Under review as a conference paper at ICLR 2026

BRIM: BLOCK-WISE RETURN INDUCTION METHOD
FOR SEQUENCE KNOWLEDGE DISTILLATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement Learning (RL)-based knowledge distillation (KD) is increasingly
used to train language models for text generation. However, existing methods suf-
fer from high variance caused by long action chains during sampling. To address
this, we propose a novel block-wise return induction approach (called BRIM) that
mitigates the high variance issue and stabilizes the training process. Our idea
is to apply the Bellman Optimality Equation inversely to each K -step block seg-
mented student’s explored trajectories, and thus induce a total reward for all blocks
from the teacher model, serving as the policy-gradient training signal. Theoreti-
cal analysis shows that our BRIM reduces the variance of the gradient estimates,
thus leading to improved RL optimization, especially when the student model size
is large. Empirical evaluation on three text generation tasks demonstrates that
our approach yields superior performance in both standard task metrics and large
language model (LLM)-based evaluation, which suggests that our BRIM offers a
promising direction for enhancing RL-based KD in LLM research.

1 INTRODUCTION

Knowledge distillation (KD; Hinton et al., [2015]) refers to training a (typically) small student model
from a teacher’s output. KD has been increasingly important in the LLM era, as larger models
achieve higher performance (Kaplan et al. 2020) but are more difficult to deploy in low-resource
scenarios.

KD approaches can be generally categorized into two types: intermediate-layer matching and predic-
tion matching. Intermediate-layer matching aims to match the student’s and teacher’s hidden states,
encouraging the student to mimic the teacher’s behavior layer by layer (Sun et al., 2019; Jiao et al.}
2020; Wang et al., [2021). Prediction matching informs the student of the task to solve, typically by
minimizing the divergence of output distributions (Kim & Rush, |2016; Wen et al.| 2023).

Classic KD for text generation suffers from the exposure bias problem (Bengio et al., 2015), as the
student learns word by word following the teacher’s or ground truth’s prefix, without accounting
for its own previous predictions. RL alleviates this issue by enabling the student to learn through
exploration. [Hao et al.[(2022)) induce a step-wise reward function from a language model trained in a
supervised way. Building on this, |Li et al.|(2024a)) apply RL to text generation KD, where a student
model is trained by the REINFORCE algorithm (Williams| |1992) maximizing the cumulative reward
suggested by the teacher. However, REINFORCE is known to suffer from high variance because it
estimates gradient by sampled trajectories (i.e., sequences), which can vary significantly (Sutton &
Bartol [2018). This issue is further exacerbated in text generation scenarios due to the large action
space (i.e., vocabulary size), resulting in unstable learning.

In this paper, we propose BRIM, a novel Block-wise Return Induction Method for RL-based knowl-
edge distillation. Our work is inspired by [Li et al. (2024a), who derive a Q-value function from
the teacher’s policy (next-token probabilities) and induce a reward function based on the Bellman
Optimality Equation (Bellman| [1952)). In our approach, we break the long sampled trajectory of the
student model into blocks of K consecutive actions. For each block, we repeatedly apply the inverse
of the Bellman Optimality Equation and induce a total reward for the block from the teacher model.
Then, we sum the total rewards for all blocks as an approximate return (i.e., the total reward for
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a whole trajectory). We use such a block-wise approximated return as the RL training signal and
update the student model with standard policy gradient (Sutton et al., |1999). Theoretical analysis
shows that our BRIM reduces the variance of the total reward, thus effectively mitigating the high
variance issue of RL-based text generation KD.

In essence, our approach is a REINFORCE-with-baseline (Williams|, [1992; Sutton & Bartol [2018])
variant that introduces an auxiliary term (called a baseline) to the return, which oftentimes stabilizes
RL training (Sutton et al., 2000; (Greensmith et al., 2004; Thomas & Brunskill, 2017). Traditional
approaches have a baseline that solely depends on the sampled data (e.g., mean return of all sam-
ples), but this introduces additional noise to the training process if the sampled set is small or not
representative. Later, researchers extend REINFORCE-with-baseline by developing Actor—Critic
(AC) algorithms that learn a critic (i.e., estimated state-value function) to stabilize training. Our
method also extends traditional REINFORCE-with-baseline but differs from AC: we derive a base-
line term based on block-wise Bellman Optimality from the teacher model; thus, we do not need to
train a cumbersome state-value function as AC algorithms do.

We evaluated our approach on three text generation datasets categorized into different domains:
XSum (Narayan et al., [2018) for summarization, the Europarl corpora (Koehn, [2005) for machine
translation, and GSMS8K (Cobbe et al., 2021) for arithmetic reasoning. Experiments show that our
proposed BRIM consistently achieves an add-on performance improvement when combined with
the recent KD through the RL method (L1 et al., [2024a). More importantly, we conduct an em-
pirical analysis to show that our BRIM demonstrates lower variance and converges better than |Li
et al.| (2024a), i.e., achieving a higher return and being more stable, which explains the observed
improvements in empirical evaluation on downstream tasks.

2 METHODOLOGY

2.1 RL FORMULATION OF TEXT GENERATION

Text generation can be formulated as an undiscounted Markov Decision Process (MDP) with tuple
(S, A, T, r). The state space S includes all possible (sub)sequences and each of them is represented
by y <+ for some time step ¢; notice that text generation may also depend on an input sequence, which
is omitted here. The action a; € A at step t corresponds to the next token y,; from the vocabulary
V. The state transition T is a deterministic process in text generation, as s, is essentially the
concatenation of s; and the newly generated word a;. The reward functionr : S x A — R provides
feedback based on (s, a;). The goal of RL is to find a policy (distribution over actions) to maximize
the expected return (cumulative rewards).

A key challenge in applying RL to text generation is the lack of well-defined step-wise reward
functions. To address this, Hao et al.|(2022) and |Li et al. (2024a)) assume that a language model
generates the next word from a Boltzmann distribution based on the Q-value function)|given by

exp(q(s, a))
Do exp(q(s, a’)) ’
Due to the shared formula, a language model’s pre-softmax logit can be viewed as the Q-value

function, and with the Bellman optimality equation (Bellman| [1952)), a step-wise reward function
can be induced by

(D

7TLM(G, | S) =

r(se,ar) = q(s¢,ar) — max q(st41,0a"). 2

Then, the goal of RL for text generation KD is to optimize the student’s policy, denoted by g, to
maximize the expected cumulative reward:

J(@) =Er,

> (s, at)l , 3)

t=1

2The Q-value function estimates the expected return (cumulative reward) of taking action a in state s and
then following a given policy thereafter, defined by ¢ (s,a) = Ex [Zfio Yresa | S0 = 8,00 = a].
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The REINFORCE algorithm (Williams, [1992)) is a policy gradient method, which is widely used
for RL in NLP (Hao et al.} [2022; |Li et al., 2024a).

T
VoJ(0) =Ex, | > GiVologm(ar | 51) (4)

t=1

where G = ZiT:t (s, a;) is a cumulative reward (i.e., return) from step ¢, and the expectation is
approximated by Monte Carlo samples from the distribution 7.

2.2 OUR BRIM METHOD

In this work, we address RL-based KD and propose to refine the learning signal G; in Eqn. by
extending the one-step reward induction to K steps on a block-wise rollout sequence, which allevi-
ates the high variance issue of RL. The key idea is to apply the inverse of the Bellman Optimality
Equation for multiple steps, therefore directly connecting the Q-values at the current state with those
of a future state.

We begin by considering the sum of rewards in Eqn. (2) over K consecutive steps starting from step
t, denoted by G4 4k
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where Eqn. assumes that an optimal action a;4;41 = arg maxg/c4 Q(5t+i+17 a ) is taken. How-
ever, a student’s policy may not be optimal; therefore, Eqn. (5) becomes an approximation, denoted

by ét:t+K,3
ét:t+K = Q(5t7 at) - g}gﬁ Q(§t+K7 a’) (6)

where §;4 f is the state at the (¢ + K )th step after following the student’s policy. This is a reasonable
approximation because, in KD, a student is usually pretrained in a meaningful way (Turc et al.,2019;
Lee et al.,2023; [Kim et al., | 2024)) and the approximation will be more accurate as the optimization
proceeds.

Building upon the K-step reward formulation, we can obtain an approximate return Gy by consid-
ering intervals of K steps, i.e., Gt.ty+x, Gty K:t4+2K, - - - - Formally, we have

7]
Gy = Z étJriK:tJr(iJrl)K
i=0
|5
= Z {q(8t+iK7at+¢K)*£{1§l§ Q(§t+(i+1)K,a/)}- (7
=0

which will be used in our RL-based generation KD.

In particular, the student’s policy is used to sample a sequence of actions (i.e., output words). Then,
the sequence is fed to the teacher model, which evaluates the sequence by Eqn. (7). Finally, we
follow the policy gradient formula, but use the approximate return for the update:

V@J(G) ~ Eﬂ-e

T
Zétvg log g (ay | st)] (8)

t=1

where Gy is our approximate return defined in Eqn. . The process is shown in Algorithm
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2.3 BIAS AND VARIANCE ANALYSIS

Although the REINFORCE algorithm (Williams|, [1992)) estimates gradients in an unbiased way, it
is known to be noisy and prone to high variance in the gradient estimation, which may lead to
instability in learning (Greensmith et al.| 2004; Mnih et al.,|2016; |Bjorck et al., [2022)).

A standard method to mitigate this issue is to subtract a baseline term b; from the actual return:
Gt = Gt - bt. (9)

For example, the average return over a batch (Rosenberg, [2021) is commonly used as the baseline
term to stabilize the REINFORCE algorithm.

Our BRIM approach is a variant of REINFORCE with baseline. This can be seen by examining the

difference between the actual return G; and our approximate return Gy. In our KD application, the
actual return G is given by accumulating the reward defined in Eqn. (Z). In other words, we have

T

Gy = Z(q(st+i,at+i) - f}lgﬁ Q(5t+i+17al))' (10)
i=0

Combining Eqns. , @), and 1i we can interpret our approximate return G, as introducing a
baseline term with the following form

T-1

P - . p— . !
by = ; [Q(5t+m+17 QiyKit1) 1111,12345 a(st4Kiv1,a )}- (11)
20 (mod k)

Unlike conventional, policy-independent baselines (Sutton & Barto, 2018}, [Rosenberg, 2021), our
baseline depends on the selected actions and thus introduces bias into the expected return estimation.
However, our approach can alleviate the high variance issue of REINFORCE with mild assumptions.
The key insight is that Eqn. (] cancels intermediate terms in the summation over different time steps,
so the variance is reduced. This is formally analyzed by the following theorem.

Theorem 1 (Variance Reduction via K-Step Return). Let G, be the actual return and G, be the
K -step approximate return for some sequences sampled from the student policy w. Assuming that
the state—action—reward tuples (s, a;, 1) are iid drawn at different steps, we have:

Var|Gy] < Var[Gy]. (12)
Proof. See Appendix [B] O

The iid assumption is reasonable and widely adopted in theoretical RL research (Kearns & Singh)
2000; Bhandari et al., [2018; [ Xu et al., 2020)), because in many environments the dependencies decay
rapidly and correlation is further weakened when a large batch of samples is considered.

Overall, Theorem [I] along with the derivations in Appendix [B] indicates that our BRIM alleviates
variance at a power rate as K increases, which is also empirically verified in §3.3] Although this
method introduces a bias term in the gradient estimation, the bias is effectively mitigated: it dimin-
ishes for smaller values of K and converges to zero as the student policy becomes more optimal.
Detailed bias analysis is given in Appendix[C| Such a trade-off is widely applied in existing RL liter-
ature, as seen in Temporal Difference (TD) learning (Sutton, | 1988)), Actor—Critic algorithms (Konda
& Tsitsiklis, [1999; [Mnih et al., [2016)), and Deep Q-Network (DQN; Mnih et al., 2015)).

3 EXPERIMENTS

In this section, we present the empirical evaluation and analysis of our proposed BRIM. We begin by
describing the datasets, baseline methods, and implementation details, followed by the main results
and detailed analyses.
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3.1 SETTINGS

Tasks, Datasets, and Metrics. We evaluate our approach on various text generation tasks that are
frequently considered in previous literature (Maruf et al., |2018; [Magister et al.l |2023; Wen et al.,
2023; [Touvron et al.,2023; Biderman et al., [2024}; [Wang et al.| 2024).

e XSum Summarization. The Extreme Summarization (XSum) is a challenging dataset for text
summarization introduced by [Narayan et al.|(2018)), where the summaries are highly abstractive
as they emphasize key ideas with novel wordings. We employ ROUGEE](Lin, 2004) as the primary
metric, which is common practice in summarization (Ravaut et al., 2024; |[Van Veen et al.| 2024;
Agarwal et al.,[2025).

e Europarl EN-NL Translation. Europarl (Koehn, 2005)) is a high-quality, multilingual parallel
corpus extracted from European Parliament proceedings. We choose English-to-Dutch, a rela-
tively low-resource translation direction, to facilitate our distillation experiments. We report the
BLEU scoreE] (Papineni et al.,2002), character-level F score (chrF, Popovic, ZOISE and transla-
tion edit rate (TER,[Snover et al.| 2006 following the standard evaluation in machine translation
(Barrault et al.| 2019 Hrabal et al., 2024).

o GSMSK Reasoning. Grade School Math 8K (GSMB8K, (Cobbe et al.,|[2021) is a popular dataset
consisting of around 8,000 grade school-level math problems with detailed step-by-step solutions.
The standard evaluation metric for GSMS8K is solution accuracy (Wang et al., 2024} [Setlur et al.|
2025), which is adopted in our experiments.

We employ the standard training, validation, and test splits for XSUM (Narayan et al.l [2018) and
Europarl (Koehn, 2005). For GSMSK, the standard split comprises only training and test sets (Cobbe
et al., [2021). We adopt the open-source split provided by Wang et al.| (2024), where the validation
set is constructed by randomly selecting examples from the original training data.

Implementation Details. In our KD, the teacher is the 3B-parameter FLAN-T5-XL model (Chung
et al., |2024), which shares the same architecture as prior work (L1 et al., 2024a). For the summa-
rization task, we directly prompt FLAN-T5-XL as it has already been instruction-finetuned for sum-
marization. On the other tasks, FLAN-T5-XL yields subpar performance if prompted directly; we
finetune the model as the teacher, which is commonly practiced in KD research (De Gibert et al.,
2024 [Setiawan, [2024} |Ye et al., [2025)).

The student uses the 250M-parameter TS-base model, which is consistent with the configuration in
prior work |Agarwal et al.[(2024);|Li et al.| (2024a).

Following previous KD studies (Wen et al., 2023} [L1 et al. [2024a), we perform pre-distillation,
where the student is pretrained by the cross-entropy loss based on the teacher’s outputs. This ensures
a meaningful initialization of the student model and enables effective exploration for reinforcement
learning. Notice that text generation has a much larger state—action space than a typical RL environ-
ment such as Atari games (Mnih et al., 2015). The student performs greedy action selection when
generating a sequence. Our return induction builds upon K -step Bellman optimality equations, and
the hyperparameter K is critical in our framework. We report performance for K € {2,4,8,16} in
our experiments.

Additional experimental details, including hyperparameter settings, statistical tests, and computing
infrastructure, are provided in Appendix

Competing Methods. We compare our BRIM against both divergence-based and RL-based text
generation KD:

* KL Distillation (Hinton et al.l 2015). It minimizes the Kullback—Leibler (KL) divergence
between student and teacher distributions.

¢ SeqKD (Kim & Rush} 2016). This is a classic method where the student maximizes the
likelihood of teacher-generated sequences. It is a hard version of KL distillation

« JS Distillation (Wen et al.| 2023)). Jensen—Shannon (JS) divergence is a symmetric diver-
gence that overcomes the over-smoothing problem of KL divergence (Wei et al.l 2019).

3We computed ROUGE scores and BLEU scores using the implementation at google-research and sacre-
bleu, respectively. All ROUGE, BLEU, chrF, and TER scores are reported with a 95% confidence interval.
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Figure 1: Average predicted return vs Approaches.

« TVD Distillation (Wen et al., 2023). The Total Variation Distance (TVD) is another sym-
metric divergence shown to outperform other methods (Wen et al.l |2023)). This method is
also explored in|Agarwal et al.|(2024) with a ratio between the two terms of TVD.

e LLMR (Li et al.| 2024a)). In this method, a reward function is induced from a teacher
language model by one-step Bellman optimality (Hao et al.,[2022). Then, the student model
is trained by RL towards the induced reward.

Since our approach reduces the variance of RL, we consider alternative variance reduction tech-
niques under the LLMR framework:

* LLMR + Mean Baseline. Using the average reward in a batch as a baseline is commonly
used for stabilizing RL training (Sutton & Barto) 2018)).

* LLMR + Min-Variance Baseline. This is an advanced variant that is shown to be theoret-
ically optimal when the baseline is derived from batch data (Rosenberg| 2021}).

For a fair comparison, we apply the same settings in §3.1](when applicable) to the competing meth-
ods as we do to our approach. Specifically, all methods adopt pre-distillation to ensure a meaningful
student initialization, and all RL methods use the same action selection procedure.

3.2 MAIN RESULTS

As mentioned in §2.2] the primary advantage of our BRIM is its enhanced RL optimization compared
with classic REINFORCE. In this part, we will first show that our approach indeed achieves a
higher return (cumulative reward) in RL. Then, we will show that our approach leads to improved
performance in NLP tasks.

Return in RL. The goal of RL is to learn a policy maximizing the expected return. Therefore, we
may use it to evaluate the outcome of RL training.

Figure[|shows the return score that is defined in Eqn. (I0), where the return is averaged over differ-
ent test samples, using various RL methods in the three NLP tasks. As seen, our BRIM consistently
achieves a higher average return than competing approaches across all the tasks. This indicates that
our BRIM learns a superior policy in terms of the return, which is precisely the RL objective.

In addition, we observe that an increased K may not necessarily improve the return. This is because
our BRIM introduces bias despite its reduced variance (§2.3). Therefore, a trade-off should be sought
when choosing the K value.

NLP Task Performance. Table [T] presents the results of our approach in NLP metrics.

We first examine the performance of directly prompting the teacher and the non-distilled student
model in a zero-shot manner, offering empirical lower and upper bounds for the KD process. Note
that the bounds are not theoretically guaranteed; instead, KD is empirically expected to improve the
student’s performance but may still underperform the teacher, especially when the student is small.
In our setup, the student is a T5-base model, which does not yield reasonable performance when
prompted directly.

We then consider divergence-based distillation methods, including SeqKD and KL/JS/TVD distil-
lations. As seen from the table, symmetric methods (JS, TVD)—which involve both exploitation
of teacher predictions and exploration based on student predictions—tend to surpass asymmetric
methods (SeqKD, KL), where the student follows teacher predictions without any exploration. The
results are consistent with previous findings (Wen et al., [2023 |Agarwal et al., [ 2024)).



Under review as a conference paper at ICLR 2026

Model XSum Europarl GSM8K
ROUGE-1T ROUGE-2T ROUGE-LT | BLEU4T chrFT TER'? | Accuracy(%)"
Teacher 41.32 18.86 33.79 25.36 S1.11  63.17 40.71
Student 19.60 3.19 13.72 0.95 24.80 100.21 0.00
SeqKD|Kim & Rush|(2016) 33.54 11.90 26.67 22.09 48.33  66.18 20.02
KL Hinton et al.|[(2015) 34.36 12.86 27.38 22.35 48.58 65.93 23.96
JS|Wen et al.|(2023) 34.87 13.18 27.84 22.55 4871  65.74 24.72
TVD|Wen et al.|(2023) 35.17 13.30 28.10 22.63 48.66  65.79 24.94
Distilled LLMRILi et al.|(2024a) 35.54 13.70 28.56 22.72 49.04 65.38 25.21
Stﬁdent LLMR + Mean baseline 35.60 13.76 28.64 22.67 49.03  65.39 25.39
LLMR + Min-Var baseline 35.59 13.78 28.66 22.70 4897  65.55 25.10
BRIM (K =2) 36.63 14.15 29.29 2293 49.25 65.15 25.63
BRIM (K =4) 36.42 14.16 29.08 22.93 4921  65.21 25.93
BRIM (K = 8) 35.68 13.88 28.76 22.95 49.23  65.20 26.38
BRIM (K = 16) 35.31 13.68 28.51 22.94 4924  65.18 26.16

Table 1: Main results on XSum, Europarl EN-NL, and GSMS8K datasets. The best student result
is in bold. T/+The higher/lower, the better. We prompt the teacher and off-the-shelf student in a
zero-shot manner to gain the first two rows.

Next, we evaluate LLMR (Li et al 2024a)), a text generation KD approach using REINFORCE.
Results show that LLMR provides certain performance gain over non-RL KD methods, which is
likely stemmed from the student’s self-exploration, aligning with the observations in|Li et al.|(2024a)
and other recent RL-based text generation research (Ouyang et al.,2022; DeepSeek-Al et al.| [2025).

To mitigate the high variance of REINFORCE in LLMR, we incorporate classic RL baseline terms
(mean baseline and min-variance baseline) that are estimated from batch data. However, these meth-
ods are not effective in our scenario, as text generation has a very large state—action space, which
makes the generated outputs in a batch less representative and the baseline term less useful.

By contrast, our BRIM employs a novel baseline formulation that largely reduces the variance of
RL (Theorem [I)) and improves RL optimization (Figure[I). Consequently, it delivers a noteworthy
add-on performance gain on top of LLMR across three text generation tasks.

In the experiment, we also observe that a moderate K between 2 to 8 leads to the highest NLP
performance, which is consistent with the return analysis in Figure [T} It is also noticed that RL
return and NLP performance are not perfectly correlated, as the induced reward may not fully reflect
the task metric such as BLEU and ROUGE scores, which is also known as reward hacking (Amodei
et al.| 20165 Hao et al., [2022; |Ouyang et al.,2022).

Summary. Our main results show that our BRIM (with a moderate K) improves RL optimization,
which is generally translated to higher performance in various NLP tasks.

3.3 IN-DEPTH ANALYSES

Variance and bias analysis. As shown by the
theoretical analysis in §2.3] our approach pro-

350+

o 300 . . .
2 ol 54 vides a bias—variance trade-off by largely re-
£ 0] ° ducing the variance, although introducing a bias

term. We empirically verify them in this analysis.

12 4 8 16

K Figure [2a] shows the variance of the K-step re-
(@ Variance ® Bias turn, where we sample 32 outputs for a given in-
put and use Eqn. (20) to estimate the variance of
return; the variance is further averaged over 10K
input samples. For the bias, we use Eqn. (23)) for empirical estimation, and the results are shown in
Figure We choose the value of K from {1,2,4,8,16} to see the trends. Note that K = 1 corre-
sponds to the competing approach LLMR (Li et al., 2024a). In addition, we examine the impact of
the initial student policy by considering students with various KL divergence levels from the teacher
policy: a smaller KL divergence indicates that the student and teacher are more resemblant.

Table 2: Variance and bias with different K.

We observe that the variance decreases drastically as K increases, while the bias term increases
steadily. The observations align with our theoretical analysis in and Appendix [C] suggesting
the need for seeking a moderate K value to balance bias and variance

*Our bias—variance trade-off is different from that in a regression analysis (Hastie et al., 2009; [Vapnik,
2013), where the total squared error is the sum of variance and squared bias, plus an irreducible noise. By
contrast, the variance of return affects the smoothness of RL training, while bias affects the optimum quality (if
converging); their total effect is not given by a simple addition.
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Figure 2: Learning curves. y-axis is the true return value, and z-axis is the number of training steps.

We also observe that when the student policy is initialized closer to the teacher policy (i.e., a smaller
KL divergence), our BRIM generally demonstrates lower bias and variance. The bias reduction is
predicted by our theoretical analysis in Appendix |C} whereas the variance reduction is an empirical
observation. Overall, the results demonstrate that pre-distillation is important to RL training for text
generation, which is consistent with previous work (Ouyang et al.,[2022; DeepSeek-Al et al.| [2025).

Model Size. We analyze RL-based KD approaches with different student sizes. Figure[2]presents the
learning curves for student models initialized from FLAN-T5-small (77M), FLAN-T5-base (250M),
and FLAN-T5-large (800M) using our BRIM and the competing approach LLMR (K = 1).

As seen from the curves in Figure |2 LLMR exhibits notable instability during RL training as the
model size increases, especially when scaling to FLAN-T5-large. Such a phenomenon is also re-
ported in the RL literature: a large network is prone to overfit the limited sampled outputs, conse-
quently leading to unstable performance on test data (Henderson et al., 2018} |Cobbe et al., 2019).

In contrast, our BRIM largely alleviates this issue by reducing the variance, which stabilizes the
learning curves. Overall, our method achieves smoother training and higher performance with all
model sizes, compared with LLMR.

LLM Evaluation. We conduct an LLM evaluation as a surrogate of human evaluation, as classic
NLP metrics (such as ROUGE and BLEU) may not fully reflect the quality of generated text. Specif-
ically, we prompt the Qwen?2 .5-72B-Instruct (Qwen et al.,2025) LLM to conduct a pairwise
evaluation of system outputs, against the commonly used KL distillation. We select TVD, LLMR,
and our BRIM from Table([T|as the competitors, as pairwise evaluation is expensive. Our LLM evalu-
ation considers multiple criteria, including overall quality, informativeness, and coherence. For each
comparison, we query the LLM four times by swapping the two candidates and their IDs (namely,
A and B), as LLM is prone to ID bias (Zheng et al., 2023) and positional bias (Shen et al., [2023)).
The detailed prompts are presented in Appendix

Table [3] shows the results of the LLM evalua-

Dataset ~ Method Overall Informativeness Coherence
VD  67.50% 68.15% 65.90% tion. We observe that our BRIM achieves the
XSum  LLMR  69.95% 70.55% 66.30% best winning rate in terms of all criteria (over-
BRIM  7350%  73.90% 70-40% all quality, informativeness, and coherence) on
Furoparl gﬁR gé:igg gg:gz 22:282 b.oth datasets. These compelling results are con-
BRIM  58.85% 57.95% 58.45% sistent with the traditional task metrics in Table[T]

and further demonstrate the effectiveness of our

Table 3: LLM-based evaluation. BRIM.

4 RELATED WORK

Knowledge Distillation. The foundation of KD is laid by Bucilua et al.| (2006), who performs KD
by aligning the logits of the student with those of a teacher through squared error minimization.
This framework is extended by Hinton et al.[(2015)), who propose to use KL divergence to match the
output probability distributions of the teacher and student. | Kim & Rush| (2016) extend KD to the
sequence level for auto-regressive models, and Wen et al.[ (2023) further propose a general frame-
work of f-divergence minimization to mitigate the mode averaging and collapsing issues. |Agarwal
et al.|(2024); [Gu et al.|(2024); [Ko et al.| (2024); Wu et al.| (2025) extends or refines the f-divergence
minimization framework, enabling more effective or efficient training of the student model. These
divergence-based KD approaches heavily rely on imitation of the teacher’s predictions, neglecting
the student’s active exploration during learning.

Other distillation methods are less comparable as they target specialized scenarios, such as specific
data settings (Zhao et al.l[2024; Zhou et al., 2024; [Liu et al., 2024b)), distinct downstream tasks (Liu
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et al.,|2024a};|Zhang et al.| | 2024a)), or architectural variations (Zhang et al., 2024b;|Chen et al.,2024;
Peng & Zhang} 2025)). In contrast, our work focuses on the general task of text generation, so these
approaches are not directly related or comparable to ours.

Bridging RL and text generation KD. Recent work has sought to combine RL and KD by deriving
rewards from teacher models. |[Hao et al.|(2022) interpret a supervised-trained language model’s pre-
softmax logits as Q-values, deriving a step-wise reward function via Bellman Optimality equation,
which alleviates the sparse reward issue commonly existing in other RL text generation scenar-
ios (Wu et al.,|2018; Ouyang et al., [2022)). Building on this, |Li et al.[(2024a) extend this approach to
KD settings, where they induce a reward function from a large language model (serves as a teacher)
and train a student model to maximize the teacher-induced return. However, RL is known to suffer
from high variance, and our paper proposes BRIM that largely reduces the variance of RL training.

Variance Reduction in RL. REINFORCE with baseline (Sutton & Barto, 2018)) mitigates the
high variance issue by subtracting a baseline term derived from batch data. Actor—Critic methods
(Konda & Tsitsiklis, |{1999; [Mnih et al., |2016) address this by learning a value function (critic) as
the baseline term, but the inaccurate value estimates from the critic can lead to harmful updates
in the actor’s policy, while a poor decision by the actor can adversely affect the critic’s learning.
This often results in divergence of RL training (Bhatnagar et al., 2007} |[Fujimoto et al., 2018; Parisi
et al.|, [2019). Thus, recent RL work for LLMs tends to avoid learning a critic (DeepSeek-Al et al.,
2025). Our BRIM exploits the mathematical structure of LM-induced rewards to derive a principled
baseline for variance reduction, without learning an auxiliary neural network like a critic.

Another line of studies develops conservative policy optimization techniques like TRPO (Schulman
et al., [2015a) and PPO (Schulman et al., [2017). Appendix @] presents empirical results showing
that BRIM integrates cleanly into PPO by replacing the critic-based advantage with a K -step return
(§2.2). This removes the need to learn a critic, mitigating error accumulation in critic and bias
in advantage estimates, and yields stable, near-monotonic return improvements (Figure [3b). By
contrast, coupling PPO with the competing approach LLMR introduces compounding critic errors
and biased advantages, leading to unstable updates and training collapse (Figure [3aand Figure [3b)),
which further underscores the advantage of BRIM.

N-Step Bootstrapping. In value-based RL, the state-value function can be estimated either from
one-step TD bootstrapping (N = 1) or from the full Monte Carlo return (N — oo). Classical N-
step TD interpolates between these two extremes. Although this appears related to our method, the
N-step formulation is fundamentally different from our BRIM. First, the symbols N and K encode
distinct mathematical concepts: N specifies the rollout length of the TD target, whereas K denotes
the depth of the inverse Bellman expansion that defines our variance-reduction baseline. Second,
N-step TD requires learning an additional parameterized state-value function, which is impractical
in our setting. Thus, algorithms built on N-step bootstrapping, including Eligibility Trace (Sutton)
1988)) and its modern variants (Schulman et al.,|2015b), lie outside the scope of this work.

Other RL-based KD approaches. Recent RL-based knowledge distillation methods often adapt
the |(Ouyang et al.|(2022)’s framework to train reward functions use Bradley—Terry model (Gu et al.,
20255 |L1 et al., [2025; Nath & coauthors, 2025} (Gao et al., [2025; [Zhang et al.| [2024a) or its variants
(Zhang et al., 2025} [Li et al., 2024b). Alternatively, some approaches use rule-based rewards for
tasks like reasoning (Xu et al., 2025aib). However, these methods rely on sequence-level rewards,
which are sparse and result in poor credit assignment. In contrast, our approach induces block-wise
reward estimation to provide a denser, more granular training signal, offering a fundamental training
advantage.

5 CONCLUSION

In this paper, we introduce BRIM, a novel return induction via applying the inverse of the Bellman
Optimality Equation to the block-wise sampled trajectory for reinforcement learning for knowledge
distillation in the text generation domain. Compared with conventional RL methods, our approach
effectively reduces gradient variance and leads to a more stable training, shown by both theoretical
and empirical analyses. Extensive experiments across diverse text generation tasks verify that our
approach improves RL training and boosts NLP task performance.
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6 LIMITATIONS AND FUTURE WORK

A limitation of our evaluation is that we use LLM-as-judge as a surrogate for human evaluation.
Although LLM-as-judge has become a scalable and common approach, it can possess intrinsic biases
or fail to capture the true human preferences regarding text quality. To address this, we take specific
measures, e.g., enumerating all combinations of answer IDs and order, to mitigate position and ID
bias, which improves the trustworthiness of the LLM-as-judge assessment.

Our current method uses a fixed hyperparameter K, which is tuned by validation. In future work,
we will explore an adaptive K -step estimation method, which would dynamically adjust the block
size, potentially based on the student’s current performance or policy uncertainty. This could better
manage the exploration—exploitation trade-off and reduce the need for hyperparameter tuning.

In addition, our current scope is inner-family distillation, where the teacher and student share a
common tokenizer and vocabulary. For cross-family distillation, there is a significant challenge that
we need to map the tokenizers of different models. While tackling this token mapping problem is
an important research direction, it goes beyond the scope of this paper and we are happy to explore
it in future work.

REFERENCES

Rishabh Agarwal, Nino Vieillard, Yongchao Zhou, Piotr Stanczyk, Sabela Ramos Garea, Matthieu
Geist, and Olivier Bachem. On-policy distillation of language models: Learning from self-
generated mistakes. In International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?1d=3zKtaqgxLhW.

Rishabh Agarwal, Avi Singh, Lei Zhang, Bernd Bohnet, Luis Rosias, Stephanie Chan, Biao Zhang,
Ankesh Anand, Zaheer Abbas, Azade Nova, et al. Many-shot in-context learning. In Advances
in Neural Information Processing Systems, pp. 76930-76966, 2025. URL https://openreview.net/
forum?id=goi7DFHIgS|

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. Con-
crete problems in Al safety. arXiv preprint arXiv:1606.06565, 2016. URL http://arxiv.org/abs/
1606.06565.

Loic Barrault, Ondfej Bojar, Marta R. Costa-jussa, Christian Federmann, Mark Fishel, Yvette Gra-
ham, Barry Haddow, Matthias Huck, Philipp Koehn, Shervin Malmasi, Christof Monz, Mathias
Miiller, Santanu Pal, Matt Post, and Marcos Zampieri. Findings of the Conference on Machine
Translation (WMT19). In Proceedings of the Conference on Machine Translation, pp. 1-61, 2019.
URL https://aclanthology.org/W19-5301.

Richard Bellman. On the theory of dynamic programming. In Proceedings of the National Academy
of Sciences, pp. 716-719, 1952. URL https://www.]jstor.org/stable/88493,

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for se-
quence prediction with recurrent neural networks. In Advances in Neural Information Pro-
cessing Systems, pp. 1171-1179, 2015. URL https://papers.nips.cc/paper_files/paper/2015/hash/
€995198d56967d946471af29d7bf99f1- Abstract.html.

Jalaj Bhandari, Daniel Russo, and Raghav Singal. A finite time analysis of temporal difference learn-
ing with linear function approximation. In Proceedings of the Conference on Learning Theory,
pp. 1691-1692, 2018. URL https://proceedings.mlr.press/v75/bhandaril8a.html.

Shalabh Bhatnagar, Mohammad Ghavamzadeh, Mark Lee, and Richard S Sutton. In-
cremental natural actor-critic algorithms. In Advances in Neural Information Process-
ing Systems, pp. 105-112, 2007. URL https://papers.nips.cc/paper_files/paper/2007/hash/
6883966fd81918a4aa29be29d2c386fb- Abstract.htmll

Dan Biderman, Jacob Portes, Jose Javier Gonzalez Ortiz, Mansheej Paul, Philip Greengard, Con-
nor Jennings, Daniel King, Sam Havens, Vitaliy Chiley, Jonathan Frankle, Cody Blakeney, and
John Patrick Cunningham. LoRA learns less and forgets less. Transactions on Machine Learning
Research, pp. 2835-8856, 2024. URL https://openreview.net/forum?id=aloEru2qCG.

10


https://openreview.net/forum?id=3zKtaqxLhW
https://openreview.net/forum?id=goi7DFHlqS
https://openreview.net/forum?id=goi7DFHlqS
http://arxiv.org/abs/1606.06565
http://arxiv.org/abs/1606.06565
https://aclanthology.org/W19-5301
https://www.jstor.org/stable/88493
https://papers.nips.cc/paper_files/paper/2015/hash/e995f98d56967d946471af29d7bf99f1-Abstract.html
https://papers.nips.cc/paper_files/paper/2015/hash/e995f98d56967d946471af29d7bf99f1-Abstract.html
https://proceedings.mlr.press/v75/bhandari18a.html
https://papers.nips.cc/paper_files/paper/2007/hash/6883966fd8f918a4aa29be29d2c386fb-Abstract.html
https://papers.nips.cc/paper_files/paper/2007/hash/6883966fd8f918a4aa29be29d2c386fb-Abstract.html
https://openreview.net/forum?id=aloEru2qCG

Under review as a conference paper at ICLR 2026

Johan Bjorck, Carla P Gomes, and Kilian Q Weinberger. Is high variance unavoidable in RL?
A case study in continuous control. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?1d=9xhgmsNVHu.

Cristian Bucilud, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In Proceed-
ings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp- 535-541, 2006. URL https://dl.acm.org/doi/10.1145/1150402.1150464..

Hongzhan Chen, Quan Li, Yan Zhang, et al. Knowledge distillation of black-box large language
models. 2024.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan
Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned
language models. Journal of Machine Learning Research, 25(70):1-53, 2024. URL https:
/fjmlr.org/papers/volume25/23-0870/23-0870.pdf.

Karl Cobbe, Oleg Klimov, Chris Hesse, Tachoon Kim, and John Schulman. Quantifying gener-
alization in Reinforcement Learning. In Proceedings of International Conference on Machine
Learning, pp. 1282-1289, 2019. URL |https://proceedings.mlr.press/v97/cobbe19a.html.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021. URL https://arxiv.org/abs/
2110.14168.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

Ona De Gibert, Mikko Aulamo, Yves Scherrer, and Jorg Tiedemann. Hybrid distillation from rbmt
and nmt: Helsinki-NLP’s submission to the shared task on translation into low-resource languages
of Spain. In Proceedings of the Conference on Machine Translation, pp. 908-917, 2024. URL
https://aclanthology.org/2024.wmt- 1.88/.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, and et al. DeepSeek-R1: Incentivizing reasoning capability in LLMs
via Reinforcement Learning, 2025. URL https://arxiv.org/abs/2501.12948.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In Proceedings of the International Conference on Machine Learning, pp. 1587—
1596, 2018. URL https://proceedings.mlr.press/v80/fujimoto 1 8a/fujimoto18a.pdf.

Song Gao, Guoliang Li, Shaohui Tong, Yunyun Li, Zongwei Li, and Qi Li. Advantage-guided dis-
tillation for preference alignment in small language models. In Proceedings of the Thirteenth
International Conference on Learning Representations (ICLR 2025). OpenReview, 2025. Spot-
light.

Evan Greensmith, Peter L Bartlett, and Jonathan Baxter. Variance reduction techniques for gradient
estimates in Reinforcement Learning. Journal of Machine Learning Research, pp. 1471-1530,
2004. URL https://www.jmlr.org/papers/volume5/greensmithO4a/greensmithO4a.pdf.

Yanggan Gu, Junzhuo Li, Sirui Huang, Xin Zou, Zhenghua Li, and Xuming Hu. Capturing nu-
anced preferences: Preference-aligned distillation for small language models. In Findings of the
Association for Computational Linguistics: ACL 2025, pp. 15959-15973, Vienna, Austria, 2025.
Association for Computational Linguistics.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. Minillm: Knowledge distillation of large lan-
guage models. In ICLR, 2024.

Yongchang Hao, Yuxin Liu, Guoqing Luo, and Lili. Mou. Teacher forcing recovers reward functions
for text generation. In Advances in Neural Information Processing Systems, pp. 12594-12607,
2022. URL https://openreview.net/pdf?id=1_gypPuWUC3\

11


https://openreview.net/forum?id=9xhgmsNVHu
https://dl.acm.org/doi/10.1145/1150402.1150464
https://jmlr.org/papers/volume25/23-0870/23-0870.pdf
https://jmlr.org/papers/volume25/23-0870/23-0870.pdf
https://proceedings.mlr.press/v97/cobbe19a.html
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://aclanthology.org/2024.wmt-1.88/
https://arxiv.org/abs/2501.12948
https://proceedings.mlr.press/v80/fujimoto18a/fujimoto18a.pdf
https://www.jmlr.org/papers/volume5/greensmith04a/greensmith04a.pdf
https://openreview.net/pdf?id=1_gypPuWUC3

Under review as a conference paper at ICLR 2026

Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. The Elements
of Statistical Learning: Data Mining, Inference, and Prediction. Springer, 2009. URL https:
/Mink.springer.com/book/10.1007/978-0-387-84858-7.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep Reinforcement Learning that matters. In Proceedings of the AAAI Conference on Artificial
Intelligence, pp. 3207-3214, 2018. URL https://ojs.aaai.org/index.php/AA Al/article/view/11694.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015. URL https://arxiv.org/abs/1503.02531.

Miroslav Hrabal, Josef Jon, Martin Popel, Nam Luu, Danil Semin, and Ondfej Bojar. CUNI at
WMT24 general translation task: LLMs,(Q)LoRA, CPO and model merging. In Proceedings of
the Conference on Machine Translation, pp. 232-246, 2024. URL https://aclanthology.org/2024.
wmt-1.16/.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
TinyBERT: Distilling BERT for natural language understanding. In Findings of the Association
for Computational Linguistics: EMNLP, pp. 4163-4174, 2020. URL https://aclanthology.org/
2020.findings-emnlp.372.

Jaehun Jung, Peter West, Liwei Jiang, Faeze Brahman, Ximing Lu, Jillian Fisher, Taylor Sorensen,
and Yejin Choi. Impossible distillation for paraphrasing and summarization: How to make high-
quality lemonade out of small, low-quality model. In Proceedings of the 2024 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers), pp. 4439-4454, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020. URL https://arxiv.org/abs/2001.08361.

Michael J Kearns and Satinder Singh. Bias-variance error bounds for temporal difference updates.
In Proceedings of the Conference on Computational Learning Theory, pp. 142—-147, 2000. URL
https://www.learningtheory.org/colt2000/papers/KearnsSingh.pdf.

Gyeongman Kim, Doohyuk Jang, and Eunho Yang. PromptKD: Distilling student-friendly knowl-
edge for generative language models via prompt tuning. In Findings of the Association for
Computational Linguistics: EMNLP, pp. 6266—6282, 2024. URL https://aclanthology.org/2024.
findings-emnlp.364.pdf.

Yoon Kim and Alexander M. Rush. Sequence-level knowledge distillation. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing, pp. 1317-1327, 2016. URL
https://www.aclweb.org/anthology/D16-1139.

Jongwoo Ko, Sungnyun Kim, Tianyi Chen, and Se-YoungHongzhan Yun. Distillm: Towards stream-
lined distillation for large language models. In International Conference on Machine Learning,
pp. 24872-24895, 2024.

Philipp Koehn. Europarl: A parallel corpus for statistical machine translation. In Proceedings of
Machine Translation, pp. 79-86, 2005. URL https://aclanthology.org/2005.mtsummit-papers.11/.

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. In Advances in Neural Information Pro-
cessing Systems, pp. 1008-1014, 1999. URL https://proceedings.neurips.cc/paper_files/paper/
1999/file/6449f44a102fde848669bdd9ebbb76fa-Paper.pdf.

Hayeon Lee, Rui Hou, Jongpil Kim, Davis Liang, Sung Ju Hwang, and Alexander Min. A study
on knowledge distillation from weak teacher for scaling up pre-trained language models. In
Findings of the Association for Computational Linguistics: ACL, pp. 11239-11246, 2023. URL
https://aclanthology.org/2023.findings-acl.7 14.pdf.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-
training for natural language generation, translation, and comprehension. In Proceedings of the
Annual Meeting of the Association for Computational Linguistics, pp. 7871-7880, 2020.

12


https://link.springer.com/book/10.1007/978-0-387-84858-7
https://link.springer.com/book/10.1007/978-0-387-84858-7
https://ojs.aaai.org/index.php/AAAI/article/view/11694
https://arxiv.org/abs/1503.02531
https://aclanthology.org/2024.wmt-1.16/
https://aclanthology.org/2024.wmt-1.16/
https://aclanthology.org/2020.findings-emnlp.372
https://aclanthology.org/2020.findings-emnlp.372
https://arxiv.org/abs/2001.08361
https://www.learningtheory.org/colt2000/papers/KearnsSingh.pdf
https://aclanthology.org/2024.findings-emnlp.364.pdf
https://aclanthology.org/2024.findings-emnlp.364.pdf
https://www.aclweb.org/anthology/D16-1139
https://aclanthology.org/2005.mtsummit-papers.11/
https://proceedings.neurips.cc/paper_files/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://aclanthology.org/2023.findings-acl.714.pdf

Under review as a conference paper at ICLR 2026

Dongheng Li, Yongchang Hao, Guoqging Luo, and Lili. Mou. LLMR: Knowledge distillation with
a large language model-induced reward. In Proceedings of the Joint International Conference on
Computational Linguistics, Language Resources and Evaluation, pp. 10657-10664, 2024a. URL
https://aclanthology.org/2024.lrec-main.932.

Dongheng Li, Yongchang Hao, and Lili Mou. Llmr: Knowledge distillation with a large language
model-induced reward. In Proceedings of the 2024 Joint International Conference on Compu-
tational Linguistics, Language Resources and Evaluation (LREC-COLING 2024). ELRA and
ICCL, May 2024b.

Yulong Li, Zhenyu Zhang, Zihan Chen, Jian Guo, and Li Dong. Direct preference knowledge
distillation. 2025.

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summarization
Branches Out, pp. 74-81, 2004. URL https://aclanthology.org/W04-1013.

Chengyuan Liu, Fubang Zhao, Kun Kuang, Yangyang Kang, Zhuoren Jiang, Changlong Sun, and
Fei Wu. Evolving knowledge distillation with large language models and active learning. In Pro-
ceedings of the 2024 Joint International Conference on Computational Linguistics, Language Re-
sources and Evaluation (LREC-COLING 2024), Torino, Italia, May 2024a. European Language
Resources Association.

Jiaheng Liu, Chenchen Zhang, Jinyang Guo, Yuanxing Zhang, Haoran Que, Ken Deng, Jie Liu,
Ge Zhang, Yanan Wu, Congnan Liu, et al. Ddk: Distilling domain knowledge for efficient large
language models. Advances in Neural Information Processing Systems, 37:98297-98319, 2024b.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=Bkg6bRiCqY7.

Lucie Charlotte Magister, Jonathan Mallinson, Jakub Adamek, Eric Malmi, and Aliaksei Severyn.
Teaching small language models to reason. In Proceedings of the Annual Meeting of the Associ-
ation for Computational Linguistics, pp. 1773—-1781, 2023. URL https://aclanthology.org/2023.
acl-short.151/.

Sameen Maruf, André FT Martins, and Gholamreza Haffari. Contextual neural model for translating
bilingual multi-speaker conversations. In Proceedings of the Conference on Empirical Methods
in Natural Language Processing, pp. 101-112, 2018. URL https://aclanthology.org/W18-6311/.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-
level control through deep Reinforcement Learning. Nature, pp. 529-533, 2015. URL https:
//www.nature.com/articles/nature14236.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep Reinforcement
Learning. In Proceedings of the International Conference on Machine Learning, pp. 1928-1937,
2016. URL http://proceedings.mlr.press/v48/mnihal 6.pdf.

Skander Moalla, Andrea Miele, Daniil Pyatko, Razvan Pascanu, and Caglar Gulcehre. No represen-
tation, no trust: connecting representation, collapse, and trust issues in ppo. Advances in Neural
Information Processing Systems, 37:69652—-69699, 2024.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata. Don’t give me the details, just the summary!
Topic-aware convolutional neural networks for extreme summarization. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing, pp. 1797-1807, 2018. URL
https://aclanthology.org/D18-1206.

Shubham Nath and coauthors. Simultaneous reward distillation and preference learning for efficient
alignment of small language models. 2025.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. In Advances in Neural Information Processing Sys-
tems, pp. 27730-27744, 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
blefde53be364a73914£58805a001731-Paper-Conference.pdf,

13


https://aclanthology.org/2024.lrec-main.932
https://aclanthology.org/W04-1013
https://openreview.net/forum?id=Bkg6RiCqY7
https://aclanthology.org/2023.acl-short.151/
https://aclanthology.org/2023.acl-short.151/
https://aclanthology.org/W18-6311/
https://www.nature.com/articles/nature14236
https://www.nature.com/articles/nature14236
http://proceedings.mlr.press/v48/mniha16.pdf
https://aclanthology.org/D18-1206
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf

Under review as a conference paper at ICLR 2026

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: a method for automatic
evaluation of machine translation. In Proceedings of the Annual Meeting of the Association for
Computational Linguistics, pp. 311-318, 2002. URL https://aclanthology.org/P02-1040/.

Simone Parisi, Voot Tangkaratt, Jan Peters, and Mohammad Emtiyaz Khan. TD-Regularized
Actor-Critic methods. Machine Learning, 108:1467-1501, 2019. URL https://doi.org/10.1007/
$10994-019-05788-0.

Tianyu Peng and Jiajun Zhang. Enhancing knowledge distillation of large language models through
efficient multi-modal distribution alignment. In Proceedings of the 31st International Conference
on Computational Linguistics, pp. 2478-2496, 2025.

Maja Popovic¢. chrF: character n-gram F-score for automatic MT evaluation. In Proceedings of the
Workshop on Statistical Machine Translation, pp. 392-395, 2015. URL https://aclanthology.org/
W15-3049/.

Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
URL https://arxiv.org/abs/2412.15115.

Qwen-Team. Introducing qwenl.5, February 2024. URL https://qwenlm.github.io/blog/qwen1.5/.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, Peter J Liu, et al. Exploring the limits of transfer learning with a unified text-
to-text Transformer. Journal of Machine Learning Research, 21(140):1-67, 2020. URL https:
/ljmlr.org/papers/v21/20-074.html.

Mathieu Ravaut, Aixin Sun, Nancy Chen, and Shafiq Joty. On context utilization in summarization
with large language models. In Proceedings of the Annual Meeting of the Association for Com-
putational Linguistics, pp. 2764-2781, 2024. URL https://aclanthology.org/2024.acl-long.153/.

David S. Rosenberg. Variance reduction in policy gradient. Lecture slides, DS-GA 3001: Tools
and Techniques for ML, 2021. URL https://davidrosenberg.github.io/ttml12021fall/bandits/6.
PG-variance-reduction.pdf.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In Proceedings of the International Conference on Machine Learning, pp.
1889-1897, 2015a. URL https://proceedings.mlr.press/v37/schulman15.html.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation.  arXiv preprint
arXiv:1506.02438, 2015b.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347,2017. URL https://arxiv.org/abs/1707.
06347,

Hendra Setiawan. Accurate knowledge distillation via n-best reranking. In Proceedings of the
2024 Conference of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, pp. 1330-1345, 2024. URL https://aclanthology.org/2024.
naacl-long.72/.

Amrith Setlur, Saurabh Garg, Xinyang Geng, Naman Garg, Virginia Smith, and Aviral Ku-
mar. RL on incorrect synthetic data scales the efficiency of 1lm math reasoning by eight-
fold. In Advances in Neural Information Processing Systems, pp. 43000-43031, 2025. URL
https://neurips.cc/virtual/2024/poster/96295.

14


https://aclanthology.org/P02-1040/
https://doi.org/10.1007/s10994-019-05788-0
https://doi.org/10.1007/s10994-019-05788-0
https://aclanthology.org/W15-3049/
https://aclanthology.org/W15-3049/
https://arxiv.org/abs/2412.15115
https://qwenlm.github.io/blog/qwen1.5/
https://jmlr.org/papers/v21/20-074.html
https://jmlr.org/papers/v21/20-074.html
https://aclanthology.org/2024.acl-long.153/
https://davidrosenberg.github.io/ttml2021fall/bandits/6.PG-variance-reduction.pdf
https://davidrosenberg.github.io/ttml2021fall/bandits/6.PG-variance-reduction.pdf
https://proceedings.mlr.press/v37/schulman15.html
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://aclanthology.org/2024.naacl-long.72/
https://aclanthology.org/2024.naacl-long.72/
https://neurips.cc/virtual/2024/poster/96295

Under review as a conference paper at ICLR 2026

Chenhui Shen, Liying Cheng, Xuan-Phi Nguyen, Yang You, and Lidong Bing. Large lan-
guage models are not yet human-level evaluators for abstractive summarization. In Find-
ings of the Association for Computational Linguistics: EMNLP, pp. 4215-4233, 2023. URL
https://aclanthology.org/2023.findings-emnlp.278/.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Linnea Micciulla, and John Makhoul. A study
of translation edit rate with targeted human annotation. In Proceedings of the Conference of the
Association for Machine Translation in the Americas: Technical Papers, pp. 223-231, 2006. URL
https://aclanthology.org/2006.amta-papers.25/.

Sigi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. Patient knowledge distillation for BERT model
compression. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing, pp. 4323-4332, 2019. URL https://aclanthology.org/D19-1441.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine Learning,
pp- 944, 1988. URL https:/link.springer.com/content/pdf/10.1007/BF00115009.pdf.

Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. MIT Press, 2018.
URL http://incompleteideas.net/book/RLbook2020.pdf.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
ods for Reinforcement Learning with function approximation. 1999. URL https://proceedings.
neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf.

Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. In Advances in Neural Information
Processing Systems, pp. 1057-1063, 2000. URL https://proceedings.neurips.cc/paper_files/paper/
1999/1ile/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf.

Philip S. Thomas and Emma Brunskill. Policy gradient methods for reinforcement learning with
function approximation and action-dependent baselines. arXiv preprint arXiv:1706.06643, 2017.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023. URL https:
//arxiv.org/abs/2307.09288.

Tulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Well-read students learn better:
The impact of student initialization on knowledge distillation. arXiv preprint arXiv:1908.08962,
2019. URL https://arxiv.org/abs/1908.08962.

Dave Van Veen, Cara Van Uden, Louis Blankemeier, Jean-Benoit Delbrouck, Asad Aali, Chris-
tian Bluethgen, Anuj Pareek, Malgorzata Polacin, Eduardo Pontes Reis, Anna Seehofnerovd,
et al. Adapted large language models can outperform medical experts in clinical text sum-
marization. Nature Medicine, pp. 1134-1142, 2024. URL https://www.nature.com/articles/
s41591-024-02855-5.

Vladimir Vapnik. The Nature of Statistical Learning Theory. Springer Science & Business Media,
2013. URL https://link.springer.com/book/10.1007/978-1-4757-3264- 1.

Linyong Wang, Lianwei Wu, Shaoqi Song, Yaxiong Wang, Cuiyun Gao, and Kang Wang. Dis-
tilling structured rationale from large language models to small language models for abstractive
summarization. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pp.
25389-25397, 2025.

Tianduo Wang, Shichen Li, and Wei Lu. Self-training with direct preference optimization improves
chain-of-thought reasoning. In Proceedings of the Annual Meeting of the Association for Compu-
tational Linguistics, pp. 11917-11928, 2024. URL https://aclanthology.org/2024.acl-long.643/.

Wenhui Wang, Hangbo Bao, Shaohan Huang, Li Dong, and Furu Wei. MiniLMv2: Multi-head
self-attention relation distillation for compressing pretrained transformers. In Findings of the
Association for Computational Linguistics: ACL-IJCNLP, pp. 2140-2151, 2021. URL https:
/laclanthology.org/2021.findings-acl. 188,

15


https://aclanthology.org/2023.findings-emnlp.278/
https://aclanthology.org/2006.amta-papers.25/
https://aclanthology.org/D19-1441
https://link.springer.com/content/pdf/10.1007/BF00115009.pdf
http://incompleteideas.net/book/RLbook2020.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/1908.08962
https://www.nature.com/articles/s41591-024-02855-5
https://www.nature.com/articles/s41591-024-02855-5
https://link.springer.com/book/10.1007/978-1-4757-3264-1
https://aclanthology.org/2024.acl-long.643/
https://aclanthology.org/2021.findings-acl.188
https://aclanthology.org/2021.findings-acl.188

Under review as a conference paper at ICLR 2026

Bolin Wei, Shuai Lu, Lili Mou, Hao Zhou, Pascal Poupart, Ge Li, and Zhi Jin. Why do neural dialog
systems generate short and meaningless replies? a comparison between dialog and translation. In
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing,
pp- 7290-7294, 2019. URL https://ieeexplore.ieee.org/document/8682634!

Yugiao Wen, Zichao Li, Wenyu Du, and Lili Mou. f-divergence minimization for sequence-level
knowledge distillation. In Proceedings of the Annual Meeting of the Association for Computa-
tional Linguistics, pp. 10817-10834, 2023. URL https://aclanthology.org/2023.acl-long.605.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist Reinforcement
Learning. Machine learning, 8:229-256, 1992. URL https://people.cs.umass.edu/~barto/courses/
cs687/williams92simple.pdf.

Lijun Wu, Fei Tian, Tao Qin, Jianhuang Lai, and Tie-Yan Liu. A study of reinforcement learning for
neural machine translation. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing, pp. 3612-3621, 2018. URL https://aclanthology.org/D18-1397/.

Taiqiang Wu, Chaofan Tao, Jiahao Wang, Runming Yang, Zhe Zhao, and Ngai Wong. Rethinking
kullback-leibler divergence in knowledge distillation for large language models. In Proceedings
of the 31st International Conference on Computational Linguistics (COLING 2025), pp. 5737-
5755, Abu Dhabi, UAE, 2025. Association for Computational Linguistics.

Hongling Xu, Qi Zhu, Heyuan Deng, Jinpeng Li, Lu Hou, Yasheng Wang, Lifeng Shang, Ruifeng
Xu, and Fei Mi. Kdrl: Post-training reasoning llms via unified knowledge distillation and rein-
forcement learning. arXiv preprint arXiv:2506.02208, 2025a.

Shicheng Xu, Liang Pang, Yunchang Zhu, Jia Gu, Zihao Wei, Jingcheng Deng, Feiyang Pan, Huawei
Shen, and Xueqi Cheng. Distilling the implicit multi-branch structure in 1lms’ reasoning via
reinforcement learning. arXiv preprint arXiv:2505.16142, 2025b.

Tengyu Xu, Zhe Wang, Yi Zhou, and Yingbin Liang. Reanalysis of variance reduced temporal
difference learning. In International Conference on Learning Representations, 2020. URL https:
/lopenreview.net/forum?id=S 11y 10EKDS.

Dezhi Ye, Junwei Hu, Jiabin Fan, Bowen Tian, Jie Liu, Haijin Liang, and Jin Ma. Best practices
for distilling large language models into BERT for web search ranking. In Proceedings of the
International Conference on Computational Linguistics: Industry Track, pp. 128—135,2025. URL
https://aclanthology.org/2025.coling-industry.11.pdf,

Yufeng Yuan, Yu Yue, Ruofei Zhu, Tiantian Fan, and Lin Yan. What’s behind ppo’s collapse in
long-cot? value optimization holds the secret. arXiv preprint arXiv:2503.01491, 2025.

Rongzhi Zhang, Jiaming Shen, Tianqi Liu, Haorui Wang, Zhen Qin, Feng Han, Jialu Liu, Simon
Baumgartner, Michael Bendersky, and Chao Zhang. Plad: Preference-based large language model
distillation with pseudo-preference pairs. In Findings of the Association for Computational Lin-
guistics: ACL 2024, pp. 15623—-15636, Bangkok, Thailand, 2024a. Association for Computational
Linguistics.

Songming Zhang, Xue Zhang, Zengkui Sun, Yufeng Chen, and Jinan Xu. Dual-space knowledge dis-
tillation for large language models. In Proceedings of the 2024 Conference on Empirical Methods
in Natural Language Processing, pp. 18164—18181. Association for Computational Linguistics,
2024b.

Yudi Zhang, Lu Wang, Meng Fang, Yali Du, Chenghua Huang, Jun Wang, Qingwei Lin, Mykola
Pechenizkiy, Dongmei Zhang, Saravan Rajmohan, and Qi Zhang. Distill not only data but also
rewards: Can smaller language models surpass larger ones? 2025.

Jiachen Zhao, Wenlong Zhao, Andrew Drozdov, Benjamin Rozonoyer, Arafat Sultan, Jay-yoon Lee,
Mohit Iyyer, and Andrew McCallum. Multistage collaborative knowledge distillation from a large
language model for semi-supervised sequence generation. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 14201—
14214. Association for Computational Linguistics, 2024.

16


https://ieeexplore.ieee.org/document/8682634
https://aclanthology.org/2023.acl-long.605
https://people.cs.umass.edu/~barto/courses/cs687/williams92simple.pdf
https://people.cs.umass.edu/~barto/courses/cs687/williams92simple.pdf
https://aclanthology.org/D18-1397/
https://openreview.net/forum?id=S1ly10EKDS
https://openreview.net/forum?id=S1ly10EKDS
https://aclanthology.org/2025.coling-industry.11.pdf

Under review as a conference paper at ICLR 2026

Chujie Zheng, Hao Zhou, Fandong Meng, Jie Zhou, and Minlie Huang. Large language models are
not robust multiple choice selectors. In International Conference on Learning Representations,
2023. URL https://openreview.net/forum?1d=shrOPXz7T0.

Yuhang Zhou, Jing Zhu, Paiheng Xu, Zewen Liu, Qing Wang, and Wen Ai. Multi-stage balanced
distillation: Addressing long-tail challenges in sequence-level knowledge distillation. In Findings
of the Association for Computational Linguistics: EMNLP 2024, pp. 3315-3333. Association for
Computational Linguistics, 2024.

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We employ Large Language Models (LLMs) as general-purpose tools to improve writing quality,
including grammar, spelling, and sentence structure. In addition, we use LLMs to refine LaTeX
syntax and formatting.

B PROOF OF THEOREM 1

Using K -step returns as a learning signal to learn a student policy 7 guarantees reduced variance

in return estimation compared to the full trajectory return, i.e., Var[G;] < Var[Gy]. (Detailed in
TheoremT)).

Proof. We denote the variance of ¢(s, a) and max,c 4 q(s,a’) as:

0% 4 = Vargq[q(s,a)], (13)
0% = Var, [H{leaﬁ q(s, a')} : (14)

We first decompose the variance of the actual return G;:

T—t
Var[G;] = Var { Teaq ] [definition of G}] (15)
i=0
T—t
= Var [q(st+i, apyq) — max q(St+it1, a’)} [iid assumption] (16)
i=0 “
T—t
= (Var [q(St44, ai4i)] + Var [maﬁ q(Strit1, a')]) [iid assumption]  (17)
a’e
i=0
T—t
=Y (R od) 19
i=0
= (T —t+1)(0% 4+ 0%). (19)
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Next, we decompose the variance of our K -step approximate return Gy

| 5]
Var[ét] = Var (q(8t+ik7 Aitik) — max q(St4(i+1)k> a'))] [by Eqn.([7) in the main text]
a/
i=0
(20)
| 5]
— Z Var [q(st+ik, Qppik) — glgﬁ q(St4(i+ 1)k a’)} [iid assumption]
i=0
21
5]
= (Var [q(Sttik, atrir)] + Var [g{lgﬁ q(Stt (it 1)k a’)]) [iid assumption]
i=0
(22)
[ =]
= > (0ka+03) (23)
i=0
T—1t
(| vetas o), o

Comparing Eqns. and li we immediately have Var[G;] < Var|G,], completing the proof.
O

C BIAS ANALYSIS

In this section, we analyze the bias introduced by using the K -step return Gy in place of the actual
return G¢. Recall that they differ by a baseline term shown in Eqns. (9) and (II)) in the main text,
and this discrepancy introduces bias in the return estimation:

T-—1
bias of return = E, [(Gt —~ Gt)} =Er| Y [Q(3t+Kz‘+1; Qrxcie1) = MAX (st xcic1, a’)”
120 (mod k)
(25)

gradient estimation:

bias of gradient = E,, [(G} — G)Vglogm(as | st)} =E,, {—btvg log o (ay | st)} (26)

We show below that a smaller value of K reduces bias, providing a bias-variance tradeoff for REIN-
FORCE. Further, we will show that the bias converges to zero as the student policy becomes more
optimal, assuming all Q-values are distinct.

Bias Reduction with Smaller K. The baseline term defined in Eqn. in the main text is given

by
T-1
by = [Q(3t+Ki+17 ApyKit1) — max q(St4+Kit1 a’)} . (27)
i=0
i#0 (mod k)
Since
q(St4Kit1, Ot Kit1) — max q(si4rit1,a’) <0, (28)

a smaller K reduced the number of terms in the summation. This decreases |b;|, which in turn
decreases the magnitude of the gradient bias in Eqn. (26).
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Algorithm 1 BRIM

Input: Non-parallel dataset D; teacher Q-value function ¢ : S x A — R; student policy my with
initial parameters 0; segment length K'; learning rate 7; maximum rollout length 7"; number of
iterations U
Qutput: Trained student policy gy
for j < 1to U do
Sample a source sentence x € D
Set the initial state sy < x
Generate a trajectory 7 = {(s9, ap), (s1,a1)
, -+, (s7,ar)} by sampling from 7y
Initialize gradient accumulator: g <— 0
fort < T to 0 do
if £ =T then
| G+ q(sr,ar)
elseif I' — ¢ < k then

‘ Gy + [q(st7at) — max Q(8t+1,a')] +Gler

else

‘ ét — [q(St,az) - E{lgﬁ q(3t+K,al)] +ét+K
end
g g+ G Vo log 7o (as | s¢)

end
0+ 0+ng

end
return 7y

Bias Convergence to Zero. Suppose the student policy is optimal, i.e., greedy with respect to the
teacher’s Q-value function ¢(s, a), given by

= o). 29
Qi = Arg max ¢(se+i, a') 29)
It is easy to see from Eqn. that b; = 0, implying that

E,, [btvg log 7o (a | st)} —0. (30)

Suppose the Q-values for different actions are distinct (in which case argmax is continuous), the
result further suggests that the bias term would converge to zero, if the student policy is closer to
optimal during training.

D PPO IN RL-BASED TEXT GENERATION KD

We run PPO-based training experiments with both LLMR and our BRIM in the RL-based text gen-
eration KD setting (§2.1) to assess whether PPO’s learning framework can be productively incorpo-
rated into this scenario.

PPO with LLMR. As a competing approach, we run PPO where the reward signal for policy
learning is the teacher-induced reward in Eqn. (). Our PPO pipeline follows the setup of [Ouyang
et al.[(2022): we learn a state-value function by minimizing the TD error (i.e., making the earlier
value prediction agree with a later, better-informed bootstrapped return to enforce temporal con-
sistency), and we update the policy using the critic’s advantage estimates as a baseline (following
(Schulman et al.| 2015b)), increasing the likelihood of actions with positive advantage and decreas-
ing it for those with negative advantage.

PPO with BRIM. We then incorporate PPO into BRIM by removing all learning components re-
lated to the critic value function and replacing the critic’s advantage used in LLMR’s PPO setting
with our block-wise K-step return estimator introduced in
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(a) Value Error (b) Policy Return

Figure 3: PPO training with LLMR

# of Samples
Dataset Task Train Dev Test
XSum (Narayan et al.,[2018]) Summarization 202,926 11,332 11,333
Europarl EN-NL (Koehn, |2005) | Machine Translation | 1,167,808 10,014 10,016
GSMSK (Cobbe et al.,|2021) Arithmetic reasoning 6,705 768 1,319

Table 4: Statistics of our datasets.

Results. With LLMR, PPO fails to learn a useful policy: the critic’s TD error (Fig.[3a) converges
to a small value, while the average policy return (Fig. [3b) diverges, indicating that PPO does not
discover a stable, high-reward strategy in this setup. In contrast, under BRIM, the average policy
return in Fig. [3b]exhibits a nearly monotonic increase, suggesting that BRIM effectively resolves the
training-instability issues observed with LLMR.

Discussion. The instability of LLMR under PPO primarily stems from inaccuracies in the learned
critic. In PPO with LLMR, two coupled error sources undermine learning: (i) inaccuracies in the
learned critic which stemming from bootstrapping errors that accumulate over time, and (ii) biased
advantage estimates (e.g., from GAE with A < 1) that are computed on top of those inaccurate
value predictions. When combined within PPO’s update, these errors distort both the baseline and
the policy gradient, so the policy is optimized toward a mis-specified training signal, leading to
instability and, empirically, divergence of the return curve. Similar fragility of value-learning has
been reported in recent RL/NLP work (Moalla et al., 2024; Yuan et al., [2025)), motivating methods
that avoid an auxiliary critic (DeepSeek-Al et al.l [2025)). Following this direction, BRIM replaces
the critic with a teacher-induced block-wise K-step return, which serves as a stable surrogate for
advantage computation, mitigates error accumulation, and yields more reliable policy improvement.

E EXPERIMENTAL SETTING DETAILS

Computing Infrastructure. Experiments were conducted on a Linux server equipped with an AMD
EPYC 7313 CPU (32 GB RAM) and an NVIDIA RTX A6000 GPU (48 GB VRAM). The system
uses NVIDIA driver v560.28.03 and CUDA Toolkit 12.6 (as reported by nvidia-smi). Software
and dependency versions are listed in the requirements.txt file of our anonymous GitHub
repository: https://anonymous.4open.science/r/BRIM-6070.

Hyperparameter Settings. For our RL-based distillation experiments, we follow the configuration
of L1 et al|(2024a), employing the AdamW optimizer (Loshchilov & Hutter, 2019) with default
parameters (31 = 0.9, S2 = 0.999). All other hyperparameters—batch size, gradient accumulation
steps, reward clipping range, dropout rate, warmup steps, and learning rate—are identical to those
in (Li et al.| |2024a). Since our datasets differ, we adjust the maximum input and output lengths for
each text-generation task according to the recommendations of (Wen et al.,[2023;|Wang et al.,[2024).
Detailed settings are provided in Table[5]
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For divergence-based KD competing approaches, we adopt the hyperparameter configurations from
(Wen et al.| [2023). The specific values for each parameter are summarized in Table[6]

Statistical Analysis. To quantify the variance of each approach we repeat every training
procedure N = 5 times, using distinct random seeds drawn uniformly from ([1,100000]):
{19083, 34007, 84122, 310, 55080}. For every run, we select the checkpoint that achieves the
best validation performance and report its corresponding test-set score. We adopt the standard
train/validation/test splits for XSUM and EUROPARL. Because the official GSMS8K release lacks
a validation split, we use the public split of |Wang et al.| (2024)). Statistical significance between
our method BRIMand each baseline is assessed with a paired two-sided #-test over the five seeds;
p < 0.035 indicating the differences are deemed significant.

Hyperparameter Value

Training Epochs 3

Train Batch size 8

Eval Batch size 32

Optimizer AdamW

Grad Accumulation Steps 32

Reward Clip Range [-100, 100]

Dropout 0.0

Warmup Steps 5,000

Warmup Schedule Linear  (from O to LR)

Learning Rate (LR) 0.00001

Max Input Length 1024 (Xsum) / 80 (Europarl) /
200 (GSMS8K)

Max Output Length 64 (Xsum) / 80 (Europarl) / 300
(GSMS8K)

Table 5: Hyperparameter Details for experiments on RL-based approaches (BRIM, LLMR, LLMR
with mean baseline, and LLMR with min-variance baseline).

Hyperparameter Value

Training Epochs 2

Train Batch size 32

Eval Batch size 32

Optimizer AdamW

Grad Accumulation Steps 16

Dropout 0.25

Warmup Steps 5,000

Warmup Schedule Linear  (from O to LR)

Learning Rate (LR) 0.00005

Max Input Length 1024 (Xsum) / 80 (Europarl) /
200 (GSMSK)

Max Output Length 64 (Xsum) / 80 (Europarl) / 300
(GSMS8K)

Table 6: Hyperparameter Details for experiments on divergence-based KD approaches (seqKD, KL,
JSD, TVD).

F RESULTS ON MORE MODELS

KD studies on seq2seq tasks have largely centred on encoder-decoder structures such as T5 (Raffel
et al., 2020; Chung et al.| [2024) and BART (Lewis et al., [2020) models (Wen et al., {2023} |Li et al.,
2024a; |Agarwal et al.| 2024} Jung et al., [2024; [Wang et al., 2025). To answer reviewers’ likely
question about BRIM’s performance on recent popular decoder-only architectures, we also applied
it to the Qwen1.5 model series (Qwen-Team) 2024) and report the results in Table
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Model XSum (ROUGE-11) | Europarl (BLEU47) | GSM8K (Acc. (%)1)
Teacher (Qwen1.5-4B) 38.15 21.32 42.08
Student (Qwen1.5-0.5B) 8.80 0.02 0.00
KL [Hinton et al.[(2015) 31.29 15.76 26.31
TVD |Wen et al.|(2023) 31.18 16.22 26.99
LLMR [Li et al.|(2024a) 31.61 15.90 27.29
BRIM - 32.28 16.46 28.13

Table 7: Distillation results on XSum, Europarl EN-NL, and GSMS8K using Qwenl.5 models.
Higher 1 is better. The best K values are 2, 2, and 16 for the three datasets, respectively.

Models XSum (max_output_len=64) | Europarl (max_output_len=64) | GSM8K (max_output_len=256)
TS5 optimal K 2 2 8
Qwen optimal K 2 2 16

Table 8: Summarization of optimal K values for T5 and Qwen models on XSum, Europarl EN—NL,
and GSMS8K datasets.

G HYPERPARAMETER K DISCUSSION

K and the exploration horizon Eqn. in the main text shows that the K-step return depends
on the rollout horizon T' and the truncation parameter K. With T fixed (reflected by the maximum
output length in the text generation scenario), the approximation error is governed solely by K.
Table [§]indicates that the same K performs robustly across tasks that share an identical horizon.

A single optimal K is elusive Because tasks differ in their typical horizons (output lengths), the
K that is optimal for short summaries may be sub-optimal for long-form reasoning. Adapting K on
a per-example basis would be ideal, but is infeasible in training with batch implementation. Instead,
we conduct a lightweight grid search over {2,4, 8,16} for each dataset and select the empirically
best value.

H PROMPTS TEMPLATES FOR LLM EVALUATION

Table [9] and Table [T0] present our prompts template for LLM evaluation on the summarization task
and machine translation task, respectively.

I THE USE OF LARGE LANGUAGE MODELS (LLMS)

Gemini2.5 Comanici et al.| (2025)) was used in a limited capacity to improve writing quality, in-
cluding checking grammar and rephrasing certain expressions with better sentence structures. In
addition, we use it for formatting LaTeX tables and Matplotlib figures. However, we came up with
the research ideas, conducted the analyses, and presented the contents without using Al tools.

J REPRODUCIBILITY STATEMENT

All code is provided via an anonymized Github Repository, including implementations for data
loading, reward model training, and policy optimization. The datasets used are publicly available,
and we release the complete set of training hyperparameters. Our evaluation approaches are also
publicly available and can be fully reproduced.
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Please evaluate the overall quality of the following summaries given the document.

Evaluation Criteria:
Overall Quality: A good summary should be both precise and concise, summarizing the most important points in the given document,
without including unimportant or irrelevant details

Document: [Source]
Summary [ID1]: [Summary-A]
Summary [ID2]: [Summary-B]

FIRST, provide a one-sentence comparison of the two summaries for overall quality, explaining which you prefer and why.
SECOND, on a new line, state only the ID to indicate your choice. Your response should use the format:

Overall Quality: jone-sentence comparison and explanation,

Preferred: jsummary ID;,

Please evaluate the informativeness of the following summaries given the document.

Evaluation Criteria:
Informativeness: Does it include the most important details while excluding irrelevant content?

Document: [Source]
Summary [ID1]: [Summary-A]
Summary [ID2]: [Summary-B]

FIRST, provide a one-sentence comparison of the two summaries for informativenss, explaining which you prefer and why.
SECOND, on a new line, state only the ID to indicate your choice. Your response should use the format:

Informativeness: jone-sentence comparison and explanation;,

Preferred: jsummary ID;

Please evaluate the coherence of the following summaries given the document.

Evaluation Criteria:
Coherence: Is the summary logically structured and easy to follow?

Document: [Source]
Summary [ID1]: [Summary-A]
Summary [ID2]: [Summary-B]

FIRST, provide a one-sentence comparison of the two summaries for coherence, explaining which you prefer and why.
SECOND, on a new line, state only the ID to indicate your choice. Your response should use the format:
Informativeness: jone-sentence comparison and explanation;,

Preferred: jsummary ID;

Table 9: Prompt templates for LLM evaluation on the summarization task in terms of overall quality,
informativeness, and coherence. Here, “Source” is the document to be summarized. The choices of
IDs are “A” and “B”’; “Summary-A” and “Summary-B” are replaced with model-generated texts.
Since LLMs are not robust to ID and order (Zheng et al.l [2023} |Shen et al., |2023), we enumerate
different combinations for a given pair, resulting in four LLM queries.
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Please evaluate the overall quality of the following translations from English to Dutch.

Evaluation Criteria:
Overall Quality: A good translation should: 1) faithfully reflect the meaning of the source text; 2) avoid adding unnecessary or irrelevant
details. 3) use natural and fluent Dutch.

Source: [Source]
Translation [ID1]: [Translation-A]
Translation [ID2]: [Translation-B]

FIRST, provide a one-sentence comparison of the two translations for overall quality, explaining which you prefer and why.
SECOND, on a new line, state only the ID to indicate your choice. Your response should use the format:

Overall Quality: jone-sentence comparison and explanation;,

Preferred: jtranslation ID;,

Please evaluate the informativeness of the following translations from English to Dutch.

Evaluation Criteria:
Informativeness: Does the translation preserve all key information without adding irrelevant details?

Source: [Source]
Translation [ID1]: [Translation-A]
Translation [ID2]: [Translation-B]

FIRST, provide a one-sentence comparison of the two translations for informativeness, explaining which you prefer and why.
SECOND, on a new line, state only the ID to indicate your choice. Your response should use the format:

Informativeness: jone-sentence comparison and explanation;,

Preferred: jtranslation ID;,

Please evaluate the coherence of the following translations from English to Dutch.

Evaluation Criteria:
Coherence: Is the translation fluent, logically structured, and easy to understand in Dutch?

Source: [Source]
Translation [ID1]: [Translation-A]
Translation [ID2]: [Translation-B]

FIRST, provide a one-sentence comparison of the two translations for coherence, explaining which you prefer and why.
SECOND, on a new line, state only the ID to indicate your choice. Your response should use the format:
Informativeness: jone-sentence comparison and explanation;,

Preferred: jtranslation ID;,

Table 10: Prompt templates for LLM evaluation on the machine translation task in terms of overall
quality, informativeness, and coherence. Here, “Source” is the source sentence to be translated. The
choices of IDs are “A” and “B”; “Translation-A” and “Translation-B” are replaced with model-
generated texts. We still enumerate different combinations for a given pair, resulting in four LLM
queries.
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