

# 000 001 002 003 004 005 BRIM: BLOCK-WISE RETURN INDUCTION METHOD 006 FOR SEQUENCE KNOWLEDGE DISTILLATION 007 008 009

010 **Anonymous authors**  
011 Paper under double-blind review  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024  
025  
026  
027  
028  
029  
030  
031  
032  
033  
034  
035  
036  
037  
038  
039  
040  
041  
042  
043  
044  
045  
046  
047  
048  
049  
050  
051  
052  
053

## ABSTRACT

Reinforcement Learning (RL)-based knowledge distillation (KD) is increasingly used to train language models for text generation. However, existing methods suffer from high variance caused by long action chains during sampling. To address this, we propose a novel block-wise return induction approach (called BRIM) that mitigates the high variance issue and stabilizes the training process. Our idea is to apply the Bellman Optimality Equation inversely to each  $K$ -step block segmented student’s explored trajectories, and thus induce a total reward for all blocks from the teacher model, serving as the policy-gradient training signal. Theoretical analysis shows that our BRIM reduces the variance of the gradient estimates, thus leading to improved RL optimization, especially when the student model size is large. Empirical evaluation on three text generation tasks demonstrates that our approach yields superior performance in both standard task metrics and large language model (LLM)-based evaluation, which suggests that our BRIM offers a promising direction for enhancing RL-based KD in LLM research.<sup>1</sup>

## 1 INTRODUCTION

Knowledge distillation (KD; Hinton et al., 2015) refers to training a (typically) small student model from a teacher’s output. KD has been increasingly important in the LLM era, as larger models achieve higher performance (Kaplan et al., 2020) but are more difficult to deploy in low-resource scenarios.

KD approaches can be generally categorized into two types: intermediate-layer matching and prediction matching. Intermediate-layer matching aims to match the student’s and teacher’s hidden states, encouraging the student to mimic the teacher’s behavior layer by layer (Sun et al., 2019; Jiao et al., 2020; Wang et al., 2021). Prediction matching informs the student of the task to solve, typically by minimizing the divergence of output distributions (Kim & Rush, 2016; Wen et al., 2023).

Classic KD for text generation suffers from the exposure bias problem (Bengio et al., 2015), as the student learns word by word following the teacher’s or ground truth’s prefix, without accounting for its own previous predictions. RL alleviates this issue by enabling the student to learn through exploration. Hao et al. (2022) induce a step-wise reward function from a language model trained in a supervised way. Building on this, Li et al. (2024a) apply RL to text generation KD, where a student model is trained by the REINFORCE algorithm (Williams, 1992) maximizing the cumulative reward suggested by the teacher. However, REINFORCE is known to suffer from high variance because it estimates gradient by sampled trajectories (i.e., sequences), which can vary significantly (Sutton & Barto, 2018). This issue is further exacerbated in text generation scenarios due to the large action space (i.e., vocabulary size), resulting in unstable learning.

In this paper, we propose BRIM, a novel **B**lock-**W**ise **R**eturn **I**nduction **M**ethod for RL-based knowledge distillation. Our work is inspired by Li et al. (2024a), who derive a Q-value function from the teacher’s policy (next-token probabilities) and induce a reward function based on the Bellman Optimality Equation (Bellman, 1952). In our approach, we break the long sampled trajectory of the student model into blocks of  $K$  consecutive actions. For each block, we repeatedly apply the inverse of the Bellman Optimality Equation and induce a total reward for the block from the teacher model. Then, we sum the total rewards for all blocks as an approximate return (i.e., the total reward for

<sup>1</sup>Our code is released at <https://anonymous.4open.science/r/BRIM-6070>

054 a whole trajectory). We use such a block-wise approximated return as the RL training signal and  
 055 update the student model with standard policy gradient (Sutton et al., 1999). Theoretical analysis  
 056 shows that our BRIM reduces the variance of the total reward, thus effectively mitigating the high  
 057 variance issue of RL-based text generation KD.

058 In essence, our approach is a REINFORCE-with-baseline (Williams, 1992; Sutton & Barto, 2018)  
 059 variant that introduces an auxiliary term (called a *baseline*) to the return, which oftentimes stabilizes  
 060 RL training (Sutton et al., 2000; Greensmith et al., 2004; Thomas & Brunskill, 2017). Traditional  
 061 approaches have a baseline that solely depends on the sampled data (e.g., mean return of all sam-  
 062 ples), but this introduces additional noise to the training process if the sampled set is small or not  
 063 representative. Later, researchers extend REINFORCE-with-baseline by developing Actor–Critic  
 064 (AC) algorithms that learn a critic (i.e., estimated state-value function) to stabilize training. Our  
 065 method also extends traditional REINFORCE-with-baseline but differs from AC: we derive a base-  
 066 line term based on block-wise Bellman Optimality from the teacher model; thus, we do not need to  
 067 train a cumbersome state-value function as AC algorithms do.

068 We evaluated our approach on three text generation datasets categorized into different domains:  
 069 XSum (Narayan et al., 2018) for summarization, the Europarl corpora (Koehn, 2005) for machine  
 070 translation, and GSM8K (Cobbe et al., 2021) for arithmetic reasoning. Experiments show that our  
 071 proposed BRIM consistently achieves an add-on performance improvement when combined with  
 072 the recent KD through the RL method (Li et al., 2024a). More importantly, we conduct an em-  
 073 pirical analysis to show that our BRIM demonstrates lower variance and converges better than Li  
 074 et al. (2024a), i.e., achieving a higher return and being more stable, which explains the observed  
 075 improvements in empirical evaluation on downstream tasks.

## 076 2 METHODOLOGY

### 077 2.1 RL FORMULATION OF TEXT GENERATION

078 Text generation can be formulated as an undiscounted Markov Decision Process (MDP) with tuple  
 079  $(\mathcal{S}, \mathcal{A}, T, r)$ . The *state* space  $\mathcal{S}$  includes all possible (sub)sequences and each of them is represented  
 080 by  $\mathbf{y}_{<t}$  for some time step  $t$ ; notice that text generation may also depend on an input sequence, which  
 081 is omitted here. The *action*  $a_t \in \mathcal{A}$  at step  $t$  corresponds to the next token  $y_t$  from the vocabulary  
 082  $\mathcal{V}$ . The *state transition*  $T$  is a deterministic process in text generation, as  $s_{t+1}$  is essentially the  
 083 concatenation of  $s_t$  and the newly generated word  $a_t$ . The *reward* function  $r : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$  provides  
 084 feedback based on  $(s_t, a_t)$ . The goal of RL is to find a *policy* (distribution over actions) to maximize  
 085 the expected *return* (cumulative rewards).

086 A key challenge in applying RL to text generation is the lack of well-defined step-wise reward  
 087 functions. To address this, Hao et al. (2022) and Li et al. (2024a) assume that a language model  
 088 generates the next word from a Boltzmann distribution based on the *Q-value function*,<sup>2</sup> given by

$$\pi_{\text{LM}}(a | s) = \frac{\exp(q(s, a))}{\sum_{a'} \exp(q(s, a'))}, \quad (1)$$

089 Due to the shared formula, a language model’s pre-softmax logit can be viewed as the Q-value  
 090 function, and with the Bellman optimality equation (Bellman, 1952), a step-wise reward function  
 091 can be induced by

$$r(s_t, a_t) = q(s_t, a_t) - \max_{a' \in \mathcal{A}} q(s_{t+1}, a'). \quad (2)$$

092 Then, the goal of RL for text generation KD is to optimize the student’s policy, denoted by  $\pi_\theta$ , to  
 093 maximize the expected cumulative reward:

$$J(\theta) = \mathbb{E}_{\pi_\theta} \left[ \sum_{t=1}^T r(s_t, a_t) \right], \quad (3)$$

094  
 095  
 096  
 097  
 098  
 099  
 100  
 101  
 102  
 103  
 104  
 105  
 106  
 107  
<sup>2</sup>The Q-value function estimates the expected return (cumulative reward) of taking action  $a$  in state  $s$  and  
 then following a given policy thereafter, defined by  $q_\pi(s, a) = \mathbb{E}_\pi [\sum_{t=0}^{\infty} \gamma^t r_{t+1} | s_0 = s, a_0 = a]$ .

108 The REINFORCE algorithm (Williams, 1992) is a policy gradient method, which is widely used  
 109 for RL in NLP (Hao et al., 2022; Li et al., 2024a).

$$111 \quad \nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[ \sum_{t=1}^T G_t \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \right] \quad (4)$$

114 where  $G_t = \sum_{i=t}^T r(s_i, a_i)$  is a cumulative reward (i.e., return) from step  $t$ , and the expectation is  
 115 approximated by Monte Carlo samples from the distribution  $\pi_{\theta}$ .

## 117 2.2 OUR BRIM METHOD

119 In this work, we address RL-based KD and propose to refine the learning signal  $G_t$  in Eqn. (4) by  
 120 extending the one-step reward induction to  $K$  steps on a block-wise rollout sequence, which alleviates  
 121 the high variance issue of RL. The key idea is to apply the inverse of the Bellman Optimality  
 122 Equation for multiple steps, therefore directly connecting the Q-values at the current state with those  
 123 of a future state.

124 We begin by considering the sum of rewards in Eqn. (2) over  $K$  consecutive steps starting from step  
 125  $t$ , denoted by  $G_{t:t+K}$ :

$$126 \quad \begin{aligned} G_{t:t+K} &:= \sum_{i=0}^{K-1} r(s_{t+i}, a_{t+i}) \\ 127 &= \sum_{i=0}^{K-1} \left[ q(s_{t+i}, a_{t+i}) - \max_{a' \in \mathcal{A}} q(s_{t+i+1}, a') \right] \\ 128 &= q(s_t, a_t) - \max_{a' \in \mathcal{A}} q(s_{t+K}, a') \end{aligned} \quad (5)$$

134 where Eqn. (5) assumes that an optimal action  $a_{t+i+1} = \arg \max_{a' \in \mathcal{A}} q(s_{t+i+1}, a')$  is taken. How-  
 135 ever, a student's policy may not be optimal; therefore, Eqn. (5) becomes an approximation, denoted  
 136 by  $\hat{G}_{t:t+K}$ :

$$138 \quad \hat{G}_{t:t+K} = q(s_t, a_t) - \max_{a' \in \mathcal{A}} q(\hat{s}_{t+K}, a') \quad (6)$$

140 where  $\hat{s}_{t+K}$  is the state at the  $(t+K)$ th step after following the student's policy. This is a reasonable  
 141 approximation because, in KD, a student is usually pretrained in a meaningful way (Turc et al., 2019;  
 142 Lee et al., 2023; Kim et al., 2024) and the approximation will be more accurate as the optimization  
 143 proceeds.

144 Building upon the  $K$ -step reward formulation, we can obtain an approximate return  $\hat{G}_t$  by consid-  
 145 ering intervals of  $K$  steps, i.e.,  $\hat{G}_{t:t+K}, \hat{G}_{t+K:t+2K}, \dots$ . Formally, we have

$$147 \quad \begin{aligned} \hat{G}_t &= \sum_{i=0}^{\lfloor \frac{T-t+1}{K} \rfloor} \hat{G}_{t+iK:t+(i+1)K} \\ 148 &= \sum_{i=0}^{\lfloor \frac{T-t+1}{K} \rfloor} \left[ q(s_{t+iK}, a_{t+iK}) - \max_{a' \in \mathcal{A}} q(\hat{s}_{t+(i+1)K}, a') \right]. \end{aligned} \quad (7)$$

153 which will be used in our RL-based generation KD.

155 In particular, the student's policy is used to sample a sequence of actions (i.e., output words). Then,  
 156 the sequence is fed to the teacher model, which evaluates the sequence by Eqn. (7). Finally, we  
 157 follow the policy gradient formula, but use the approximate return for the update:

$$158 \quad \nabla_{\theta} J(\theta) \approx \mathbb{E}_{\pi_{\theta}} \left[ \sum_{t=1}^T \hat{G}_t \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \right] \quad (8)$$

161 where  $\hat{G}_t$  is our approximate return defined in Eqn. (7). The process is shown in Algorithm 1.

162 2.3 BIAS AND VARIANCE ANALYSIS  
163164 Although the REINFORCE algorithm (Williams, 1992) estimates gradients in an unbiased way, it  
165 is known to be noisy and prone to high variance in the gradient estimation, which may lead to  
166 instability in learning (Greensmith et al., 2004; Mnih et al., 2016; Bjorck et al., 2022).167 A standard method to mitigate this issue is to subtract a *baseline* term  $b_t$  from the actual return:  
168

169 
$$\hat{G}_t = G_t - b_t. \quad (9)$$
  
170

171 For example, the average return over a batch (Rosenberg, 2021) is commonly used as the baseline  
172 term to stabilize the REINFORCE algorithm.173 Our BRIM approach is a variant of REINFORCE with baseline. This can be seen by examining the  
174 difference between the actual return  $G_t$  and our approximate return  $\hat{G}_t$ . In our KD application, the  
175 actual return  $G_t$  is given by accumulating the reward defined in Eqn. (2). In other words, we have  
176

177 
$$178 G_t = \sum_{i=0}^T \left( q(s_{t+i}, a_{t+i}) - \max_{a' \in \mathcal{A}} q(s_{t+i+1}, a') \right). \quad (10)$$
  
179

180 Combining Eqns. (7), (9), and (10), we can interpret our approximate return  $\hat{G}_t$  as introducing a  
181 baseline term with the following form

182 
$$183 b_t = \sum_{\substack{i=0 \\ i \not\equiv 0 \pmod k}}^{T-1} \left[ q(s_{t+Ki+1}, a_{t+Ki+1}) - \max_{a' \in \mathcal{A}} q(s_{t+Ki+1}, a') \right]. \quad (11)$$
  
184  
185

186 Unlike conventional, policy-independent baselines (Sutton & Barto, 2018; Rosenberg, 2021), our  
187 baseline depends on the selected actions and thus introduces bias into the expected return estimation.  
188 However, our approach can alleviate the high variance issue of REINFORCE with mild assumptions.  
189 The key insight is that Eqn. (5) cancels intermediate terms in the summation over different time steps,  
190 so the variance is reduced. This is formally analyzed by the following theorem.  
191192 **Theorem 1** (Variance Reduction via  $K$ -Step Return). *Let  $G_t$  be the actual return and  $\hat{G}_t$  be the  
193  $K$ -step approximate return for some sequences sampled from the student policy  $\pi$ . Assuming that  
194 the state-action-reward tuples  $(s_t, a_t, r_t)$  are iid drawn at different steps, we have:*

195 
$$196 \text{Var}[\hat{G}_t] \leq \text{Var}[G_t]. \quad (12)$$
  
197

198 *Proof.* See Appendix B. □  
199200 The iid assumption is reasonable and widely adopted in theoretical RL research (Kearns & Singh,  
2000; Bhandari et al., 2018; Xu et al., 2020), because in many environments the dependencies decay  
201 rapidly and correlation is further weakened when a large batch of samples is considered.  
202203 Overall, Theorem 1, along with the derivations in Appendix B, indicates that our BRIM alleviates  
204 variance at a power rate as  $K$  increases, which is also empirically verified in §3.3. Although this  
205 method introduces a bias term in the gradient estimation, the bias is effectively mitigated: it diminishes  
206 for smaller values of  $K$  and converges to zero as the student policy becomes more optimal.  
207 Detailed bias analysis is given in Appendix C. Such a trade-off is widely applied in existing RL literature,  
208 as seen in Temporal Difference (TD) learning (Sutton, 1988), Actor–Critic algorithms (Konda  
209 & Tsitsiklis, 1999; Mnih et al., 2016), and Deep Q-Network (DQN; Mnih et al., 2015).  
210211 3 EXPERIMENTS  
212213 In this section, we present the empirical evaluation and analysis of our proposed BRIM. We begin by  
214 describing the datasets, baseline methods, and implementation details, followed by the main results  
215 and detailed analyses.

216 3.1 SETTINGS  
217218 **Tasks, Datasets, and Metrics.** We evaluate our approach on various text generation tasks that are  
219 frequently considered in previous literature (Maruf et al., 2018; Magister et al., 2023; Wen et al.,  
220 2023; Touvron et al., 2023; Biderman et al., 2024; Wang et al., 2024).221 • **XSum Summarization.** The Extreme Summarization (XSum) is a challenging dataset for text  
222 summarization introduced by Narayan et al. (2018), where the summaries are highly abstractive  
223 as they emphasize key ideas with novel wordings. We employ ROUGE<sup>3</sup> (Lin, 2004) as the primary  
224 metric, which is common practice in summarization (Ravaut et al., 2024; Van Veen et al., 2024;  
225 Agarwal et al., 2025).226 • **Europarl EN–NL Translation.** Europarl (Koehn, 2005) is a high-quality, multilingual parallel  
227 corpus extracted from European Parliament proceedings. We choose English-to-Dutch, a rela-  
228 tively low-resource translation direction, to facilitate our distillation experiments. We report the  
229 BLEU score<sup>3</sup> (Papineni et al., 2002), character-level F score (chrF, Popović, 2015)<sup>3</sup>, and trans-  
230 lation edit rate (TER, Snover et al., 2006)<sup>3</sup>, following the standard evaluation in machine translation  
231 (Barrault et al., 2019; Hrabal et al., 2024).232 • **GSM8K Reasoning.** Grade School Math 8K (GSM8K, Cobbe et al., 2021) is a popular dataset  
233 consisting of around 8,000 grade school-level math problems with detailed step-by-step solutions.  
234 The standard evaluation metric for GSM8K is solution accuracy (Wang et al., 2024; Setlur et al.,  
235 2025), which is adopted in our experiments.236 We employ the standard training, validation, and test splits for XSUM (Narayan et al., 2018) and  
237 Europarl (Koehn, 2005). For GSM8K, the standard split comprises only training and test sets (Cobbe  
238 et al., 2021). We adopt the open-source split provided by Wang et al. (2024), where the validation  
239 set is constructed by randomly selecting examples from the original training data.240 **Implementation Details.** In our KD, the teacher is the 3B-parameter FLAN-T5-XL model (Chung  
241 et al., 2024), which shares the same architecture as prior work (Li et al., 2024a). For the sum-  
242 marization task, we directly prompt FLAN-T5-XL as it has already been instruction-finetuned for sum-  
243 marization. On the other tasks, FLAN-T5-XL yields subpar performance if prompted directly; we  
244 finetune the model as the teacher, which is commonly practiced in KD research (De Gibert et al.,  
245 2024; Setiawan, 2024; Ye et al., 2025).246 The student uses the 250M-parameter T5-base model, which is consistent with the configuration in  
247 prior work Agarwal et al. (2024); Li et al. (2024a).248 Following previous KD studies (Wen et al., 2023; Li et al., 2024a), we perform pre-distillation,  
249 where the student is pretrained by the cross-entropy loss based on the teacher’s outputs. This ensures  
250 a meaningful initialization of the student model and enables effective exploration for reinforce-  
251 ment learning. Notice that text generation has a much larger state–action space than a typical RL environ-  
252 ment such as Atari games (Mnih et al., 2015). The student performs greedy action selection when  
253 generating a sequence. Our return induction builds upon  $K$ -step Bellman optimality equations, and  
254 the hyperparameter  $K$  is critical in our framework. We report performance for  $K \in \{2, 4, 8, 16\}$  in  
255 our experiments.256 Additional experimental details, including hyperparameter settings, statistical tests, and computing  
257 infrastructure, are provided in Appendix E.259 **Competing Methods.** We compare our BRIM against both divergence-based and RL-based text  
260 generation KD:262 • **KL Distillation** (Hinton et al., 2015). It minimizes the Kullback–Leibler (KL) divergence  
263 between student and teacher distributions.  
264 • **SeqKD** (Kim & Rush, 2016). This is a classic method where the student maximizes the  
265 likelihood of teacher-generated sequences. It is a hard version of KL distillation.  
266 • **JS Distillation** (Wen et al., 2023). Jensen–Shannon (JS) divergence is a symmetric diver-  
267 gence that overcomes the over-smoothing problem of KL divergence (Wei et al., 2019).268  
269 <sup>3</sup>We computed ROUGE scores and BLEU scores using the implementation at google-research and sacre-  
bleu, respectively. All ROUGE, BLEU, chrF, and TER scores are reported with a 95% confidence interval.

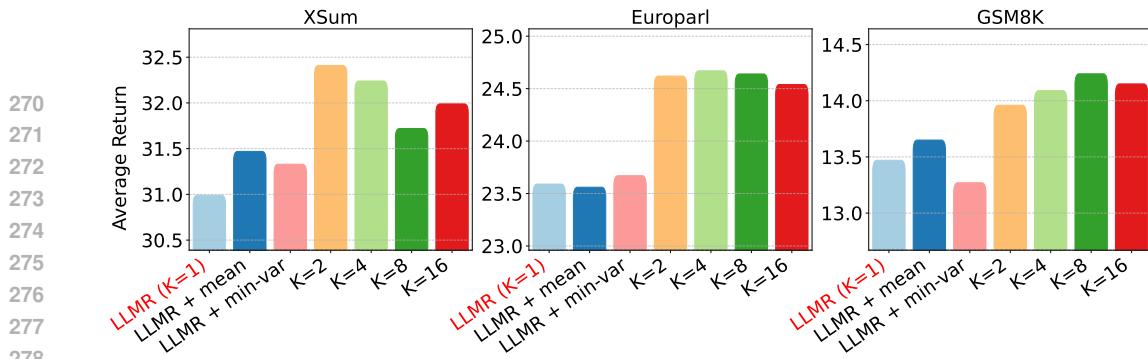


Figure 1: Average predicted return vs Approaches.

- **TVD Distillation** (Wen et al., 2023). The Total Variation Distance (TVD) is another symmetric divergence shown to outperform other methods (Wen et al., 2023). This method is also explored in Agarwal et al. (2024) with a ratio between the two terms of TVD.
- **LLMR** (Li et al., 2024a). In this method, a reward function is induced from a teacher language model by one-step Bellman optimality (Hao et al., 2022). Then, the student model is trained by RL towards the induced reward.

Since our approach reduces the variance of RL, we consider alternative variance reduction techniques under the LLMR framework:

- **LLMR + Mean Baseline.** Using the average reward in a batch as a baseline is commonly used for stabilizing RL training (Sutton & Barto, 2018).
- **LLMR + Min-Variance Baseline.** This is an advanced variant that is shown to be theoretically optimal when the baseline is derived from batch data (Rosenberg, 2021).

For a fair comparison, we apply the same settings in §3.1 (when applicable) to the competing methods as we do to our approach. Specifically, all methods adopt pre-distillation to ensure a meaningful student initialization, and all RL methods use the same action selection procedure.

### 3.2 MAIN RESULTS

As mentioned in §2.2, the primary advantage of our BRIM is its enhanced RL optimization compared with classic REINFORCE. In this part, we will first show that our approach indeed achieves a higher return (cumulative reward) in RL. Then, we will show that our approach leads to improved performance in NLP tasks.

**Return in RL.** The goal of RL is to learn a policy maximizing the expected return. Therefore, we may use it to evaluate the outcome of RL training.

Figure 1 shows the return score that is defined in Eqn. (10), where the return is averaged over different test samples, using various RL methods in the three NLP tasks. As seen, our BRIM consistently achieves a higher average return than competing approaches across all the tasks. This indicates that our BRIM learns a superior policy in terms of the return, which is precisely the RL objective.

In addition, we observe that an increased  $K$  may not necessarily improve the return. This is because our BRIM introduces bias despite its reduced variance (§2.3). Therefore, a trade-off should be sought when choosing the  $K$  value.

**NLP Task Performance.** Table 1 presents the results of our approach in NLP metrics.

We first examine the performance of directly prompting the teacher and the non-distilled student model in a zero-shot manner, offering empirical lower and upper bounds for the KD process. Note that the bounds are not theoretically guaranteed; instead, KD is empirically expected to improve the student’s performance but may still underperform the teacher, especially when the student is small. In our setup, the student is a T5-base model, which does not yield reasonable performance when prompted directly.

We then consider divergence-based distillation methods, including SeqKD and KL/JS/TVD distillations. As seen from the table, symmetric methods (JS, TVD)—which involve both exploitation of teacher predictions and exploration based on student predictions—tend to surpass asymmetric methods (SeqKD, KL), where the student follows teacher predictions without any exploration. The results are consistent with previous findings (Wen et al., 2023; Agarwal et al., 2024).

| Model                                                |                         | XSum               |                    |                    | Europarl         |                 |                  | GSM8K                  |
|------------------------------------------------------|-------------------------|--------------------|--------------------|--------------------|------------------|-----------------|------------------|------------------------|
|                                                      |                         | ROUGE-1 $\uparrow$ | ROUGE-2 $\uparrow$ | ROUGE-L $\uparrow$ | BLEU4 $\uparrow$ | chrF $\uparrow$ | TER $\downarrow$ | Accuracy(%) $\uparrow$ |
| Teacher                                              |                         | 41.32              | 18.86              | 33.79              | 25.36            | 51.11           | 63.17            | 40.71                  |
| Student                                              |                         | 19.60              | 3.19               | 13.72              | 0.95             | 24.80           | 100.21           | 0.00                   |
| 324<br>325<br>326<br>327<br>328<br>329<br>330<br>331 | SeqKD Kim & Rush (2016) | 33.54              | 11.90              | 26.67              | 22.09            | 48.33           | 66.18            | 20.02                  |
|                                                      | KL Hinton et al. (2015) | 34.36              | 12.86              | 27.38              | 22.35            | 48.58           | 65.93            | 23.96                  |
|                                                      | JS Wen et al. (2023)    | 34.87              | 13.18              | 27.84              | 22.55            | 48.71           | 65.74            | 24.72                  |
|                                                      | TVD Wen et al. (2023)   | 35.17              | 13.30              | 28.10              | 22.63            | 48.66           | 65.79            | 24.94                  |
|                                                      | LLMR Li et al. (2024a)  | 35.54              | 13.70              | 28.56              | 22.72            | 49.04           | 65.38            | 25.21                  |
|                                                      | LLMR + Mean baseline    | 35.60              | 13.76              | 28.64              | 22.67            | 49.03           | 65.39            | 25.39                  |
|                                                      | LLMR + Min-Var baseline | 35.59              | 13.78              | 28.66              | 22.70            | 48.97           | 65.55            | 25.10                  |
| 332<br>333<br>334<br>335<br>336                      | BRIM ( $K = 2$ )        | <b>36.63</b>       | 14.15              | <b>29.29</b>       | 22.93            | <b>49.25</b>    | <b>65.15</b>     | 25.63                  |
|                                                      | BRIM ( $K = 4$ )        | 36.42              | <b>14.16</b>       | 29.08              | 22.93            | 49.21           | 65.21            | 25.93                  |
|                                                      | BRIM ( $K = 8$ )        | 35.68              | 13.88              | 28.76              | <b>22.95</b>     | 49.23           | 65.20            | <b>26.38</b>           |
|                                                      | BRIM ( $K = 16$ )       | 35.31              | 13.68              | 28.51              | 22.94            | 49.24           | 65.18            | 26.16                  |

Table 1: Main results on XSum, Europarl EN–NL, and GSM8K datasets. The best student result is in **bold**.  $\uparrow/\downarrow$ The higher/lower, the better. We prompt the teacher and off-the-shelf student in a zero-shot manner to gain the first two rows.

Next, we evaluate LLMR (Li et al., 2024a), a text generation KD approach using REINFORCE. Results show that LLMR provides certain performance gain over non-RL KD methods, which is likely stemmed from the student’s self-exploration, aligning with the observations in Li et al. (2024a) and other recent RL-based text generation research (Ouyang et al., 2022; DeepSeek-AI et al., 2025).

To mitigate the high variance of REINFORCE in LLMR, we incorporate classic RL baseline terms (mean baseline and min-variance baseline) that are estimated from batch data. However, these methods are not effective in our scenario, as text generation has a very large state–action space, which makes the generated outputs in a batch less representative and the baseline term less useful.

By contrast, our BRIM employs a novel baseline formulation that largely reduces the variance of RL (Theorem 1) and improves RL optimization (Figure 1). Consequently, it delivers a noteworthy add-on performance gain on top of LLMR across three text generation tasks.

In the experiment, we also observe that a moderate  $K$  between 2 to 8 leads to the highest NLP performance, which is consistent with the return analysis in Figure 1. It is also noticed that RL return and NLP performance are not perfectly correlated, as the induced reward may not fully reflect the task metric such as BLEU and ROUGE scores, which is also known as reward hacking (Amodei et al., 2016; Hao et al., 2022; Ouyang et al., 2022).

**Summary.** Our main results show that our BRIM (with a moderate  $K$ ) improves RL optimization, which is generally translated to higher performance in various NLP tasks.

### 3.3 IN-DEPTH ANALYSES

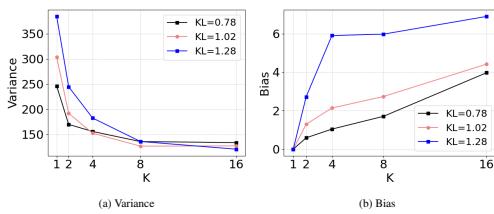


Table 2: Variance and bias with different  $K$ .

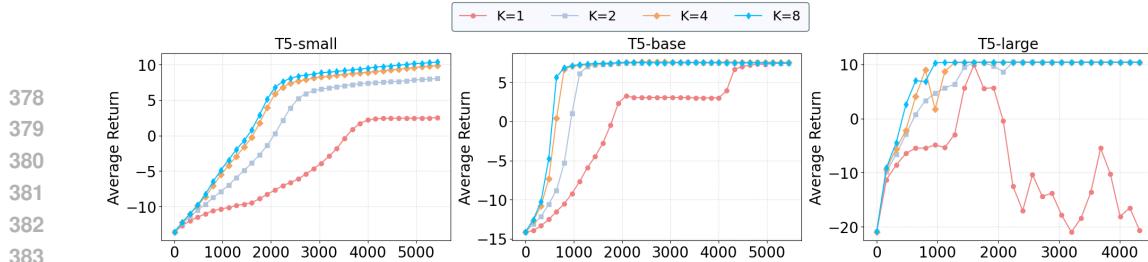
input samples. For the bias, we use Eqn. (25) for empirical estimation, and the results are shown in Figure 2b. We choose the value of  $K$  from  $\{1, 2, 4, 8, 16\}$  to see the trends. Note that  $K = 1$  corresponds to the competing approach LLMR (Li et al., 2024a). In addition, we examine the impact of the initial student policy by considering students with various KL divergence levels from the teacher policy: a smaller KL divergence indicates that the student and teacher are more resemblant.

We observe that the variance decreases drastically as  $K$  increases, while the bias term increases steadily. The observations align with our theoretical analysis in §2.3 and Appendix C, suggesting the need for seeking a moderate  $K$  value to balance bias and variance.<sup>4</sup>

**Variance and bias analysis.** As shown by the theoretical analysis in §2.3, our approach provides a bias–variance trade-off by largely reducing the variance, although introducing a bias term. We empirically verify them in this analysis.

Figure 2a shows the variance of the  $K$ -step return, where we sample 32 outputs for a given input and use Eqn. (20) to estimate the variance of return; the variance is further averaged over 10K

<sup>4</sup>Our bias–variance trade-off is different from that in a regression analysis (Hastie et al., 2009; Vapnik, 2013), where the total squared error is the sum of variance and squared bias, plus an irreducible noise. By contrast, the variance of return affects the smoothness of RL training, while bias affects the optimum quality (if converging); their total effect is not given by a simple addition.

384 Figure 2: Learning curves.  $y$ -axis is the true return value, and  $x$ -axis is the number of training steps.  
385

386 We also observe that when the student policy is initialized closer to the teacher policy (i.e., a smaller  
387 KL divergence), our BRIM generally demonstrates lower bias and variance. The bias reduction is  
388 predicted by our theoretical analysis in Appendix C, whereas the variance reduction is an empirical  
389 observation. Overall, the results demonstrate that pre-distillation is important to RL training for text  
390 generation, which is consistent with previous work (Ouyang et al., 2022; DeepSeek-AI et al., 2025).  
391

392 **Model Size.** We analyze RL-based KD approaches with different student sizes. Figure 2 presents the  
393 learning curves for student models initialized from FLAN-T5-small (77M), FLAN-T5-base (250M),  
394 and FLAN-T5-large (800M) using our BRIM and the competing approach LLMR ( $K = 1$ ).  
395

396 As seen from the curves in Figure 2, LLMR exhibits notable instability during RL training as the  
397 model size increases, especially when scaling to FLAN-T5-large. Such a phenomenon is also re-  
398 ported in the RL literature: a large network is prone to overfit the limited sampled outputs, conse-  
399 quently leading to unstable performance on test data (Henderson et al., 2018; Cobbe et al., 2019).  
400

401 In contrast, our BRIM largely alleviates this issue by reducing the variance, which stabilizes the  
402 learning curves. Overall, our method achieves smoother training and higher performance with all  
403 model sizes, compared with LLMR.  
404

405 **LLM Evaluation.** We conduct an LLM evaluation as a surrogate of human evaluation, as classic  
406 NLP metrics (such as ROUGE and BLEU) may not fully reflect the quality of generated text. Specif-  
407 ically, we prompt the Qwen2.5-72B-Instruct (Qwen et al., 2025) LLM to conduct a pairwise  
408 evaluation of system outputs, against the commonly used KL distillation. We select TVD, LLMR,  
409 and our BRIM from Table 1 as the competitors, as pairwise evaluation is expensive. Our LLM eval-  
410 uation considers multiple criteria, including overall quality, informativeness, and coherence. For each  
411 comparison, we query the LLM four times by swapping the two candidates and their IDs (namely,  
412 A and B), as LLM is prone to ID bias (Zheng et al., 2023) and positional bias (Shen et al., 2023).  
413 The detailed prompts are presented in Appendix H.  
414

| Dataset  | Method | Overall       | Informativeness | Coherence     |
|----------|--------|---------------|-----------------|---------------|
| XSum     | TVD    | 67.50%        | 68.15%          | 65.90%        |
|          | LLMR   | 69.95%        | 70.55%          | 66.30%        |
|          | BRIM   | <b>73.50%</b> | <b>73.90%</b>   | <b>70.40%</b> |
| Europarl | TVD    | 53.80%        | 54.15%          | 54.85%        |
|          | LLMR   | 56.45%        | 55.85%          | 56.30%        |
|          | BRIM   | <b>58.85%</b> | <b>57.95%</b>   | <b>58.45%</b> |

416 Table 3: LLM-based evaluation.  
417

418 Table 3 shows the results of the LLM eval-  
419 uation. We observe that our BRIM achieves the  
420 best winning rate in terms of all criteria (over-  
421 all quality, informativeness, and coherence) on  
422 both datasets. These compelling results are con-  
423 sistent with the traditional task metrics in Table 1  
424 and further demonstrate the effectiveness of our  
425 BRIM.  
426

## 4 RELATED WORK

427 **Knowledge Distillation.** The foundation of KD is laid by Buciluă et al. (2006), who performs KD  
428 by aligning the logits of the student with those of a teacher through squared error minimization.  
429 This framework is extended by Hinton et al. (2015), who propose to use KL divergence to match the  
430 output probability distributions of the teacher and student. Kim & Rush (2016) extend KD to the  
431 sequence level for auto-regressive models, and Wen et al. (2023) further propose a general frame-  
432 work of  $f$ -divergence minimization to mitigate the mode averaging and collapsing issues. Agarwal  
433 et al. (2024); Gu et al. (2024); Ko et al. (2024); Wu et al. (2025) extends or refines the  $f$ -divergence  
434 minimization framework, enabling more effective or efficient training of the student model. These  
435 divergence-based KD approaches heavily rely on imitation of the teacher’s predictions, neglecting  
436 the student’s active exploration during learning.  
437

438 Other distillation methods are less comparable as they target specialized scenarios, such as specific  
439 data settings (Zhao et al., 2024; Zhou et al., 2024; Liu et al., 2024b), distinct downstream tasks (Liu  
440

et al., 2024a; Zhang et al., 2024a), or architectural variations (Zhang et al., 2024b; Chen et al., 2024; Peng & Zhang, 2025). In contrast, our work focuses on the general task of text generation, so these approaches are not directly related or comparable to ours.

**Bridging RL and text generation KD.** Recent work has sought to combine RL and KD by deriving rewards from teacher models. Hao et al. (2022) interpret a supervised-trained language model’s pre-softmax logits as Q-values, deriving a step-wise reward function via Bellman Optimality equation, which alleviates the sparse reward issue commonly existing in other RL text generation scenarios (Wu et al., 2018; Ouyang et al., 2022). Building on this, Li et al. (2024a) extend this approach to KD settings, where they induce a reward function from a large language model (serves as a teacher) and train a student model to maximize the teacher-induced return. However, RL is known to suffer from high variance, and our paper proposes BRIM that largely reduces the variance of RL training.

**Variance Reduction in RL.** REINFORCE with baseline (Sutton & Barto, 2018) mitigates the high variance issue by subtracting a baseline term derived from batch data. Actor–Critic methods (Konda & Tsitsiklis, 1999; Mnih et al., 2016) address this by learning a value function (critic) as the baseline term, but the inaccurate value estimates from the critic can lead to harmful updates in the actor’s policy, while a poor decision by the actor can adversely affect the critic’s learning. This often results in divergence of RL training (Bhatnagar et al., 2007; Fujimoto et al., 2018; Parisi et al., 2019). Thus, recent RL work for LLMs tends to avoid learning a critic (DeepSeek-AI et al., 2025). Our BRIM exploits the mathematical structure of LM-induced rewards to derive a principled baseline for variance reduction, without learning an auxiliary neural network like a critic.

Another line of studies develops conservative policy optimization techniques like TRPO (Schulman et al., 2015a) and PPO (Schulman et al., 2017). Appendix D presents empirical results showing that BRIM integrates cleanly into PPO by replacing the critic-based advantage with a  $K$ -step return (§2.2). This removes the need to learn a critic, mitigating error accumulation in critic and bias in advantage estimates, and yields stable, near-monotonic return improvements (Figure 3b). By contrast, coupling PPO with the competing approach LLMR introduces compounding critic errors and biased advantages, leading to unstable updates and training collapse (Figure 3a and Figure 3b), which further underscores the advantage of BRIM.

**$N$ -Step Bootstrapping.** In value-based RL, the state-value function can be estimated either from one-step TD bootstrapping ( $N = 1$ ) or from the full Monte Carlo return ( $N \rightarrow \infty$ ). Classical  $N$ -step TD interpolates between these two extremes. Although this appears related to our method, the  $N$ -step formulation is fundamentally different from our BRIM. First, the symbols  $N$  and  $K$  encode distinct mathematical concepts:  $N$  specifies the rollout length of the TD target, whereas  $K$  denotes the depth of the inverse Bellman expansion that defines our variance-reduction baseline. Second,  $N$ -step TD requires learning an additional parameterized state-value function, which is impractical in our setting. Thus, algorithms built on  $N$ -step bootstrapping, including Eligibility Trace (Sutton, 1988) and its modern variants (Schulman et al., 2015b), lie outside the scope of this work.

**Other RL-based KD approaches.** Recent RL-based knowledge distillation methods often adapt the Ouyang et al. (2022)’s framework to train reward functions use Bradley–Terry model (Gu et al., 2025; Li et al., 2025; Nath & coauthors, 2025; Gao et al., 2025; Zhang et al., 2024a) or its variants (Zhang et al., 2025; Li et al., 2024b). Alternatively, some approaches use rule-based rewards for tasks like reasoning (Xu et al., 2025a;b). However, these methods rely on sequence-level rewards, which are sparse and result in poor credit assignment. In contrast, our approach induces block-wise reward estimation to provide a denser, more granular training signal, offering a fundamental training advantage.

## 5 CONCLUSION

In this paper, we introduce BRIM, a novel return induction via applying the inverse of the Bellman Optimality Equation to the block-wise sampled trajectory for reinforcement learning for knowledge distillation in the text generation domain. Compared with conventional RL methods, our approach effectively reduces gradient variance and leads to a more stable training, shown by both theoretical and empirical analyses. Extensive experiments across diverse text generation tasks verify that our approach improves RL training and boosts NLP task performance.

486 

## 6 LIMITATIONS AND FUTURE WORK

488 A limitation of our evaluation is that we use LLM-as-judge as a surrogate for human evaluation.  
 489 Although LLM-as-judge has become a scalable and common approach, it can possess intrinsic biases  
 490 or fail to capture the true human preferences regarding text quality. To address this, we take specific  
 491 measures, e.g., enumerating all combinations of answer IDs and order, to mitigate position and ID  
 492 bias, which improves the trustworthiness of the LLM-as-judge assessment.

493 Our current method uses a fixed hyperparameter  $K$ , which is tuned by validation. In future work,  
 494 we will explore an adaptive  $K$ -step estimation method, which would dynamically adjust the block  
 495 size, potentially based on the student’s current performance or policy uncertainty. This could better  
 496 manage the exploration-exploitation trade-off and reduce the need for hyperparameter tuning.

497 In addition, our current scope is inner-family distillation, where the teacher and student share a  
 498 common tokenizer and vocabulary. For cross-family distillation, there is a significant challenge that  
 499 we need to map the tokenizers of different models. While tackling this token mapping problem is  
 500 an important research direction, it goes beyond the scope of this paper and we are happy to explore  
 501 it in future work.

503 

## REFERENCES

505 Rishabh Agarwal, Nino Vieillard, Yongchao Zhou, Piotr Stanczyk, Sabela Ramos Garea, Matthieu  
 506 Geist, and Olivier Bachem. On-policy distillation of language models: Learning from self-  
 507 generated mistakes. In *International Conference on Learning Representations*, 2024. URL  
 508 <https://openreview.net/forum?id=3zKtaqxLhW>.

509 Rishabh Agarwal, Avi Singh, Lei Zhang, Bernd Bohnet, Luis Rosias, Stephanie Chan, Biao Zhang,  
 510 Ankesh Anand, Zaheer Abbas, Azade Nova, et al. Many-shot in-context learning. In *Advances  
 511 in Neural Information Processing Systems*, pp. 76930–76966, 2025. URL [https://openreview.net/forum?id=goi7DFHlqS](https://openreview.net/<br/>
  512 forum?id=goi7DFHlqS).

514 Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. Concrete  
 515 problems in AI safety. *arXiv preprint arXiv:1606.06565*, 2016. URL [http://arxiv.org/abs/1606.06565](http://arxiv.org/abs/<br/>
  516 1606.06565).

521 Loïc Barrault, Ondřej Bojar, Marta R. Costa-jussà, Christian Federmann, Mark Fishel, Yvette Graham,  
 522 Barry Haddow, Matthias Huck, Philipp Koehn, Shervin Malmasi, Christof Monz, Mathias Müller,  
 523 Santanu Pal, Matt Post, and Marcos Zampieri. Findings of the Conference on Machine  
 524 Translation (WMT19). In *Proceedings of the Conference on Machine Translation*, pp. 1–61, 2019.  
 525 URL <https://aclanthology.org/W19-5301>.

526 Richard Bellman. On the theory of dynamic programming. In *Proceedings of the National Academy  
 527 of Sciences*, pp. 716–719, 1952. URL <https://www.jstor.org/stable/88493>.

532 Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence  
 533 prediction with recurrent neural networks. In *Advances in Neural Information Processing  
 534 Systems*, pp. 1171–1179, 2015. URL [https://papers.nips.cc/paper\\_files/paper/2015/hash/  
 536 e995f98d56967d946471af29d7bf99f1-Abstract.html](https://papers.nips.cc/paper_files/paper/2015/hash/<br/>
  535 e995f98d56967d946471af29d7bf99f1-Abstract.html).

537 Jalaj Bhandari, Daniel Russo, and Raghav Singal. A finite time analysis of temporal difference learning  
 538 with linear function approximation. In *Proceedings of the Conference on Learning Theory*,  
 539 pp. 1691–1692, 2018. URL <https://proceedings.mlr.press/v75/bhandari18a.html>.

544 Shalabh Bhatnagar, Mohammad Ghavamzadeh, Mark Lee, and Richard S Sutton. Incremental  
 545 natural actor-critic algorithms. In *Advances in Neural Information Processing  
 546 Systems*, pp. 105–112, 2007. URL [https://papers.nips.cc/paper\\_files/paper/2007/hash/  
 548 6883966fd8f918a4aa29be29d2c386fb-Abstract.html](https://papers.nips.cc/paper_files/paper/2007/hash/<br/>
  547 6883966fd8f918a4aa29be29d2c386fb-Abstract.html).

553 Dan Biderman, Jacob Portes, Jose Javier Gonzalez Ortiz, Mansheej Paul, Philip Greengard, Connor  
 554 Jennings, Daniel King, Sam Havens, Vitaliy Chiley, Jonathan Frankle, Cody Blakeney, and John  
 555 Patrick Cunningham. LoRA learns less and forgets less. *Transactions on Machine Learning  
 556 Research*, pp. 2835–8856, 2024. URL <https://openreview.net/forum?id=aloEru2qCG>.

540     Johan Bjorck, Carla P Gomes, and Kilian Q Weinberger. Is high variance unavoidable in RL?  
 541     A case study in continuous control. In *International Conference on Learning Representations*,  
 542     2022. URL <https://openreview.net/forum?id=9xhgmsNVHu>.

543     Cristian Buciluă, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In *Proceed-  
 544     ings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*,  
 545     pp. 535–541, 2006. URL <https://dl.acm.org/doi/10.1145/1150402.1150464>.

546     Hongzhan Chen, Quan Li, Yan Zhang, et al. Knowledge distillation of black-box large language  
 547     models. 2024.

548     Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan  
 549     Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned  
 550     language models. *Journal of Machine Learning Research*, 25(70):1–53, 2024. URL <https://jmlr.org/papers/volume25/23-0870/23-0870.pdf>.

551     Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John Schulman. Quantifying gener-  
 552     alization in Reinforcement Learning. In *Proceedings of International Conference on Machine  
 553     Learning*, pp. 1282–1289, 2019. URL <https://proceedings.mlr.press/v97/cobbe19a.html>.

554     Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,  
 555     Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to  
 556     solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021. URL <https://arxiv.org/abs/2110.14168>.

557     Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit  
 558     Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the  
 559     frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-  
 560     bilities. *arXiv preprint arXiv:2507.06261*, 2025.

561     Ona De Gibert, Mikko Aulamo, Yves Scherrer, and Jörg Tiedemann. Hybrid distillation from rbmt  
 562     and nmt: Helsinki-NLP’s submission to the shared task on translation into low-resource languages  
 563     of Spain. In *Proceedings of the Conference on Machine Translation*, pp. 908–917, 2024. URL  
 564     <https://aclanthology.org/2024.wmt-1.88/>.

565     DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,  
 566     Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,  
 567     Zhibin Gou, Zhihong Shao, and et al. DeepSeek-R1: Incentivizing reasoning capability in LLMs  
 568     via Reinforcement Learning, 2025. URL <https://arxiv.org/abs/2501.12948>.

569     Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-  
 570     critic methods. In *Proceedings of the International Conference on Machine Learning*, pp. 1587–  
 571     1596, 2018. URL <https://proceedings.mlr.press/v80/fujimoto18a/fujimoto18a.pdf>.

572     Song Gao, Guoliang Li, Shaohui Tong, Yunyun Li, Zongwei Li, and Qi Li. Advantage-guided dis-  
 573     tillation for preference alignment in small language models. In *Proceedings of the Thirteenth  
 574     International Conference on Learning Representations (ICLR 2025)*. OpenReview, 2025. Spot-  
 575     light.

576     Evan Greensmith, Peter L Bartlett, and Jonathan Baxter. Variance reduction techniques for gradient  
 577     estimates in Reinforcement Learning. *Journal of Machine Learning Research*, pp. 1471–1530,  
 578     2004. URL <https://www.jmlr.org/papers/volume5/greensmith04a/greensmith04a.pdf>.

579     Yanggan Gu, Junzhuo Li, Sirui Huang, Xin Zou, Zhenghua Li, and Xuming Hu. Capturing nu-  
 580     anced preferences: Preference-aligned distillation for small language models. In *Findings of the  
 581     Association for Computational Linguistics: ACL 2025*, pp. 15959–15973, Vienna, Austria, 2025.  
 582     Association for Computational Linguistics.

583     Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. Minilm: Knowledge distillation of large lan-  
 584     guage models. In *ICLR*, 2024.

585     Yongchang Hao, Yuxin Liu, Guoqing Luo, and Lili Mou. Teacher forcing recovers reward functions  
 586     for text generation. In *Advances in Neural Information Processing Systems*, pp. 12594–12607,  
 587     2022. URL [https://openreview.net/pdf?id=1\\_gypPuWUC3](https://openreview.net/pdf?id=1_gypPuWUC3).

594 Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. *The Elements*  
 595 *of Statistical Learning: Data Mining, Inference, and Prediction*. Springer, 2009. URL <https://link.springer.com/book/10.1007/978-0-387-84858-7>.  
 596

597 Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.  
 598 Deep Reinforcement Learning that matters. In *Proceedings of the AAAI Conference on Artificial*  
 599 *Intelligence*, pp. 3207–3214, 2018. URL <https://ojs.aaai.org/index.php/AAAI/article/view/11694>.  
 600

601 Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. *arXiv*  
 602 *preprint arXiv:1503.02531*, 2015. URL <https://arxiv.org/abs/1503.02531>.  
 603

604 Miroslav Hrabal, Josef Jon, Martin Popel, Nam Luu, Danil Semin, and Ondřej Bojar. CUNI at  
 605 WMT24 general translation task: LLMs,(Q)LoRA, CPO and model merging. In *Proceedings of*  
 606 *the Conference on Machine Translation*, pp. 232–246, 2024. URL <https://aclanthology.org/2024-wmt-1.16/>.  
 607

608 Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.  
 609 TinyBERT: Distilling BERT for natural language understanding. In *Findings of the Association*  
 610 *for Computational Linguistics: EMNLP*, pp. 4163–4174, 2020. URL <https://aclanthology.org/2020.findings-emnlp.372>.  
 611

612 Jaehun Jung, Peter West, Liwei Jiang, Faeze Brahman, Ximing Lu, Jillian Fisher, Taylor Sorensen,  
 613 and Yejin Choi. Impossible distillation for paraphrasing and summarization: How to make high-  
 614 quality lemonade out of small, low-quality model. In *Proceedings of the 2024 Conference of the*  
 615 *North American Chapter of the Association for Computational Linguistics: Human Language*  
 616 *Technologies (Volume 1: Long Papers)*, pp. 4439–4454, 2024.  
 617

617 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,  
 618 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language  
 619 models. *arXiv preprint arXiv:2001.08361*, 2020. URL <https://arxiv.org/abs/2001.08361>.  
 620

621 Michael J Kearns and Satinder Singh. Bias-variance error bounds for temporal difference updates.  
 622 In *Proceedings of the Conference on Computational Learning Theory*, pp. 142–147, 2000. URL  
 623 <https://www.learningtheory.org/colt2000/papers/KearnsSingh.pdf>.  
 624

624 Gyeongman Kim, Doohyuk Jang, and Eunho Yang. PromptKD: Distilling student-friendly knowl-  
 625 edge for generative language models via prompt tuning. In *Findings of the Association for*  
 626 *Computational Linguistics: EMNLP*, pp. 6266–6282, 2024. URL <https://aclanthology.org/2024-findings-emnlp.364.pdf>.  
 627

628 Yoon Kim and Alexander M. Rush. Sequence-level knowledge distillation. In *Proceedings of the*  
 629 *Conference on Empirical Methods in Natural Language Processing*, pp. 1317–1327, 2016. URL  
 630 <https://www.aclweb.org/anthology/D16-1139>.  
 631

632 Jongwoo Ko, Sungnyun Kim, Tianyi Chen, and Se-YoungHongzhan Yun. Distillm: Towards stream-  
 633 lined distillation for large language models. In *International Conference on Machine Learning*,  
 634 pp. 24872–24895, 2024.  
 635

635 Philipp Koehn. Europarl: A parallel corpus for statistical machine translation. In *Proceedings of*  
 636 *Machine Translation*, pp. 79–86, 2005. URL <https://aclanthology.org/2005.mtsummit-papers.11/>.  
 637

637 Vijay Konda and John Tsitsiklis. Actor-critic algorithms. In *Advances in Neural Information Pro-  
 638 cessing Systems*, pp. 1008–1014, 1999. URL [https://proceedings.neurips.cc/paper\\_files/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf](https://proceedings.neurips.cc/paper_files/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf).  
 639

640 Hayeon Lee, Rui Hou, Jongpil Kim, Davis Liang, Sung Ju Hwang, and Alexander Min. A study  
 641 on knowledge distillation from weak teacher for scaling up pre-trained language models. In  
 642 *Findings of the Association for Computational Linguistics: ACL*, pp. 11239–11246, 2023. URL  
 643 <https://aclanthology.org/2023.findings-acl.714.pdf>.  
 644

645 Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer  
 646 Levy, Veselin Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-  
 647 training for natural language generation, translation, and comprehension. In *Proceedings of the*  
 648 *Annual Meeting of the Association for Computational Linguistics*, pp. 7871–7880, 2020.

648 Dongheng Li, Yongchang Hao, Guoqing Luo, and Lili Mou. LLMR: Knowledge distillation with  
 649 a large language model-induced reward. In *Proceedings of the Joint International Conference on*  
 650 *Computational Linguistics, Language Resources and Evaluation*, pp. 10657–10664, 2024a. URL  
 651 <https://aclanthology.org/2024.lrec-main.932>.

652 Dongheng Li, Yongchang Hao, and Lili Mou. Llmr: Knowledge distillation with a large language  
 653 model-induced reward. In *Proceedings of the 2024 Joint International Conference on Compu-*  
 654 *tational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)*. ELRA and  
 655 ICCL, May 2024b.

656 Yulong Li, Zhenyu Zhang, Zihan Chen, Jian Guo, and Li Dong. Direct preference knowledge  
 657 distillation. 2025.

659 Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In *Text Summarization*  
 660 *Branches Out*, pp. 74–81, 2004. URL <https://aclanthology.org/W04-1013>.

661 Chengyuan Liu, Fubang Zhao, Kun Kuang, Yangyang Kang, Zhuoren Jiang, Changlong Sun, and  
 662 Fei Wu. Evolving knowledge distillation with large language models and active learning. In *Pro-*  
 663 *ceedings of the 2024 Joint International Conference on Computational Linguistics, Language Re-*  
 664 *sources and Evaluation (LREC-COLING 2024)*, Torino, Italia, May 2024a. European Language  
 665 Resources Association.

666 Jiaheng Liu, Chenchen Zhang, Jinyang Guo, Yuanxing Zhang, Haoran Que, Ken Deng, Jie Liu,  
 667 Ge Zhang, Yanan Wu, Congnan Liu, et al. Ddk: Distilling domain knowledge for efficient large  
 668 language models. *Advances in Neural Information Processing Systems*, 37:98297–98319, 2024b.

670 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International Confer-*  
 671 *ence on Learning Representations*, 2019. URL <https://openreview.net/forum?id=Bkg6RiCqY7>.

672 Lucie Charlotte Magister, Jonathan Mallinson, Jakub Adamek, Eric Malmi, and Aliaksei Severyn.  
 673 Teaching small language models to reason. In *Proceedings of the Annual Meeting of the Associa-*  
 674 *tion for Computational Linguistics*, pp. 1773–1781, 2023. URL <https://aclanthology.org/2023.acl-short.151/>.

676 Sameen Maruf, André FT Martins, and Gholamreza Haffari. Contextual neural model for translating  
 677 bilingual multi-speaker conversations. In *Proceedings of the Conference on Empirical Methods*  
 678 *in Natural Language Processing*, pp. 101–112, 2018. URL <https://aclanthology.org/W18-6311/>.

680 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-  
 681 mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-  
 682 level control through deep Reinforcement Learning. *Nature*, pp. 529–533, 2015. URL <https://www.nature.com/articles/nature14236>.

684 Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim  
 685 Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep Reinforcement  
 686 Learning. In *Proceedings of the International Conference on Machine Learning*, pp. 1928–1937,  
 687 2016. URL <http://proceedings.mlr.press/v48/mnih16.pdf>.

688 Skander Moalla, Andrea Miele, Daniil Pyatko, Razvan Pascanu, and Caglar Gulcehre. No represen-  
 689 tation, no trust: connecting representation, collapse, and trust issues in ppo. *Advances in Neural*  
 690 *Information Processing Systems*, 37:69652–69699, 2024.

692 Shashi Narayan, Shay B. Cohen, and Mirella Lapata. Don’t give me the details, just the summary!  
 693 Topic-aware convolutional neural networks for extreme summarization. In *Proceedings of the*  
 694 *Conference on Empirical Methods in Natural Language Processing*, pp. 1797–1807, 2018. URL  
<https://aclanthology.org/D18-1206>.

695 Shubham Nath and coauthors. Simultaneous reward distillation and preference learning for efficient  
 696 alignment of small language models. 2025.

698 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong  
 699 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-  
 700 low instructions with human feedback. In *Advances in Neural Information Processing Sys-*  
 701 *tems*, pp. 27730–27744, 2022. URL [https://proceedings.neurips.cc/paper\\_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf](https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf).

702 Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: a method for automatic  
 703 evaluation of machine translation. In *Proceedings of the Annual Meeting of the Association for*  
 704 *Computational Linguistics*, pp. 311–318, 2002. URL <https://aclanthology.org/P02-1040/>.  
 705

706 Simone Parisi, Voot Tangkaratt, Jan Peters, and Mohammad Emtiyaz Khan. TD-Regularized  
 707 Actor-Critic methods. *Machine Learning*, 108:1467–1501, 2019. URL <https://doi.org/10.1007/s10994-019-05788-0>.  
 708

709 Tianyu Peng and Jiajun Zhang. Enhancing knowledge distillation of large language models through  
 710 efficient multi-modal distribution alignment. In *Proceedings of the 31st International Conference*  
 711 *on Computational Linguistics*, pp. 2478–2496, 2025.  
 712

713 Maja Popović. chrF: character n-gram F-score for automatic MT evaluation. In *Proceedings of the*  
 714 *Workshop on Statistical Machine Translation*, pp. 392–395, 2015. URL <https://aclanthology.org/W15-3049/>.  
 715

716 Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan  
 717 Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,  
 718 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin  
 719 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,  
 720 Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,  
 721 Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.  
 722 URL <https://arxiv.org/abs/2412.15115>.  
 723

724 Qwen-Team. Introducing qwen1.5, February 2024. URL <https://qwenlm.github.io/blog/qwen1.5/>.  
 725

726 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi  
 727 Zhou, Wei Li, Peter J Liu, et al. Exploring the limits of transfer learning with a unified  
 728 text-to-text Transformer. *Journal of Machine Learning Research*, 21(140):1–67, 2020. URL <https://jmlr.org/papers/v21/20-074.html>.  
 729

730 Mathieu Ravaut, Aixin Sun, Nancy Chen, and Shafiq Joty. On context utilization in summarization  
 731 with large language models. In *Proceedings of the Annual Meeting of the Association for Com-  
 732 putational Linguistics*, pp. 2764–2781, 2024. URL <https://aclanthology.org/2024.acl-long.153/>.  
 733

734 David S. Rosenberg. Variance reduction in policy gradient. Lecture slides, DS-GA 3001: Tools  
 735 and Techniques for ML, 2021. URL <https://davidrosenberg.github.io/ttml2021fall/bandits/6.PG-variance-reduction.pdf>.  
 736

737 John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region  
 738 policy optimization. In *Proceedings of the International Conference on Machine Learning*, pp.  
 739 1889–1897, 2015a. URL <https://proceedings.mlr.press/v37/schulman15.html>.  
 740

741 John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-  
 742 dimensional continuous control using generalized advantage estimation. *arXiv preprint*  
 743 *arXiv:1506.02438*, 2015b.  
 744

745 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy  
 746 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017. URL <https://arxiv.org/abs/1707.06347>.  
 747

748 Hendra Setiawan. Accurate knowledge distillation via n-best reranking. In *Proceedings of the*  
 749 *2024 Conference of the North American Chapter of the Association for Computational Linguis-  
 750 tics: Human Language Technologies*, pp. 1330–1345, 2024. URL <https://aclanthology.org/2024.naacl-long.72/>.  
 751

752 Amrith Setlur, Saurabh Garg, Xinyang Geng, Naman Garg, Virginia Smith, and Aviral Ku-  
 753 mar. RL on incorrect synthetic data scales the efficiency of llm math reasoning by eight-  
 754 fold. In *Advances in Neural Information Processing Systems*, pp. 43000–43031, 2025. URL  
 755 <https://neurips.cc/virtual/2024/poster/96295>.  
 756

756 Chenhui Shen, Liying Cheng, Xuan-Phi Nguyen, Yang You, and Lidong Bing. Large lan-  
 757 guage models are not yet human-level evaluators for abstractive summarization. In *Find-  
 758 ings of the Association for Computational Linguistics: EMNLP*, pp. 4215–4233, 2023. URL  
 759 <https://aclanthology.org/2023.findings-emnlp.278/>.

760 Matthew Snover, Bonnie Dorr, Richard Schwartz, Linnea Micciulla, and John Makhoul. A study  
 761 of translation edit rate with targeted human annotation. In *Proceedings of the Conference of the  
 762 Association for Machine Translation in the Americas: Technical Papers*, pp. 223–231, 2006. URL  
 763 <https://aclanthology.org/2006.amta-papers.25/>.

764 Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. Patient knowledge distillation for BERT model  
 765 compression. In *Proceedings of the Conference on Empirical Methods in Natural Language  
 766 Processing*, pp. 4323–4332, 2019. URL <https://aclanthology.org/D19-1441>.

767 Richard S Sutton. Learning to predict by the methods of temporal differences. *Machine Learning*,  
 768 pp. 9–44, 1988. URL <https://link.springer.com/content/pdf/10.1007/BF00115009.pdf>.

769 Richard S Sutton and Andrew G Barto. *Reinforcement Learning: An Introduction*. MIT Press, 2018.  
 770 URL <http://incompleteideas.net/book/RLbook2020.pdf>.

771 Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-  
 772 ods for Reinforcement Learning with function approximation. 1999. URL [https://proceedings.neurips.cc/paper\\_1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf](https://proceedings.neurips.cc/paper_1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf).

773 Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-  
 774 ods for reinforcement learning with function approximation. In *Advances in Neural Information  
 775 Processing Systems*, pp. 1057–1063, 2000. URL [https://proceedings.neurips.cc/paper\\_1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf](https://proceedings.neurips.cc/paper_1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf).

776 Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-  
 777 ods for reinforcement learning with function approximation. arXiv preprint arXiv:1706.06643, 2017.

778 Philip S. Thomas and Emma Brunskill. Policy gradient methods for reinforcement learning with  
 779 function approximation and action-dependent baselines. arXiv preprint arXiv:1706.06643, 2017.

780 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,  
 781 Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open  
 782 foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023. URL <https://arxiv.org/abs/2307.09288>.

783 Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Well-read students learn better:  
 784 The impact of student initialization on knowledge distillation. arXiv preprint arXiv:1908.08962,  
 785 2019. URL <https://arxiv.org/abs/1908.08962>.

786 Dave Van Veen, Cara Van Uden, Louis Blankemeier, Jean-Benoit Delbrouck, Asad Aali, Chris-  
 787 tian Bluethgen, Anuj Pareek, Małgorzata Polacín, Eduardo Pontes Reis, Anna Seehofnerová,  
 788 et al. Adapted large language models can outperform medical experts in clinical text sum-  
 789 marization. *Nature Medicine*, pp. 1134–1142, 2024. URL <https://www.nature.com/articles/s41591-024-02855-5>.

790 Vladimir Vapnik. *The Nature of Statistical Learning Theory*. Springer Science & Business Media,  
 791 2013. URL <https://link.springer.com/book/10.1007/978-1-4757-3264-1>.

792 Linyong Wang, Lianwei Wu, Shaoqi Song, Yaxiong Wang, Cuiyun Gao, and Kang Wang. Dis-  
 793 tillng structured rationale from large language models to small language models for abstractive  
 794 summarization. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp.  
 795 25389–25397, 2025.

796 Tianduo Wang, Shichen Li, and Wei Lu. Self-training with direct preference optimization improves  
 797 chain-of-thought reasoning. In *Proceedings of the Annual Meeting of the Association for Compu-  
 798 tational Linguistics*, pp. 11917–11928, 2024. URL <https://aclanthology.org/2024.acl-long.643/>.

799 Wenhui Wang, Hangbo Bao, Shaohan Huang, Li Dong, and Furu Wei. MiniLMv2: Multi-head  
 800 self-attention relation distillation for compressing pretrained transformers. In *Findings of the  
 801 Association for Computational Linguistics: ACL-IJCNLP*, pp. 2140–2151, 2021. URL <https://aclanthology.org/2021.findings-acl.188>.

810 Bolin Wei, Shuai Lu, Lili Mou, Hao Zhou, Pascal Poupart, Ge Li, and Zhi Jin. Why do neural dialog  
 811 systems generate short and meaningless replies? a comparison between dialog and translation. In  
 812 *Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing*,  
 813 pp. 7290–7294, 2019. URL <https://ieeexplore.ieee.org/document/8682634>.

814 Yuqiao Wen, Zichao Li, Wenyu Du, and Lili Mou. f-divergence minimization for sequence-level  
 815 knowledge distillation. In *Proceedings of the Annual Meeting of the Association for Compu-  
 816 tational Linguistics*, pp. 10817–10834, 2023. URL <https://aclanthology.org/2023.acl-long.605>.

817 Ronald J Williams. Simple statistical gradient-following algorithms for connectionist Reinforcement  
 818 Learning. *Machine learning*, 8:229–256, 1992. URL <https://people.cs.umass.edu/~barto/courses/cs687/williams92simple.pdf>.

819 Lijun Wu, Fei Tian, Tao Qin, Jianhuang Lai, and Tie-Yan Liu. A study of reinforcement learning for  
 820 neural machine translation. In *Proceedings of the Conference on Empirical Methods in Natural  
 821 Language Processing*, pp. 3612–3621, 2018. URL <https://aclanthology.org/D18-1397/>.

822 Taiqiang Wu, Chaofan Tao, Jiahao Wang, Runming Yang, Zhe Zhao, and Ngai Wong. Rethinking  
 823 kullback–leibler divergence in knowledge distillation for large language models. In *Proceedings  
 824 of the 31st International Conference on Computational Linguistics (COLING 2025)*, pp. 5737–  
 825 5755, Abu Dhabi, UAE, 2025. Association for Computational Linguistics.

826 Hongling Xu, Qi Zhu, Heyuan Deng, Jinpeng Li, Lu Hou, Yasheng Wang, Lifeng Shang, Ruifeng  
 827 Xu, and Fei Mi. Kdrl: Post-training reasoning llms via unified knowledge distillation and rein-  
 828 forcement learning. *arXiv preprint arXiv:2506.02208*, 2025a.

829 Shicheng Xu, Liang Pang, Yunchang Zhu, Jia Gu, Zihao Wei, Jingcheng Deng, Feiyang Pan, Huawei  
 830 Shen, and Xueqi Cheng. Distilling the implicit multi-branch structure in llms’ reasoning via  
 831 reinforcement learning. *arXiv preprint arXiv:2505.16142*, 2025b.

832 Tengyu Xu, Zhe Wang, Yi Zhou, and Yingbin Liang. Reanalysis of variance reduced temporal  
 833 difference learning. In *International Conference on Learning Representations*, 2020. URL <https://openreview.net/forum?id=S1ly10EKDS>.

834 Dezhi Ye, Junwei Hu, Jiaxin Fan, Bowen Tian, Jie Liu, Haijin Liang, and Jin Ma. Best practices  
 835 for distilling large language models into BERT for web search ranking. In *Proceedings of the  
 836 International Conference on Computational Linguistics: Industry Track*, pp. 128–135, 2025. URL  
 837 <https://aclanthology.org/2025.coling-industry.11.pdf>.

838 Yufeng Yuan, Yu Yue, Ruofei Zhu, Tiantian Fan, and Lin Yan. What’s behind ppo’s collapse in  
 839 long-cot? value optimization holds the secret. *arXiv preprint arXiv:2503.01491*, 2025.

840 Rongzhi Zhang, Jiaming Shen, Tianqi Liu, Haorui Wang, Zhen Qin, Feng Han, Jialu Liu, Simon  
 841 Baumgartner, Michael Bendersky, and Chao Zhang. Plad: Preference-based large language model  
 842 distillation with pseudo-preference pairs. In *Findings of the Association for Computational Lin-  
 843 guistics: ACL 2024*, pp. 15623–15636, Bangkok, Thailand, 2024a. Association for Computational  
 844 Linguistics.

845 Songming Zhang, Xue Zhang, Zengkui Sun, Yufeng Chen, and Jinan Xu. Dual-space knowledge dis-  
 846 tillation for large language models. In *Proceedings of the 2024 Conference on Empirical Methods  
 847 in Natural Language Processing*, pp. 18164–18181. Association for Computational Linguistics,  
 848 2024b.

849 Yudi Zhang, Lu Wang, Meng Fang, Yali Du, Chenghua Huang, Jun Wang, Qingwei Lin, Mykola  
 850 Pechenizkiy, Dongmei Zhang, Saravan Rajmohan, and Qi Zhang. Distill not only data but also  
 851 rewards: Can smaller language models surpass larger ones? 2025.

852 Jiachen Zhao, Wenlong Zhao, Andrew Drozdov, Benjamin Rozonoyer, Arafat Sultan, Jay-yoon Lee,  
 853 Mohit Iyyer, and Andrew McCallum. Multistage collaborative knowledge distillation from a large  
 854 language model for semi-supervised sequence generation. In *Proceedings of the 62nd Annual  
 855 Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 14201–  
 856 14214. Association for Computational Linguistics, 2024.

864 Chujie Zheng, Hao Zhou, Fandong Meng, Jie Zhou, and Minlie Huang. Large language models are  
 865 not robust multiple choice selectors. In *International Conference on Learning Representations*,  
 866 2023. URL <https://openreview.net/forum?id=shr9PXz7T0>.

867  
 868  
 869  
 870 Yuhang Zhou, Jing Zhu, Paileng Xu, Zewen Liu, Qing Wang, and Wen Ai. Multi-stage balanced  
 871 distillation: Addressing long-tail challenges in sequence-level knowledge distillation. In *Findings*  
 872 of the Association for Computational Linguistics: EMNLP 2024, pp. 3315–3333. Association for  
 873 Computational Linguistics, 2024.

## 877 A THE USE OF LARGE LANGUAGE MODELS (LLMs)

878  
 879 We employ Large Language Models (LLMs) as general-purpose tools to improve writing quality,  
 880 including grammar, spelling, and sentence structure. In addition, we use LLMs to refine LaTeX  
 881 syntax and formatting.

## 885 B PROOF OF THEOREM 1

886  
 887 Using  $K$ -step returns as a learning signal to learn a student policy  $\pi$  guarantees reduced variance  
 888 in return estimation compared to the full trajectory return, i.e.,  $\text{Var}[\hat{G}_t] \leq \text{Var}[G_t]$ . (Detailed in  
 889 Theorem 1).

890  
 891  
 892  
 893  
 894  
 895 *Proof.* We denote the variance of  $q(s, a)$  and  $\max_{a' \in \mathcal{A}} q(s, a')$  as:

$$896 \sigma_{\mathcal{S}, \mathcal{A}}^2 = \text{Var}_{s, a} [q(s, a)], \quad (13)$$

$$897 \sigma_{\mathcal{S}}^2 = \text{Var}_s \left[ \max_{a' \in \mathcal{A}} q(s, a') \right]. \quad (14)$$

900  
 901  
 902 We first decompose the variance of the actual return  $G_t$ :

$$903 \text{Var}[G_t] = \text{Var} \left[ \sum_{i=0}^{T-t} r_{t+i} \right] \quad [\text{definition of } G_t] \quad (15)$$

$$904 = \sum_{i=0}^{T-t} \text{Var} \left[ q(s_{t+i}, a_{t+i}) - \max_{a' \in \mathcal{A}} q(s_{t+i+1}, a') \right] \quad [\text{iid assumption}] \quad (16)$$

$$905 = \sum_{i=0}^{T-t} \left( \text{Var}[q(s_{t+i}, a_{t+i})] + \text{Var} \left[ \max_{a' \in \mathcal{A}} q(s_{t+i+1}, a') \right] \right) \quad [\text{iid assumption}] \quad (17)$$

$$906 = \sum_{i=0}^{T-t} (\sigma_{\mathcal{S}, \mathcal{A}}^2 + \sigma_{\mathcal{S}}^2) \quad (18)$$

$$907 = (T-t+1)(\sigma_{\mathcal{S}, \mathcal{A}}^2 + \sigma_{\mathcal{S}}^2). \quad (19)$$

918 Next, we decompose the variance of our  $K$ -step approximate return  $\hat{G}_t$ :

$$920 \quad \text{Var}[\hat{G}_t] = \text{Var} \left[ \sum_{i=0}^{\lfloor \frac{T-t}{k} \rfloor} \left( q(s_{t+ik}, a_{t+ik}) - \max_{a' \in \mathcal{A}} q(s_{t+(i+1)k}, a') \right) \right] \quad [\text{by Eqn.( 7) in the main text}] \\ 921 \quad (20) \\ 922$$

$$924 \quad = \sum_{i=0}^{\lfloor \frac{T-t}{k} \rfloor} \text{Var} \left[ q(s_{t+ik}, a_{t+ik}) - \max_{a' \in \mathcal{A}} q(s_{t+(i+1)k}, a') \right] \quad [\text{iid assumption}] \\ 925 \quad (21) \\ 926$$

$$928 \quad = \sum_{i=0}^{\lfloor \frac{T-t}{k} \rfloor} \left( \text{Var}[q(s_{t+ik}, a_{t+ik})] + \text{Var} \left[ \max_{a' \in \mathcal{A}} q(s_{t+(i+1)k}, a') \right] \right) \quad [\text{iid assumption}] \\ 929 \quad (22) \\ 930$$

$$932 \quad = \sum_{i=0}^{\lfloor \frac{T-t}{k} \rfloor} (\sigma_{\mathcal{S}, \mathcal{A}}^2 + \sigma_{\mathcal{S}}^2) \\ 933 \quad (23) \\ 934$$

$$936 \quad = \left( \left\lfloor \frac{T-t}{k} \right\rfloor + 1 \right) (\sigma_{\mathcal{S}, \mathcal{A}}^2 + \sigma_{\mathcal{S}}^2). \\ 937 \quad (24) \\ 938$$

939 Comparing Eqns. (19) and (24), we immediately have  $\text{Var}[\hat{G}_t] \leq \text{Var}[G_t]$ , completing the proof.  $\square$

## C BIAS ANALYSIS

944 In this section, we analyze the bias introduced by using the  $K$ -step return  $\hat{G}_t$  in place of the actual  
945 return  $G_t$ . Recall that they differ by a baseline term shown in Eqns. (9) and (11) in the main text,  
946 and this discrepancy introduces bias in the return estimation:

$$949 \quad \text{bias of return} = \mathbb{E}_{\pi_\theta} \left[ (\hat{G}_t - G_t) \right] = \mathbb{E}_{\pi_\theta} \left[ \sum_{\substack{i=0 \\ i \not\equiv 0 \pmod k}}^{T-1} \left[ q(s_{t+Ki+1}, a_{t+Ki+1}) - \max_{a' \in \mathcal{A}} q(s_{t+Ki+1}, a') \right] \right] \\ 950 \quad (25) \\ 951$$

954 gradient estimation:

$$955 \quad \text{bias of gradient} = \mathbb{E}_{\pi_\theta} \left[ (\hat{G}_t - G_t) \nabla_\theta \log \pi_\theta(a_t | s_t) \right] = \mathbb{E}_{\pi_\theta} \left[ -b_t \nabla_\theta \log \pi_\theta(a_t | s_t) \right] \quad (26) \\ 956$$

958 We show below that a smaller value of  $K$  reduces bias, providing a bias-variance tradeoff for REIN-  
959 FORCE. Further, we will show that the bias converges to zero as the student policy becomes more  
960 optimal, assuming all Q-values are distinct.

961 **Bias Reduction with Smaller  $K$ .** The baseline term defined in Eqn. (11) in the main text is given  
962 by

$$964 \quad b_t = \sum_{\substack{i=0 \\ i \not\equiv 0 \pmod k}}^{T-1} \left[ q(s_{t+Ki+1}, a_{t+Ki+1}) - \max_{a' \in \mathcal{A}} q(s_{t+Ki+1}, a') \right]. \\ 965 \quad (27) \\ 966$$

967 Since

$$969 \quad q(s_{t+Ki+1}, a_{t+Ki+1}) - \max_{a' \in \mathcal{A}} q(s_{t+Ki+1}, a') \leq 0, \\ 970 \quad (28)$$

971 a smaller  $K$  reduced the number of terms in the summation. This decreases  $|b_t|$ , which in turn  
972 decreases the magnitude of the gradient bias in Eqn. (26).

---

972 **Algorithm 1** BRIM

973 **Input:** Non-parallel dataset  $D$ ; teacher Q-value function  $q : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ ; student policy  $\pi_\theta$  with  
974 initial parameters  $\theta$ ; segment length  $K$ ; learning rate  $\eta$ ; maximum rollout length  $T$ ; number of  
975 iterations  $U$

976 **Output:** Trained student policy  $\pi_\theta$

977 **for**  $j \leftarrow 1$  **to**  $U$  **do**

978     Sample a source sentence  $\mathbf{x} \in D$

979     Set the initial state  $s_0 \leftarrow \mathbf{x}$

980     Generate a trajectory  $\tau = \{(s_0, a_0), (s_1, a_1), \dots, (s_T, a_T)\}$  by sampling from  $\pi_\theta$

981     Initialize gradient accumulator:  $g \leftarrow 0$

982     **for**  $t \leftarrow T$  **to**  $0$  **do**

983         **if**  $t = T$  **then**

984              $\hat{G}_T \leftarrow q(s_T, a_T)$

985         **else if**  $T - t < k$  **then**

986              $\hat{G}_t \leftarrow \left[ q(s_t, a_t) - \max_{a' \in \mathcal{A}} q(s_{t+1}, a') \right] + \hat{G}_{t+1}$

987         **else**

988              $\hat{G}_t \leftarrow \left[ q(s_t, a_t) - \max_{a' \in \mathcal{A}} q(s_{t+K}, a') \right] + \hat{G}_{t+K}$

989         **end**

990          $g \leftarrow g + \hat{G}_t \nabla_\theta \log \pi_\theta(a_t | s_t)$

991     **end**

992      $\theta \leftarrow \theta + \eta g$

993 **end**

994 **return**  $\pi_\theta$

---

997 **Bias Convergence to Zero.** Suppose the student policy is optimal, i.e., greedy with respect to the  
998 teacher’s Q-value function  $q(s, a)$ , given by

1000 
$$a_{t+i} = \arg \max_{a' \in \mathcal{A}} q(s_{t+i}, a'). \quad (29)$$

1002 It is easy to see from Eqn. (27) that  $b_t = 0$ , implying that

1004 
$$\mathbb{E}_{\pi_\theta} \left[ b_t \nabla_\theta \log \pi_\theta(a_t | s_t) \right] = 0. \quad (30)$$

1006 Suppose the Q-values for different actions are distinct (in which case argmax is continuous), the  
1007 result further suggests that the bias term would converge to zero, if the student policy is closer to  
1008 optimal during training.

## 1010 D PPO IN RL-BASED TEXT GENERATION KD

1012 We run PPO-based training experiments with both LLMR and our BRIM in the RL-based text gen-  
1013 eration KD setting (§2.1) to assess whether PPO’s learning framework can be productively incor-  
1014 porated into this scenario.

1016 **PPO with LLMR.** As a competing approach, we run PPO where the reward signal for policy  
1017 learning is the teacher-induced reward in Eqn. (2). Our PPO pipeline follows the setup of Ouyang  
1018 et al. (2022): we learn a state-value function by minimizing the TD error (i.e., making the earlier  
1019 value prediction agree with a later, better-informed bootstrapped return to enforce temporal con-  
1020 sistency), and we update the policy using the critic’s advantage estimates as a baseline (following  
1021 (Schulman et al., 2015b)), increasing the likelihood of actions with positive advantage and decreas-  
1022 ing it for those with negative advantage.

1024 **PPO with BRIM.** We then incorporate PPO into BRIM by removing all learning components re-  
1025 lated to the critic value function and replacing the critic’s advantage used in LLMR’s PPO setting  
with our block-wise  $K$ -step return estimator introduced in §2.2.

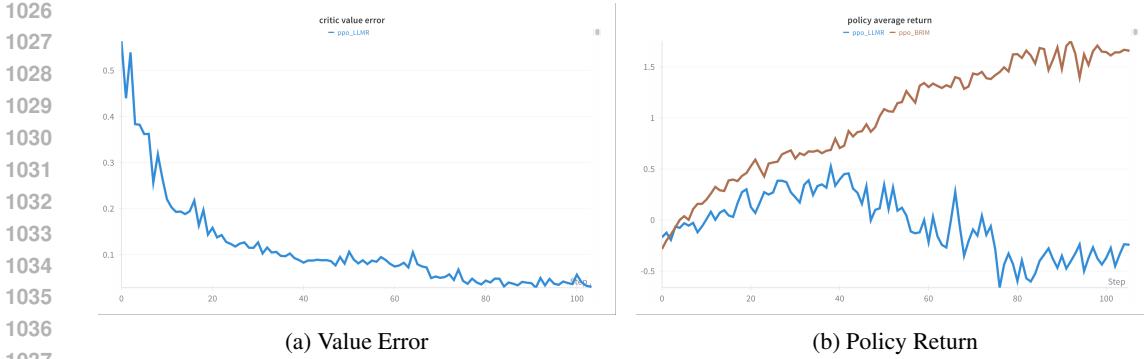


Figure 3: PPO training with LLMR

| Dataset                      | Task                 | # of Samples |        |        |
|------------------------------|----------------------|--------------|--------|--------|
|                              |                      | Train        | Dev    | Test   |
| XSum (Narayan et al., 2018)  | Summarization        | 202,926      | 11,332 | 11,333 |
| Europarl EN-NL (Koehn, 2005) | Machine Translation  | 1,167,808    | 10,014 | 10,016 |
| GSM8K (Cobbe et al., 2021)   | Arithmetic reasoning | 6,705        | 768    | 1,319  |

Table 4: Statistics of our datasets.

**Results.** With LLMR, PPO fails to learn a useful policy: the critic’s TD error (Fig. 3a) converges to a small value, while the average policy return (Fig. 3b) diverges, indicating that PPO does not discover a stable, high-reward strategy in this setup. In contrast, under BRIM, the average policy return in Fig. 3b exhibits a nearly monotonic increase, suggesting that BRIM effectively resolves the training-instability issues observed with LLMR.

**Discussion.** The instability of LLMR under PPO primarily stems from inaccuracies in the learned critic. In PPO with LLMR, two coupled error sources undermine learning: (i) inaccuracies in the learned critic which stemming from bootstrapping errors that accumulate over time, and (ii) biased advantage estimates (e.g., from GAE with  $\lambda < 1$ ) that are computed on top of those inaccurate value predictions. When combined within PPO’s update, these errors distort both the baseline and the policy gradient, so the policy is optimized toward a mis-specified training signal, leading to instability and, empirically, divergence of the return curve. Similar fragility of value-learning has been reported in recent RL/NLP work (Moalla et al., 2024; Yuan et al., 2025), motivating methods that avoid an auxiliary critic (DeepSeek-AI et al., 2025). Following this direction, BRIM replaces the critic with a teacher-induced block-wise  $K$ -step return, which serves as a stable surrogate for advantage computation, mitigates error accumulation, and yields more reliable policy improvement.

## E EXPERIMENTAL SETTING DETAILS

**Computing Infrastructure.** Experiments were conducted on a Linux server equipped with an AMD EPYC 7313 CPU (32 GB RAM) and an NVIDIA RTX A6000 GPU (48 GB VRAM). The system uses NVIDIA driver v560.28.03 and CUDA Toolkit 12.6 (as reported by `nvidia-smi`). Software and dependency versions are listed in the `requirements.txt` file of our anonymous GitHub repository: <https://anonymous.4open.science/r/BRIM-6070>.

**Hyperparameter Settings.** For our RL-based distillation experiments, we follow the configuration of Li et al. (2024a), employing the AdamW optimizer (Loshchilov & Hutter, 2019) with default parameters ( $\beta_1 = 0.9$ ,  $\beta_2 = 0.999$ ). All other hyperparameters—batch size, gradient accumulation steps, reward clipping range, dropout rate, warmup steps, and learning rate—are identical to those in (Li et al., 2024a). Since our datasets differ, we adjust the maximum input and output lengths for each text-generation task according to the recommendations of (Wen et al., 2023; Wang et al., 2024). Detailed settings are provided in Table 5.

1080 For divergence-based KD competing approaches, we adopt the hyperparameter configurations from  
 1081 (Wen et al., 2023). The specific values for each parameter are summarized in Table 6.  
 1082

1083 **Statistical Analysis.** To quantify the variance of each approach we repeat every training  
 1084 procedure  $N = 5$  times, using distinct random seeds drawn uniformly from  $([1, 100\,000])$ :  
 1085  $\{19083, 34007, 84122, 310, 55080\}$ . For every run, we select the checkpoint that achieves the  
 1086 best validation performance and report its corresponding test-set score. We adopt the standard  
 1087 train/validation/test splits for XSUM and EUROPARL. Because the official GSM8K release lacks  
 1088 a validation split, we use the public split of Wang et al. (2024). Statistical significance between  
 1089 our method BRIM and each baseline is assessed with a paired two-sided  $t$ -test over the five seeds;  
 1090  $p < 0.035$  indicating the differences are deemed significant.  
 1091

| Hyperparameter          | Value                                        |
|-------------------------|----------------------------------------------|
| Training Epochs         | 3                                            |
| Train Batch size        | 8                                            |
| Eval Batch size         | 32                                           |
| Optimizer               | AdamW                                        |
| Grad Accumulation Steps | 32                                           |
| Reward Clip Range       | [-100, 100]                                  |
| Dropout                 | 0.0                                          |
| Warmup Steps            | 5,000                                        |
| Warmup Schedule Linear  | (from 0 to LR)                               |
| Learning Rate (LR)      | 0.00001                                      |
| Max Input Length        | 1024 (Xsum) / 80 (Europarl) /<br>200 (GSM8K) |
| Max Output Length       | 64 (Xsum) / 80 (Europarl) / 300<br>(GSM8K)   |

1106 Table 5: Hyperparameter Details for experiments on RL-based approaches (BRIM, LLMR, LLMR  
 1107 with mean baseline, and LLMR with min-variance baseline).  
 1108

| Hyperparameter          | Value                                        |
|-------------------------|----------------------------------------------|
| Training Epochs         | 2                                            |
| Train Batch size        | 32                                           |
| Eval Batch size         | 32                                           |
| Optimizer               | AdamW                                        |
| Grad Accumulation Steps | 16                                           |
| Dropout                 | 0.25                                         |
| Warmup Steps            | 5,000                                        |
| Warmup Schedule Linear  | (from 0 to LR)                               |
| Learning Rate (LR)      | 0.00005                                      |
| Max Input Length        | 1024 (Xsum) / 80 (Europarl) /<br>200 (GSM8K) |
| Max Output Length       | 64 (Xsum) / 80 (Europarl) / 300<br>(GSM8K)   |

1123 Table 6: Hyperparameter Details for experiments on divergence-based KD approaches (seqKD, KL,  
 1124 JSD, TVD).  
 1125  
 1126

## F RESULTS ON MORE MODELS

1127 KD studies on seq2seq tasks have largely centred on encoder-decoder structures such as T5 (Raffel  
 1128 et al., 2020; Chung et al., 2024) and BART (Lewis et al., 2020) models (Wen et al., 2023; Li et al.,  
 1129 2024a; Agarwal et al., 2024; Jung et al., 2024; Wang et al., 2025). To answer reviewers’ likely  
 1130 question about BRIM’s performance on recent popular decoder-only architectures, we also applied  
 1131 it to the Qwen1.5 model series (Qwen-Team, 2024) and report the results in Table 7.  
 1132  
 1133

| Model                   | XSum (ROUGE-1↑) | Europarl (BLEU4↑) | GSM8K (Acc. (%)↑) |
|-------------------------|-----------------|-------------------|-------------------|
| Teacher (Qwen1.5-4B)    | 38.15           | 21.32             | 42.08             |
| Student (Qwen1.5-0.5B)  | 8.80            | 0.02              | 0.00              |
| KL Hinton et al. (2015) | 31.29           | 15.76             | 26.31             |
| TVD Wen et al. (2023)   | 31.18           | 16.22             | 26.99             |
| LLMR Li et al. (2024a)  | 31.61           | 15.90             | 27.29             |
| BRIM                    | <b>32.28</b>    | <b>16.46</b>      | <b>28.13</b>      |

Table 7: Distillation results on XSum, Europarl EN–NL, and GSM8K using Qwen1.5 models. Higher ↑ is better. The best  $K$  values are 2, 2, and 16 for the three datasets, respectively.

| Models           | XSum (max_output_len=64) | Europarl (max_output_len=64) | GSM8K (max_output_len=256) |
|------------------|--------------------------|------------------------------|----------------------------|
| T5 optimal $K$   | 2                        | 2                            | 8                          |
| Qwen optimal $K$ | 2                        | 2                            | 16                         |

Table 8: Summarization of optimal  $K$  values for T5 and Qwen models on XSum, Europarl EN–NL, and GSM8K datasets.

## G HYPERPARAMETER $K$ DISCUSSION

**$K$  and the exploration horizon** Eqn. (7) in the main text shows that the  $K$ -step return depends on the rollout horizon  $T$  and the truncation parameter  $K$ . With  $T$  fixed (reflected by the maximum output length in the text generation scenario), the approximation error is governed solely by  $K$ . Table 8 indicates that the same  $K$  performs robustly across tasks that share an identical horizon.

**A single optimal  $K$  is elusive** Because tasks differ in their typical horizons (output lengths), the  $K$  that is optimal for short summaries may be sub-optimal for long-form reasoning. Adapting  $K$  on a per-example basis would be ideal, but is infeasible in training with batch implementation. Instead, we conduct a lightweight grid search over  $\{2, 4, 8, 16\}$  for each dataset and select the empirically best value.

## H PROMPTS TEMPLATES FOR LLM EVALUATION

Table 9 and Table 10 present our prompts template for LLM evaluation on the summarization task and machine translation task, respectively.

## I THE USE OF LARGE LANGUAGE MODELS (LLMs)

Gemini2.5 Comanici et al. (2025) was used in a limited capacity to improve writing quality, including checking grammar and rephrasing certain expressions with better sentence structures. In addition, we use it for formatting LaTeX tables and Matplotlib figures. However, we came up with the research ideas, conducted the analyses, and presented the contents without using AI tools.

## J REPRODUCIBILITY STATEMENT

All code is provided via an anonymized Github Repository, including implementations for data loading, reward model training, and policy optimization. The datasets used are publicly available, and we release the complete set of training hyperparameters. Our evaluation approaches are also publicly available and can be fully reproduced.

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

---

Please evaluate the overall quality of the following summaries given the document.

1200

Evaluation Criteria:

1201

Overall Quality: A good summary should be both precise and concise, summarizing the most important points in the given document, without including unimportant or irrelevant details

1202

Document: [Source]

Summary [ID1]: [Summary-A]

1204

Summary [ID2]: [Summary-B]

1205

FIRST, provide a one-sentence comparison of the two summaries for overall quality, explaining which you prefer and why.

1206

SECOND, on a new line, state only the ID to indicate your choice. Your response should use the format:

1207

Overall Quality: ;one-sentence comparison and explanation;

1208

Preferred: ;summary ID;

1209

---

Please evaluate the informativeness of the following summaries given the document.

1210

Evaluation Criteria:

1211

Informativeness: Does it include the most important details while excluding irrelevant content?

1212

Document: [Source]

Summary [ID1]: [Summary-A]

1213

Summary [ID2]: [Summary-B]

1214

FIRST, provide a one-sentence comparison of the two summaries for informativeness, explaining which you prefer and why.

1215

SECOND, on a new line, state only the ID to indicate your choice. Your response should use the format:

1216

Informativeness: ;one-sentence comparison and explanation;

1217

Preferred: ;summary ID;

1218

---

Please evaluate the coherence of the following summaries given the document.

1219

Evaluation Criteria:

1220

Coherence: Is the summary logically structured and easy to follow?

1221

Document: [Source]

1222

Summary [ID1]: [Summary-A]

1223

Summary [ID2]: [Summary-B]

1224

FIRST, provide a one-sentence comparison of the two summaries for coherence, explaining which you prefer and why.

1225

SECOND, on a new line, state only the ID to indicate your choice. Your response should use the format:

1226

Informativeness: ;one-sentence comparison and explanation;

1227

Preferred: ;summary ID;

1228

---

Table 9: Prompt templates for LLM evaluation on the summarization task in terms of overall quality, informativeness, and coherence. Here, “**Source**” is the document to be summarized. The choices of IDs are “A” and “B”; “**Summary-A**” and “**Summary-B**” are replaced with model-generated texts. Since LLMs are not robust to ID and order (Zheng et al., 2023; Shen et al., 2023), we enumerate different combinations for a given pair, resulting in four LLM queries.

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

---

Please evaluate the overall quality of the following translations from English to Dutch.

1254

Evaluation Criteria:

1255

Overall Quality: A good translation should: 1) faithfully reflect the meaning of the source text; 2) avoid adding unnecessary or irrelevant details. 3) use natural and fluent Dutch.

1256

Source: [Source]

Translation [ID1]: [Translation-A]

1257

Translation [ID2]: [Translation-B]

1258

FIRST, provide a one-sentence comparison of the two translations for overall quality, explaining which you prefer and why.

1259

SECOND, on a new line, state only the ID to indicate your choice. Your response should use the format:

1260

Overall Quality: [one-sentence comparison and explanation]

1261

Preferred: [translation ID]

1262

---

Please evaluate the informativeness of the following translations from English to Dutch.

1263

Evaluation Criteria:

1264

Informativeness: Does the translation preserve all key information without adding irrelevant details?

1265

Source: [Source]

Translation [ID1]: [Translation-A]

1266

Translation [ID2]: [Translation-B]

1267

FIRST, provide a one-sentence comparison of the two translations for informativeness, explaining which you prefer and why.

1268

SECOND, on a new line, state only the ID to indicate your choice. Your response should use the format:

1269

Informativeness: [one-sentence comparison and explanation]

1270

Preferred: [translation ID]

1271

---

Please evaluate the coherence of the following translations from English to Dutch.

1272

Evaluation Criteria:

1273

Coherence: Is the translation fluent, logically structured, and easy to understand in Dutch?

1274

Source: [Source]

Translation [ID1]: [Translation-A]

1275

Translation [ID2]: [Translation-B]

1276

---

FIRST, provide a one-sentence comparison of the two translations for coherence, explaining which you prefer and why.

1277

SECOND, on a new line, state only the ID to indicate your choice. Your response should use the format:

1278

Informativeness: [one-sentence comparison and explanation]

1279

Preferred: [translation ID]

1280

---

Table 10: Prompt templates for LLM evaluation on the machine translation task in terms of overall quality, informativeness, and coherence. Here, “Source” is the source sentence to be translated. The choices of IDs are “A” and “B”; “Translation-A” and “Translation-B” are replaced with model-generated texts. We still enumerate different combinations for a given pair, resulting in four LLM queries.

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295