Inductive Biases for Predicting Deformation and Stress in
Deformable Object Grasps with Graph Neural Networks

Frederik Heller!, Alap Kshirsagar!, Tim Schneider!?, Guillaume Duret!-? and Jan Peters'®

Abstract— Humans handle and manipulate soft, deformable
objects effortlessly, but robot skill in this domain lags be-
hind. One of the major challenges in robotic manipulation
of deformable objects arises from the difficulty of predicting
the deformation and stress fields. The gold standard for
modeling the physics of deformable objects, and predicting
deformation and stress fields, is the computation-heavy Finite
Element Method (FEM). Recent advances such as Graph
Neural Networks (GNNs) enable learning such fields with high
accuracy. We base our work on the DefGraspNets model, of
which we identify key limitations: First, the network predicts
stress values at mesh vertices, which is not in line with the
physical model of FEM. Second, high mesh resolution and low
number of message passing rounds prohibit propagation of
information through the entire graph, which hurts performance
in edge cases. To overcome these limitations, we propose two
modifications as inductive biases to the GNN: Tetrahedron
features for predicting values directly at tetrahedrons, and a
global feature as shortcut for information relevant to the whole
graph. Our results, evaluated with FEM-simulated datasets of
grasps on different objects, show that our method outperforms
the baseline on nearly all objects, enabling more accurate and
physically more realistic predictions.

We release our codebase: fhellerl.github.io/tetgraspnets

I. INTRODUCTION

Deformable objects are omnipresent to us humans, and we
instinctively know how to grasp and handle them. Robotic
systems today often still lack this intuitive judgement. While
the dynamics of deformable objects can be simulated ac-
curately using the Finite Element Method (FEM), it comes
with a high computational burden and is too slow for robotic
systems with real-time capability. Recent work, such as
DefGraspNets by Huang et al. [1], attempts to close this gap
by training a Graph Neural Network (GNN) architecture to
predict deformation and stress fields in grasps on deformable
objects, with data generated by an FEM simulator [2].
They showed that accurate predictions of deformation and
stress fields are possible at a speedup of several orders of
magnitude compared to FEM. For this, Huang et al. used
the GNN architecture from the work MeshGraphNets [3],
and express initial gripper and object state as input feature
graph. Vertices of gripper and object mesh are the nodes
in this graph, and the mesh edges are graph edges. Each

1Technische Universitit Darmstadt, Department of Computer Science,
Intelligent Autonomous Systems Group. Correspondence:
frederik.heller@stud.tu-darmstadt.de

2Fcole Centrale de Lyon, LIRIS Group

3German Research Center for Al (DFKI)

4Hessian Center for Artificial Intelligence (Hessian.Al)

We thank Hessisches Ministerium fiir Wissenschaft & Kunst for the DFKI
grant and “The Adaptive Mind” grant.

4

GNN with Tetrahedron J
and Global Features ‘

=

GNN Prediction

FEM Ground Truth

Input State
Grasp Force 15N

T
0ot 0

00T
[ed>]] sso11G SISIAl UOA

Fig. 1: Our implemented models are trained on FEM simu-
lations of grasps on deformable objects, such as this lemon
slice. Extended by tetrahedron features and a global feature
as inductive biases, the GNN model accurately predicts node
deformation and tetrahedron stress fields.

node feature tells if the node belongs to gripper or object,
and in which direction it moves, and mesh edge features
give the 3D and scalar edge displacement and material
parameters. Additionally, world edges are drawn between
close object and gripper nodes to enable information flow
between object and gripper, and their features give edge
displacement and the force that the gripper closes with. Then,
an Encode-Process-Decode GNN block performs the forward
pass: After encoding all features to a common latent space
using Multi-Layer Perceptrons (MLPs), multiple rounds of
message passing propagate information through the graph. In
each message passing round, nodes receive messages from
connected edges, and an MLP processes these to obtain an
updated node feature. Similarly, edge features are updated
by an MLP receiving features of connected nodes as input.
Finally, a decoder MLP decodes predictions of deformation
and stress values resulting from the grasp at each node.

During our initial experimentation with the DefGraspNets
code, training and evaluating on different grasped objects,
we realized the following shortcomings or limitations:

1) It appears the released codebase [1] is an incomplete
version, without e.g. the preprocessing of FEM data;

2) FEM computes stresses at tetrahedron elements, but
the model predicts stress as values at nodes;

3) Due to limited message passing rounds, not all infor-
mation is propagated through the entire graph.

To address the first limitation, we reimplemented the Def-
GraspNets baseline, moving from TensorFlow to PyTorch.
The second limitation implies that, in preprocessing, the
FEM stress field given at tetrahedrons must be sampled at
nodes by averaging the stresses of adjacent tetrahedrons. This
would blur peaks in the stress field and hurt the accuracy
of obtained predictions, especially since peak stress is an
important measure. For a physically more accurate stress
prediction, we propose to inform the GNN of mesh tetrahe-
drons, allowing prediction of values directly in tetrahedrons.
The third limitation is especially evident in grasps on corners
of the object, from where no information can reach the
opposite corner. To address it, we propose to add a global
feature [4] to the GNN, which accumulates and distributes
globally relevant information through the entire graph.

II. METHODOLOGY

The efforts in implementing our methods started with the
reimplementation of DefGraspNets. For the details of its
node and edge feature constrution, we refer to [1], for node
and edge updates in message passing to [3].

A. Tetrahedral Features and Stress Prediction

Our first proposed architectural extension informs the
GNN about tetrahedrons in the object mesh. Similar to edges
in [1], [3], a tetrahedron set is added to the input feature
graph representation, consisting of four-tuples T; that give
corresponding node indices for each mesh tetrahedron <.
Additionally, for each tetrahedron, an input feature vector
t; is given. First, the tetrahedral features are encoded into
the common 128D latent space by an MLP fZ ,

t = flo(ts).

enc

For all tetrahedrons, the input t; is scalar zero, hoping that all
relevant information can be accumulated in message passing.
This means the encoding step could be skipped and the latent
feature initialized with zeros instead, but we keep it in our
implementation to permit for future extensions.

In each message passing round, the update for the latent
feature of each tetrahedron is computed as following: An
update MLP fi; is given the current latent tetrahedron
feature EZ—, and the latent feature v; of each node j that is
part of the tetrahedron. Then, the updated feature is given
by the MLP output with a residual connection:

t = fioa (8 {Vs}jer,) + 8

The information flow to the tetrahedron feature is shown in
Fig. 2. This update rule lets information about the behavior
of nodes flow into each tetrahedron feature. A decoder MLP
fi.. finally decodes a prediction of the scalar von Mises stress
0; within each tetrahedron,

[CAT?] = f(}ec(fg)

The design choice that node information flows into tetrahe-
drons, but not back, is motivated by how FEM derives the
stress field after computing node deformations.

Fig. 2: The proposed inductive biases function during the
message passing phase, illustrated for a single tetrahedron.
In green: A tetrahedron feature receives messages from each
of the tetrahedrons nodes. In blue: A global feature receives
and sends messages from and to all nodes not only in this
tetrahedron, but the entire graph.

B. Global Feature and Rigid Transformation

Addressing the problem of limited propagation through
the graph, we modify the GNN architecture with a global
feature [4]. It can be imagined as a node that is connected to
all other graph nodes, and thus can accumulate and broadcast
globally relevant information to all nodes. An input global
feature vector g is transformed to its latent representation by
an encoder MLP f3.:

g= fegnc(g)

Again, we decide on a zero input vector g = 0. In each
message passing round, the update for the latent global
feature is computed by an update MLP for the global node

fpd, given the mean of all node features as input, together
with a residual connection:

#nodes

1
- g . N
g:flpd< .Zvi>+g
#nodes =
To allow for information to flow back from the global to
node features, the node update rule from [3] is modified to

take the global feature as additional input,
Vi = fupa ‘71‘7253@"@ + Vi
J

The flow of information to and from the global feature is
illustrated in Fig. 2. Finally, enabling prediction of values
relevant to the entire graph, after message passing the latent
global feature is decoded into an output feature

[trigid, Frigia] = & = .. (&)

As demonstration, we use this decoded global output feature
as a prediction for the best-fit rigid body transformation of
the object during the grasp, given by a 3D translation vector
frigid and a 6D rotation representation f'gq. We choose this
continuous representation, as proposed by Zhou et al. [5],
for improved training performance. The ground truth best-
fit rigid body transformation is obtained with singular value
decomposition of the covariance matrix between original and
deformed object points [6], [7].

TABLE I: Achieved MAPE score (lower is better) on predicted deformation u, stress o, and 9D rigid transformation p
fields for each model variant, and each object trained and validated on.

=

Object 8polygon06 cylinder07 lemon01 potato2 sphere(03 strawberryO1

MAPE in % u o P u o P u P u o P u o P u o P
Baseline [1] 3.24 1.52 - 3.00 323 - 4.66 1.39 - 3.05 246 - 2.37 1.37 - 334 112 -
A: Tet. Features 3.86 1.91 - 293 237 - 451 1.92 - 3.34 1.75 - 2.71 1.18 - 405 457 -

B: Tet. + Global Feat. 2.04 093 354 184 104 374 348

077 443 312 053 470 324 121 259 316 340 10.8

C. Dataset and Training Procedure

Using DefGraspSim [2], we generated a ground truth
dataset of deformations and stresses resulting in grasps on
deformable objects. For each of six used different objects
(shown in the header of Table I), this includes 100 different
grasps, each including 50 states with increasing grasp force.
80 grasps were used as training data, and 20 for testing,
sampled randomly once and then kept fixed for all variants.

To evaluate our methods, we trained three different model
variants on each object: Variant A is our reimplemented
DefGraspNets baseline, B adds tetrahedral features. Model
variant C combines tetrahedral features with the global
feature. The models were trained on normalized targets, and
as loss function the sum of Mean Squared Error on each
predicted field was used. On the checkpoint with lowest
test loss, the Mean Absolute Percentage Error (MAPE) on
each predicted field was recorded. The choice of MAPE is
motivated by the different scale of observed deformation and
stress per object, and we expect it to yield better comparable
metrics than e.g. Mean Absolute Error.

III. RESULTS

For each combination of training object and model variant,
Table I presents the achieved MAPE metrics at the check-
point with lowest test loss. Table II provides the error metrics
for each model variant averaged over all objects.

The baseline and model variant A have similar error
metrics on all objects, suggesting that the addition of tetrahe-
dral features does not clearly outperform the baseline. This
could be attributed to both variants suffering from the same
limitation—information not reaching nodes far away—that
may dominate the error term. Only for strawberryOl, we
see significantly smaller MAPE on the stress field with the
baseline model, which we believe to be an outlier.

Model variant B, however, shows significantly smaller
errors on the majority of objects, both for deformation and
stress prediction. We deduce that, indeed, information not
reaching parts of the graph posed a serious limitation that
the proposed global feature overcomes. Only on sphere03,
variant B does not improve on the baseline in deformation
or stress. We hypothesize that this is due to the highly regular
shape, which results in low variance in sampled grasps. This
way, nodes far from the gripper show little movement, and
accurate prediction is possible without global feature. Variant
B is also the only architecture able to predict the best-fit rigid
transformation, though with relatively high MAPE.

TABLE II: Average MAPE (lower is better) on deformation
u, stress o, and 9D rigid transformation p across all objects,
for each model variant.

MAPE in % u o P
Baseline [1] 328 1.85 -
A: Tet. Features 3.57 2.28 -

B: Tet. + Global Feat. 2.81 131 19.77

IV. CONCLUSION

We reimplemented the DefGraspNets [1] model to a
working state to support reproducibility and future research
on learning dynamics of grasps on deformable objects. We
examined the model architecture to reveal key limitations,
and addressed these with two proposed inductive biases
as architectural extensions: tetrahedron features for stress
prediction in line with FEM, and a global feature acting
as shortcut for information through the entire graph. Our
model variant combining tetrahedral stress prediction and a
global feature clearly improves on the baseline, as shown by
our evaluation using grasps on different object geometries.
While the model variant using tetrahedron features alone
did not improve metrics over the baseline, we believe they
are an important novel extension to the GNN architecture.
The tetrahedron features let predictions be decoded directly
at tetrahedron elements, which allows predicting stress ac-
curately in line with the physical model of the FEM. To
further prove the advantages, we suggest that future research
should experiment with encoding material properties in input
tetrahedron features, again in line with FEM. With message
passing adjusted to propagate information from tetrahedron
features also back to nodes, such a model could generalize
to objects with non-isotropic material. For this, a simulated
larger dataset of grasps on non-isotropic objects with differ-
ent geometries would have to be generated.

ACKNOWLEDGMENT

We thank Dr. Isabella Huang for providing her DefGrasp-
Nets [1] dataset for the evaluation of our methods.

This work was supported by the French Research Agency,
I’Agence Nationale de Recherche (ANR), and the Ger-
man Federal Ministry of Education and Research (BMBF)
through the project Aristotle (ANR-21-FAI1-0009-01).

(1]

(2]

3]

(4]

(5]

(6]

(71

REFERENCES

I. Huang, Y. Narang, R. Bajcsy, F. Ramos, T. Hermans, and D. Fox,
“DefGraspNets: Grasp planning on 3D fields with graph neural nets,”
in 2023 IEEE International Conference on Robotics and Automation
(ICRA). 1EEE, 2023, pp. 5894-5901.

I. Huang, Y. Narang, C. Eppner, B. Sundaralingam, M. Macklin, R. Ba-
jesy, T. Hermans, and D. Fox, “DefGraspSim: Physics-based simulation
of grasp outcomes for 3D deformable objects,” IEEE Robotics and
Automation Letters, vol. 7, no. 3, pp. 6274-6281, 2022.

T. Pfaff, M. Fortunato, A. Sanchez-Gonzalez, and P. Battaglia, “Learn-
ing mesh-based simulation with graph networks,” in International
conference on learning representations, 2020.

P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zam-
baldi, M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner
et al., “Relational inductive biases, deep learning, and graph networks,”
arXiv preprint arXiv:1806.01261, 2018.

Y. Zhou, C. Barnes, J. Lu, J. Yang, and H. Li, “On the continuity
of rotation representations in neural networks,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition,
2019, pp. 5745-5753.

K. S. Arun, T. S. Huang, and S. D. Blostein, “Least-squares fitting
of two 3-D point sets,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. PAMI-9, no. 5, pp. 698-700, 1987.

O. Sorkine-Hornung and M. Rabinovich, “Least-squares rigid
motion using SVD,” Department of Computer Science,
ETH Zurich, Tech. Rep., Jan. 2017. [Online]. Available:
https://igl.ethz.ch/projects/ ARAP/svd_rotation.pdf

