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ABSTRACT

Deep generative models such as conditional variational autoencoders (CVAEs)
have shown great promise for predicting trajectories of surrounding agents in au-
tonomous vehicle planning. State-of-the-art models have achieved remarkable
accuracy in such prediction tasks. Besides accuracy, diversity is also crucial for
safe planning because human behaviors are inherently uncertain and multimodal.
However, existing methods generally lack a scheme to generate controllably di-
verse trajectories, which is arguably more useful than randomly diversified tra-
jectories, to the end of safe planning. To address this, we propose PrefCVAE, an
augmented CVAE framework that uses weakly labeled preference pairs to imbue
latent variables with semantic attributes. Using average velocity as an example at-
tribute, we demonstrate that PrefCVAE enables controllable, semantically mean-
ingful predictions without degrading baseline accuracy. Our results show the ef-
fectiveness of preference supervision as a cost-effective way to enhance sampling-
based generative models.

1 INTRODUCTION

Trajectory prediction, a key task for safe autonomous driving, forecasts the behaviors of road par-
ticipants based on recent motions, accounting for complex and multimodal interactions among road
agents Shi et al. (2024); Westerhout et al. (2023). Deep generative models like variational autoen-
coders (VAEs) Salzmann et al. (2020), generative adversarial networks (GANs) Dendorfer et al.
(2021), normalizing flows Ding & Zhao (2024), and diffusion models Li et al. (2024) are widely
used for their accuracy and diversity in complex scenarios. Conditional VAEs (CVAEs), in particu-
lar, excel in modeling the relationships among future trajectories, historical observations, and latent
generative factors Kingma et al. (2014).

Although CVAEs effectively model the causality between history and future trajectories, they lack
controllability of the prediction due to their implicit latent representations Paige et al. (2017). Most
research frames trajectory prediction as a regression task, with the aim of reconstructing and pre-
dicting trajectories using an implicit latent code zi. The typical goal is to predict the most likely
trajectory based on the patterns of the dataset (Fig. 1(a)). However, perfect accuracy on a test set is
not the end goal; prediction must ultimately support safe planning Ivanovic & Pavone (2022). Plan-
ners benefit from a richer context, such as semantic attributes of predictions Chandra et al. (2020).
For example, driver behaviors may be spontaneous in that the future pattern is not necessarily causal
with history. An accuracy-first prediction method would default to the pattern that it finds most-
likely given a training set (Fig. 1(b)), regardless of different possible behavior modes. However, to
account for all plausible futures and make a thorough ego plan, it is often safer to predict a set of
multimodal behaviors with predefined semantically controllable attributes (Fig. 1(c); the attributes
can be like conservative, moderate, or aggressive driving style) rather than rely solely on the most
likely prediction.

Toward this goal, most-likely prediction alone is insufficient, and the generative model should be
able to make diverse yet plausible predictions. Methods have been explored to incorporate diver-
sity and downstream planning into trajectory prediction. For example, DiversityGAN Huang et al.
(2020) uses moderate human annotation to learn a low-dimensional semantic latent space, where
dimensions correspond to distinct maneuvers like merging or turning. However, it lacks a struc-
tural understanding of the latent space, preventing rigorous control over predictions through specific
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Figure 1: Motivation of controllable predic-
tion: Most-likely prediction is not always the
most accurate one. To account for multimodal
futures, controllable prediction should reason
about the interaction semantically and predict
correspondingly.
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Figure 2: Requirements of controllable predic-
tion: (1) Encoder enforces the latent distribu-
tion to estimate a predefined semantic factor
m(·); (2) Latent assignments generate seman-
tically controllable predictions (sampling line
colors correspond to trajectories on the right).

latent assignments. Furthermore, reliance on sampling and rejection sampling with auxiliary mod-
ules reduces time efficiency, making safe planning in real time impractical. Task-informed Motion
Prediction (TIP) Huang et al. (2022) addresses the shortcomings of task-agnostic methods by in-
tegrating ego-vehicle plans through a task utility function alongside the loss of trajectory fitting to
enable conditioned prediction. However, TIP conditions on discrete modes linked to ego plans rather
than continuous semantic attributes.

It remains an open challenge to develop a generative trajectory prediction model that can explicitly
control predictions by conditioning on predefined continuous semantic factors - this is the focus of
our work. To this end, we introduce a weakly supervised augmentation of existing CVAE frame-
works called Preference CVAE (PrefCVAE). PrefCVAE uses partially labeled alignment signal data,
which we name the preference, to efficiently learn a semantically controllable latent space. The core
idea is to enforce a semantic latent space by aligning the semantic of two model predictions with
labelled preference of their latent generative factors. With PrefCVAE training, the CVAE model is
capable of both 1) encoding semantically meaningful latent, and 2) controlling trajectory generation
via these latents in a predictable, monotonic way (Fig. 2).

We illustrate the strengths of PrefCVAE by applying it to one of the most popular CVAE-based
trajectory prediction models, AgentFormer Yuan et al. (2021). In experiments using a large-scale
dataset nuScenes Caesar et al. (2020) and average velocity as a simple semantic latent, we demon-
strate that PrefCVAE enables AgentFormer to predict trajectories along a semantically monotonic
metric by assigning latent values. Additionally, we show that the approximate posterior encoder
maps trajectories to their ground-truth latent values with higher likelihood. These results demon-
strate the feasibility of PrefCVAE as a framework for controllable generative trajectory prediction.

2 RELATED WORKS

2.1 SEMANTICS REPRESENTATIONS IN TRAJECTORY PREDICTION

Some recent studies in trajectory prediction emphasize interpretable latent spaces in generative mod-
els to enhance controllability and semantic alignment. Semantic Latent Directions (SLD) introduce
orthogonal latent bases that capture meaningful motion semantics for human motion control Xu
et al. (2024). The Descriptive VAE (DVAE) integrates expert priors into the decoder, enabling more
interpretable trajectory generation Neumeier et al. (2021). These works demonstrate that structured
and semantic latent representations are critical for controllable generative trajectory prediction.

2.2 CONTROLLABLE GENERATIVE MODELING

Controllable generative modeling (CGM) focuses on guiding the outputs of generative models to
possess desired attributes or properties. Various approaches have emerged across vision and lan-
guage domains. Latent vector shifting techniques, such as those applied to StyleGAN3, enable
semantic control over image attributes via learned feature directions in latent space Belanec et al.
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(2023). Other methods apply post-hoc constraints on pre-trained models by learning critic functions
in latent space, allowing conditional generation without retraining Engel et al. (2017). Causal ap-
proaches, like C2VAE, integrate structural causal modeling and correlation pooling to control both
the causality and correlation of data properties Zhao et al. (2024). In language tasks, Transformer-
based VQ-VAEs (e.g., T5VQVAE) improve fine-grained control via discrete latent token represen-
tations Zhang et al. (2024). However, they remain largely confined to domains like image synthesis,
text generation, and molecular design Zhu et al. (2024); Wang et al. (2024). So far, CGM has not
been explored in autonomous driving trajectory prediction, where such control could enable safer
and more interpretable planning.

2.3 LEARNING FROM PREFERENCE

The concept of our method is similar to learning from preference. Reinforcement Learning with
Human Feedback (RLHF) has effectively approximated rewards and aligned intentions by optimiz-
ing a neural reward function based on human preferences. Initially used to learn implicit rewards in
tasks such as gait generation and Atari games Christiano et al. (2017); Ibarz et al. (2018), RLHF is
now a key fine-tuning technique for aligning large language models with human preferences Ouyang
et al. (2022). Later, DPO Rafailov et al. (2024) introduced a supervised framework similar to RLHF,
offering a more stable and data-efficient alternative. However, this technique has not been studied
in latent representation learning for generative models.

3 PRELIMINARIES

3.1 TRAJECTORY PREDICTION: PROBLEM FORMULATION

In autonomous driving or robotics, trajectory prediction involves forecasting the future trajectories
of agents in a scene based on their observed past trajectories and contextual information. A data
sample, organized as a minibatch, represents the minimal data unit, which contains the past agent
trajectories X =

[
X1,X2, ...,XTcur

]
, where Xt =

[
xt
1,x

t
2, ...,x

t
N(t)

]
describes the states of N(t)

agents at timestep t ∈ 1, 2, ..., Tcur. Each agent state xt
n can include attributes such as position,

velocity, acceleration, heading angle, or agent type. Additionally, contextual information C (e.g.,
road semantics like lane or sidewalk positions) is included. The goal is to predict future trajectories
Ŷ approximating the ground truth Y =

[
Y Tcur+1 , ...,Y Tend

]
, where Y t =

[
yt
1, ...,y

t
N(t)

]
. For

simplicity of probabilistic modeling, contextual information C is merged into X (i.e., X represents
{X,C}).

Thus, a dataset with K samples for training prediction models is represented as D = {Xk,Yk}Kk=1.
For deep generative methods, the task is reduced to learning a conditional distribution Ŷ ∼ pθ(Y|X)
parameterized by the weights of a neural network.

3.2 CVAE FRAMEWORK FOR TRAJECTORY PREDICTION

CVAE provides a causal inference framework, introducing an M -dimensional generative latent ran-
dom variable zn = [zn,0, ..., zn,M−1] for each agent in a minibatch, representing motion characteris-
tics. For simplicity, latent variables across agents are sequentialized into a vector z =

[
z1, ..., zN(t)

]
.

Similarly, history observations x and future trajectories y are treated as random variables and se-
quentialized vectors. In this framework, x serves as the conditional input, while y is the target for
reconstruction or prediction.

CVAE jointly learns three modules: the prior encoder pθ(z|x), the decoder pθ(y|x, z), and the pos-
terior encoder qϕ(z|x,y). Encoders use a context sequence followed by an MLP to parameterize
probability distributions, while decoders typically output Gaussian or GMM distributions. The ob-
jective is to minimize the Evidence Lower Bound (ELBO) loss LELBO, which combines the negative
log-likelihood of y and the KL divergence between pθ(z|y) and qϕ(z|x,y) Kingma et al. (2014).
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4 PREFCVAE

Preference in trajectory prediction Given two trajectories (x0,y0) and (x1,y1) (xi ∈ X,yi ∈
Y, i ∈ {0, 1}, here X and Y denote the sets of individual past and future trajectories from a dataset)
and a generic quantitative metric m : X× Y → R that describes a certain factor of a trajectory, and
assume that a trajectory with smaller metric value is preferred, the preference Pm[x0,x1,y0,y1], ei-
ther computed with an oracle program or labelled by a human in some form, denotes the probability
of m(x0,y0) > m(x1,y1) (i.e., (x1,y1) is preferred over (x0,y0)).

The preference guides PrefCVAE toward a semantic and controllable latent space. Following prior
work Shen et al. (2022); Locatello et al. (2020), we call this procedure weak labelling, since it
requires only ordinal signals rather than exact latent values. To inject semantic attributes into zS
during training, we (i) map preferences to latent dimensions (each attribute linked to one dimension),
and (ii) use these preferences to encode semantics, as detailed in this section.

4.1 WEAKLY LABELLING PREFERENCE

We assume two types of latent variables: P semantically meaningful ones zS =[
zS0, zS1, ..., zS(P−1)

]
, and M − P implicit ones zI =

[
zI0, zI1, ..., zI (M−P+1)

]
, where each

zSi or zI i is an N -dimensional vector for N agents. zS captures quantifiable semantic factors,
while zI represents noise or abstract factors, which, though not semantically causal, may carry use-
ful information. PrefCVAE aims to explicitly learn and factorize z = [zS , zI ] with preference.

For simplicity of notation, in the following we only consider one semantic latent factor vector, zS0.
The framework could be directly extended to other semantic dimensions if there is any, as these
dimensions are assumed to be uncorrelated.

Auxiliary latent sampling We sample two additional sets of latent values uniformly from a
plausible latent range, with the semantic dimension denoted zS

0
0 and zS

1
0. That is, zS0

0, zS
1
0 ∼

U(zS,min, zS,max), where zS,min, zS,max are specific boundaries that may vary for different semantic
factors. Since the positions of zS0

0 and zS
1
0 are symmetrical, we assume without loss of generality

that zS0
0,n < zS

1
0,n for the semantic dimension concerned while sampling, with n being the distinct

agents within the minibatch. The two sets of zI and the other semantic dimensions other than zS0

are drawn with the same approach, but we do not need to fix the magnitude relationship between
each pair of entries of z0I and z1I since they are not regularized when learning the dimension zS0.

Auxiliary predictions Using the CVAE decoder, we make two predictions ŷ0 and ŷ1 taking the
expectation of the predicted distribution given the sampled semantic factors z0S , z1S and implicit
factors zI , and the history observation x. That is, ŷi = E

[
pθ(y|x, ziS , ziI)

]
(i ∈ {0, 1}).

Labelling preference We then propose a way to label the preference P̂ [ŷ0, ŷ1] of the pair of
auxiliary predictions. This work assumes that a differentiable metric m(x, ŷi) can be calculated
using an oracle program. With the aforementioned notations, the agent-wise preference between
two predicted trajectories ŷ0 and ŷ1 is given by

P̂m[ŷ0, ŷ1; zS
0
0, zS

1
0,x] =

1

zS0
0 + zS1

0

[(zS
1
0 − zS

0
0)σ(η(m(x, ŷ0)−m(x, ŷ1))) + zS

0
0], (1)

or denote as P̂ [ŷ0, ŷ1] for short, where σ(·) is the Sigmoid function, and η is a scaling factor
controlling the sensitivity of the oracle preference to the difference between two predictions. Our
preference design is a soft version of if-else clause that approximates between { zS0

0

zS0
0+zS1

0
, zS1

0

zS0
0+zS1

0
}.

In particular, we use the Sigmoid function as an approximation to guarantee differentiability in
backpropagation. Otherwise, the discrete conditional logic branch makes an inconsistency in the
gradient flow.

Intuitively, this value also indicates which of the two predictions have a smaller (or generally speak-
ing, preferred) metric value related to this latent factor, acting essentially as the probability value in
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the definition (i.e., if P̂ [ŷ0, ŷ1] is closer to zS1
0

zS0
0+zS1

0
, being larger than 1

2 , (x, ŷ1) is more likely to be
preferred. This happens when m(x0,y0) > m(x1,y1)).

Note that this form of preference assumes the usage of differentiable and oracle-computed met-
ric, which is used for concept validation in this work. We later discuss generalization to discrete,
indifferentiable, and human-labelled preference in Section 6.1.

4.2 PREFERENCE LOSS FOR ALIGNMENT

To achieve controllable generative prediction, we want to have preferred metrics with preferred
latent values. For example, we want a smaller latent value to correspond to prediction with
a smaller metric value (we refer to this correspondence as alignment). Therefore, the goal of
preference loss is to learn to generate ranked predictions and, inspired by Christiano et al. (2017),
is designed as a cross entropy between the sampled latent distribution and the distribution of scores
given by the oracle program. With the ground truth preference P̂ [ŷ0, ŷ1] and two auxiliary sampled
latent factors z0S0 and z1S0, the agent-wise preference loss is defined as

Lpref(z0S0, z1S0, ŷ
0, ŷ1) = −[P̂ [ŷ0, ŷ1] log(

z0i
z0S0 + z1S0

) + (1− P̂ [ŷ0, ŷ1]) log(
z1S0

z0S0 + z1S0

)]. (2)

In this formula, when z0S0 < z1S0 is fixed, if m(x0,y0) > m(x1,y1), P̂ [ŷ0, ŷ1] would have a
higher value ((x,ŷ1) is the actual preferred trajectory in this auxiliary pair of trajectory) and the loss
would be large (misalignment). On the other hand, if m(x0,y0) is smaller, the loss would be small
(alignment). Hence, minimizing the preference loss encourages the predicted trajectory to align
with the latent. The prediction with a smaller latent value is encouraged to have a smaller metric
value, and the converse is punished. This leads to controllable prediction because we know how a
semantic factor aligns with latent value. Note that by swapping the positions of z0S0 and z1S0 in the
loss function, or fixing z0S0 > z1S0 instead of z0S0 < z1S0 when sampling, one could reverse the way
preference aligns with the value of z (i.e., smaller latent values pertain to larger metric values).

Compared to similar loss function designs in Shen et al. (2022); Locatello et al. (2020), our approach
has a key advantage: it does not require the ground truth latent values z0GT and z1GT for the predictions
ŷ0 and ŷ1. Instead, we leverage the generative capability of the CVAE to roll out predictions,
encourage those with a correct ranking, and penalize incorrect ones. The preference simply implies
whether the relationship between these predictions aligns with the latent factors sampled, allowing
a broader applicability. Additionally, leveraging preference, our method does not assume that latent
factor boundaries are restricted to the data set. This stochastic sampling and generation process
allows the creation of unseen but plausible trajectories guided by the latent semantic factors.

For training, we simply use the preference loss alongside the original CVAE ELBO loss, that is,
L = LELBO + λbLpref, where λ is a weighting factor, b ∼ B(ν) is a Bernoulli random variable, and
the minibatch-wise loss is an aggregation of the agent-wise loss. We name the Bernoulli parameter
ν the use rate. This hyperparameter denotes the probability that a collected preference pair is used
during training. In contrast, with a probability of 1 − ν, a preference score of 0.5 is assigned to
indicate that there is no preference (in practice, this is equivalent to setting the preference loss to 0
because in this case it does not have a gradient flow over the network). The use rate is particularly
carefully studied because the proportion of data that require preference labeling directly affects the
efficiency of our method if it is aimed at extending to human labeling.

Common CVAE-based prediction models apply a Gaussian or Categorical distribution as the latent
distribution, but in this work we apply the Beta distribution instead, in which the domain of the
latent is bounded. Although the plausible range of the metric is not explicitly defined by the dataset
and can have no theoretical limits, it is sensible to assume that the socially acceptable metric that
appeared in the dataset is bounded. The usage of the Beta distribution, which has an explicit domain
bound of [0, 1], caters to this assumption.
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Figure 3: (a). Controllable predictions, manifesting utility of PrefCVAE decoder. For each column,
Up: prediction visualization; Middle: semantic metric w.r.t. z value (horizontal dashed lines are
ground truth values); Below: ADE (solid)/FDE (dashed). PrefCVAE can control the prediction: For
model trained with PrefCVAE, larger z value always leads to larger average velocity, as learned with
the preference loss. Also noticeably, the best accuracy occurs around the latent values that pertain
to the ground truth velocity (the dashed horizontal lines). (b). Test-set-regressed distributions of
controlled latent factor. Each color pertains to trajectory predicted with a different z value. The
ideal result should resemble 9 Dirac delta distributions with modes at each ground truth z.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Dataset and base model Experiments are carried out on the nuScenes Caesar et al. (2020) trajec-
tory prediction task, predicting 6 seconds (12 frames) of motion based on 1.5 seconds (4 frames)
of observations. We use AgentFormer Yuan et al. (2021), a Transformer-based multi-agent CVAE
model, for its effectiveness in capturing spatio-temporal relationships in traffic scenes. In this work,
we use a slightly modified version of AgentFormer, called β-AgentFormer. As indicated, we replace
the Gaussian latent distribution with a Beta distribution, where the concentration parameters α and
β are clipped to be larger than 1 using Exponential Linear Units Clevert (2015) to guarantee that the
mode is within (0, 1). A base β-AgentFormer is trained with the ELBO loss and a variety loss de-
fined in the original work (base loss). excluding the DLow in the post-training process, as described
in the original AgentFormer paper, to avoid impact of trajectory sampler.

All models are trained from scratch using either original AgnetFormer loss or with preference loss
aggregated, for 30 epochs on the entire nuScenes trajectory prediction training set following splitting
convention in AgentFormer work, with no pretraining applied. The base model used in all the results
is our modified β-AgentFormer, not the original AgentFormer.

Repeatability Variational generative models like the CVAE can exhibit stochastic performance
due to different neural network initializations and sampling order Locatello et al. (2019). We repeat
all experiments with 3 different random seeds while fixing all other randomnesses in the program to
ensure repeatability. Shaded areas in a figure indicate the one-stand deviation, and tables show the
best results we obtained within the three.
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Table 1: Accuracy and semantic diversity of base β-
AgentFormer and the same model trained with PrefC-
VAE loss and different use rates. All ADE/FDE’s are
obtained without assigning latent at test time.

Use rate, ν

0 (Base) 0.25 1

minADE5 (m) 2.62 2.66 2.64
minFDE5 (m) 5.62 5.76 5.74

Vel. range (m/s) 3.16 1.87 1.63
(min/max) 3.17 4.38 4.86

Monotonic No Yes Yes

Table 2: Concentrated posterior encod-
ing with PrefCVAE (Avg. JSD and
logLMode: Larger is better; Avg. Mode
Dev.: Smaller is better)

Base ν=0.25 ν=1

Avg. JSD 0.0352 0.4874 0.4578
logLMode 3.19 13.23 11.76

Avg. Mode Dev. 0.1660 0.0090 0.0163

5.2 EVALUATION METRICS

We conducted experiments focusing on a simple low-level semantic metric, the average velocity of
the predicted trajectory. More complicated metrics, such as the Social Value Orientation, are left for
future works. One should note that accuracy is not the primary metric we aim to study in this work,
unlike most trajectory prediction works. However, we show best-of-five-samples average deviation
errors (minADE5) and final deviation errors (minFDE5) of each model, which are common accuracy
metrics, to show that baseline-level accuracy is not degraded.

To evaluate encoder quality in capturing the velocity metric, we use three measures (Table 2; encod-
ing details in Section 5.3): (i) Jensen–Shannon divergence (JSD): the average pairwise JSD across
nine distributions, where higher values indicate greater dissimilarity. (ii) Cumulative log-likelihood:∑9

i=1 log qϕi
(z = i

10 ;x,yi), measuring how well distributions capture their ground-truth mode,
with higher values implying more reliable encoding. (iii) Mode deviation: | argmax(qϕi

) − i
10 |,

quantifying the error between each distribution’s mode and its ground truth. Together, these assess
distribution distinctness, concentration, and accuracy.

To study the effect of the use rate hyperparameter, we introduce the violation rate (VR) as a measure
of monotony consistency. A violation occurs if two predictions ŷ0 and ŷ1 with latent factors z0 > z1
yield average velocities satisfying avg vel(x, ŷ0) < avg vel(x, ŷ1), where zi ∈ {0.1, . . . , 0.9}. The
test set contains 138 scenes (3,076 minibatches, each clipped into 20 frames, averaging 22 per scene)
and 9,041 agents (1–11 per minibatch). VR is computed in three ways: (i) agent-wise—fraction of
violating trajectories; (ii) minibatch-wise—fraction of minibatches with at least one violation; (iii)
scene-wise—fraction of scenes with at least one violation. (Abbreviations: SW VR = scene-wise
VR; MBW VR = minibatch-wise VR; AW VR = agent-wise VR).

5.3 RESULT: CONTROLLABLE TRAJECTORY PREDICTION

PrefCVAE decodes controllable and plausible predictions Fig. 3a visualizes a sample from the
test set. We evaluated the models by traversing the latent space from 0.1 to 0.9 with a step size
of 0.1. In the base AgentFormer model (Fig. 3a, column 1), the latent factors are not influenced
by preference loss, resulting in a latent representation that lacks explicit correlation with average
velocity. Consequently, the velocity range for different latent values is minuscule (Table 1). Thus,
the average velocity on the test set does not exhibit a monotonic pattern and cannot be controlled.
In contrast, our PrefCAVE model (Fig. 3a, column 2) generates predictions with a monotonically
increasing average velocity as one traverses the latent from 0.1 to 0.9. Interestingly, though the
latent factors of each agent are jointly regularized during training, controlling only one agent’s latent
factor (Fig. 3a, column 3) while randomly sampling for all other agents in a scene effectively alters
the behavior of that individual agent alone, indicating that the latent factors are essentially learned
independently for each agent.

PrefCVAE encodes a more accurate known attribute We evaluate the encoder using generated
data as the ground truth. Following the previously described traversal scheme, we first assign values
from 0.1 to 0.9 to the semantic latent factor, generating nine sets of predictions, ŷi (i from 0 to 8),
each pertaining to one of the nine z values used as pseudo-ground-truth latent labels. For each set,
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Figure 4: Violation rate and accuracy with respect to dif-
ferent use rates (Solid: Averaged; Dashed: Best-of-all).

Encoder

Decoder
Base λ=8 λ=32

Base

λ=8

λ=32

Figure 5: Cross configuration tests
with latent dimension of 32.

we use the posterior encoder to map the predictions to the latent space, ẑ ∼ qϕi
(x,yi). We then

analyze the distribution of these nine sets of encoded latents. The posterior encoder approximately
encodes a Beta distribution for all agents in the test set, and we use maximum likelihood estimation
to fit the latent to a Beta distribution, q̂ϕi

, indicating the statistical pattern associated with each
assigned zi (Fig. 3b). Fig. 3b and the metric values in Table 2 together show that with PrefCVAE
the latent codes are better reconstructed.

5.4 HYPERPARAMETER ANALYSIS

This subsection investigates the effect of three key hyperparameters, namely use rate ν, preference
weighting factor λ and latent dimension M . The key findings are summarized at the end of this
subsection.

Use rate For human-labeled data, collecting preferences for the entire dataset is costly, so we test
the effect of randomly dropping preference pairs. Surprisingly, using all pairs (ν = 1) does not yield
the best performance (Tables 1, 2). As shown in Fig. 4, most settings achieve satisfactory violation
rates (AW VR < 0.5%), and dropping pairs has little impact. In fact, at ν = 0.25, we obtain the best
violation rate with comparable accuracy (best minADE5 and minFDE5).

Leveraging only a partial set of preference pairs empirically shows to be more effective because
it reduces overfitting. Although it is desirable to have as many high-quality preference pairs as
possible, the model may also learn stochastic noise presented in these pairs, reducing its sensitivity
to the actual semantic factors that the preference loss is intended to capture, in this case, the average
velocity.

Weighting factor All prior experiments used λ = 16. To examine its effect, we also test λ = 8
and 32, focusing on ν ∈ [0.05, 0.25] since VR is already satisfactory for ν > 0.25. With limited
restarts, most λ = 8 models fail to achieve good VR (Table 3), while λ = 32 consistently yields low
VR, suggesting that increasing the PrefCVAE loss weight improves preference robustness. Accu-
racy is only marginally affected: minADE5 ranges 2.53–2.73m (λ = 8) and 2.51–2.71m (λ = 32);
minFDE5 ranges 5.48–5.97m and 5.46–5.91m, respectively. Thus, higher weighting enhances con-
trollability without harming accuracy, though the upper bound remains unclear.

We also tested cross-model encoder–decoder adaptability under different weighting factors. Since
the semantic latent zs should be model-agnostic, we expect the encoder of model A, pθA(z|x,y), to
produce latent codes that allow decoder B, qθB (y|z,x), to generate accurate trajectories, regardless
of whether A or B is used. With M = 32, we cross-tested the base model, λ = 8, and λ = 32. Qual-
itatively, the two PrefCVAE models with different λ values encode similar latent distributions, while
other pairs do not, confirming that PrefCVAE learns model-agnostic generative factors (Fig. 5).

Latent dimensionality We test latent dimensions of 8, 16, and 32. Larger dimensions slightly
improve best accuracy (Table 4), likely because a wider bottleneck captures more trajectory infor-
mation. However, traversal diversity decreases: with M = 8 or 16 and λ = 32, the average velocity
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Table 3: Effect of tuning weighting factor at small preference use rates

Use rate
VR type

SW (%) MBW (%) AW (%)

λ=8 λ=32 λ=8 λ=32 λ=8 λ=32

0.05 91.30 96.38 64.56 64.11 45.99 38.70
0.10 93.47 10.14 65.08 0.62 46.09 0.21
0.15 91.30 13.04 63.30 1.07 44.62 0.38
0.20 95.65 11.59 77.44 0.94 56.89 0.32
0.25 38.41 15.22 6.05 0.94 2.18 0.32

Table 4: Tradeoff between accuracy, violation rate, and diversity as latent dimension increases

Latent Dimension

nz=8 nz=16 nz=32

λ=16 λ=32 λ=16 λ=32 λ=16 λ=32

SW VR (%) 3.62 0.72 5.07 0 0.72 5.80
MNW VR (%) 0.20 0.03 0.23 0 0.03 0.26
AW VR (%) 0.07 0.01 0.08 0 0.01 0.09

Vel. range (m/s) 1.74 1.55 1.74 1.72 1.80 1.68
(min/max) 5.03 6.00 5.08 5.77 4.96 4.91

minADE5 (m) 2.70 2.83 2.70 2.83 2.63 2.66
minFDE5 (m) 5.75 5.91 5.73 5.91 5.57 5.61

range exceeds 4.5 m/s, but drops below 3.3 m/s for M = 32 (baseline: 3.3 m/s for M = 2, λ = 16).
This suggests reduced controllability as higher dimensions introduce correlations that hinder assign-
ing distinct semantics to each factor. Unsupervised disentanglement methods Chen et al. (2018);
Zietlow et al. (2021) may help mitigate this trade-off.

In conclusion, the findings regarding the choice of hyperparameters are as follows:

1. Latent monotony persists while moderately dropping random preferences (i.e., lowering
the use rate).

2. Increasing the weight of preference loss improves the robustness of monotony.

3. A tradeoff between accuracy and diversity emerges as latent dimension increases.

6 CONCLUSION

This paper presents PrefCVAE, an augmentation to the CVAE framework that enables controllable
trajectory prediction, with which a planner can make ego-plans that are conditioned on predefined
attributes of adjacent vehicles, making planning more informed and safer. The core innovation is a
preference loss that regularizes the semantic meanings of latent factors through pairwise preference
alignment. Beyond proposing a method for controllable trajectory prediction, we aim to offer a
new perspective on effectively and efficiently incorporating dataset inductive bias for disentangled
representation learning in deep generative models.

6.1 LIMITATIONS AND FUTURE WORKS

Our evaluation of PrefCVAE is limited in that we used only a simple oracle-based metric (average
prediction velocity) as the semantic factor. To enable real-world applications, future work should
explore incorporating non-differentiable human-provided preferences (e.g. using techniques like
Gumbel Softmax Jang et al. (2017)), as well as more practically useful semantic information for
latents, such as Social Value Orientation (SVO) Schwarting et al. (2019). Another key limitation is
that we evaluated our method with only one semantic dimension, and extending it to multiple factors
is challenging due to latent factor correlations Chen et al. (2018); this could be investigated in future
work using established disentanglement methods such as Chen et al. (2018).
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Róbert Belanec, Peter Lacko, and Kristı́na Malinovská. Controlling the output of a generative model
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