 2, has two key components: a078

method for scoring object proposals using CLIP079

and a method for handling spatial relations between080

objects. Our method for scoring region proposals,081

Isolated Proposal Scoring (IPS), effectively reduces082

ReC to the contrastive pre-training task used by083

CLIP and other models. Specifically, we propose084

to isolate individual proposals via cropping and085

blurring the images and to score these isolated pro-086

posals with the given expression using CLIP.087

To handle relations between objects, we first088

consider whether CLIP encodes the spatial infor-089

mation necessary to resolve these relations. We090

show through a controlled experiment on CLEVR091

images (Johnson et al., 2017) that CLIP and another092

pre-trained model ALBEF (Li et al., 2021) are un-093

able to perform its pre-training task on examples 094

that require spatial reasoning. Thus, any method 095

that solely relies on these models is unlikely to 096

resolve spatial relations accurately. Consequently, 097

we propose spatial heuristics for handling spatial 098

relations in which an expression is decomposed 099

into subqueries, CLIP is used to compute proposal 100

probabilities for each subquery, and the outputs for 101

all subqueries are combined with simple rules. 102

On the standard RefCOCO/g/+ datasets (Mao 103

et al., 2016; Yu et al., 2016), we find that ReCLIP 104

outperforms CPT (Yao et al., 2021) by more than 105

20%. Compared to a stronger GradCAM (Selvaraju 106

et al., 2019) baseline, ReCLIP obtains better accu- 107

racy on average and has less variance across object 108

types. Finally, in order to illustrate the practical 109

value of zero-shot grounding, we also demonstrate 110

that our zero-shot method surpasses the out-of- 111

domain performance of state-of-the-art supervised 112

ReC models. We evaluate on the RefGTA dataset 113

(Tanaka et al., 2019), which contains images from 114

a video game (out of domain for models trained 115

only on real photos). Using ReCLIP and an object 116

detector trained outside the target domain, we out- 117

perform UNITER-Large (Chen et al., 2020) (using 118

the same proposals) and MDETR (Kamath et al., 119

2021) by an absolute 12%. 120

In summary, our contributions include: (1) Re- 121

CLIP, a zero-shot method for referring expression 122

comprehension, (2) showing that CLIP has low 123

zero-shot spatial reasoning performance, and (3) a 124

comparison of our zero-shot ReC performance with 125

the out-of-domain performance of state-of-the-art 126

fully supervised ReC systems.1 127

1Our code will be released upon publication.
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2 Background128

In this section, we first describe the task at hand129

(§2.1) and introduce CLIP, the pre-trained model130

we primarily use (§2.2). We then describe two131

existing methods for scoring region proposals using132

a pre-trained vision and language model: colorful133

prompt tuning (§2.3) and GradCAM (§2.4).134

2.1 Task description135

In referring expression comprehension (ReC), the136

model is given an image and a textual referring137

expression describing an entity in the image. The138

goal of the task is to select the object (bounding139

box) that best matches the expression. As in much140

of the prior work on REC, we assume access to a141

set of object proposals b1, b2, ..., bn, each of which142

is a bounding box in the image. Task accuracy is143

measured as the percentage of instances for which144

the model selects a proposal whose intersection-145

over-union (IoU) with the ground-truth box is at146

least 0.5. In this paper, we focus on the zero-shot147

setting in which we apply a pre-trained model to148

ReC without using any training data for the task.149

2.2 Pre-trained model architecture150

The zero-shot approaches that we consider are151

general in that the only requirement for the pre-152

trained model is that when given a query con-153

sisting of an image and text, it computes a score154

for the similarity between the image and text. In155

this paper, we primarily use CLIP (Radford et al.,156

2021). We focus on CLIP because it was pre-157

trained on 400M image-caption pairs collected158

from the web2 and therefore achieves impressive159

zero-shot image classification performance on a160

variety of visual domains. CLIP has an image-161

only encoder, which is either a ResNet-based ar-162

chitecture (He et al., 2016) or a visual transformer163

(Dosovitskiy et al., 2021), and a text-only trans-164

former. We mainly use the RN50x16 and ViT-165

B/32 versions of CLIP. The image encoder takes166

the raw image and produces an image representa-167

tion x ∈ Rd, and the text transformer takes the168

sequence of text tokens and produces a text rep-169

resentation y ∈ Rd. In CLIP’s contrastive pre-170

training task, given a batch of N images and match-171

ing captions, each image must be matched with172

the corresponding text. The model’s probability173

of matching image i with caption j is given by174

2This dataset is not public.

exp(βxi
Tyj)/

∑N
k=1 exp(βxi

Tyk), where β is a 175

hyperparameter.3 176

We now describe two techniques from prior work 177

for selecting a proposal using a pre-trained model. 178

2.3 Colorful Prompt Tuning (CPT) 179

The first baseline from prior work that we consider 180

is colorful prompt tuning (CPT), proposed by Yao 181

et al. (2021) 4: they shade proposals with differ- 182

ent colors and use a masked language prompt in 183

which the referring expression is followed by “in 184

[MASK] color”. The color with the highest proba- 185

bility from a pre-trained masked language model 186

(MLM) (VinVL; (Zhang et al., 2021)) is then cho- 187

sen. In order to apply this method to models like 188

CLIP, that provide image-text scores but do not of- 189

fer an MLM, we create a version of the input image 190

for each proposal, where the proposal is transpar- 191

ently shaded in red.5 Our template for the input text 192

is “[referring expression] is in red color.” Since we 193

have adapted CPT for non-MLM models, we refer 194

to this method as CPT-adapted in the experiments. 195

2.4 Gradient-based visualizations 196

The second baseline from prior work that we con- 197

sider is based on gradient-based visualizations, 198

which are a popular family of techniques for un- 199

derstanding, on a range of computer vision tasks, 200

which part(s) of an input image are most impor- 201

tant to a model’s prediction. We focus on the most 202

popular technique in this family, GradCAM (Sel- 203

varaju et al., 2019). Our usage of GradCAM fol- 204

lows Li et al. (2021), in which GradCAM is used 205

to perform weakly supervised referring expression 206

comprehension using the ALBEF model. In our 207

setting, for a given layer in a visual transformer, 208

we take the layer’s class-token (CLS) attention ma- 209

trix M ∈ Rh,w. The spatial dimensions h and 210

w are dependent on the model’s architecture and 211

are generally smaller than the input dimensions 212

of the image. Then the GradCAM is computed 213

as G = M ⊙ ∂L
∂M , where L is the model’s output 214

logit (the similarity score for the image-text pair) 215

and ⊙ denotes elementwise multiplication. The 216

procedure for applying GradCAM when the visual 217

encoder is a convolutional network is similar; in 218

3xi and yi are normalized before the dot product.
4CPT is the name given by Yao et al. (2021), but note that

we do not perform few-shot/supervised tuning.
5Specifically, we use the RGB values (240, 0, 30) and

transparency 127/255 that Yao et al. (2021) say works best
with their method. An example is shown in Appendix B.
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place of the attention matrix, we use the activa-219

tions of the final convolutional layer. Next, we220

perform a bicubic interpolation on G so that it has221

the same dimensions as the input image. Finally,222

we compute for each proposal bi = (x1, y1, x2, y2)223

the score 1
Aα

∑x2
i=x1

∑y2
j=y1

G[i, j], where A is the224

area of the image and α is a hyperparameter, and225

we choose the proposal with the highest score.226

3 ReCLIP227

ReCLIP consists of two main components: (1) a228

region-scoring method that is different from CPT229

and GradCAM and (2) a rule-based relation re-230

solver. In this section, we first describe our region231

scoring method (§3.1). However, using controlled232

experiments on a synthetic dataset, we find that233

CLIP has poor zero-shot spatial reasoning perfor-234

mance (§3.2). Therefore, we propose a system that235

uses heuristics to resolve spatial relations (§3.3).236

3.1 Isolated Proposal Scoring (IPS)237

Our proposed method, which we call isolated pro-238

posal scoring, is based on the observation that239

ReC is similar to the contrastive learning task with240

which models like CLIP are pre-trained, except241

that rather than selecting one out of several im-242

ages to match with a given text, we must select243

one out of several image regions. Therefore, for244

each proposal, we create a new image in which245

that proposal is isolated. We consider two methods246

of isolation – cropping the image to contain only247

the proposal and blurring everything in the image248

except for the proposal region. For blurring, we249

apply a Gaussian filter with standard deviation σ250

to the image RGB values. Appendix A.2 provides251

an example of isolation by blurring. The score for252

an isolated proposal is obtained by passing it and253

the expression through the pre-trained model. To254

use cropping and blurring in tandem, we obtain255

a score scrop and sblur for each proposal and use256

scrop + sblur as the final score. This can be viewed257

as an ensemble of “visual prompts,” analogous to258

Radford et al. (2021)’s ensembling of text prompts.259

3.2 Can we use CLIP to resolve spatial260

relations?261

A key limitation in Isolated Proposal Scoring is262

that relations between objects in different propos-263

als are not taken into account. For example, in264

Figure 2, the information about the spatial rela-265

tionships among the cats is lost when the proposals266

Model
Text-pair Text-pair Image-pair Image-pair
Spatial Non-spatial Spatial Non-spatial

CLIP RN50x4 43.73 89.83 48.90 97.36
CLIP RN50x16 52.54 90.17 49.78 96.48
CLIP ViT-B/32 48.81 95.25 48.90 96.48
CLIP ViT-B/16 50.51 92.88 50.22 97.36

Table 1: Accuracy on CLEVR image-text matching task. CLIP
performs well on the non-spatial version of the task but poorly
on the spatial version. Text-pair tasks have 295 instances each;
image-pair tasks have 227 instances each.

are isolated. In order to use CLIP to decide which 267

object has a specified relation to another object, 268

the model’s output must encode the spatial relation 269

in question. Therefore, we design an experiment 270

to determine whether a pre-trained model, such 271

as CLIP, can understand spatial relations within 272

the context of its pre-training task. We generate 273

synthetic images using the process described for 274

the CLEVR dataset (Johnson et al., 2017). These 275

scenes include three shapes–spheres, cubes, and 276

cylinders–and eight colors–gray, blue, green, cyan, 277

yellow, purple, brown, red. 278

In the text-pair version of our tasks, using the 279

object attribute and position information associated 280

with each image, we randomly select one of the 281

pairwise relationships between objects–left, right, 282

front, or behind–and construct a sentence fragment 283

based on it. For example: “A blue sphere to the 284

left of a red cylinder.” We also write a distractor 285

fragment that replaces the relation with its opposite. 286

In this case, the distractor would be “A blue sphere 287

to the right of a red cylinder.” The task, similar to 288

the contrastive and image-text matching tasks used 289

to pre-train these models, is to choose the correct 290

sentence given the image. As a reference point, 291

we also evaluate on a control (non-spatial) task in 292

which the correct text is a list of the scene’s objects 293

and the distractor text is identical except that one 294

object is swapped with a random object not in the 295

scene. For example, if the correct text is “A blue 296

sphere and a red cylinder,” then the distractor text 297

could be “A blue sphere and a blue cylinder.” 298

In the image-pair version of our tasks, we have a 299

single sentence fragment constructed as described 300

above for the spatial and control (non-spatial) tasks 301

and two images such that only one matches the text. 302

Appendix B shows examples of these tasks. 303

CLIP’s performance on these tasks is shown in 304

Table 1. Similar results for the pre-trained model 305

ALBEF (Li et al., 2021) are shown in Appendix D.1 306

While performance on the control task is quite 307

good, accuracy on the spatial task is not so dif- 308
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Figure 3: Example extraction of semantic trees from depen-
dency parses. Predicate text in blue. Red arcs show paths
contributing spatial relation left and superlative largest. For
the superlative, we create a parent node with the original node
as the only child, effectively converting it into a relation.

ferent from random chance (50%). This indicates309

that the model scores of image-text pairs largely do310

not take spatial relations into account.311

3.3 Spatial Relation Resolver312

Since CLIP lacks sensitivity to spatial relations,313

we propose to decompose complex expressions314

into simpler primitives. The basic primitive is a315

predicate applying to an object, which we use CLIP316

to answer. The second primitive is a spatial relation317

between objects, for which we use heuristic rules.318

Predicates A predicate is a textual property that319

the referent must satisfy. For example, “the cat”320

and “blue airplane” are predicates. We write P (i)321

to say that object i satisfies the predicate P . We322

model P as a categorical distribution over objects,323

and estimate p(i) = Pr[P (i)] with the pre-trained324

model using isolated proposal scoring (§ 3.1).325

Relations We have already discussed the impor-326

tance of binary spatial relations like “the cat to the327

left of the dog” for the ReC task. We consider328

seven spatial relations–left, right, above, below,329

bigger, smaller, and inside. We write R(i, j) to330

mean that the relation R holds between objects i331

and j, and we use heuristics to determine the prob-332

ability r(i, j) = Pr[R(i, j)]. For example, for left,333

we set r(i, j) = 1 if the center point of box i is to334

the left of the center point of box j and r(i, j) = 0335

otherwise. §C.1 describes all relation semantics.336

Superlative Relations We also consider superla-337

tives, which refer to an object that has some relation338

to all other objects satisfying the same predicate,339

e.g. “leftmost dog”. We handle superlatives as a340

special case of relations where the empty second ar-341

gument is filled by copying the predicate specifying342

the first argument. Thus, “leftmost dog” effectively343

finds the dog that is most likely to the left of other344

dog(s). Our set of superlative relation types is the345

same as our set of relation types, excluding inside.346

Semantic Trees Having outlined the semantic 347

formalism underlying our method, we can describe 348

it procedurally. We first use spaCy (Honnibal and 349

Johnson, 2015) to build a dependency parse for the 350

expression. As illustrated in Figure 3, we extract 351

a semantic tree from the dependency parse, where 352

each noun chunk becomes a node, and dependency 353

paths between the heads of noun chunks become 354

relations between entities based on the keywords 355

they contain. See §C.2 for extraction details. 356

In the tree, each node N contains a predicate PN 357

and has a set of children; an edge (N,N ′) between 358

N and its child N ′ corresponds to a relation RN,N ′ . 359

For example, as shown in Figure 3, “a cat to the left 360

of a dog” would be parsed as a node containing the 361

predicate “a cat” connected by the relation left to its 362

child corresponding to “a dog”. We define πN (i) 363

as the probability that node N refers to object i, 364

and compute it recursively. For each node N , we 365

first set πN (i) = pN (i) and then iterate through 366

each child N ′ and update πN (i) as follows6: 367

π′
N (i) ∝ πN (i)

∑
j

Pr
[
RN,N ′(i, j) ∧ PN ′(j)

]
368

∝ πN (i)
∑
j

rN,N ′(i, j)πN ′(j). 369

The last line makes the simplifying assumption that 370

all predicates and relations are independent.7 371

To compute our final output, we ensemble the 372

distribution πroot for the root node with the output 373

of plain isolated proposal scoring (with the whole 374

input expression) by multiplying the proposal prob- 375

abilities elementwise. This method gives us a prin- 376

cipled way to combine predicates (PN ) with spatial 377

relational constraints (RN,N ′) for each node N . 378

4 Experiments 379

4.1 Datasets 380

We compare ReCLIP to other zero-shot methods on 381

RefCOCOg (Mao et al., 2016), RefCOCO and Re- 382

fCOCO+ (Yu et al., 2016). These datasets use im- 383

ages from MS COCO (Lin et al., 2014). RefCOCO 384

and RefCOCO+ were created in a two-player game, 385

and RefCOCO+ is designed to avoid spatial rela- 386

tions. RefCOCOg includes spatial relations and 387

has longer expressions on average. For comparing 388

zero-shot methods with the out-of-domain perfor- 389

mance of models trained on COCO, we use Re- 390

fGTA (Tanaka et al., 2019), which contains images 391

6Superlatives of a node are processed after all its relations.
7We write ∝ because π′

N (i) is normalized to sum to 1.

5



Model
RefCOCOg RefCOCO+ RefCOCO
Val Test Val TestA TestB Val TestA TestB

Random 18.12 19.10 16.29 13.57 19.60 15.73 13.51 19.20

Supervised SOTA 83.35 81.64 81.13 85.52 72.96 87.51 90.40 82.67

CPT-Blk w/ VinVL (Yao et al., 2021) 32.1 32.3 25.4 25.0 27.0 26.9 27.5 27.4
CPT-Seg w/ VinVL (Yao et al., 2021) 36.7 36.5 31.9 35.2 28.8 32.2 36.1 30.3

CLIP
CPT-adapted 22.26 23.66 23.76 21.57 25.92 23.12 21.46 26.93
GradCAM 50.96 49.72 47.81 56.90 37.72 42.91 51.05 35.23
ReCLIP w/o relations 57.76 57.13 47.43 50.05 43.91 41.97 43.45 39.98
ReCLIP 60.48 59.74 46.92 48.83 45.00 46.03 46.17 47.38

CLIP w/ Object Size Prior
CPT-adapted 28.98 30.12 26.59 25.25 27.20 26.11 25.35 28.09
GradCAM 52.35 51.27 49.40 59.59 38.64 44.66 53.47 36.21
ReCLIP w/o relations 59.25 58.95 54.51 60.18 46.23 48.57 53.63 40.77
ReCLIP 62.03 61.88 54.66 59.68 47.43 54.73 58.94 50.25

Table 2: Accuracy on the RefCOCOg, RefCOCO+ and RefCOCO datasets. ReCLIP outperforms other zero-shot methods on
RefCOCOg. On RefCOCO+ and RefCOCO, ReCLIP is on par with or better than GradCAM on average and has lower variance
between TestA and TestB, which correspond to different kinds of objects. When taking into account a prior on object size
(filtering out objects smaller than 5% of the image), GradCAM’s advantage on the TestA splits is erased. Best zero-shot results
in each column are in bold, and best zero-shot results using the size prior are underlined. CLIP results use an ensemble of the
RN50x16 and ViT-B/32 CLIP models. CPT-adapted is an adapted version of CPT-Blk. Supervised SOTA refers to MDETR
(Kamath et al., 2021); we use the EfficientNet-B3 version. All methods except MDETR use detected proposals from MAttNet
(Yu et al., 2018). CPT-Seg uses Mask-RCNN segmentation masks from Yu et al. (2018).

from the Grand Theft Auto video game. All re-392

ferring expressions in RefGTA correspond to peo-393

ple, and the objects (i.e. people) tend to be much394

smaller on average than those in RefCOCO/g/+.395

4.2 Implementation Details396

We use an ensemble of the CLIP RN50x16 and397

ViT-B/32 models (results for individual models are398

shown in Appendix F). GradCAM’s hyperparam-399

eter α controls the effect of the proposal’s area400

on its score. We select α = 0.5 for all models401

based on tuning on the RefCOCOg validation set.402

We emphasize that the optimal value of α for a403

dataset depends on the size distribution of ground-404

truth objects. ReCLIP also has a hyperparameter,405

namely the standard deviation σ. We try a few val-406

ues on the RefCOCOg validation set and choose407

σ = 100, as we show in Appendix E.4, isolated408

proposal scoring has little sensitivity to σ. As dis-409

cussed by (Perez et al., 2021), zero-shot experi-410

ments often use labeled data for model selection.411

Over the course of this work, we primarily exper-412

imented with the RefCOCOg validation set and413

to a lesser extent with the RefCOCO+ validation414

set. For isolated proposal scoring, the main vari-415

ants explored are documented in our ablation study416

(§4.6). Other techniques that we tried, including417

for relation-handling, and further implementation418

details are given in Appendix E. 419

4.3 Results on RefCOCO/g/+ 420

Table 2 shows results on RefCOCO, RefCOCO+, 421

and RefCOCOg. ReCLIP is better than the other 422

zero-shot methods on RefCOCOg and RefCOCO 423

and on par with GradCAM on RefCOCO+. How- 424

ever, GradCAM has a much higher variance in its 425

accuracy between the TestA and TestB splits of Re- 426

fCOCO+ and RefCOCO. We note that GradCAM’s 427

hyperparameter α, controlling the effect of pro- 428

posal size, was tuned on the RefCOCOg validation 429

set, and RefCOCOg was designed such that boxes 430

of referents are at least 5% of the image area (Mao 431

et al., 2016). In the bottom portion of Table 2, we 432

show that when this 5% threshold, a prior on object 433

size for this domain, is used to filter proposals for 434

both GradCAM and ReCLIP , ReCLIP performs on 435

par with/better than GradCAM on TestA. ReCLIP’s 436

spatial relation resolver helps on RefCOCOg and 437

RefCOCO but not on RefCOCO+, which is de- 438

signed to avoid spatial relations. 439

4.4 Results on RefGTA 440

Next, we evaluate on RefGTA to compare our 441

method’s performance to the out-of-domain accu- 442

racy of two state-of-the-art fully supervised ReC 443

models: UNITER-Large (Chen et al., 2020) and 444
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Model Valgt Valdet Testgt Testdet

Random 27.03 21.53 27.60 21.75
UNITER-LRefCOCO+ 45.18 42.77 46.09 43.31
UNITER-LRefCOCOg 47.15 46.32 47.64 46.87
MDETRRefCOCO+ – 38.49 – 39.02
MDETRRefCOCOg – 38.29 – 39.13
MDETRPretrained – 54.91 – 56.60
CLIP GradCAM 51.89 51.00 51.55 50.70
ReCLIP w/o relations 71.72 70.24 72.51 70.82
ReCLIP 70.44 68.78 71.32 69.59

Table 3: Accuracy on RefGTA dataset. ReCLIP w/o relations
outperforms all other methods. gt denotes use of ground-
truth proposals; det denotes use of detected proposals. Sub-
scripts RefCOCO+/RefCOCOg indicate finetuning dataset;
Pretrained indicates a model that is not finetuned. MDETR
does not take proposals as input, so the gt columns are blank.
We use the EfficientNet-B3 versions of MDETR. Bold indi-
cates best score in a column.

MDETR (Kamath et al., 2021).445

Like ReCLIP, UNITER takes proposals as in-446

put.8 We show results using ground-truth propos-447

als and detections from UniDet (Zhou et al., 2021),448

which is trained on the COCO, Objects365 (Shao449

et al., 2019), OpenImages (Kuznetsova et al., 2020),450

and Mapillary (Neuhold et al., 2017) datasets.9451

MDETR does not take proposals as input.452

Table 3 shows our results. ReCLIP’s accuracy453

is more than 12% higher than the accuracies of454

UNITER-Large and MDETR. ReCLIP also outper-455

forms GradCAM by about 20%. The rule-based456

relation resolver is not helpful on average in this457

setting. A key reason for this is that all proposals458

considered are people, and relations in the expres-459

sions often involve other objects.460

4.5 Using another Pre-trained Model461

In order to determine how isolated proposal scor-462

ing (IPS) compares to GradCAM and CPT on other463

pre-trained models, we present results using AL-464

BEF (Li et al., 2021). ALBEF offers two methods465

for scoring image-text pairs–the output used for466

its image-text contrastive (ITC) loss and the out-467

put used for its image-text matching (ITM) loss.468

The architecture providing the ITC output is very469

8UNITER requires features from the bottom-up
top-down attention model (Anderson et al., 2017).
We use https://github.com/airsplay/
py-bottom-up-attention to compute the features for
RefGTA. We note that for RefCOCO+ and RefCOCOg val
sets, using features computed from this repository rather than
the original features provided by the UNITER authors results
in an accuracy decrease of 1.47% (RefCOCO+) and 2.08%
(RefCOCOg) when using ground-truth proposals.

9For UniDet, we use the confidence threshold of 0.5 sug-
gested by the authors, and filter out the non-person proposals.

Model RefCOCOg RefCOCO+(A) RefCOCO+(B)

ALBEF ITM (Deep modality interaction)
CPT-adapted 24.99 26.83 26.43
GradCAM 55.92 61.75 42.79
IPS 55.21 51.82 42.63

ALBEF ITC (Shallow modality interaction)
CPT-adapted 21.10 19.00 21.33
GradCAM 47.53 44.60 36.00
IPS 54.07 45.90 39.58

Table 4: Accuracy on RefCOCOg and RefCOCO+ test sets
using ALBEF pre-trained model. IPS does best when using
ALBEF’s ITC architecture, while GradCAM is better for ITM.

Isolation type RefCOCOg RefCOCO+

Crop 54.53 41.24
Blur 56.00 47.29
max(Crop,Blur) 55.84 44.56
Crop+Blur 57.76 47.43

Table 5: Ablation study of isolation types used to score propos-
als on Val splits of RefCOCOg/RefCOCO+, using detections
from MAttNet (Yu et al., 2018). Crop+Blur is best overall.

similar to CLIP–has only a shallow interaction be- 470

tween the image and text modalities. The ITM 471

output is given by an encoder that has deeper in- 472

teractions between image and text and operates 473

on top of the ITC encoders’ output. Appendix D 474

provides more details. The results, shown in Ta- 475

ble 4, show that with the ITC output, IPS performs 476

better than GradCAM, but with the ITM output, 477

GradCAM performs better. This suggests that IPS 478

works well across models like CLIP and ALBEF 479

ITC (i.e. contrastively pre-trained with shallow 480

modality interactions) but that GradCAM may be 481

better for models with deeper interactions. 482

4.6 Analysis 483

Performance of IPS Our results show that 484

among the region scoring methods that we consider, 485

IPS achieves the highest accuracy for contrastively 486

pre-trained models like CLIP. Figure 4a gives in- 487

tuition for this—aside from an object’s attributes, 488

many referring expressions describe the local con- 489

text around an object, and IPS focuses on this local 490

context (as well as object attributes). 491

Table 5 shows that using both cropping and blur- 492

ring obtains greater accuracy than either alone. 493

Limitations Although ReCLIP outperforms the 494

baselines that we consider, there is a considerable 495

gap between it and supervised methods. The prin- 496

cipal challenge in improving the system is making 497

relation-handling more flexible. There are several 498

object relation types that our spatial relation re- 499

solver cannot handle; for instance, those that in- 500
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(a) ReCLIP is correct, while GradCAM is incorrect

(b) Both ReCLIP and GradCAM are incorrect

Figure 4: RefCOCOg validation examples. Ground-
truth boxes are green, ReCLIP predictions are blue, and
GradCAM predictions are red. In 4a, ReCLIP makes the
correct prediction based on local context. In 4b, ReCLIP
grounds an incorrect noun chunk from the expression.

volve counting: “the second dog from the right.”501

Another challenge is in determining which rela-502

tions require looking at multiple proposals. For503

instance, ReCLIP selects a proposal corresponding504

to the incorrect noun chunk in Figure 4b because505

the relation resolver has no rule for splitting an506

expression on the relation “with.” Depending on507

the context, relations like “with” may or may not508

require looking at multiple proposals, so handling509

them is challenging for a rule-based system.510

5 Related Work511

Referring expression comprehension Datasets512

for ReC span several visual domains, including513

photos of everyday scenes (Mao et al., 2016;514

Kazemzadeh et al., 2014), video games (Tanaka515

et al., 2019), objects in robotic context (Shridhar516

et al., 2020; Wang et al., 2021), and webpages517

(Wichers et al., 2018). Spatial heuristics have been518

used in previous work (Moratz and Tenbrink, 2006).519

There is a long line of work in weakly supervised520

ReC, where at training time, pairs of referring ex-521

pressions and images are available but the ground-522

truth bounding boxes for each expression are not523

(Rohrbach et al., 2016; Liu et al., 2019; Zhang524

et al., 2018, 2020; Sun et al., 2021). Our setting dif-525

fers from the weakly supervised setting in that the 526

model is not trained at all on the ReC task. Sadhu 527

et al. (2019) discuss a zero-shot setting different 528

from ours in which novel objects seen at test time, 529

but the visual domain stays the same. 530

Pre-trained vision and language models Early 531

pre-trained vision and language models (Tan and 532

Bansal, 2019; Lu et al., 2019; Chen et al., 2020) 533

used a cross-modal transformer (Vaswani et al., 534

2017) and pre-training tasks like masked language 535

modeling, image-text matching, and image feature 536

regression. By contrast, CLIP and similar models 537

(Radford et al., 2021; Jia et al., 2021) use a sepa- 538

rate image and text transformer and a contrastive 539

pre-training objective. Recent hybrid approaches 540

augment CLIP’s architecture with a multi-modal 541

transformer (Li et al., 2021; Zellers et al., 2021). 542

Zero-shot application of pre-trained models 543

Models pre-trained with the contrastive objective 544

have exhibited strong zero-shot performance in im- 545

age classification tasks (Radford et al., 2021; Jia 546

et al., 2021). Gu et al. (2021) use CLIP can be 547

to classify objects by computing scores for class 548

labels with cropped proposals. Our IPS is different 549

in that it isolates proposals by both cropping and 550

blurring. Shen et al. (2021) show that a simple 551

zero-shot application of CLIP to visual question 552

answering performs almost on par with random 553

chance. Yao et al. (2021) describe a zero-shot 554

method for ReC based on a pre-trained masked lan- 555

guage model (MLM); we show that their zero-shot 556

results and a version of their method adapted for 557

models pre-trained to compute image-text scores 558

(rather than MLM) are substantially worse than 559

isolated proposal scoring and GradCAM. 560

6 Conclusion 561

We present ReCLIP, a zero-shot method for refer- 562

ring expression comprehension (ReC) that decom- 563

poses an expression into subqueries, uses CLIP to 564

score isolated proposals against these subqueries, 565

and combines the outputs with spatial heuristics. 566

ReCLIP outperforms zero-shot ReC approaches 567

from prior work and also performs well across vi- 568

sual domains: ReCLIP outperforms state-of-the-art 569

supervised ReC models, trained on natural images, 570

when evaluated on RefGTA. We also find that CLIP 571

has low zero-shot spatial reasoning performance, 572

suggesting the need for pre-training methods that 573

account more for spatial reasoning. 574
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7 Ethical and Broader Impacts575

Recent work has shown that pre-trained vision and576

language models suffer from biases such as gender577

bias (Ross et al., 2021; Srinivasan and Bisk, 2021).578

Given that CLIP was trained on data collected from579

the web and not necessarily curated carefully, CLIP580

could suffer from such biases as well. Therefore,581

we do not advise deploying our system directly582

in the real world immediately. Instead, practition-583

ers interested in this system should first perform584

analysis to measure its biases based on previous585

work and attempt to mitigate them. We also note586

that our work relies heavily on a pre-trained model587

whose pre-training required a great deal of energy,588

which likely had negative environmental effects.589

That being said our zero-shot method does not re-590

quire training a new model and in that sense could591

be more environmentally friendly than supervised592

ReC models (depending on the difference in the593

cost of inference).594
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Figure 5: The visual representation of a proposal us-
ing CPT-adapted. The example is taken from the Ref-
COCOg validation set.

Figure 6: An example of isolating proposals by blurring
the remainder of the image using σ = 100

A Visualization of Region-Scoring 830

Methods 831

A.1 Colorful Prompt Tuning (CPT) 832

Figure 5 shows an example of the visual represen- 833

tation of a proposal using CPT-adapted. 834

A.2 Isolated Proposal Scoring (IPS) 835

Figure 6 shows the blurred versions of the propos- 836

als for an image using σ = 100. 837

B Synthetic Spatial Reasoning 838

Experiment 839

Figure 7 gives an example of the text-pairs version 840

of the synthetic tasks. 841

Figure 8 gives an example of the image-pairs 842

version of the synthetic tasks. 843
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Figure 7: Example image for the synthetic text-pair
tasks. For the spatial task, the text pair corresponding
to this image is “a yellow cube is in front of a blue
cube.” (correct) and “a yellow cube is behind a blue
cube.” (incorrect). For the non-spatial (control) task, the
text pair corresponding to this image is “a blue cube and
a yellow cube” (correct) and “a blue cube and a yellow
sphere” (incorrect).

(a) “a blue cube to the left of a yellow cube.”

(b) “a blue cube and a yellow cube”

Figure 8: Examples of the image-pairs version of the
spatial ( 8a) and non-spatial ( 8b) tasks. In each case,
the left image is the correct one.

C Semantic Formalism844

C.1 Relation Semantics845

We use deterministic heuristics to compute the se-846

mantics of the following six relations: left, right,847

above, below, bigger, and smaller. On the other848

hand, we treat inside as a random variable, and use849

heuristics to compute the value of its parameter.850

For R ∈ {left, right, above, below}, we compute851

R(i, j) by checking whether R holds between the852

center point of box i and box j. For example, if the853

center point of i is to the left of the center point of854

box j, then left(i, j) = 1.855

We compute bigger(i, j) and smaller(i, j) sim-856

ply by comparing the areas of boxes i and j. For857

example, bigger(i, j) checks that the area of box i858

is greater than the area of box j. 859

Finally, for R = inside, we parameterize r(i, j) 860

as the ratio between the are of the intersection of 861

boxes i, j compared to the area of box i. Thus, 862

unlike the other six deterministic rules, inside is 863

modeled as a random variable. 864

C.2 Relation Extraction 865

We identify noun chunks in the dependency parse 866

as predicates. We then extract relations by looking 867

for dependency paths between the heads of noun 868

chunks that contain the following keywords: 869

• left: “left”, “west” 870

• right: “right”, “east” 871

• above: “above”, “north”, “top”, “back”, “be- 872

hind” 873

• below: “below”, “south”, “under”, “front” 874

• bigger: “bigger”, “larger”, “closer” 875

• smaller: “smaller”, “tinier”, “further” 876

• inside: “inside”, “within”, “contained” 877

We extract superlative relations by looking for de- 878

pendency paths off the head of a noun chunk con- 879

taining the following keywords: 880

• left: “left”, “west”, “leftmost”, “western” 881

• right: “right”, “rightmost”, “east”, “eastern” 882

• above: “above”, “north”, “top” 883

• below: “below”, “south”, “underneath”, 884

“front” 885

• bigger: “bigger”, “biggest”, “larger”, 886

“largest”, “closer”, “closest” 887

• smaller: “smaller”, “smallest”, “tinier”, “tini- 888

est”, “further”, “furthest” 889

D Description of ALBEF 890

The ALBEF model has an image-only transformer 891

and a text-only transformer like CLIP but also has 892

a multi-modal transformer that operates on the out- 893

puts of these two transformers. ALBEF is pre- 894

trained with three losses: (1) an image-text con- 895

trastive (ITC) loss that works just like CLIP’s and 896

uses the outputs of the image-only and text-only 897

transformers, (2) an image-text matching (ITM) 898
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Model
Text-pair Text-pair Image-pair Image-pair
Spatial Non-spatial Spatial Non-spatial

ALBEF ITM 49.83 92.20 53.74 90.75
ALBEF ITC 49.83 85.42 51.54 72.25

Table 6: Accuracy on CLEVR image-text matching task. AL-
BEF performs well on the non-spatial version of the task but
poorly on the spatial version. Text-pair tasks have 295 in-
stances each; image-pair tasks have 227 instances each.

loss–where the task is to decide whether a given899

image-text pair match–which uses the outputs of900

the multi-modal encoder, and (3) a masked lan-901

guage modeling loss which uses the outputs of the902

multi-modal encoder. We explore both the ITC and903

ITM scores in our experiments. ALBEF was pre-904

trained on roughly 15M image-caption pairs from905

conceptual captions (Sharma et al., 2018), SBU906

Captions (Ordonez et al., 2011), COCO (Lin et al.,907

2014), and Visual Genome (Krishna et al., 2016).10908

D.1 ALBEF Performance on Synthetic Spatial909

Reasoning Experiment910

Table 6 shows the zero-shot accuracy of ALBEF911

ITM and ITC in the synthetic spatial reasoning912

experiment described in §3.2.913

E Implementation Details914

E.1 Text prompt915

For ALBEF, we pass the input expression directly916

to the model, whereas for CLIP, when using Grad-917

CAM and ReCLIP (with or without relations), we918

use the prefix “a photo of” following the authors’919

observations (Radford et al., 2021). For CPT, the920

prompt is given in § 2.3.921

E.2 Position embeddings922

Both CLIP and ALBEF use fixed-size position em-923

beddings, so either the input image must be resized924

to fit the dimensions of the embeddings or the size925

of the embeddings must be changed. For all mod-926

els, we resize the image to match the model’s vi-927

sual input resolution. Resizing of images is done928

via bicubic interpolation. Figure 9 shows the how929

the performance of the GradCAM method varies930

between resizing images and resizing embeddings–931

for CLIP RN50x16, there is very little difference,932

while for CLIP ViT-B/32 image resizing makes a933

larger difference.934

10As noted by the ALBEF authors, validation/test images
of RefCOCO+ and RefCOCOg are included in the training set
of COCO.

Figure 9: CLIP RN50x16 and ViT-B/32 Performance us-
ing GradCAM on RefCOCOg validation set comparing
resizing of images with resizing of position embeddings,
across 10 values of α. These results use ground-truth
proposals.

Hyperparameters Specifically, we evaluate each 935

value in the set {0.2, 0.4, 0.6, 0.8, 1.0} and choose 936

the best. The chosen values are α = 0.8 for CLIP 937

RN50x16 and ALBEF ITC and α = 1.0 for CLIP 938

ViT-B/32. 939

E.3 GradCAM Layer 940

For CLIP ViT-B/32, we use the last layer of 941

the visual transformer for GradCAM. For CLIP 942

RN50x16, we use output of layer 4 for GradCAM. 943

For ALBEF ITM, we use the third layer of the 944

multi-modal transformer for GradCAM (following 945

Li et al. (2021)). For ALBEF ITC, we use the final 946

layer of the visual transformer for GradCAM. 947

E.4 Hyperparameter sensitivity 948

Figure 9 shows the sensitivity of the GradCAM 949

method to α for the two CLIP models. We choose 950

α = 0.5 for all models (including ALBEF), which 951

results in the best accuracy for almost models. 952

For ViT-B/32, α = 0.6 yields slightly higher ac- 953

curacy by (0.1%) on the RefCOCOg validation 954

set. Figure 10 shows the sensitivity of the IPS 955

method to the blur standard deviation σ for the 956

CLIP RN50x16 model. As shown, the method has 957

little sensitivity to σ above σ = 20. 958

E.5 Experimentation on validation set 959

As discussed by Perez et al. (2021), research on the 960

zero-shot setting often uses labeled data for model 961

selection. Aside from variants of IPS documented 962

in our ablation study (§4.6), we also experimented 963
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Figure 10: CLIP RN50x16 Performance using IPS on
RefCOCOg validation set for different values of blur
standard deviation σ. These results use ground-truth
proposals.

on the RefCOCOg validation set (and to a lesser964

extent on the RefCOCO+ validation set) with:965

1. Drawing a rectangle around the proposal and966

using an appropriate text prompt. Perfor-967

mance was somewhat similar to CPT perfor-968

mance.969

2. Ensembling the original text prompt with a970

text prompt having only the noun chunk of971

the expression containing the head word. This972

helped for IPS and is in a sense part of our973

rule-based relation-handling.974

3. Other techniques for handling superlatives.975

For instance, we tried to compute Pr[PN (i)∧976 ∧
j ̸=i(¬PN (j) ∨ (PN (j) ∧ R(i, j)))]. This977

performed worse than our chosen technique978

on the RefCOCOg validation set.979

Most of these preliminary experiments were per-980

formed using the area threshold mentioned in §4.3.981

E.6 Description of Computing Infrastructure982

We primarily used a machine with Quadro RTX983

8000 GPUs and Google Cloud machines with V100984

GPUs. These machines used Ubuntu as the operat-985

ing system.986

E.7 Dataset Information987

All datasets that we use are focused on English.988

The COCO dataset can be downloaded from989

https://cocodataset.org/#download.990

The RefCOCO/g/+ datasets can be down-991

loaded from https://github.com/992

lichengunc/refer/tree/master/data. 993

The RefGTA dataset can be downloaded 994

from https://github.com/mikittt/ 995

easy-to-understand-REG/tree/ 996

master/pyutils/refer2. The RefCOCOg 997

validation set has 4896 instances, the RefCOCOg 998

test set has 9602 instances, the RefCOCO+ 999

validation set has 10758 instances, the RefCOCO+ 1000

TestA set has 5726 instances, the RefCOCO+ 1001

TestB set has 4889 instances, the RefCOCO 1002

validation set has 10834 instances, the RefCOCO 1003

TestA set has 5657 instances, the RefCOCO TestB 1004

set has 5095 instances, the RefGTA validation set 1005

has 17766 instances, and the RefGTA test set has 1006

17646 instances. 1007

F Additional Experiment Results 1008

Table 7 shows full results on the RefCOCOg and 1009

RefCOCO+ datasets. Table 8 shows full results on 1010

the RefCOCO dataset. 1011
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Model
RefCOCOg RefCOCO+

Valg Vald Testg Testd Valg Vald TestAg TestAd TestBg TestBd

Random 20.18 18.117 20.34 19.10 16.73 16.29 12.57 13.57 22.13 19.60

UNITER-L (supervised; Chen et al. (2020)) 87.85 74.86 87.73 75.77 84.25 75.90 86.34 81.45 79.75 75.77
MDETR (supervised; Kamath et al. (2021)) – 83.35 – 81.64 – 81.13 – 85.52 – 72.96

Weakly supervised (non-pretrained; Sun et al. (2021)) – – – – 39.18 38.91 40.01 39.91 38.08 37.09

CPT-Blk w/ VinVL (Yao et al., 2021) – 32.1 – 32.3 – 25.4 – 25.0 – 27.0
CPT-Seg w/ VinVL (Yao et al., 2021) – 36.7 – 36.5 – 31.9 – 35.2 – 28.8

CLIP RN50x16
CPT-adapted 27.74 25.10 28.82 26.04 24.43 22.14 20.26 19.54 27.78 25.63
GradCAM 54.47 48.35 53.71 47.47 48.27 44.59 52.81 52.71 41.17 35.63
ReCLIP w/o relations 62.46 55.94 62.00 54.35 47.06 44.06 46.49 45.98 49.44 41.87
ReCLIP 65.32 57.84 65.10 56.56 46.87 43.44 45.02 44.69 50.50 42.77

CLIP ViT-B/32
CPT-adapted 24.10 21.90 24.76 22.78 25.08 23.44 22.27 21.71 28.57 26.24
GradCAM 54.00 49.55 54.01 48.57 48.01 44.65 52.15 50.77 43.77 39.03
ReCLIP w/o relations 62.40 55.33 61.78 54.35 48.61 45.05 50.21 48.25 47.21 41.56
ReCLIP 66.14 57.88 64.84 56.88 48.71 44.93 49.56 47.66 48.66 42.61

CLIP Ensemble
CPT-adapted 26.02 22.26 25.79 23.66 25.52 23.76 21.95 21.57 29.98 25.92
GradCAM 56.94 50.96 56.23 49.72 51.06 47.81 57.82 56.90 43.16 37.72
ReCLIP w/o relations 65.26 57.76 64.64 57.13 51.56 47.43 51.76 50.05 50.93 43.91
ReCLIP 68.61 60.48 67.89 59.74 51.63 46.92 50.26 48.83 51.81 45.00

Table 7: Accuracy on the RefCOCOg and RefCOCO+ datasets. ReCLIP outperforms other zero-shot methods on RefCOCOg.
On RefCOCO+, ReCLIP is roughly on par with GradCAM but has lower variance between TestA and TestB, which correspond
to different kinds of objects. Subscript g indicates ground-truth proposals are used, and d indicates detected proposals are used.
Best zero-shot results for each model and each column are in bold. See Table 2 for results using object size prior.

Model
RefCOCO

Valg Vald TestAg TestAd TestBg TestBd

Random 16.37 15.73 12.45 13.51 21.32 19.20

UNITER-L (supervised; Chen et al. (2020)) 91.84 81.41 92.65 87.04 91.19 74.17
MDETR (supervised; Kamath et al. (2021)) – 87.51 – 90.40 – 82.67

Weakly supervised (non-pretrained; Sun et al. (2021)) 39.21 38.35 41.14 39.51 37.72 37.01

CPT-Blk w/ VinVL (Yao et al., 2021) – 26.9 – 27.5 – 27.4
CPT-Seg w/ VinVL (Yao et al., 2021) – 32.2 – 36.1 – 30.3

CLIP RN50x16
CPT-adapted 23.35 21.47 19.30 18.68 28.38 25.28
GradCAM 44.01 40.47 47.32 46.46 38.12 33.70
ReCLIP w/o relations 40.59 37.63 39.14 38.45 43.53 37.04
ReCLIP 46.22 41.51 41.45 40.73 53.27 46.05

CLIP ViT-B/32
CPT-adapted 25.22 23.71 23.28 22.77 28.40 25.99
GradCAM 45.38 42.30 50.15 49.09 41.55 36.62
ReCLIP w/o relations 44.35 40.60 45.04 44.02 43.49 37.57
ReCLIP 49.93 45.85 48.24 47.34 52.72 46.28

CLIP Ensemble
CPT-adapted 24.82 23.12 21.69 21.46 28.99 26.93
GradCAM 46.67 42.91 51.86 51.05 40.10 35.23
ReCLIP w/o relations 45.65 41.97 45.11 43.45 45.50 39.98
ReCLIP 50.83 46.03 47.29 46.17 55.96 47.38

Table 8: Accuracy on the RefCOCO dataset. Subscript g indicates ground-truth proposals are used, and d indicates detected
proposals are used. Best zero-shot results for each model and each column are in bold. See Table 2 for results using object size
prior.
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