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Abstract

The widespread digitization of healthcare and patient data
has created new opportunities to explore machine learning
techniques for improving patient care. The sheer scale of
this data has particularly motivated the use of deep learn-
ing methods like BERT, which can learn robust representa-
tions of medical concepts from patient data without the need
for direct supervision. Simultaneously, recent research has
shown that language models (LMs) trained on scientific liter-
ature can capture strong domain-specific knowledge, includ-
ing concepts highly relevant to healthcare. In this paper, we
leverage two complementary sources of information—patient
medical records and descriptive clinical text—to learn com-
plex clinical concepts, such as diagnostic codes, more effec-
tively. Although significant strides have been made in using
language models with each data type individually, few studies
have explored whether the domain expertise acquired from
scientific text can provide a beneficial inductive bias when
applied to learning from patient records. To address this gap,
we propose the Domain Knowledge BEHRT (DK-BEHRT),
a model that integrates disease description embeddings from
domain-specific language models, like BioGPT, into the at-
tention mechanisms of a BERT-based architecture. By in-
corporating these “knowledge” embeddings, we aim to en-
hance the model’s ability to understand the clinical concept
(e.g. ICD Codes) more effectively and predict clinical out-
comes with higher accuracy. We validate this approach on
the MIMIC-IV dataset and find that incorporating special-
ized embeddings consistently improves predictive accuracy
for clinical outcomes compared to using generic embeddings
or training the base model from scratch.

Introduction

The increasing availability of electronic health records
(EHR) datasets has motivated research into whether com-
plex health-related patterns can be learned directly from pa-
tient data using machine learning. While traditional meth-
ods have relied on manual feature extraction and domain ex-
pertise, deep learning has gained interest for its ability to
learn from diverse information (such as diagnoses, medica-
tions, and clinical notes) without requiring complex model
designs.
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Among deep learning approaches, the work of BERT
(Bidirectional Encoder Representations from Transformers)
(Devlin et al.|2019) has offered a straightforward approach
to uncovering discriminative patterns in vast data without
strong supervision, relying on the transformer architecture
(Vaswani| 2017)). Originally developed for generic natural
language processing (NLP) tasks, BERT uses a Masked Lan-
guage Modeling (MLM) objective, which involves masking
random words in a sentence and training the model to pre-
dict them, helping the model learn general-purpose relation-
ships between arbitrary observations. Given its success in
NLP (Acheampong, Nunoo-Mensah, and Chen|2021; |(Ono
and Lee||2024), BERT has been adapted for the biomedical
domain through specialized versions (L1 et al.[2020; |Rasmy
et al.|[2021; [Rupp, Peter, and Pattipaka|[2023; |Zhou et al.
2023; |Antal et al.[2024). Through a similar training proce-
dure which masks medical observations (such as one diag-
nosis in time) in a patient’s medical history, the model learns
a high-dimensional internal representation of observed fea-
tures that have been shown to yield state of the art accura-
cies when predicting clinical outcomes (Hager et al.[2024;
L1 et al.[2024; Lee, Brokowski, and Chiang|2024).

Given its ability to learn from free text effectively, the
transformer architecture has also been used extensively in a
related domain: learning high-level insights from scientific
research articles (Beltagy, Lo, and Cohan|2019; |Gu et al.
2021)), and specifically those pertaining to biological find-
ings (Huang, Altosaar, and Ranganath|2019;|Lee et al.[2020;
Gu et al.|2021; Touvron et al.[2023;|Achiam et al.[2023;|Shin
et al.|[2020; [Luo et al.|[2022).

At first glance, the distinction between language mod-
els for patient records and biomedical knowledge can ap-
pear similar as their underlying transformer architectures
and training process are similar (several BERTs and GPTs
have been proposed for both types of data). However, a ques-
tion still remains on the degree to which knowledge gained
using state-of-art methods in patient records or published
knowledge is largely overlapping or is highly disjoint.

To address these questions, our goal is to use clinical
features from electronic health records (EHR) along with
known descriptions of diseases to make ICD codes more
contextual and relevant for predicting patient outcomes. We



propose training a model, similar to BERT, on EHR data, en-
hanced with “domain knowledge” from human-curated dis-
ease descriptions to better understand the learning of lan-
guage models on the underlying disease latent space. By in-
corporating knowledge from these descriptions and biomed-
ical language models, we aim to improve the model’s ability
to predict patient outcomes and potential future diagnoses.

The proposed methodology proceeds as follows: we first
train the model using a strategy similar to MedBERT
(Rasmy et al.|2021), with the primary objective of optimiz-
ing accuracy in predicting clinical outcomes. We then in-
troduce a novel mechanism that enables the model to in-
terpret relationships between diagnosis codes by incorpo-
rating connections derived from disease descriptions, rep-
resented through latent representations from an external lan-
guage model. This approach provides a more contextualized
understanding of each ICD code, leading to enhanced pre-
dictions of patient health.

Under our framework, we explore the usefulness of
the latent representations of several LMs, ranging from
those trained on generic text (OpenAl’s text-embedding-3-
larg to those trained specifically on PubMed publications
(BioGPT, (Luo et al[2022)). We implement a benchmark
procedure similar to (Harutyunyan et al.[2019; Wang et al.
2020) based on the MIMIC-IV dataset (Johnson et al.|[2024,
2023)), measuring the model’s ability to predict mortality and
lengths of stay in ICU visits after undergoing a finetuning
procedure. In addition, we survey the models’ ability to pre-
dict if a patient will receive a life-altering diagnosis for the
first time in three broad categories: major depressive disor-
der (F320~F329), cardiac complications (I1250~1259), and
motor neuron disorders (G20~G259). Through our bench-
marks, we observe that the introduction of LM embeddings
in BERT training is a net benefit, as well as finding that using
embeddings from LMs trained on biomedical texts are ex-
clusively preferable in comparison to ones trained on generic
texts.

The clinical relevance of this work lies in its potential
to bridge gaps in how complex medical concepts (e.g. ICD
Codes, SNOMED Codes, CPT Codes, Medications, Proce-
dures, etc.) like ICD codes are understood and used by lan-
guage models for predicting patient outcomes. These emerg-
ing technologies have shown promise in many applications,
but in healthcare, unique challenges arise that differ from
those in natural language processing, requiring a more fo-
cused approach to training and understanding medical con-
cepts. For example ICD codes often reflect complex, nu-
anced conditions, but without context, models trained solely
on these codes may fail to capture the full clinical picture
due to their non-trivial design (a series of alpha numeric
characters with a non-trivial pattern). For instance, arbitrary
or less explicit relationships between certain diagnoses may
not be effectively learned, leading to gaps in the model’s
understanding of clinically significant connections. By in-
tegrating descriptions of diseases, we enhance the model’s
contextual understanding, making these codes more infor-
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mative and relevant for outcome predictions. This approach
ensures that the model can access latent relationships and
broader patterns that are often missed when relying solely on
ICD codes, thus improving its clinical applicability for lan-
guage models to learn and predict outcomes for real-world
patient care scenarios. Using a design similar to the one we
propose can work towards building a generalist Al as current
medical LM’s struggle to grasp the nuances of clinical con-
cepts as noted in the recent literature (Soroush et al.[2024;
Lee and Lindsey|[2024;|Chen et al.).

We review a series of works related to our approach in
the Related Works Section and explain our methodology in
greater detail in Methods Section. We present our findings in
the Results Section as well as sharing ablation experiments
to determine the amount of contribution from the biomedical
LM embeddings.

Related Works

Representation learning with electronic health
records

Given the success of the BERT model (Devlin et al.[[2019)
in the field of natural language processing, many works
have sought to explore their utility in the biomedical domain
where various types of records can be found in text form.
Early works such as BEHRT (Li et al.[2020) and MedBERT
(Rasmy et al.|2021) demonstrated the potential of this ap-
proach. Recent works continue to expand the variety of fea-
tures and covariates that are made available to the model de-
pending on the dataset (ExXBEHRT (Rupp, Peter, and Patti-
paka2023)), IRENE (Zhou et al.[2023)), M-BioBERTa (Antal
et al.|2024)), which is expected to benefit the contextual em-
bedding process. Works such as TransformEHR (Yang et al.
2023c), Gatortron (Yang et al.|2022)), and CLMBR (Wornow
et al.|2023)) also propose that the use of transformer decoders
(only forward-directional attention) can improve predictive
accuracy on downstream tasks that generally try to forecast
medical incidences in the future.

Language models for biomedical knowledge

Transformer architectures have also been explored for the
purpose of creating language models (Brown et al. [2020)
that reason with knowledge rooted in biomedical scientific
research. The BERT framework has also been used in this
context: early works demonstrated that BERT can extract
reliable representations of scientific concepts from research
articles (SciBERT (Beltagy, Lo, and Cohan|[2019)), and that
fitting them specifically on domain specific text directly ben-
efits their capabilities on domain specific tasks (Alsentzer
et al|[2019). Several variations have been proposed with
varying sources of the research text such as ClinicalBERT
(Huang, Altosaar, and Ranganath| 2019), BioBERT (Lee
et al.|[2020), PubMedBERT (aka. BiomedNLP) (Gu et al.
2021), and BioMegatron (Shin et al.|2020).

Based on the recent success of conversational language
models (Touvron et al. 2023 |Achiam et al.|[2023), re-
cent works have pursued models that are decoder-based
(forward-directional attention, unlike BERT), which are bet-
ter suited for generating text. Notable works using this ap-
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Figure 1: Proposed flowchart of DK-BEHRT.

proach include BioGPT (Luo et al.[[2022)). The model still
learns embeddings for each token, allowing one to exam-
ine its internal representations during the generation process.
The recent work by (Kane et al.[[2023) finds that BioGPT
produces the current state-of-art in embeddings of diagno-
sis codes (ICD 10) in terms predicting their semantic re-
lations. Further works in this area demonstrate a wide ar-
ray of capabilities such as identifying clinical concepts in
freehand medical text (Gu et al.| 2021} |Vu, Nguyen, and
Nguyen|2020), allowing interactive chatting on clinical top-
ics (Varshney et al.[[2023), or writing discharge notes (Eller-
shaw et al.|2024).

Predicting clinical outcomes with language models

While language models have excelled in both learning pa-
tient narratives in health records and biomedical knowledge
form research articles, few works explore whether knowl-
edge learned from either sources of information have any
synergy.

A series of recent works explore whether language models
trained on general text or biomedical scientific text are per-
formant in predicting clinical outcomes out of the box given
patient records. Examples of such works include (Guptal
et al.2022), MIMIC-IV-Ext (Hager, Jungmann, and Rueck-
ert), (Yang et al.|2023a), MEME (Lee et al.|2024), CliBench
(Ma et al.|2024b)), and (Hager et al.[2024; |L1 et al.|2024; |Lee
et al.|[2025; |[Lee, Lee, and Chiang|[2024). Notably, (Hager
et al|2024) finds that conversational language models are
currently not reliable enough for real-world use in clinical
settings. The works do not consider whether the language
model should learn from the patient records directly to rein-
force their scientific knowledge, although if such direction
would truly be beneficial is not clearly assessed.

To our knowledge, Gatortron (Yang et al.[2022)) has been
the most comprehensive effort to incorporate patient-level
records (clinical notes) and aggregate knowledge (PubMed
articles and Wikipedia) simultaneously in a language model.
Our work differs in that we propose obtaining the domain
knowledge from a model off the shelf, as opposed to fit-
ting an entirely new language model from scratch which is
a costly procedure. We also note that MIMIC-III was part of
Gatortron’s training data, complicating a fair comparison in

our experimental setup.

Learning diagnosis codes with prior knowledge

ICD 10 Code Structure
I S .
.
716.35 |
Figure 2: A visual of the deliberate and non-trivial design of

the International Classification of Disease (ICD) code stud-
ied in our work.

primarily in the Obstetrics,
Poisoning chapters

Several challenges exist in allowing deep learning archi-
tectures to learn diagnosis codes effectively (Huang, Tsai,
and Chen|2022). The main challenge is the large label space
of conventional diagnosis coding systems (70k+ for ICD
10 and 360k+ for SNOMED); additional ambiguities ex-
ist when applying language models such as how diagnosis
histories should serialized and tokenized. The illustration in
Figure 2] explains the structure of such ICD codes. Existing
works have proposed paired network to learn the semantic
similarities (Yuan, Tan, and Huang|2022), enforce a genera-
tion procedure according to the code hierarchy (Yang et al.
2023b), use a featurization that accounts for parent codes
(Wornow et al.||2023)), or directly finetune an LM to reiter-
ate hierarchical relations of the codes (MERA, (Ma et al.
2024a))). While the experimental setting of these works dif-
fer from ours, they each find that the semantic awareness in
dealing with ICD codes has the potential of improving per-
formance in downstream tasks. Our work also seeks to ex-
ploit the underlying semantic structure of ICD codes. A key
distinction of our work in this regard is that we examine the
semantic similarity of the codes according to an LM’s un-
derstanding of its scientific domain, as opposed to adhering
to the hierarchy determined by the convention.

Attention with inductive bias

Additional context may be passed to a transformer-based
model via additional tokens or additional positional encod-



ings (modify the existing tokens); both approaches influence
the attention of the transformer. For instance, HVAT (Shao
et al.2023)) proposed an auxiliary embedding procedure with
concept embeddings, and explored embeddings relating to
Alzheimer’s disease.

Instead, several prior works have proposed modifying the
attention mechanism directly to partially bypass its quadratic
cost (which increases with additional tokens) or the need
for the model to disentangle encodings added to the embed-
ding. For instance, the Graphormer model (Ying et al.|2021)
proposes to close the gap between transformers and graph
neural nets by adding relation matrices computed with prior
node and edge information into the attention computation.
In principle, the proposed mechanism is similar to one ex-
plored in our work, albeit our proposed usecase differs.

Past works have also applied the idea in the context of
improving the estimation of edges in graph neural networks
in conjunction with a knowledge graph (Cho1 et al.| 2017}
Ma et al|[2018; |Ye et al. 2021 |Gao et al.|[2022}; [Ma et al.
2022)). Our work is conceptually similar to the prior works’
use of knowledge graphs, however the previously proposed
pipelines are considerably more complex to configure than
the standard BERT approach.

Methods

We propose leveraging knowledge aggregated by a biomed-
ical language model to improve the prediction of health-
related outcomes from medical records. To do this, we mod-
ify a standard BERT architecture and pipeline to utilize
embeddings of ICD code descriptions as encoded by the
LM (generally trained on research articles published in the
biomedical domain) while it learns from a dataset of patient
records. Our work focuses on the understanding of human
diseases and their progression through ICD codes; to bet-
ter observe the impact of our contribution, we deliberately
exclude prescriptions and laboratory results from our study.
An overall flowchart of our proposed approach is visualized
in Figure[T]

Diagnosis code or “Knowledge” embeddings

We propose the use of a medical language model to obtain
transferable representations of disease diagnoses in the form
of diagnosis code embeddings (referred to as knowledge em-
beddings for brevity). We obtain the plain English descrip-
tion of all 71,704 possible ICD 10 codes listed by the Cen-
ters for Medicare Medicaid Services (CMS) ﬂ We then pro-
cess each diagnosis code description through a given a med-
ical language model to obtain the embedding (using their
default tokenizer). Current language models infer a hidden
state of size of 768 ~ 4096 (depending on the model) pre-
ceding the final layer for each token that is processed. Given
a description text of length [, in tokens for code ¢, we ob-
tain the hidden states h, = {hc1,...,hc; } and take the
average of the hidden states across the sequence dimension

to obtain the embedding e, = li Zé;l hec,i. Our approach
relies on these embeddings which are generated once for all

“https://www.cms.gov/medicare/coding-billing/icd- 10-codes

relevant ICD codes and do not have to be recomputed in
later stages. Furthermore, we do not cut off the codes to sim-
plify the space of all ICD codes. (all codes observed in the
datasets are used as-is regardless of their specificity, unlike
prior works).

Knowledge-based attention

For a given dataset consisting of D diagnosis codes,
we obtain the relevant pre-computed embeddings e =
{e1,...,ep}, which we refer to as knowledge embeddings.
We explore the usage of knowledge embeddings in the atten-
tion operation of the standard Transformer layer to allow the
model to relate diagnosis codes more easily without needing
to learn them from scratch.

Specifically, given a sequence of diagnosis token indices
over time d; = {d;1,...,d;,,} for the i-th patient his-
tory with length [;, we obtain the corresponding sequence of
knowledge embeddings e(d;) = {ej4, ], - - - ,e[diwli]}. Then,
we compute the similarity matrix S; = f(e(d;))T f(e(d;))
where the operation f(e(d;)) applies a learnable shared
linear projection f over all embeddings f(e(d;)) =
{fea; )y flega, )}

Given the attention operation for the ¢-th sequence, we
introduce the matrix .S; inside the softmax operation, a step
that is responsible for calculating the relative importance of
tokens over the sequence given any specific position of the
sequence:

QiK{
Vd

The operation inside the softmax consists of @; € R'*?,
K; € Rlixd, given latent dimension size d. Intuitively, the
presence of S; allows the Transformer layer to start attend-
ing to diagnosis codes which are conceptually related imme-
diately without having to learn them from the dataset. We
implement the knowledge-based attention operation for all
layers in the BERT model. While further enhancements can
be made to the attention mechanism, we note a tradeoff be-
tween additional complexity and the module’s compute cost.

Attn(Qi, K5, V;) = softmax( +S)V, (D)

DK-BEHRT Architecture

We begin by modifying a transformer architecture which is
similar to MedBERT (Rasmy et al.|2021). We clarify that
either the medical language model (for the prior knowledge)
and the outcome prediction model may leverage BERT, and
our contribution is mainly in the latter application. We con-
figure the model with 4 transformer layers resulting in a 18
million parameter model (within the scope of the compute
available for our work, we did not observe increased per-
formance with additional layers). Specific to our approach,
we replace all attention operations in the transformer layers
with the knowledge-based attention unit.

As each patient’s diagnosis history was passed to the
model, both their sex and age at the point of diagnosis are
also made available to the model as covariates. We convert
the sex and age information simultaneously into a simple
positional encoding, where a constant floating point value
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Table 1: The number of samples which were parsed from
the MIMIC-IV dataset (total over training, val, and test
sets). The “hospital” set reflects the total number of sam-
ples for whom pretraining could be performed. The “icu-"
and "hosp-" counts reflect the total number of samples con-
sidered in benchmarks. The number of cases for each bench-
mark is also reported.

group unit total  cases
hospital patients 180,644 -
icu patients 65,366 -
icu-mortality Visits 267,987 83,207

icu-lenofstay visits 267,987 173,520
hosp-F320~F329 visits 74,877 6,807
hosp-1250~F259 visits 30,661 3,804
hosp-G20~G259 visits 16,522 1,502

between 0.00 ~ 0.10 for males is added to embeddings
(0.00 ~ —0.10 for female) pertaining to the age of the
patient proportionally in the range of 0 ~ 100 at the time
of each diagnosis. The absolute date-time of diagnosis was
not considered as an additional feature since the informa-
tion was not available in MIMIC (and potentially in other
datasets that undergo anonymization). Finally, we imple-
ment a tokenizer which take series of ICD10 codes and con-
verts them into one-hot indices.

For the purpose of masked language model training, we
define a linear prediction head which is responsible for pre-
dicting the probability over all possible tokens for masked
positions. During the finetuning stage, we define similar lin-
ear prediction head for binary classification.

Training and Finetuning

We adopt a two-stage training procedure similar to the
methodology followed by (Rasmy et al.|2021}; Rupp, Peter,
and Pattipaka|2023). The initial stage involves pretraining
MedBERT and DK-BEHRT on all medical histories of pa-
tients to enable the model to learn general representations.
During this stage, the model is trained using masked to-
ken modeling (with masking probability of 50%), which
helps the model understand the semantics of diagnosis codes
across a diverse range of clinical narratives. The pretraining
step has been found to be crucial in allowing such models
to perform more effectively on specialized tasks. Follow-
ing the pretraining phase, we perform a fine-tuning proce-
dure where the pretrained model is further trained on a task-
specific dataset. We allow all weights of the model to be
updated given a small learning rate (5 x 10°). We share
further characteristics of the training process in Appendix ,
as well as sharing code that can be used to replicated our
results Pl

Datasets and Benchmarks

We explore diagnosis histories of patients in the MIMIC
IV dataset (Johnson et al.| |2023), a publicly available

*https://anonymous.4open.science/r/icdbert-F270

anonymized medical records dataset. Following (Harutyun-
yan et al.|2019)), we used a standard procedure to define five
downstream tasks for which all methods were evaluated. We
first defined mortality and length of stay prediction tasks
based on ICU visits. Mortality of a patient up to 1 year after
their ICU visit was considered to be a case. The length of
stay prediction was treated as a binary classification task for
stays exceeding 72 hours.

In addition to the two ICU-based tasks, we determined
the times at which patients were first diagnosed with three
diseases of interest: major depressive disorder, chronic is-
chaemic heart disease, and extrapyramidal and movement
disorders. The diseases corresponded broadly to ICD code
blocks of F320~F329, 1250~1259, and G20~G259. We
considered a series of visits leading to the target diagnosis
within a range of 180 days as a case. Controls were con-
sidered as any sub-series of visits (starting from their first
known) where the diagnosis was not observed in the given
range. We measure the precision recall score (PR), receiver
operating characteristic score (ROC), and F1 score for all
tasks.

Starting with the pre-training stage, a train-test-validation
split of 70%/15%/15% was generated across patients. Pa-
tients who were grouped in the training and validation sets
were used to fit the model in the pre-training and finetun-
ing stages, while patients in the test set were reserved exclu-
sively for evaluation after the finetuning stage. We report in
Table 1 the statistics of the dataset and the number of cases
and controls identified for each task.

Model Optimizations

We implement the knowledge-based attention layer, the pre-
training stage, and the finetuning stage using the Hugging-
face framework ﬂ We rely on the framework’s default op-
timizer (AdamW, (Loshchilov|2017)) and the default linear
learning rate scheduler for all fitting stages. We allow the
pre-training to continue for 100,000 steps with a learning
rate of 5 x 10~% after which the model approximately con-
verged. During finetuning, we set the starting learning rate
as 5 x 10~° and checkpoint the model every 50 minibatches.
The checkpoint with the lowest validation loss is recovered
to assess the accuracy on the final test set. Finetuning was
allowed to run for 10 epochs within which we observed all
method were able to begin overfitting the dataset.

The entire pipeline for one configuration of the model
could be run using a single 48GB A100 GPU within the span
of 1 day. We plot the time elapsed over number of steps taken
for both the base BERT architecture and the proposed BERT
architecture in Figure [3] (for the mortality benchmark). As
the two architectures are similar, the additional time elapsed
can be fully attributed to the modified attention layer.

Results
Evaluated methods

We evaluated Logistic Regression and XGBoost as baselines
to establish the relative difficulty of the benchmark tasks.

*https://huggingface.co/docs/transformers/en/index
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Table 2: The precision recall (PR), receiver operating characteristic (ROC), and F1 metrics in predicting clinical outcomes and
future diagnoses in the MIMIC dataset. The highest scores are in bold, with second highest underlined (no highlight for ties up
to 0.1 percent). 95%-CI shown in parentheses. DK-BEHRTS are prefixed as DKB, followed by the embedding source.

Mortality Length of Stay
Model PR ROC F1 PR ROC F1
LR 42.1(0.7) 65.7(0.6) 67.6(0.4) 356(0.7) 56.7(0.7) 63.3(0.5)
XGB 43.5(0.5) 70.8(0.3) 70.3(0.3) 41.1(0.8) 64.1(0.6) 70.1(0.5)
GatorTron 65.3(0.6) 79.2(0.4) 783(04) 457(0.9) 65.7(0.6) 71.6(0.3)
MedBERT 65.8(0.8) 78.8(0.6) 77.1(0.5) 46.3(1.0) 66.0(0.8) 72.0(0.4)
DKB TE3-L 63.7(0.6) 78.4(0.5) 757(0.6) 46.6(1.1) 66.0(0.7) 71.7(0.4)
DKB BioMega  66.1 (0.6) 79.3(0.5) 77.5(0.4) 46.8(1.1) 66.7(0.7) 71.6(0.4)
DKB PMBERT 66.1 (0.7) 79.4(0.5) 789 (0.5 46.1(09) 66.8(0.8) 72.2(0.4)
DKB BioGPT  68.0 (0.5) 79.8(0.5) 78.6(0.4) 46.8(1.0) 67.3(0.6) 71.9(0.4)
F320~F329 1250~ 1259 G20~ G259
Model PR ROC F1 PR ROC F1 PR ROC F1
LR 14.8 (2.2) 58.7 (1.7) 89.2 (0.8) 50.9 (4.1) 76.0 (2.2) 88.1 (0.7) 10.1 (1.4) 49.7 (3.6) 88.0 (1.2)
XGB 19.6 (3.2) 64.9 (1.7) 90.8 (0.6) 59.1 (2.5) 84.6 (1.2) 91.6 (0.8) 14.9 (3.1) 64.1 (4.6) 91.2 (0.9)

GatorTron
MedBERT
DKB TE3-L

20.5 (2.2) 66.9 (1.7) 90.7 (0.6) 60.5 (2.3) 84.9 (1.1) 91.9 (0.6) 18.4 (4.8) 63.2 (4.7) 91.4 (1.0)
21.1(2.8) 68.0 (1.9) 90.8 (0.6) 60.5 (2.5) 84.5 (1.1) 91.8 (0.7) 13.7 (1.2) 65.7 (1.4) 90.8 (1.1)
21.2 (2.6) 67.5 (1.8) 90.8 (0.6) 60.5 (2.6) 85.1 (1.0) 91.6 (0.8) 14.0 (2.8) 62.4 (4.6) 91.4 (1.0)

DKB BioMega 22.0 (2.7) 68.1 (2.0) 90.8 (0.6) 61.4 (2.1) 85.4 (0.9) 91.8 (0.8) 17.9 (4.6) 67.1 (4.3) 91.4 (1.0)
DKB PMBERT 21.8 (3.2) 68.0 (1.7) 90.8 (0.6) 61.2 (2.2) 85.3 (0.9) 91.9 (0.8) 17.3 (5.5) 62.6 (5.2) 91.4 (1.0)
DKB BioGPT 22.1(2.5) 68.5 (1.9) 90.8 (0.7) 63.1 (1.9) 86.3 (0.9) 92.0 (0.7) 17.1 (4.4) 64.1 (4.8) 91.4 (1.0)
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Figure 3: Time elapsed (minutes) in training a base BERT ar-
chitecture (base) and the proposed DK-BEHRT architecture
(BERT-attn). Training was done with a single 48GB A100
GPU

For both methods, we featurized all diagnoses received over
past visits into a vector where each entry tallies the number
of times a given diagnosis appeared, effectively collapsing
the temporal aspect. To the feature vector, we appended the
age of the patient at the latest visit in the visit history and the
sex of the patient as covariates.

We explored several variations of DK-BEHRT. First, we
determined the effectiveness of a relatively standard BERT
model (akin to MedBERT (Rasmy et al.[2021)). We then ex-
plored the proposed architecture of DK-BEHRT with em-
beddings from four different language models: (1) text-
embedding-3-large from OpenAl (TE3-L) which was not
specifically trained on medical text, (2) BioMegatron ((Shin
et al|[2020), MB BioMega) which was trained on a 6.1
billion-word dataset of PubMed abstracts & PMC articles,
(3) PubMedBERT ((Gu et al|2021) , MB PMBERT)
which was trained on 14 million PubMed abstracts, and (4)
BioGPT ((Luo et al.[2022), MB BioGPT) which was trained
on 15 million PubMed abstracts.

Evaluation of Gatortron embeddings GatorTron was
trained using a variety of sources of data: >90 billion words
from University of Florida Health (>82 billion), Pubmed (6
billion), Wikipedia (2.5 billion), and MIMIC-III (0.5 billion)
(Yang et al.|2022)). As the version III and IV of MIMIC over-
lap in content and we could not rule out if GatorTron would
have been trained on parts of our test split, we could not in-
clude it fairly and had to make a separate note about this
model in the main results (Table 2).

Despite this drawback, we still evaluate GatorTron using
our approach using our experimental setup and report its ac-
curacy in benchmarks in Table 2. Although there are a few
choices of the GatorTron model, we evaluate GatorTron-
base, which is the smallest model (345 million parameters)
due to compute limitations.



Table 3: Given the method with the highest number of top metrics (BioGPT and knowledge-based attention), we explore ablated
versions DK-BEHRT. We replace the performant embeddings with entirely randomly generated embeddings (RandEmb), use
the embeddings but finetune the downstream tasks with no pretraining (NoPretrain), and remove the shared projection layer for

the embeddings (NOEmbProj). 95%-CI shown in parentheses.

Mortality Len of Stay
Model PR ROC PR ROC F1
RandEmb 62.5(1.0) 77.5(1.1) 71.2(0.5) 457(1.0) 653(0.6) 63.3(0.5)
NoPretrain 52.1(0.8) 72.7(0.5) 71.9(0.5) 385(0.8) 61.3(0.5) 70.6(0.3)
NoEmbProj 66.3 (0.6) 78.7(0.5) 78.9(04) 47.3(0.8) 67.1(0.6) 72.6(0.5)
DKB BioGPT 68.0(0.5) 79.8(0.5) 78.6(0.4) 46.8(1.0) 67.3(0.6) 71.9(0.4)
F320~F329 1250~ 1259 G20~ G259
Model PR ROC F1 PR ROC F1 PR ROC F1
RandEmb 20.6 (1.6) 67.5(2.0) 90.8 (1.1) 60.9 (2.7) 84.7 (1.1) 89.6 (2.0) 15.3 (1.2) 60.3 (1.1) 89.7 (0.8)

NoPretrain
NoEmbProj

19.3 (2.8) 67.5(2.0) 90.8 (0.6) 60.4 (2.3) 83.9 (1.4) 91.9 (0.8) 15.1 (6.2) 60.8 (5.3) 91.43 (1.0)
21.4 (2.3) 67.3(2.0) 90.8 (0.6) 60.6 (2.7) 84.4 (1.3) 91.4 (0.6) 18.3 (5.1) 66.3 (4.1) 91.4 (1.0)

DKB BioGPT 22.1 (2.5) 68.5 (1.9) 90.8 (0.7) 63.1 (1.9) 86.3 (0.9) 92.0 (0.7) 17.1 (4.4) 64.1 (4.8) 91.4 (1.0)

Main Results

We report in Table 2 the accuracies of the evaluated methods
in predicting clinical outcomes and future diagnoses. We ob-
serve overall that DK-BEHRT improves prediction accuracy
given downstream tasks. This could be seen first in that mod-
els with the modified attention obtained an higher accuracies
on the tasks overall in comparison standard MedBERT (MB)
implementation. Secondly, we note that all top scores are
obtained with the help of embeddings from LMs trained on
biomedical research text (BioMegatron, PubMedBERT, and
BioGPT); no high scores are obtained with the help of text-
embedding-3-large which is described as a general purpose
embedding model (OpenAI’s best embedding model at the
time of writing). As BioGPT obtained the highest number of
top scores, we also note that it can be considered a generative
pre-trained relative of PubMedBERT, and was developed in
the context of the earlier model (Luo et al.|[2022).

We note that top score for specific disease could be
obtained by using embeddings from models other than
BioGPT. For instance, embeddings from BioMegatron ap-
pears to help notably more as opposed to PubMedBERT
and BioGPT for motor neuron disease related diagnoses
(G20~G259). We hypothesize that each LM might hold bi-
ological information that varies slightly, to the extent that
some models may enable a greater understanding of subsets
of diseases where others are lacking. Finally, we note that
using BERT, regardless of embeddings, remains a notably
better option than the baseline approaches of using logis-
tic regression and XGBoost for the given benchmarks. And
while Gatortron is evaluated with some levels of skepticism
due to potential data leaks, we observe that our knowledge
embeddings still outperform Gatortron across most tasks and
evaluation metrics.

Ablation Experiments

We performed ablation experiments to ascertain the degree
of contribution resulting from the knowledge-based atten-

tion module. Given an experimental run which obtained the
most number of high scores overall (BioGPT embeddings),
we reran the same configuration with randomly generated
embeddings for all diagnosis codes (RandEmb), skipped the
pretraining stage (NoPretrain), and removed the embedding
projection layer (NoEmbProj). The resulting accuracies ob-
tained for the same benchmark is shown Table 3.

We observed that random embeddings (RandEmb) could
not lead to higher downstream accuracies (simply relying
on the small architectural change), and in some cases lead
to lower accuracies than training a standard MedBERT (eg.
Mortality task). This implied that the modified architecture
indeed has the potential of influencing the learning process
and that the quality of embeddings are of importance. When
skipping pretraining (NoPretrain), which implies only fine-
tuning from scratch, we observed that the downstream ac-
curacies were strictly less ideal than keeping the pretraining
step. The experiment highlighted the importance of pretrain-
ing, and that the LM embeddings alone were not enough to
overcome learning the downstream tasks from scratch.

Finally, we highlight the results of skipping the shared lin-
ear projection layer (NoEmbProj), where we observed that
scores were higher for a subset of benchmarks in compar-
ison to including the layer. We first note that the projec-
tion mechanism is necessarily an important factor in the im-
proved scores (and its modifications could lead to further
improvements), as it solely affects the presence of the pre-
determined embeddings in attention operations. For the pur-
pose of the study, we justified the use of the shared layer
to allow the model to flexibly scale the embedding dimen-
sions as its ideal scaling may differ depending on the source
LM. Despite the flexibility, we note the possibility of the
projection to dilute the embeddings and become susceptible
to overfitting.



(a) (b)

Figure 4: Comparison between tSNE of the diagnosis code
embeddings (a) learned from scratch by a BERT model and
(b) embeddings obtained from BioGPT of the same codes.
Codes are highlighted according to their chapter (first digit).

Improved Latent Space

To qualitatively inspect of the space of embeddings learned
from scratch in comparison to the knowledge embeddings
introduced from BioGPT, we visualize the tSNE of both em-
beddings in Figure[d] We noticed that there does appear to be
a noticeable difference in the 2D disease latent space where
individual colors represent different disease categories (e.g
Musculoskeletal system, Nervous system disease, etc.) or
ICD chapters. From an explainability perspective, this pro-
vides large evidence that the knowledge embeddings due
have an influence over what the language model is learning
in its latent space.

Discussion

This study proposes a framework for leveraging knowledge
embeddings from pre-trained biomedical language models
(LMs) within the attention mechanism of a BERT model to
enhance clinical outcome predictions from patient records.
Our findings indicate that incorporating embeddings from
domain-specific LMs (such as BioMegatron, PubMedBERT,
and BioGPT) consistently improves the model’s perfor-
mance across multiple prediction tasks, including mortal-
ity, length of stay, and the onset of specific diseases. The
results suggest that embeddings trained on biomedical data
are more effective than general-purpose embeddings in cap-
turing the complexities and nuances of medical data. The
clinical implications of this work are that we can leverage
well known biomedical facts and descriptions to help these
Al systems learn complex clinical concepts more effectively.

Our ablation experiments reinforce the value of these em-
beddings, demonstrating that both pre-training on domain-
specific data and the use of a knowledge-based attention
mechanism are essential for achieving improved accuracy.
Specifically, replacing domain-specific embeddings with
random embeddings or removing pre-training significantly
reduced model performance, underscoring the critical role
of prior knowledge in the latent representation of disease
codes. Additionally, removing the projection layer for em-
beddings highlighted the influence of this layer on embed-
ding transferability, with evidence suggesting that it pro-
vides flexible scaling but may occasionally lead to overfit-

ting.

Future Directions and limitations

While our approach demonstrates strong performance im-
provements, it opens up several avenues for further research.
First, an expansion of this framework to incorporate addi-
tional clinical information, such as prescription and lab data
from sources like the MIMIC dataset, could offer a more
holistic view of a patient’s medical profile and improve pre-
dictive capabilities. Furthermore, given the recent advances
in generative transformer models, exploring a generative ap-
proach to pre-training may yield even better representations,
albeit with greater computational requirements.

Our ablation studies revealed that the projection layer
used in the knowledge-based attention module plays a sig-
nificant role in modulating the effect of embeddings. Fur-
ther research should investigate optimal projection mecha-
nisms that minimize information loss while retaining rele-
vant knowledge across multiple biomedical domains. Addi-
tionally, while our study examined embeddings from vari-
ous biomedical LMs, an interesting direction would be to
develop a hybrid model that selectively incorporates embed-
dings from multiple sources, choosing those that best cap-
ture the nuances of specific disease categories.

A limitation of this work lies in the variability of embed-
ding performance across tasks. While BioGPT embeddings
provided the highest predictive performance overall, embed-
dings from other LMs, such as BioMegatron, performed bet-
ter for specific diseases, like motor neuron disorders. This
suggests that each LM may contain unique information rel-
evant to particular conditions. Future studies could explore
methods for dynamically selecting embeddings based on the
disease context.

Data and Code Availability Code to replicate our work
can be found in an anonymized repository P| Our work ex-
plores the MIMIC—IVE] dataset which can be accessed pub-
licly after undergoing an approval process.

Institutional Review Board (IRB) Our work did not re-
quire IRB approval.
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