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ABSTRACT

Cis-regulatory elements (CREs), such as promoters and enhancers, are relatively
short DNA sequences that directly regulate the expression of specific genes. The
fitness of CRE, i.e., its functionality to enhance gene expression, highly depend on
its nucleotide sequence, especially the composition of some special motifs known
as transcription factor binding sites (TFBSs). Designing CREs to optimize their
fitness is crucial for therapeutic and bioengineering applications. Existing CRE
design methods often rely on simple strategies, such as iteratively introducing
random mutations and selecting variants with high fitness from a large number of
candidates through an oracle, i.e., a pre-trained gene expression prediction model.
Due to the vast search space and lack of prior biological knowledge guidance,
these methods are prone to getting trapped in local optima and tend to produce
CREs with low diversity. In this paper, we propose the first method that leverages
reinforcement learning (RL) to fine-tune a pre-trained autoregressive (AR) gener-
ative model for designing high-fitness cell-type-specific CREs while maintaining
sequence diversity. We employ prior knowledge of CRE regulatory mechanisms
to guide the optimization by incorporating the role of TFBSs into the RL process.
In this way, our method encourages the removal of repressor motifs and the ad-
dition of activator motifs. We evaluate our method on enhancer design tasks for
three distinct human cell types and promoter design tasks in two different yeast
media conditions, demonstrating its effectiveness and robustness in generating
high-fitness CREs.

1 INTRODUCTION

Cis-regulatory elements (CREs), such as promoters and enhancers, are short functional DNA se-
quences that regulate gene expression in a cell-type-specific manner. Promoters determine when
and where a gene is activated, while enhancers boost gene expression levels. Over the past decade,
millions of putative CREs have been identified, but these naturally evolved sequences only represent
a small fraction of the possible genetic landscape and are not necessarily optimal for specific expres-
sion outcomes. It is crucial to design synthetic CREs with desired fitness (measured by their ability
to enhance gene expression) as they have broad applications in areas such as gene therapy (Boye
et al., 2013), synthetic biology (Shao et al., 2024), precision medicine (Collins & Varmus, 2015),
and agricultural biotechnology (Gao, 2018).

Previous attempts to explore alternative CREs have relied heavily on directed evolution, which in-
volves iterative cycles of mutation and selection in wet-lab settings (Wittkopp & Kalay, 2012; Heinz
et al., 2015). This approach is sub-optimal due to the vastness of the DNA sequence space and the
significant time and cost required for experimental validation. For example, a 200 base pair (bp)
DNA sequence can have up to 2.58× 10120 possible combinations (Gosai et al., 2023), far exceed-
ing the number of atoms in the observable universe. Thus, efficient computational algorithms are
needed to narrow down the design space and prioritize candidates for wet-lab testing.

Advances in high-throughput sequencing technologies, such as massively parallel reporter assays
(MPRAs) (de Boer et al., 2020; Vaishnav et al., 2022), have enabled the screening of large libraries
of random DNA sequences and the measurement of their activity in specific cell types. Based on
these data, two categories of deep learning approaches for CRE modeling have been developed. One
category focuses on training predictive models (Avsec et al., 2021; Mallet & Vert, 2021) to estimate

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: (A) TFBS are commonly represented as frequency matrices, indicating the probability
of each nucleotide appearing at specific positions within the binding site. (B) GATA2 and HNF1B
specifically activate gene expression in blood cells and liver cells, respectively, while REST specifi-
cally represses gene expression in neural cells.

the fitness of CREs based on their sequences. The other category builds conditional generative
models (Avdeyev et al., 2023b; Li et al., 2024b; Avdeyev et al., 2023a; Lal et al., 2024) to model the
conditional distribution of CREs. However, these approaches cannot directly design new CREs with
desired properties.

Recent studies have begun using fitness prediction models as oracles to guide CRE optimization, en-
abling the exploration of sequences that outperform naturally occurring ones (Vaishnav et al., 2022;
de Almeida et al., 2024). These methods typically rely on straightforward optimization approaches,
such as genetic algorithms or greedy-based directed evolution, which involve two iterative steps:
randomly mutating sequences selected in the previous step to form candidates and selecting those
with high fitness through an oracle. The entire search space of all possible candidates is vast, but the
exploration in each step is performed by heuristic random mutations. Neither empirically learned
policies nor any prior biological knowledge are used to guide exploration. As a consequence, these
methods are prone to getting trapped in local optima and the produced CREs tend to lack diversity
and interpretability.

Inspired by the success of using Reinforcement Learning (RL) for finetuning autoregressive (AR)
generative language models (Brown et al., 2020; Ouyang et al., 2022; Liu et al., 2024), we propose
the first RL for AR model-based method to design cell-type-specific CREs. We pretrain state-of-
the-art (SOTA) AR DNA generative models HyenaDNA (Nguyen et al., 2024b; Lal et al., 2024) on
CREs to capture their authentic distribution, ensuring the generation of realistic and diverse CRE
sequences. During RL finetuning, we treat the current AR model as the policy network, and utilize
the fitness predicted by an oracle as the reward signal. This allows us to update the model parameters
to generate CRE sequences that not only maintain diversity but also exhibit high fitness.

Model yeast human
complex defined hepg2 k562 sknsh

Enformer
(Sequence Feature) 0.87 0.91 0.83 0.85 0.85

LightGBM
(TFBS Frequency Feature) 0.63 0.65 0.65 0.65 0.66

Table 1: Pearson correlation coefficient of the
Oracle on the test set. Enformer is a SOTA DNA
backbone model that uses DNA sequences as in-
put, while LightGBM is a simple decision tree
model that uses TFBS occurrence frequencies as
input.

Additionally, we incorporate domain knowl-
edge of CREs into our RL process. The
regulatory syntax of CREs is largely dictated
by the transcription factors (TFs) that bind to
them (Gosai et al., 2023; de Almeida et al.,
2024; Lal et al., 2024; Zhang et al., 2023).
TFs are proteins that directly influence gene ex-
pression by binding to specific sequence motifs
within CREs, known as TF binding sites (TF-
BSs), and modulating transcriptional activity.
For instance, Fig. 1(A) shows the motif pattern
recognized by the GATA2 TF. Furthermore, the
effects of TFs can vary widely depending on the
cell type. As shown in Fig. 1 (B), GATA2 and
HNF1B are TFs that specifically activate gene expression in blood cells and liver cells (Lal et al.,
2024), respectively, while REST acts as a repressor of gene expression in neural cells (Zullo et al.,
2019), illustrating the cell-type-specific nature of TF activity.
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The effect of a TF can be broken down into its intrinsic role as an activator or repressor (referred
to as its ”vocabulary”) and its interactions with other TFs (such as composition and arrangement).
We found that simply using the frequency of TFBS occurrences within a sequence as features can
achieve reasonably good fitness prediction performance when trained with a decision tree model
LightGBM (Ke et al., 2017). As shown in Tab. 1, the current SOTA DNA model, Enformer, achieves
a Pearson correlation of 0.83 on the test set for predicting fitness in the HepG2 cell line using se-
quence data as input. In contrast, using only simple TFBS frequency features—without any explicit
sequence information—achieved a Pearson correlation of 0.65. This demonstrates that even without
leveraging sequence details, TF frequency alone can capture a significant portion of the predic-
tive power. Furthermore, we use the trained LightGBM (Ke et al., 2017) model to infer whether
each TFBS feature promotes or represses fitness, which allows us to explicitly incorporate TFBS
domain knowledge into our RL process. We name our proposed method TACO: TFBS-Aware
Cis-Regulatory Element Optimization, which integrates RL finetuning of AR models with domain
knowledge of TFBSs to enhance CRE optimization.

Our main contributions are as follows:

• We are the first to introduce the RL paradigm to AR DNA models for CRE design, allowing
the generated sequences to not only maintain high diversity but also explore those with
higher functional performance.

• We incorporate key TFBS information by inferring their regulatory roles and integrat-
ing their impact directly into the generation process, allowing for joint data-driven and
knowledge-driven exploration guidance.

• We evaluate our approach on real-world datasets, including yeast promoter designs from
two media and human enhancer designs from three cell lines.

2 RELATED WORK

Conditional DNA Generative Models. DDSM (Avdeyev et al., 2023a) was the first to apply
diffusion models to DNA design. By leveraging classifier-free guidance Ho & Salimans (2022), the
model conditioned DNA sequences on promoter expression levels. Following this, several works
have employed diffusion models for CRE design Li et al. (2024b); DaSilva et al. (2024); Sarkar et al.
(2024); Avdeyev et al. (2023b). In addition to diffusion models, RegLM (Lal et al., 2024) utilized
prefix-tuning on the AR DNA language model HyenaDNA (Nguyen et al., 2024b), incorporating
tokens that encode expression strength to fine-tune the model specifically for CRE design. However,
these generative methods are designed to fit existing data distributions, limiting their ability to design
sequences that have yet to be explored by humans.

DNA Sequence Optimization. Early DNA optimization methods (Jain et al., 2022; Angermueller
et al., 2019; Zeng et al., 2024) primarily focused on optimizing short TFBS motifs (6-8bp). With the
availability of larger CRE fitness datasets, Vaishnav et al. (2022) applied genetic algorithms to design
CREs. Recent works, such as Gosai et al. (2023), explored greedy approaches like AdaLead (Sinai
et al., 2020), simulated annealing (Van Laarhoven et al., 1987), and gradient-based SeqProp (Linder
& Seelig, 2021). Similarly, Taskiran et al. (2024) combined greedy strategies with directed evolu-
tion. However, these methods often start from random sequences, generating biologically irrelevant
sequences, or begin with observed high-fitness sequences, leading to local optima and limited di-
versity. In contrast, we initialize optimization with a pretrained generative model and refine it using
RL, addressing both issues.

Motif-based Machine Learning. Motifs are often regarded as small, critical elements in scientific
data, such as functional groups in molecules or TFBS in DNA sequences. In machine learning,
explicitly modeling these motifs can provide significant benefits. For example, motifs have been
successfully used in molecular optimization (Jin et al., 2020; Chen et al., 2021), molecular genera-
tion Geng et al., molecular property prediction (Zhang et al., 2021), and DNA language models (An
et al., 2022). In the context of DNA CREs, TFBS are widely considered the most important motifs.
TFBS typically exhibit cell-type specificity, i.e., the same TFBS may play different roles in different
cell types. Our approach is inspired by de Almeida et al. (2024), who observed that during direct
evolution guided by an oracle, there is a tendency to first remove repressor TFBS and subsequently
add enhancer TFBS to optimize the sequences.
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Algorithm 1 TACO: RL-Based Fine-tuning for Autoregressive DNA Models

Require: Low-fitness dataset D∗, TFBS vocabulary T , Oracle qθ, Pretrained AR model πθ, Num-
ber of Optimization Rounds E

1: Preprocessing:
2: Train LightGBM model on TFBS frequency features h(x) from dataset D∗

3: Compute SHAP values ϕi(x) for each TFBS ti
4: Update TFBS rewards rTFBS(t) based on equation 6
5: for round e = 1 to E do
6: Sample a batch of sequences {xi} from policy πθ

7: for each sequence xi do
8: for time step t = 1 to L do
9: Generate nucleotide at using πθ(at|a<t)

10: Observe state st = (a1, . . . , at−1)
11: if at results in TFBS t ∈ T then
12: Assign reward r(st, at)← rTFBS(t)
13: else
14: Assign reward r(st, at)← 0
15: end if
16: end for
17: Obtain fitness reward rfitness from oracle qθ(xi)

18: Compute total reward R←
∑L

t=1 r(st, at) + rfitness
19: end for
20: Update policy πθ using REINFORCE:

θ ← θ + α∇θEπθ
[R log πθ(at|st)]

21: end for

3 METHOD

3.1 PROBLEM FORMULATION

We define a DNA sequence x = (x1, · · · , xL) as a string of nucleotides with length L, where xi ∈ V
is the nucleotide at the i-th position, and V is the vocabulary of 4 nucleotides (A, T, C, G). In our CRE
optimization task, we assume the availability of a large-scale dataset of CRE sequences with fitness
measurements D = {(x1, f(x1)), · · · , (xN , f(xN ))} to train an ideal in-silico oracle qθ, where N
is the number of sequences in the dataset and f(x) represents the fitness measurement for sequence
x. Here, we use the term fitness to denote the desired regulatory activity of a CRE sequence. We
follow the setting used in protein optimization (Kirjner et al., 2023; Lee et al., 2024) by sampling a
set of low-fitness sequences D∗ from D, which includes only sequences with fitness values below a
certain percentile ofD∗. This approach helps avoid generating sequences with fitness values outside
the observed range, thereby ensuring the reliability of oracle predictions.Note that the dataset D is
cell-type-specific, meaning that each sequence’s fitness value corresponds to its regulatory activity
within a specific cell type.

3.2 OVERVIEW

Our method consists of two main components. The first component involves fine-tuning an AR
generative model, pretrained on CRE sequences, using RL (see Fig. 2). The second component is
a data-driven approach to infer the role of TFBSs in a cell-type-specific manner within the given
dataset (see Fig. 3). The inferred roles are then incorporated into the RL process to guide sequence
generation. The complete algorithmic workflow is presented in Alg. 1.

3.3 RL-BASED FINETUNING FOR AUTOREGRESSIVE DNA MODELS

Pretraining AR Model. First, we pretrain an AR model on the low-fitness dataset D∗ follow-
ing (Lal et al., 2024), using the HyenaDNA architecture (Nguyen et al., 2024b) (More details in
Appendix D), which achieves strong performance on DNA tasks by maintaining both linear com-
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Figure 2: The autoregressive generation of a DNA sequence. An AR model for sequence gen-
eration can be viewed as an RL policy, where the actions at represent the next nucleotides to be
appended to the sequence, and the state is the concatenation of all actions taken up to time t− 1. If
an action generates a TFBS that is known to be repressive, a negative reward is given. Conversely,
generating a TFBS with activating properties results in a positive reward. The final sequence is eval-
uated using an oracle to obtain a fitness reward.

plexity and high performance. The pretrained AR model, denoted as πθ, is trained to predict the
probability distribution of the next nucleotide given the preceding sequence:

min
θ

Ex∼D∗

[
L∑

t=1

− log pθ(at = At | At−1, · · · , A0)

]
, (1)

where At represents the nucleotide at position t, which corresponds to the action at taken by the
model. This alignment ensures that the notation for nucleotides is consistent with the actions in the
RL setting. Pretraining onD∗ helps the policy learn to generate sequences that already resemble the
true CRE distribution (Jin et al., 2020; Chen et al., 2021), providing a good initialization for RL fine-
tuning and promoting diversity in the generated sequences. Moreover, using the generative model
as the policy ensures that the generated CREs maintain high diversity throughout the optimization
process.

RL-Based Finetuning for AR DNA Models. Next, we formulate the RL finetuning process as a
Markov Decision Process (MDP), as illustrated in Fig. 2. In this formulation, the states st correspond
to the partial sequences generated up to time step t, while the actions at represent the nucleotides
selected by the policy πθ. The reward r(st, at) is defined as a combination of two types of rewards:
TFBS reward rTFBS and fitness reward rfitness, as shown in equation 2:

r(st, at) =


rfitness, if t = T,

rTFBS(t), if at results in a TFBS t ∈ T ,
0, otherwise.

(2)

Here, rfitness is applied when t is the final time step of the episode (t = T ), and represents the fitness
value of the generated sequence as evaluated by the oracle. On the other hand, rTFBS is a reward
applied whenever a TFBS t ∈ T = {t1, t2, t3, . . . , tn} is identified in the sequence after selecting
at. Details on how TFBSs are identified can be found in Appendix E. The specific values of rTFBS(t)
are discussed in Subsec. 3.4. Negative rewards are assigned for generating repressive TFBSs, while
positive rewards are given for generating activating TFBSs, as shown in Fig. 2. The overall objective
is to maximize the expected cumulative reward:

max
θ

J(θ) = Eπθ

[
T∑

t=1

r(st, at)

]
(3)

where J(θ) represents the expected cumulative reward, T is the length of the episode, and r(st, at)
is the reward at each time step. This setup ensures that the AR model can learn to generate DNA
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sequences with the desired regulatory properties by leveraging both sequence structure and domain-
specific knowledge of TFBS vocabulary.

RL Implementation Details. To optimize the policy πθ, we employ the REINFORCE algo-
rithm (Williams, 1992). Similar to previous studies in molecule optimization (Ghugare et al., 2024),
we observed that REINFORCE achieves better results than PPO (Schulman et al., 2017) for DNA
sequence generation tasks. Additionally, we leverage a hill climbing replay buffer (Blaschke et al.,
2020), which stores and samples high-fitness sequences during training to further guide exploration.
We also apply − 1

log π(a|s) regularization, which penalizes sequences with high likelihood, thereby
encouraging the model to explore sequences with lower likelihood. This combination of techniques
enables the model to balance exploration and exploitation effectively, leading to improved perfor-
mance on complex DNA optimization tasks.

3.4 INFERENCE OF TFBS REGULATORY ROLES

Figure 3: TFBS Regulatory Analysis. (A) TFBS fre-
quency in the sequence. (B) SHAP values show positive
and negative contributions to the expression score, high-
lighting cell-type-specific regulatory roles.

As illustrated in Fig. 3, our approach to
inferring TFBS regulatory roles consists
of two steps. First, we train a deci-
sion tree-based fitness prediction model
using TFBS frequency features as input.
Second, we leverage model interpretabil-
ity techniques to determine the regulatory
impact of each TFBS feature.

To infer the regulatory impact of each
TFBS, we first define the TFBS fre-
quency feature of a sequence x as a vec-
tor h(x) = [h1(x),h2(x), . . . ,hn(x)],
where hi(x) denotes the frequency of the
i-th TFBS in sequence x. This feature
vector represents the occurrence pattern
of TFBSs within the sequence, making it
suitable for tabular data modeling. De-
tails on extracting TFBS features by scan-
ning the sequence can be found in Appendix E. Given the tabular nature of this data, we employ
LightGBM (Ke et al., 2017), a tree-based model known for its interpretability and performance on
tabular datasets, to fit the fitness values of sequences. LightGBM is chosen because decision tree
models, in general, offer better interpretability by breaking down the contribution of each feature in
a clear, hierarchical manner.

The LightGBM model is trained to map the TFBS frequency features to the corresponding fitness
values of sequences, using the objective function:

min
γ

∑
(h(x),u(x))∈D∗

d (u(x), û(h(x); γ)) , (4)

where u(x) is the true fitness value of sequence x, û(h(x); γ) is the fitness value predicted by the
LightGBM model parameterized by γ using the TFBS frequency feature vector h(x). The term
d (u(x), û(h(x); γ)) represents a distance metric measuring the discrepancy between the true and
predicted fitness values. A detailed discussion on the choice of d can be found in Appendix F.

After training, we evaluate the model’s performance using the Pearson correlation coefficient be-
tween the true and predicted fitness values, as shown in Tab. 1. This evaluation metric helps us
quantify how well the LightGBM model captures the relationship between TFBS frequencies and
fitness values.

Based on the trained LightGBM model, we use SHAP values (Lundberg, 2017) to interpret the im-
pact of each TFBS on the predicted fitness. SHAP values provide a theoretically grounded approach
to attribute the prediction of a model to its input features by calculating the contribution of each
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feature (in our case, each TFBS) to the prediction. The SHAP value for the i-th TFBS in sequence
x, denoted as ϕi(x), is computed as:

ϕi(x) =
∑

S⊆{1,...,n}\{i}

|S|!(n− |S| − 1)!

n!
(f(S ∪ {i})− f(S)) , (5)

where S is a subset of features not containing i, f(S ∪ {i}) is the model prediction when feature i
is included, and f(S) is the prediction when feature i is excluded. This equation ensures that SHAP
values fairly distribute the impact of each feature according to its contribution.

To infer the reward rTFBS(t) for each TFBS t ∈ T = {t1, t2, t3, . . . , tn}, we compute the mean
SHAP value of t over the entire dataset. If the mean SHAP value does not significantly differ from
zero (p-value > 0.05, determined by hypothesis testing), we set the reward of t to zero:

rTFBS(t) =

{
α · µϕ(t), if p-value < 0.05,

0, otherwise,
(6)

where α is a tunable hyperparameter, and µϕ(t) is the mean SHAP value of TFBS t across the
dataset. This approach ensures that only statistically significant TFBSs contribute to the reward, and
α controls the magnitude of the reward.

4 EXPERIMENT

4.1 EXPERIMENT SETUP

Datasets and Oracles. We conduct experiments on both yeast promoter and human enhancer
datasets. The yeast promoter dataset includes two types of growth media: complex (de Boer et al.,
2020) and defined (Vaishnav et al., 2022). The human enhancer dataset consists of three cell lines:
HepG2, K562, and SK-N-SH (Gosai et al., 2023). All paired CRE sequences and their correspond-
ing fitness measurements were obtained from massively parallel reporter assays (MPRAs) (Sharon
et al., 2012). Our dataset partitioning strategy is based on prior work in DNA sequence generation
models (Lal et al., 2024), while our multi-round optimization settings follow methodologies used in
protein sequence optimization (Lee et al., 2024). The DNA sequence length in the yeast promoter
dataset is 80, while it is 200 for the human enhancer dataset.

Each dataset represents a cell-type-specific scenario due to distinct TF effect vocabularies and reg-
ulatory landscapes. To simulate optimization from low-fitness CREs, we employ fitness predictors
trained on the complete dataset D as oracles (Lal et al., 2024). These oracles guide the optimization
process of an AR model that is pretrained on a subset of sequences, D∗, within a specified fitness
range. We partition each dataset into three subsets—easy, medium, and hard—based on their fitness
values. Detailed partitioning strategies are provided in Appendix B. We set the maximum number
of optimization iterations to 100, with up to 256 oracle calls allowed per iteration.

Baselines. We compare our method, TACO, against several established optimization approaches,
including Bayesian optimization as implemented in the FLEXS benchmark (Sinai et al., 2020), and
evolutionary algorithms such as AdaLead (Sinai et al., 2020) and PEX (Anand & Achim, 2022), as
well as covariance matrix adaptation evolution strategy (CMAES) (Hansen) using one-hot encod-
ing. Additionally, we adapte the SOTA protein optimization method LatProtRL (Lee et al., 2024)
for CRE optimization. Given the lack of a powerful backbone model like ESM (Jain et al., 2022)
in the DNA domain, we remove the ESM-based latent vector encoding from LatProtRL and re-
fer to the resulting model as DNARL. DNARL can be viewed as a sequence mutation-based PPO
algorithm (Schulman et al., 2017) enhanced with a replay buffer mechanism.

Evaluation Metrics We employ three evaluation metrics: Top, Medium, and Diversity. Top is
defined as the mean fitness value of the top 6 sequences in the optimized set G∗ = {g∗1 , · · · , g∗K},
highlighting the highest-performing sequences in terms of fitness. Medium refers to the median fit-
ness value of all K = 128 generated sequences, providing an overall measure of fitness across the
entire set. Diversity is calculated as the median pairwise distance between every pair of sequences
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Yeast Promoter (Complex)

Method easy medium hard

Top Medium Diversity Top Medium Diversity Top Medium Diversity

PEX 1 1 8.6 ± 1.14 1 1 8.4 ± 1.95 1 1 9.8 ± 1.48
AdaLead 1 1 8.8 ± 1.3 1 1 9.0 ± 1.58 1 1 7.6 ± 0.89
BO 1 1 23.4 ± 1.52 1 1 22.6 ± 1.34 1 1 25.0 ± 5.57
CMAES 1 0.78 ± 0.13 30.2 ± 2.68 1 0.85 ± 0.02 29.4 ± 1.52 1 0.79 ± 0.09 30.0 ± 2.5
DNARL 1 1 8.6 ± 2.14 1 1 10.2 ± 1.14 1 1 7.7 ± 0.48

TACO 1 1 52.2 ± 1.92 1 1 48.8 ± 5.36 1 1 52.8 ± 2.77

Yeast Promoter (Defined)

Method easy medium hard

Top Medium Diversity Top Medium Diversity Top Medium Diversity

PEX 1 1 9.2 ± 0.84 1 1 9.2 ± 1.79 1 1 9.8 ± 2.59
AdaLead 1 1 8.0 ± 2.35 1 1 7.0 ± 1.0 1 1 6.4 ± 0.55
BO 1 1 23.0 ± 1.58 1 1 22.8 ± 2.28 1 1 23.0 ± 1.87
CMAES 1 0.26 ± 0.36 30.0 ± 2.92 1 0.48 ± 0.17 29.8 ± 1.3 1 0.44 ± 0.33 30.4 ± 2.3
DNARL 1 1 11.6 ± 3.04 1 1 18.5 ± 3.0 1 1 10.2 + 1.14

TACO 1 1 43.2 ± 2.77 1 1 47.0 ± 4.64 1 1 49.6 ± 3.65

Table 2: Performance comparison of different algorithms on yeast promoter datasets.

in G∗, reflecting the variability among the generated sequences and ensuring that the optimization
process does not converge to a single solution. These metrics are consistent with those used in Lat-
ProtRL (Lee et al., 2024), except for the Novelty metric. We omit Novelty because, unlike proteins,
DNA sequences lack well-defined structural constraints, making novelty values disproportionately
high and less meaningful. For further details, refer to Appendix G.

Implementation Details. We base the architecture of AR model, i.e., the policy network, on
HyenaDNA-1M1. We pre-train all initial policies on the subset D∗ (Lal et al., 2024). We con-
duct all experiments on a single NVIDIA A100 GPU. During optimization, we set the learning rate
to 5e-4 for the yeast task and 1e-4 for the human task. We set the hyperparameter α, which controls
the strength of the TFBS reward in equation 6, to 0.01. We min-max normalize all reported fitness
values and the rewards used for updating the policy, while the oracles are trained on the original
fitness values.

4.2 FITNESS OPTIMIZATION

We report the meand and standard deviation of the evaluation metrics of 5 runs with different random
seeds.

Yeast Promoters. As shown in Tab. 2, optimizing yeast promoters is relatively easy, with most
methods successfully generating sequences that surpass the maximum fitness values observed in the
dataset. For sequences with fitness values exceeding the maximum, we report the result as 1. Among
the baselines, only CMAES fails to fully optimize to the maximum fitness value, but it demonstrates
good performance in terms of diversity. Our method not only achieves the maximum fitness but also
exhibits the highest diversity compared to other approaches.

Cell Line 75th Percentile 90th Percentile
HepG2 0.3994 0.4547
K562 0.3975 0.4541
SK-N-SH 0.3986 0.4453

Table 4: Enhancer fitness.

Human Enhancers. Optimizing cell-type-specific hu-
man enhancers is a more challenging task. As shown
in Tab. 4, the 90th percentile min-max normalized fit-
ness values for HepG2, K562, and SK-N-SH in the real
dataset D are 0.4547, 0.4541, and 0.4453, respectively.
In Tab. 3, our TACO method demonstrates superior per-
formance compared to the baselines. For the HepG2 cell
line, PEX achieves the highest fitness score, but its diver-
sity is typically below 20. In contrast, TACO attains state-of-the-art fitness for K562 and SK-N-SH
cell lines while maintaining significantly higher diversity across all datasets (over 1/3 higher than
CMAES, which has the highest diversity among baselines).

1https://huggingface.co/LongSafari/hyenadna-large-1m-seqlen-hf
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Method
HepG2-easy HepG2-medium HepG2-hard

Top Medium Diversity Top Medium Diversity Top Medium Diversity

PEX 0.93 ± 0.02 0.89 ± 0.01 20.2 ± 6.57 0.89 ± 0.04 0.86 ± 0.04 19.2 ± 7.12 0.85 ± 0.04 0.82 ± 0.02 16.0 ± 2.65

AdaLead 0.76 ± 0.0 0.75 ± 0.0 5.2 ± 0.45 0.75 ± 0.03 0.74 ± 0.03 12.4 ± 4.04 0.74 ± 0.02 0.73 ± 0.02 8.0 ± 1.87

BO 0.66 ± 0.06 0.6 ± 0.09 41.6 ± 8.91 0.63 ± 0.05 0.58 ± 0.05 42.0 ± 7.81 0.68 ± 0.04 0.63 ± 0.08 39.8 ± 5.07

CMAES 0.61 ± 0.06 0.42 ± 0.04 77.4 ± 4.04 0.67 ± 0.02 0.43 ± 0.03 75.0 ± 3.24 0.69 ± 0.03 0.43 ± 0.02 77.2 ± 5.17

DNARL 0.79 ± 0.07 0.71 ± 0.02 12.2 ± 0.08 0.63 ± 0.14 0.84 ± 0.09 7.32 ± 0.01 0.76 ± 0.04 0.72 ± 0.01 20.0 ± 3.42

TACO 0.78 ± 0.01 0.75 ± 0.01 131.8 ± 2.39 0.76 ± 0.01 0.73 ± 0.01 139.4 ± 7.13 0.76 ± 0.01 0.74 ± 0.01 131.8 ± 4.27

Method
K562-easy K562-medium K562-hard

Top Medium Diversity Top Medium Diversity Top Medium Diversity

PEX 0.95 ± 0.01 0.93 ± 0.01 21.8 ± 9.68 0.94 ± 0.01 0.92 ± 0.01 14.6 ± 1.82 0.95 ± 0.01 0.92 ± 0.02 15.9 ± 1.34

AdaLead 0.85 ± 0.01 0.84 ± 0.01 7.0 ± 1.0 0.85 ± 0.01 0.84 ± 0.01 9.0 ± 1.87 0.85 ± 0.01 0.84 ± 0.01 8.8 ± 1.64

BO 0.7 ± 0.13 0.65 ± 0.12 41.6 ± 5.32 0.76 ± 0.05 0.7 ± 0.05 39.6 ± 5.55 0.74 ± 0.03 0.7 ± 0.04 37.0 ± 6.52

CMAES 0.7 ± 0.05 0.42 ± 0.02 78.8 ± 4.09 0.79 ± 0.03 0.5 ± 0.03 76.0 ± 3.24 0.73 ± 0.05 0.47 ± 0.05 76.8 ± 4.55

DNARL 0.89 ± 0.04 0.87 ± 0.01 23.3 ± 3.72 0.90 ± 0.02 0.86 ± 0.01 26.3 ± 1.88 0.89 ± 0.01 0.87 ± 0.02 17.5 ± 3.33

TACO 0.93 ± 0.0 0.91 ± 0.01 124.6 ± 3.51 0.92 ± 0.01 0.9 ± 0.02 126.0 ± 1.58 0.93 ± 0.01 0.91 ± 0.01 125.6 ± 2.88

Method
SK-N-SH easy SK-N-SH medium SK-N-SH hard

Top Medium Diversity Top Medium Diversity Top Medium Diversity

PEX 0.9 ± 0.01 0.86 ± 0.03 22.2 ± 5.93 0.92 ± 0.02 0.88 ± 0.01 23.8 ± 7.85 0.9 ± 0.02 0.86 ± 0.03 23.0 ± 2.74

AdaLead 0.84 ± 0.08 0.82 ± 0.08 7.4 ± 1.52 0.81 ± 0.06 0.8 ± 0.06 9.4 ± 3.05 0.79 ± 0.05 0.78 ± 0.05 14.4 ± 4.45

BO 0.68 ± 0.07 0.62 ± 0.07 39.8 ± 7.89 0.71 ± 0.08 0.64 ± 0.1 40.4 ± 4.83 0.71 ± 0.06 0.63 ± 0.04 39.9 ± 6.6

CMAES 0.73 ± 0.04 0.45 ± 0.02 77.0 ± 3.39 0.74 ± 0.01 0.45 ± 0.03 76.0 ± 3.81 0.74 ± 0.02 0.44 ± 0.03 76.0 ± 3.54

DNARL 0.83 ± 0.21 0.80 ± 0.06 35.42 ± 2.99 0.83 ± 0.01 0.81 ± 0.01 28.8 ± 1.93 0.82 ± 0.01 0.81 ± 0.01 18.7 ± 3.21

TACO 0.91 ± 0.01 0.87 ± 0.02 133.8 ± 4.27 0.9 ± 0.01 0.86 ± 0.01 135.0 ± 2.12 0.92 ± 0.0 0.88 ± 0.01 137.4 ± 1.14

Table 3: Performance comparison of different algorithms on human enhancer datasets across three
different cell lines.

Figure 4: Evaluation metric by optimization round for TACO, BO, PEX and Adalead. Shaded
regions indicate the standard deviation of 5 runs. The x-axis indicates the number of rounds.

Evaluation by Optimization Round. As shown in Fig. 5, we present the evaluation results after
each round of optimization. We observe that AdaLead, a greedy-based algorithm, quickly finds
relatively high-fitness sequences at the initial stages. However, its diversity drops rapidly, causing
the fitness to plateau and get stuck in local optima. In contrast, PEX demonstrates a steady increase
in fitness, but it consistently maintains a low diversity throughout. Only TACO not only achieves a
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Figure 5: Ablation Study. (A) Impact of the TFBS reward. Increasing α leads to higher fitness
values but at the cost of reduced diversity.The fitness values presented here are not normalized. (B)
Effect of using hill-climb replay buffer (storing past high-fitness experiences). The use of the replay
buffer significantly improves maximum fitness values. (C) Effect of entropy regularization. Entropy
regularization encourages the exploration of less probable actions.

stable increase in fitness but also maintains high diversity due to its AR model finetuning paradigm,
which effectively balances fitness and diversity throughout the optimization process.

4.3 ABLATION STUDY

TFBS Reward. We validate the effect of rTFBS on the complete yeast complex dataset. As shown in
Fig. 5(A), applying rTFBS (α > 0) allows the policy to explore higher fitness regions. At α = 0.01,
the optimized fitness shows a noticeable improvement compared to optimization without domain
knowledge, without compromising sequence diversity. As α increases further to 10, we observe
even higher fitness values but at the expense of a significant drop in diversity. Given that these
results have already reached the fitness limits of the yeast complex, further wet-lab experiments are
required to better understand the role of TFBS rewards in the RL process.

RL Design Choices. We evaluate two main components of our RL framework: the hill-climb replay
buffer and entropy regularization. First, we test the effect of the hill-climb replay buffer, which
stores past experiences with high fitness values (Fig. 5(B)). We find that incorporating a replay
buffer significantly enhances the maximum fitness values explored, consistent with observations
from prior studies (Lee et al., 2024; Ghugare et al., 2024). Next, we test the impact of entropy
regularization (Fig. 5(C)) and find it effective in encouraging exploration of less probable actions,
leading to improved diversity.

5 CONCLUSION

Designing CREs is a highly impactful task, and the increasing availability of fitness data makes it
increasingly feasible. Current methods often rely on basic optimization strategies such as genetic
algorithms and directed evolution, which, while effective, lack the ability to leverage advanced op-
timization techniques. To address this limitation, we propose TACO, an RL-based approach that
fine-tunes an AR generative model, achieving both high fitness and diversity in CRE design. By in-
corporating TFBS domain knowledge, TACO offers a promising direction for further advancements
in machine-learning-guided CRE optimization.
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APPENDIX

A PRELIMINARY ON CRES

What are CREs? CREs are non-coding DNA sequences that regulate the expression of nearby
genes by modulating the binding of TFs and RNA polymerase. The two main types of CREs are
promoters, which initiate and maintain mRNA transcription, and enhancers, which are distal ele-
ments that interact with promoters to increase gene expression. CREs play a crucial role in estab-
lishing specific gene expression profiles across different cell types, influencing cellular identity and
function.

Why are CREs cell-type specific? The cell-type specificity of CREs arises from differential TF
binding. TF binding is influenced by several factors, including DNA sequence composition, local
chromatin structure, and interactions with other proteins and cofactors. Human cells express around
1,500 to 2,000 different TFs, and their expression patterns vary across cell types. Each cell type
thus has a unique set of active CREs that drive the expression of genes necessary for its specific
functions. For example, a CRE active in liver cells (hepatocytes) might bind liver-specific TFs such
as HNF4A, whereas in neurons, the same CRE might be inactive due to the absence of these TFs.

How are designed CREs utilized? Designed CREs can be used in both in-vivo and in-vitro settings
depending on the application.In-vivo, CREs are often delivered using viral vectors, such as aden-
oviruses or adeno-associated viruses (AAVs), which facilitate the incorporation of synthetic CREs
into the target cell’s genome. This method is particularly useful for gene therapy, where precise con-
trol over gene expression is crucial for therapeutic efficacy and safety. In-vitro, CREs are typically
introduced into cultured cells using plasmids or CRISPR-based methods, allowing researchers to
test the functionality and regulatory impact of the synthetic CREs under controlled conditions. This
approach is invaluable for high-throughput screening of CRE designs and optimization of regulatory
elements before moving to in-vivo applications.

Applications and Future Prospects. Designing synthetic CREs with precise, cell-type-specific
regulatory functions has significant potential in both basic research and therapeutic applications. In
gene therapy, cell-type-specific CREs can be used to target therapeutic gene expression to specific
tissues, minimizing off-target effects and toxicity. In industrial biotechnology, engineered CREs can
optimize protein production in desired cell lines. Recent advances in deep learning and generative
models have shown promise in predicting and generating CREs with desired regulatory profiles,
opening new avenues for programmable gene regulation.

B DETAILS OF DATASETS

Existing CRE fitness datasets are generated through Massively Parallel Reporter Assays (MPRAs),
which allow for high-throughput measurements of regulatory sequences in in vitro settings. The
yeast promoter dataset includes results from two different media conditions: complex and defined.
The human enhancer dataset, on the other hand, consists of data from three distinct human cell lines:
HepG2 (a liver cell line), K562 (an erythrocyte cell line), and SK-N-SH (a neuroblastoma cell line).

We adopt the dataset splits proposed by RegLM (Lal et al., 2024) and use their defined training set as
our full dataset, denoted as D. To simulate a progression from low-fitness to high-fitness sequences,
we further partition D into a subset D∗ for finetuning and evaluation. Each dataset represents a
cell-type-specific scenario due to distinct TF effect vocabularies and regulatory landscapes.

Our partitioning scheme follows the same approach as RegLM. Specifically, we define three dif-
ficulty levels—hard, medium, and easy—based on fitness percentiles of 20-40, 40-60, and 60-80,
respectively, in both media conditions for the yeast dataset. Since yeast is a single-cell organism, we
ensure that the fitness levels are consistent across both media. For the human enhancer datasets, we
define the hard fitness range as values below 0.2, the medium range as values between 0.2 and 0.75,
and the easy range as values between 0.75 and 2.5. These ranges are selected to maintain fitness
values below 0.2 in other cell lines, thereby simulating a cell-type-specific regulatory scenario.
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C ENFORMER SERVES AS ORACLE

Enformer (Avsec et al., 2021) is a hybrid architecture that combines CNNs and Transformers,
achieving state-of-the-art (SOTA) performance across a range of DNA regulatory prediction tasks.
In our study, all CRE fitness prediction oracles are based on the Enformer architecture (Lal et al.,
2024; Uehara et al., 2024). The primary distinction lies in the output: while the original Enformer
model predicts 5,313 human chromatin profiles, we modify it to predict a single scalar value repre-
senting CRE fitness.

The oracle model for the human enhancer datasets retains the same number of parameters as the
original Enformer. In contrast, for the yeast promoter datasets, we reduce the model size due to
the simpler nature of yeast promoter sequences. Specific architectural configurations are listed in
Tab. 5. In this study, we directly utilize the oracle weights provided by RegLM (Lal et al., 2024) for
consistency.

Model Dimension Depth Number of Downsamples

Human Enhancer 1536 11 7

Yeast Promoter 384 1 3

Table 5: Oracle model parameters for human and yeast datasets.

D DETAILS OF AR GENERATIVE MODELS

Over the past year, there has been significant growth in the development of DNA language models,
with many new models emerging. However, most of these models, such as Caduceus (Schiff et al.,
2024), DNABert2 (Zhou et al., 2024), and VQDNA (Li et al., 2024a), are based on BERT-style
pretraining and lack the capability to generate DNA sequences. Among them, HyenaDNA (Nguyen
et al., 2024b) is the only GPT-style DNA language model. Unlike traditional Transformer-based
architectures, HyenaDNA leverages a state space model (SSM), which provides linear computational
complexity, making it suitable for handling long DNA sequences with complex dependencies.

Subsequent work based on HyenaDNA, such as Evo (Nguyen et al., 2024a), has demonstrated the
powerful DNA sequence generation capabilities of this architecture. Additionally, RegLM (Lal
et al., 2024) has explored conditional DNA generation by employing a prefix-tuning strategy, where
a customized token is used as the prefix of the DNA sequence to guide the subsequent generation
process. This approach has enabled RegLM to effectively model context-dependent DNA sequence
generation.

E TFBS SCAN AND FREQUENCY FEATURE PREPROCESSING

The Jaspar database (Fornes et al., 2020) provides detailed annotations of TFBSs. Each TFBS ti
corresponds to a transcription factor that binds to it, regulating gene expression. Instead of repre-
senting ti as a fixed sequence, it is described by a position frequency matrix Mi ∈ RLi×4, where
Li is the length of the TFBS, and the four columns correspond to the nucleotides {A,C,G,T}. The
matrix encodes the likelihood of each nucleotide appearing at each position in the TFBS, making it
possible to capture variations in TF binding.

We utilize FIMO (Find Individual Motif Occurrences) (Bailey et al., 2015) to scan each sequence
for potential TFBSs. Given a sequence x and a matrix Mi, FIMO evaluates each subsequence xj in
x by calculating a probabilistic score:

score(xj ,Mi) =

Li∏
k=1

P (nk |Mi[k]), (7)
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where P (nk | Mi[k]) represents the probability of nucleotide nk occurring at position k in the
matrix Mi. FIMO identifies the subsequences with the highest scores as potential occurrences of
the TFBS.

For each sequence x, FIMO outputs a frequency feature vector h(x) = [h1(x),h2(x), . . . ,hn(x)],
where hi(x) denotes the frequency of the i-th TFBS in sequence x. This frequency feature vector
is then used as input for the downstream prediction model. The use of frequency-based features,
as opposed to binary indicators, captures the varying levels of TFBS occurrences in the sequence,
allowing for a more nuanced understanding of the regulatory role of each TFBS. Given this tabular
representation, we employ LightGBM (Ke et al., 2017), a tree-based model known for its inter-
pretability and effectiveness on tabular datasets, to predict the fitness values of sequences.

F DETAILS OF LIGHTGBM

We utilized LightGBM (Ke et al., 2017) to train models that directly predict CRE fitness based on
TFBS frequency features, enabling us to infer the cell type-specific roles of individual TFBSs. For
each dataset, we independently trained a LightGBM regression model. The specific parameters used
in our model are listed in Table 6.

Parameter Value
Objective Regression
Metric MAE
Boosting Type GBDT
Number of Leaves 63
Learning Rate 0.05
Feature Fraction 0.7
Seed Random State

Table 6: Hyperparameters used for training the LightGBM regression model.

Metric yeast human
complex defined hepg2 k562 sknsh

MAE 0.63 0.65 0.65 0.65 0.66
RMSE 0.63 0.64 0.56 0.57 0.58

Table 7: Ablation study comparing different metrics on CRE fitness prediction for yeast and human
datasets.

We experimented with various metrics corresponding to the distance metric d in Equation equation 4,
specifically testing rmse and mae as well as different learning rates {0.01, 0.05} and number of
leaves {31, 63}. Our results indicate that only the metric has a significant impact on the final
performance. The ablation results are summarized in Table 7.

dMAE =
1

n

n∑
i=1

∣∣∣f(xi)− f̂(h(xi); θ)
∣∣∣ (8)

dRMSE =

√√√√ 1

n

n∑
i=1

(
f(xi)− f̂(h(xi); θ)

)2

(9)

Our experiments demonstrate that the MAE metric yields better performance across all cell types,
as shown in Table 7. Therefore, we selected MAE as the final evaluation metric.
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G DNA SEQUENCE PLAUSIBILITY

Unlike molecules and proteins (Uehara et al., 2024), which inherently possess well-defined physical
and chemical properties, DNA sequences lack such structural constraints. For example, molecular
structures are subject to physical properties like bond angles and energy states, while protein se-
quences are evaluated based on their 3D folding stability and interactions, making it straightforward
to filter out physically implausible designs. Therefore, in molecule and protein design, oracle-
predicted fitness is often supplemented with physical property constraints to ensure the plausibility
of generated candidates. This helps exclude a significant number of physically infeasible structures,
enhancing the relevance of the optimization process.

However, DNA sequences pose a unique challenge in this regard. Unlike molecules or proteins,
DNA’s plausibility cannot be easily assessed through physical properties, as its functional attributes
are primarily determined by its interaction with transcription factors and other regulatory proteins in
a context-specific manner. Furthermore, current MPRA (massively parallel reporter assay) datasets
are typically generated from random sequences, meaning there is no inherent concept of ”plausibil-
ity” in the data itself. Consequently, the lack of well-defined constraints in DNA sequences makes
it difficult to develop a robust metric for evaluating their plausibility.

Our observations further highlight this challenge. In our experiments, we found that the novelty val-
ues of generated DNA sequences were disproportionately high compared to the initial low-fitness
sequences, making the novelty metric less informative. This behavior suggests that DNA sequences
tend to diverge significantly from their starting points during optimization, regardless of their bio-
logical relevance or plausibility. Due to these limitations, we exclude the Novelty metric and instead
focus on evaluating the generated sequences using Fitness and Diversity metrics, which better cap-
ture the optimization objectives for CRE design.

H LIMITATIONS

Our ultimate goal is to optimize CREs with higher fitness values than those currently observed.
However, the reliability of such optimized CREs is limited by the fact that our oracles are trained
on existing real-world datasets. As a result, predictions for CREs with fitness values beyond the
training data range may be less accurate. Currently, our primary in-silico experiments simulate an
optimization setting that starts from low-fitness CREs, following the strategy proposed in (Lee et al.,
2024). Previous studies, such as Vaishnav et al. (2022); de Almeida et al. (2024), have successfully
designed CREs using simple optimization methods and validated them in vivo, demonstrating high
fitness and cell-type specificity in real-world scenarios. Our work serves as a complementary effort
to these studies by providing advanced algorithmic strategies for CRE optimization. In the future,
we hope to conduct in vivo experiments to validate the performance of more sophisticated CRE
optimization algorithms.
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