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Abstract

This paper focuses on the high-dimensional sampling of log-concave distributions
with composite structures: p∗(dx) ∝ exp(−g(x) − f(x))dx. We develop a
double randomization technique, which leads to a fast underdamped Langevin
algorithm with a dimension-independent convergence guarantee. We prove that
the algorithm enjoys an overall Õ

(
(tr(H))1/3

ϵ2/3

)
iteration complexity to reach an

ϵ-tolerated sample whose distribution p admits W2(p, p
∗) ≤ ϵ. Here, H is an upper

bound of the Hessian matrices for f and does not explicitly depend on dimension
d. For the posterior sampling over linear models with normalized data, we show
a clear superiority of convergence rate which is dimension-free and outperforms
the previous best-known results by a d1/3 factor. The analysis to achieve a faster
convergence rate brings new insights into high-dimensional sampling.

1 Introduction

Sampling from a high-dimensional distribution serves as one of the key components in statistics,
machine learning, and scientific computing, and constitutes the foundation of the fields including
Bayesian statistics and generative models [Liu and Liu, 2001, Brooks et al., 2011, Song et al.,
2020]. Recently, there is an emerging trend in designing provably faster Markov Chain Monte Carlo
(MCMC) algorithms using techniques from first-order optimization [Dalalyan, 2017, Durmus et al.,
2019, Cheng and Bartlett, 2018, Vempala and Wibisono, 2019, Chewi et al., 2021]. One typical
MCMC algorithm that allows following the idea is the Langevin-type algorithms, which are of the
central interest of this paper.

Langevin-type algorithms originated in statistical physics discretize a stochastic differential equation
with stationary distribution corresponding to the target. For Gibbs distribution p(x) ∝ e−U(x), the
standard overdamped Langevin algorithm uses Euler Maruyama scheme to discretize the diffusion
process dxt = −∇U(xt)dt +

√
2dBt. The algorithm iteratively performs the updates as for

n = 0, 1, 2, . . . ,

xn+1 = xn − h∇U(xn) +
√
2hϵn, (1.1)

where ϵn ∼ N (0, I) follows the normal distribution and h > 0 is the step size.

This paper focuses on the dimension dependence of the convergence behavior of Langevin-type
algorithms. Specifically, we consider sampling problems over potentially high-dimensional and
strongly log-concave distributions with a composite structure: p ∝ e−U(x) = e−g(x)−f(x) where
g(x) = m

2 ∥x∥
2. Regarding p as a posterior distribution, e−g(x) corresponds to a Gaussian prior

and e−f(x) corresponds to the likelihood. This structure also includes general m-strongly convex
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potential functions U(x), which can be split into a strongly convex term g(x) = m
2 ∥x∥

2 and a weakly
convex one f(x) = U(x)− m

2 ∥x∥
2.

The analysis of Langevin sampling from an optimization viewpoint may date back to Jordan et al.
[1998]. The viewpoint has led to a surge of works that establish quantitative convergence guarantees
for overdamped Langevin algorithms to sample log-concave distributions [Dalalyan, 2017, Durmus
and Moulines, 2016]. It should be noted that these convergence guarantees always involve an
extra d dimension dependence due to the injection of non-negligible Gaussian noise, whereas the
convergence rates of first-order optimization are often dimension-free [Nesterov, 2003]. Various
accelerated methods have been proposed that can mitigate the dimension dependence and also achieve
faster convergence. First, as the momentum acceleration of Langevin algorithms [Ma et al., 2021],
underdamped Langevin Monte Carlo has a more stable trajectory and is known to exhibit a faster
convergence rate [Cheng et al., 2018, Ma et al., 2021, Zhang et al., 2023]. Apart from using a
different trajectory, more stable discretization schemes of the same diffusion process also lead to
better convergence [Shen and Lee, 2019, Wibisono, 2019, He et al., 2020, Li et al., 2019]. However,
the dimension dependence remains. To the best of our knowledge, the fastest randomized midpoint
method for underdamped Langevin under Wasserstein distance achieves a O

(
d1/3

ϵ2/3

)
convergence

rate and still has a d1/3 dimension dependence [Shen and Lee, 2019].

Recently another thread of works studies the convergence with weaker dimension dependence. Some
researchers explore further general assumptions on the target distribution. The idea is by observing
that some smoothness conditions can average out the dimension-dependent errors brought by the
noise using Ito’s formula. For example, Li et al. [2021] achieves a

√
d dimension dependence with a

3-rd order growth condition. Another approach investigates the curvature of the target distribution
and illustrates that dimension often does not determine the complexity of the sampling problem. Vono
et al. [2022] propose an ADMM-type splitting algorithm with a dimension-free convergence rate
when the likelihood is separable. Along the same thread, Freund et al. [2022] study the convergence
rate of Langevin algorithms with no explicit dependence on dimension and propose to characterize
the convergence rate by the upper bound of Hessian matrices of f . Specifically, by letting H be the
upper bound of the Hessian matrices of f , they show a variant of the overdamped Langevin algorithm
achieves a convergence rate ofO

(
tr(H)

ϵ

)
in KL divergence. This result improves the rate under wide

conditions because many high-dimensional sampling problems are intrinsically low-dimensional in
the sense that tr(H) = o(d), which frequently appears in machine learning. For example, when the
potential function has a ridge separable structure with mild conditions, tr(H) can be dimension-free
(see Section 3.3 for more details).

Though these works succeed in obtaining a convergence rate of the Langevin algorithm with a weak
dependence on the dimension, some important questions remain:

“ How to design provably faster algorithms with weak dependencies on dimension
even for the log-concave sampling?”

Such a question is significant for understanding high-dimensional sampling and already includes lots
of applications in real practice.

In this paper, we follow the regime of Freund et al. [2022] to design provably faster Langevin
algorithms, which answers the above question affirmatively. We propose a double-randomized
algorithm showing that variants of underdamped algorithms inherit the lower dimensional dependence
in overdamped Langevin and a special design of random stepsize can still keep the property when
using more stable discretization.

Specifically, we develop a double randomization technique and obtain the Double-Randomized
Underdamped Langevin (DRUL) algorithm. We consider an averaged contraction effect to avoid
dimension dependence. We design two distributions to achieve the mid-point acceleration with a
randomized stepsize. DRUL is proven to enjoy an overall Õ

(
(tr(H))1/3

ϵ2/3

)
iteration and gradient

complexity. For the posterior sampling over linear models, we show a clear superiority of DRUL,
which achieves a dimension-free Õ

(
1

ϵ2/3

)
convergence rate. The novel perspective of DRUL is

introducing the random step size at each update. Such a random step size combined with a random
midpoint point proposed by Shen and Lee [2019] reduces the discretization error and provides new
insights into designing provably faster sampling algorithms.
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Table 1: Comparison of the convergence rates for most related works. We consider the convergence
in Wasserstein distance to a strongly log-concave and log-Lipschitz smooth target distribution (we
summarize below the methods if additional assumptions are required). EU stands for Euler-Maruyama
discretization and RMM stands for Randomized Midpoint discretization. ‘Ridge-Separable Case’
refers to the convergence rate when f admits a ridge-separable structure (see (3.2)). Note that some
results are established in the KL divergence. We convert these convergence rates into the ones in
Wasserstein distance using Talagrand’s inequality.

Method Convergence Rate Ridge-Separable Case
Overdamped as Composite OptimizCRation

[Durmus et al., 2019]
(Proved in KL divergence)

O
(

d
ϵ2

)
O
(

d
ϵ2

)
Overdamped with EU

[Li et al., 2021]
(With an additional linear growth condition)

Õ
(√

d
ϵ

)
Õ
(√

d
ϵ

)
Underdamped with RMM

[Shen and Lee, 2019] Õ
(

d1/3

ϵ2/3

)
Õ
(

d1/3

ϵ2/3

)
Overdamped as Composite Optimization

[Freund et al., 2022]
(Proved in KL divergence)

O
(

tr(H)+∥x∗∥2

ϵ2

)
O
(

1
ϵ2

)
DRUL (Ours) Õ

(
(tr(H)+∥x∗∥2)1/3

ϵ2/3

)
Õ
(

1
ϵ2/3

)

In summary, the contributions of the paper are listed below:

(A) We propose the Double-Randomized technique and design the DRUL algorithm.
(B) We show the DRUL converges to the target distribution in Wasserstein distance in
Õ
(

(tr(H)+∥x∗∥2)1/3

ϵ2/3

)
iterations. For posterior sampling over generalized linear models, a

dimension-free Õ
(

1
ϵ2/3

)
complexity can be achieved.

2 Related works

There has been a surge of works investigating the asymptotic guarantees for the Langevin-type
algorithms [Roberts and Tweedie, 1996, Mattingly et al., 2002]. And a series of recent works establish
the non-asymptotic quantitative analysis framework of the Langevin-type algorithms. For performance
on strongly log-concave distributions, early works [Dalalyan, 2017, Durmus and Moulines, 2016]
establish the non-asymptotic convergence rate in TV distance with Lipschitz gradients assumption
for overdamped dynamics. Along the same setting, similar convergence rates are achieved in KL
divergence using the Wasserstein gradient flow [Cheng and Bartlett, 2018, Durmus et al., 2019]
or Wasserstein distance using the contractive property for overdamped Langevin. Underdamped
Langevin accelerates the vanilla Langevin algorithms [Ma et al., 2021]. With the same setting
mentioned above, a faster convergence rate can be established [Cheng et al., 2018, Dalalyan and
Riou-Durand, 2020, Shen and Lee, 2019, Zhang et al., 2023] for underdamped Langevin algorithms.
Beyond the log Lipschitz-smooth setting, other examples also show better results can be achieved,
such as Durmus and Moulines [2019], Li et al. [2019] for overdamped Langevin algorithms. Previous
works also investigate the convergence rate without strongly log-convex assumptions, such as the
log-Sobolev inequality (LSI) condition which is similar to the Polyak-Łojasiewicz condition in
optimization. With target distributions satisfying LSI and log-Lipschitz-smooth, the results can be
extended for both overdamped Langevin [Vempala and Wibisono, 2019] and underdamped Langevin
[Ma et al., 2021, Zhang et al., 2023].

Another thread of works explores the dimension dependence of Langevin-type algorithms. Despite
the great similarity between the analysis in Langevin algorithms and optimization, the convergence
of Langevin-type algorithms depends on dimension in the log-concave setting whereas convex
optimization algorithms can often achieve dimension-independent results. With general strongly log-
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concave (or LSI) and log-Lipschitz-smooth condition, previous works establish aO
(

d
ϵ2

)
convergence

rate for overdamped algorithms [Durmus et al., 2019] and a Õ
(√

d
ϵ

)
convergence rate for under-

damped algorithms [Cheng et al., 2018] to ensure finding a solution xn with W2(Law(xn), p) ≤ ϵ
or
√
KL(Law(xn), p) ≤ ϵ. With an additional linear growth condition on third-order derivative, Li

et al. [2021] achieve a Õ
(√

d
ϵ

)
convergence rate for overdamped Langevin. And for underdamped

Langevin algorithms, Shen and Lee [2019] improve the dependence of dimension and obtains a
Õ
(

d1/3

ϵ2/3

)
convergence rate. Recent work of Freund et al. [2022] characterizes the dimensional

dependence of convergence rate by the upper bound of the Hessian matrix of f . As discussed in
Section 1, Freund et al. [2022] establish a O

(
tr(H)+∥x∗∥2

ϵ

)
convergence rate in KL divergence,

which implies a O
(

tr(H)+∥x∗∥2

ϵ2

)
convergence rate in Wasserstein distance. And when f admits a

ridge-separable formula, Freund et al. [2022] obtain a dimension-free O
(

1
ϵ2

)
convergence rate with

some mild assumptions. We summarize the comparison of these most related works in Table 2.

3 Preliminary and problem setup

3.1 Notations

We use the convention O (·) and Ω (·) to denote lower and upper bounds with a universal constant.
Õ(·) ignores the polylogarithmic dependence. And use f ≲ g to denote f = O(g). Use W2(µ, ν) to
denote the 2-Wasserstein distance of distribution µ and ν. Use Law(X) to denote the distribution of
the random variable X . The Frobenius norm is denoted by ∥ · ∥F while ∥ · ∥2 stands for operator
2-norm for matrices.

3.2 Sampling problem

We consider the distributions with a composite structure:

dp(x) ∝ exp{−U(x)}dx = exp {−g(x)− f(x)}dx, (3.1)

where g(x) = m
2 ∥x∥

2 is a quadratic function. In the context of posterior sampling, the associated
task is sampling from a distribution with a Gaussian prior. The composite structure also includes
the general m-strongly convex function, which can be divided into g(x) = m

2 ∥x∥
2 and the weakly

convex function f(x) = U(x)− m
2 ∥x∥

2. We make the following assumption on f .

Assumption 3.1. f ∈ C2 is convex and has L-Lipschitz continuous gradients, i.e. 0 ⪯ ∇2f ⪯ LI .

It corresponds to making m-strongly convex and L + m-Lipschitz smooth assumptions on the
potential function U , which is a basic setting and widely studied in the Langevin sampling literature
(see e.g. Dalalyan [2017], Cheng and Bartlett [2018], Cheng et al. [2018], Shen and Lee [2019]).

In addition to the previous assumption, we follow Freund et al. [2022] to characterize the convergence
rate by a new factor H to avoid explicit dimension dependence.
Definition 3.2. Let H be an upper bound of the Hessian matrices of f , i.e. H ⪰ ∇2f(x).

Note that the Lipschitz smooth condition in Assumption 3.1 provides a loose bound for H since
we always have H ⪯ LI . This implies that tr(H) will reach dL in the worst case, whereas this
quantity can be much smaller than dL under wide conditions. One typical example is when f admits
a so-called ridge separable structure shown below.

3.3 Example: ridge separable functions

Definition 3.3. f is said to admit the ridge separable form if

f(x) =
1

n

n∑
i=1

σi(a
T
i x), (3.2)

where σi are all univariate functions, and ai are given vectors in Rd.
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Ridge separable functions contain many applications in machine learning, such as regression or
classification over generalized linear models as well as (deep) neural networks in the neural tangent
kernel regime [Gelman and Hill, 2006, Jacot et al., 2018]. We follow the argument of Freund et al.
[2022], showing realizable conditions that ensure tr(H) to be dimension-free.
Assumption 3.4. The function σi ∈ C2 has a bounded second derivative, i.e. σ′′

i ≤ L0 for all i ∈ [n].
Assumption 3.5. For all i ∈ [n], then norm of ai is bounded by R, i.e. ∥ai∥2 ≤ R2.

When Assumptions 3.4 and 3.5 hold, the Hessian has the upper bound ∇2f(x) =∑n
i=1

1
nσ

′′(aTi x)aia
T
i ⪯ L0

n

∑n
i=1 aia

T
i . Let H = L0

n

∑n
i=1 aia

T
i and

tr(H) = tr

(
n∑

i=1

L0

n
aia

T
i

)
=
L0

n

n∑
i=1

∥ai∥2 ≤ L0R
2,

thus illustrates that tr(H) has a dimension-free L0R
2 upper bound. Meanwhile the Lipschitz constant

of∇f can be bounded by

Lip(∇f) ≤ ∥H∥2 =

∥∥∥∥∥L0

n

n∑
i=1

aia
T
i

∥∥∥∥∥ ≤ L0R
2.

It indicates that worst-case upper bounds of tr(H) and Lip(∇f) are the same.

Note that Assumptions 3.4 and 3.5 are easy to achieve in practice. For example, consider using
posterior sampling to compute the Bayes estimator over a linear model, whose advantages against
maximum a posterior estimator have been discussed broadly (see e.g. Audibert [2009]). Here,
ai is associated with the data. So Assumption 3.5 can be realized by simply normalizing the data.
Moreover, σi corresponds to the loss function and is only required to have a bounded second derivative
by Assumption 3.4. Note that sampling from a ridge separable potential functions are extensively
studied in related literature (see [Mou et al., 2021, Vono et al., 2022, Lee et al., 2018] as examples).

3.4 Preliminary

Overdamped Langevin. The overdamped Langevin dynamics for target distribution (3.1) is a
diffusion process that evolves along the following SDE

dx(t) = −∇g(x(t))dt−∇f(x(t))dt+
√
2dBt (3.3)

where Bt is the standard Brownian motion. The overdamped Langevin algorithms simulate and
discretize the SDE (3.3). Different algorithms vary mainly by different discretization methods.

Underdamped Langevin Underdamped Langevin algorithms accelerate the convergence rate of
overdamped Langevin algorithms and instead discretize the following dynamics

dx(t) = v(t)dt,

dv(t) = −u∇g(x(t))dt− u∇f(x(t))dt− 2v(t)dt+ 2
√
udBt.

(3.4)

The diffusion process has the stationary distribution p(x,v) ∝ exp
{
− 1

2u∥v∥
2 − U(x)

}
.

Contractive Property One notable property that yields the convergence of Langevin dynamics is the
contractive property [Cheng and Bartlett, 2018, Cheng et al., 2018], given as follows.
Definition 3.6. A stochastic differential equation has contractive property if there exists a positive
constant m and

E∥x(t)− y(t)∥2 ≤ E∥x(0)− y(0)∥2 exp(−mt), (3.5)

for any pair of solutions x(t) and y(t) driven by the same Brownian motion.
Remark 3.7. E∥x(t)− y(t)∥2 is an upper bound of squared Wasserstein distance of Law(x(t)) and
Law(y(t)), and thus (3.5) implies a geometric convergence of the Wasserstein distance.

Contractive property can be established for both underdamped and overdamped Langevin dynamics
under suitable conditions. The convergence analysis for our proposed algorithms follows a similar
argument as the contractive property.
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Algorithm 1 Double-Randomized Underdamped Langevin (DRUL)
Require: Iteration N , target function U = m

2 ∥x∥
2 + f(x), initial point (x0,v0), max step size h,

u = 1
m+L and κ = L+m

m .
set ρ(dt) ∝

(
1
h −

t
hκ

)
dt with support [0, h].

set ρ′(dt) ∝
(
e

t−h
κ − t

h

)
dt with support [0, h].

for n = 1, 2, · · · , N do
Sample αn ∼ ρ′ and βn ∼ ρ.
Obtain the covariance matrix Σ(αn, βn).
Sample random vector (G,H,W ) from distribution N (0,Σ).
x̂n ← A11(αn)xn +A12(αn)vn + u

∫ αn

0
A12(s− αn)∇f(xn)ds+ 2

√
uH .

Update xn+1 ← A11(βn)xn +A12(βn)vn + u
∫ βn

0
A12(s− βn)∇f(x̂n)ds+ 2

√
uG.

Update vn+1 ← A21(βn)xn +A22(βn)vn + u
∫ βn

0
A22(s− βn)∇f(x̂n)ds+ 2

√
uW .

end for

4 Double-randomized underdamped Langevin algorithm

In this section, we introduce our double-randomized sampling method and present our main result.
We will illustrate our intuition in Section 5.

The proposed algorithm is built upon the following discretization scheme given a fixed point x̃n

dxn(t) = vn(t)dt,

dvn(t) = −u∇g(xn(t))dt− u∇f(x̃n)dt− 2vn(t)dt+ 2
√
udBt.

(4.1)

The purpose of splitting the strongly convex part of U(x) is to avoid the md dimension dependence
of tr(H). Although m is reasonably small in practice, one cannot obtain a fully dimensional-free
convergence rate if the term with respect to g is discretized.

Denote the solution of process (4.1) at time t given starting point (xn,vn), Brownian motion
{Bt}0≤t≤β , step size β and point x̃n by J (β, x̃n; {Bt}0≤t≤β , (xn,vn)). The double-randomized
algorithm performs the following one-step update:

xk+1 = J (β,J (α,xn; {Bt}0≤t≤α, (xn,vn)); {Bt}0≤t≤β , (xn,vn)). (4.2)

The algorithm introduces a random step size β ∼ ρ ∝
(
1
h −

t
hκ

)
defined on [0, h] other than

deterministic h. And let α follows the distribution ρ′ ∝
(
e

t−h
κ − t

h

)
on [0, h].

The analysis focuses on a Gaussian prior setting. Under a Gaussian prior, the following Lemma
points out that J is linear in starting point (xn,vn) and has a decoupled Brownian motion, and thus
the update (4.2) can be easily implemented.

Lemma 4.1. Assume g(x) = m
2 ∥x∥

2. If xn(t) follows the discretized Langevin diffusion process
(4.1) with starting point (xn,vn) and a given x̃n, for any t > 0, it satisfies the integral equation

xn(t) = J (t, x̃n; {Bs}0≤s≤t,(xn,vn)) = A11(t)xn +A12(t)vn

+ u

∫ t

0

A12(s− t)∇f(x̃n)ds+ 2
√
u

∫ t

0

A12(s− t)dBs,
(4.3)

where

A11(t) =

√
1− um− 1

2
√
1− um

e(−1−
√
1−um)t +

√
1− um+ 1

2
√
1− um

e(−1+
√
1−um)t,

A12(t) =−
1

2
√
1− um

e(−1−
√
1−um)t +

1

2
√
1− um

e(−1+
√
1−um)t
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are deterministic functions of t. Moreover, if x∗
n(t) follows the exact Langevin process (3.4) with

starting point (xn,vn), then for any t > 0

x∗
n(t) = A11(t)xn +A12(t)vn + u

∫ t

0

A12(s− t)∇f(x∗
n(s))ds

+ 2
√
u

∫ t

0

A12(s− t)dBs.

(4.4)

Given the integral formula (4.3), the algorithm can be summarized as Algorithm 1. In Algorithm 1,
A21, A22 is deterministic scalar functions, and Σ : R2 → R3d×3d is also deterministic. For the
explicit formula, please refer to Appendix A. The distribution of (H,G,W ) is induced by the
coupling between {Bt}0≤t≤α and {Bt}0≤t≤β in (4.2).

4.1 Main theorem

The convergence guarantee of DRUL can be stated as the following theorem.
Theorem 4.2 ( Main theorem, convergence of DRUL). For any tolerance ϵ ∈ (0, 1), denote the
minimizer of U(x) by x∗ and set the step size

h ≤ min

 1

12C2κ
,

ϵ2/3(
24C2κ(

1
m(L+m) tr(H) + ∥x∗∥2)

)1/3
 ,

where C2 ≥ 1 is a universal constant. With initial point (x0,v0), define Ω0 =
Ex∼p,v∼N (0,u)

(
∥x0 − x∥2 + ∥x0 + v0 − v − x∥2

)
. Then under Assumptions 3.1, when

n ≥ 8eκ

h
log

(
2EΩ0

ϵ2

)
,

Algorithm 1 outputs xn such that W2(Law(xn), p) ≤ ϵ.

Theorem 4.2 shows an overall Õ
(
(tr(H)+∥x∗∥2)

1/3

ϵ2/3

)
iteration and gradient complexity to find an

ϵ-approximate sample in 2-Wasserstein distance. By pre-finding x∗ using a convex optimization
algorithm and linearly drifting the coordinates, we can assume x∗ = 0 without loss of generality.
DRUL admits the stepsize reaching O

(
ϵ2/3

(tr(H))1/3

)
and the overall complexity is Õ

(
(tr(H))1/3

ϵ2/3

)
.

Now we consider a realizable case where our result achieves better complexity on d. The concrete
example is that f admits a separable structure as discussed in Section 3.3. Corollary 4.3 below shows
that when f admits a ridge separable structure, Algorithm 1 enjoys a dimension-free iteration and
gradient complexity.
Corollary 4.3. Follow the notations in Theorem 4.2. Further, if f(x) admits a ridge-separable form
and satisfies Assumptions 3.4 and 3.5. Then if we set the step size

h ≤ min

{
1

12C2κ
,

ϵ2/3(
24C2κ(

1
m + ∥x∗∥2)

)1/3
}
,

With initial point (x0,v0) and Ω0 = Ex∼p,v∼N (0,u)

(
∥x0 − x∥2 + ∥x0 + v0 − v − x∥2

)
. Then

when

n ≥ 8eκ

h
log

(
2EΩ0

ϵ2

)
,

Algorithm 1 outputs xn such that W2(Law(xn), p) ≤ ϵ.

Discussion. Theorem 4.2 establishes the convergence rate of DRUL with a weak dimension depen-
dence. We shall note that for lots of high-dimensional sampling problems, the trace of the Hessian
matrices for the potential function is much smaller than d times the largest eigenvalue because the
eigenvalues often drop rapidly. In practice, this situation has been considered in lots of topics. For

7



(a) (b)

Figure 1: A demonstration of the eigenvalues of the Hessian matrix. (a) The eigenvalues of the Gram
matrix of MNIST data. (b) Eigenvalues of a three-layer neural network from Sagun et al. [2016].

example, one defines the effective rank (e.g. Hsu et al. [2012]) to represent the acting dimension of
the data on linear models. In distributed machine learning, one can show fewer bits are needed to be
transmitted between machines when the eigenvalues decrease fast (e.g. Hanzely et al. [2018]). As
shown in Figure 1(a), the Gram matrix of the MNIST dataset, which is also the Hessian of Bayesian
ridge linear regression, has rapidly decreasing eigenvalues. Similar empirical results are observed
on deep neural network models by Sagun et al. [2016], as in Figure 1(b). In fact, beyond the ridge
separable case, there are many problems admitting tr(H) = o(d), such as the concentrated posterior
distributions with bounded gradients and neural networks with regularization. However, one may
notice that the result of Theorem 4.2 is based on a uniform upper bound of the Hessian matrices.
We think this is the basic case to show that our algorithm achieves convergence with an intrinsically
low-dimension dependence. It is possible to relax the condition to the upper bound of the traces
for local Hessian matrices with an additional Hessian smoothness assumption. Please see more
discussions in Appendix E.

5 Intuition

In this section, we provide the intuitions of the algorithm design. For the sim-
plicity of the notation, let x̂n(s) = J (s,xn; {Bt}0≤t≤s, (xn,vn)) and xn(s) =
J (s,J (α,xn; {Bt}0≤t≤α, (xn,vn)); {Bt}0≤t≤s, (xn,vn)). Then given α and β in Algorithm 1,
xn(s) = J (s, x̂n(α); {Bt}0≤t≤β , (xn,vn)) and xn(β) = xn+1.

Our analysis tracks the dynamics of the distance to the stationary distribution. Specifically, we
analysis the dynamics of EΩn(t) = E∥xn(t)− x∗

n(t) + vn(t)− v∗
n(t)∥2 +E∥xn(t)− x∗

n(t)∥2 and
EΩn = EΩn(0), which upper bound the squared 2-Wasserstein distance W2(Law(xn(t)), p)

2 and
W2(Law(xn), p)

2, respectively. Here, (x∗
n(t),v

∗
n(t)) evolving along the exact Langevin diffusion

(3.4) follows the stationary distribution and is synchronously coupled with (xn(t),vn(t)). One can
find its formal definition in Appendix B. Via tracking the flow and using the contraction property of
the process, the following Lemma characterizes the one-step discretization.
Lemma 5.1. Let xn be the n-step output of Algorithm 1 and x∗

n(t) be defined as above. Set
u = 1

L+m . Under Assumptions 3.1, given that xn and x∗
n are coupled synchronously, we have for

any h > 0

EΩn+1 = EEβ∼ρΩn(β) ≤ Eβ∼ρe
− β

κEΩn + E (5.1)

where E is

E = 2uEEα∼ρ′Eβ∼ρ

∫ β

0

e
s−β
κ ⟨xn(s)− x∗

n(s) + vn(s)− v∗
n(s),∇f(xn(s))−∇f(x̂n(α))⟩ds.

Lemma 5.1 indicates at each step, EΩn contracts with a local discretization error. Telescoping
(5.1) and upper bounding the term E yields the Theorem 4.2. To obtain the convergence rate in the
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main theorem, we will show that Algorithm 1 guarantees an upper bound of E which (1) achieves
the state-of-the-art dependence on stepsize and (2) satisfies that the dimension dependence can be
controlled by the contraction.

Improved discretization error. We accomplish the first goal by matching the expectation, which is
detailed by Lemma 5.2.
Lemma 5.2. Let ρ be probability measure defined on [0, h] satisfying ρ(dt) ∝

(
1
h −

t
hκ

)
dt, and

the probability measure ρ′ defined on [0, h] satisfies ρ′(dt) ∝
(
e

t−h
κ − t

h

)
dt on [0, h]. Then for

measurable function F (t), ρ and ρ′ satisfy that

(A) There exists positive constant C1 such that Et∼ρ

∫ t

0
e

s−t
κ F (t)ds = C1hEt∼ρ′F (t).

(B) There exists positive constant C2 such that Et∼ρ′ |F (t)| ≤ CEt∼ρ|F (t)|.

Claim (A) in Lemma 5.2 states that by choosing a random step size β ∼ ρ′, we can leverage the
low discretization error of the randomized midpoint method. Denote the random weight wn(s, α) =
xn(s) − x∗

n(s) + vn(s) − v∗
n(s). One can split wn(s, α) into (wn(s, α) −wn(0, 0)) +wn(0, 0).

The former term can be bounded using the one-step move, and by claim (A), the dominating latter
one is

2uEEα∼ρ′Eβ∼ρ

∫ β

0

e
s−β
κ ⟨w(0, 0),∇f(xn(s))−∇f(x̂n(α))⟩ds

=2uC1h⟨w(0, 0),EEs∼ρ′
(
∇f(xn(s))−∇f(x̂n(s))

)
⟩,

which attains a low discretization error given that Es∼ρ′∇f(x̂n(s)) is a low biased approximation to
Es∼ρ′∇f(xn(s)).

Averaged contraction can control the weight variance. Then we consider the variation of the
weight wn(s, α). The time difference of wn(s, α) writes

w(s, α)− (xn − x∗
n+vn − v∗

n) =

∫ s

0

(vn(r)− v∗
n(r)− um(xn(r)− x∗

n(r))

− 2(vn(r)− v∗
n(r))− u∇f(x̂n(α)) + u∇f(x∗

n(r)))dr.

(5.2)

(5.2) indicates the variance Vars∼µ(w(s, α)) is dimension dependent for nondegenerated distribu-
tions µ on [0, h], since it will introduce the vn(r) whose difference to vn(β) or vn(0) is dimension
dependent. We control the dimension dependence via the averaged contraction. And the randomized
step size makes it possible to consider the averaged effect. We have the following Lemma to bound
the variation of the weight.
Lemma 5.3. Let xn(t),vn(t),v

∗
n(t) and v∗

n(t) be defined as above and u = 1
L+m . Under Assump-

tion 3.1, for any t, α ≤ h, we have

E∥xn(t)− xn − x∗
n(t) + x∗

n + vn(t)− vn − v∗
n(t) + v∗

n∥2

≲h2EEt∼ρΩn(t) + h4EΩn + u2h4
L

m
tr(H) + h4∥x∗∥2.

(5.3)

Now the dimension dependence of Var(w(s, α)) is contained in Et∼ρΩn(t), which can be controlled
using the averaged contraction under the stochastic step size.

6 Conclusion

This paper proposes a double-randomized technique and designs the DRUL algorithm. We prove that
with strongly convex and Lipschitz smooth assumptions potentials, the algorithm converges to the
target distribution in Wasserstein distance in Õ

(
(tr(H)+∥x∗∥2)1/3

ϵ2/3

)
iterations. The result illustrates

that many sampling tasks in machine learning can achieve a dimension-independent complexity.
The proposed DRUL algorithm can be potentially much faster than existing algorithms for high-
dimensional problems. As a concrete example, when the negative log-likelihood function admits a
ridge-separable structure, under mild conditions, a dimension-free Õ

(
1

ϵ2/3

)
iteration complexities

can be obtained by DRUL. We hope our technique brings new insights for designing dimension-
independent algorithms for high-dimensional sampling.
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A Simulation of the discretization process

A.1 Integral form of the discretized process

Proof of Lemma 4.1

Proof. Define the aligned vector zn(s) = (xn(s),vn(s)) and write the diffusion process (4.1) as

dzn(s) = Azn(s)ds+ ua(x̂n)ds+ 2
√
uBdB̃s, (A.1)

where

A =

[
0 I

−umI −2I

]
, a =

[
0

−∇f(x̂)

]
, B =

[
0 0
0 I

]
.

And B̃s is a Brownian Motion in R2d. By a variation of constant method, the solution of (A.1) is

zn(t) = eAtzn(0) + u

(∫ t

0

e−A(s−t)ds

)
a+ 2

√
u

∫ t

0

e−A(s−t)BdB̃s

To obtain the explicit expression of xn(t) and vn(t), respectively, it suffices to present a block-wise
form

eAt =

[
A11(t)I A12(t)I
A21(t)I A22(t)I

]
of the exponential eAt. And a direct decomposition yields that

A11(t) =

√
22 − 4um− 2

2
√
22 − 4um

e(−2−
√
22−4um)t/2 +

√
22 − 4um+ 2

2
√
22 − 4um

e(−2+
√
22−4um)t/2,

A12(t) = −
1√

22 − 4um
e(−2−

√
22−4um)t/2 +

1√
22 − 4um

e(−2+
√
22−4um)t/2,

A21(t) =
um√

22 − 4um
e(−2−

√
22−4um)t/2 +

−um√
22 − 4um

e(−2+
√
22−4um)t/2,

A22(t) =
2 +
√
22 − 4um

2
√
22 − 4um

e(−2−
√
22−4um)t/2 +

√
22 − 4um− 2

2
√
22 − 4um

e(−2+
√
22−4um)t/2.

(A.2)

Since zn(t) = (xn(t),vn(t)), we obtain the close-form solution of the discretized Langevin process
of xn(t)

xn(t) = A11(t)xn +A12(t)vn + u

∫ h

0

A12(s− t)∇f(x̂n)ds+ 2
√
u

∫ t

0

A12(s− t)dBs.

A similar proof can be applied to the exact diffusion process and thus x∗n(t) satisfies

x∗
n(t) = A11(t)xn +A12(t)vn + u

∫ t

0

A12(s− t)∇f(x∗(s))ds+ 2
√
u

∫ t

0

A12(s− t)dBs.

Thus we can obtain the result in Lemma 4.1.

A.2 Controls of the integral forms

Lemma A.1. The functions A11(t) and A12(t) in Lemma 4.1 satisfy

|A12(t)| ≲ t, |A11(t)− 1| ≲ t

for t ∈ [0, h].
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Proof. In the proof, we will repeatedly use the inequality et − 1 = O(t). For notational simplicity,
denote

√
1− um by k. For the first claim,

A12(t) = −
1

2k
e−t−kt +

1

2k
e−t+kt = e−t

(
1− e−kt

2k
+
ekt − 1

2k

)
= O(t).

As for the second claim, we have

A12(t)− 1 =
k − 1

2k
e−t−kt +

k + 1

2k
e−t+kt − 1

=e−t

(
e−kt + ekt − 2

2
+

1− e−kt

2k
+
ekt − 1

2k

)
= O(kt) +O(t).

Note that k =
√
1− um ≤ 1 and h ≤ 1

κ ≤ 1. When t ≤ h our claims hold true.

A.3 Simulation of the Brownian motion

Lemma A.2. Let Bt be a standard Brownian Motion. In Algorithm 1, we have G =
∫ t

0
A12(s −

t)dBs, H =
∫ α

0
A12(s−α)dBs and W =

∫ t

0
A22(s− t)dBs. Then conditioned on the randomness

of α and β, (G,H,W ) follows a mean-zero Gaussian distribution with covariance

E[(G− EG)(H − EH)T ] =

(∫ min(t,α)

0

A12(s− t)A12(s− α)ds

)
I,

E[(G− EG)(G− EG)T ] =
(∫ t

0

A12(s− t)2ds
)
I,

E[(H − EH)(H − EH)T ] =

(∫ α

0

A12(s− α)2ds
)
I,

E[(W − EW )(W − EW )T ] =

(∫ t

0

A22(s− t)2ds
)
I,

E[(W − EW )(H − EH)T ] =

(∫ min(α,t)

0

A12(s− α)A22(s− t)ds

)
I,

E[(W − EW )(G− EG)T ] =
(∫ t

0

A12(s− t)A22(s− t)ds
)
I.

(A.3)

Proof. By the properties of Brownian motion, (G,H,W ) is a zero-mean Gaussian variable. Its
variance is given by

E[(G− EG)(H − EH)T ] =E
[∫ t

0

A12(s− t)dBs

∫ α

0

A12(s− α)dBs

]
=

(∫ min(t,α)

0

A12(s− t)A12(s− α)ds

)
I.

The rest of the claims can be proved similarly.

B Proof of the main theorem

In this section, we present the proof of Theorem 4.2.

B.1 Contractive lemma

We begin by defining the n-step exact process (x∗
n,v

∗
n) and (x∗

n(t),v
∗
n(t)). Denote dp∗ ∝

e−U(x)− 1
2u∥v∥2

dxdv. Let (x∗
0,v

∗
0) ∼ p∗ and

dx∗
n(t) = v∗

n(t)dt, dv∗
n(t) = −uU(x∗

n(t))dt− 2v∗
n(t)dt+

√
2udBt,

(x∗
n(0),v

∗
n(0)) = (x∗

n−1(βn−1),x
∗
n−1(βn−1)),

(B.1)

14



For the simplicity of notation, we denote (x∗
n,v

∗
n) = (x∗

n(0),v
∗
n(0)). And we have for any n and t,

(x∗
n(t),v

∗
n(t)) ∼ p∗. With slight abuse of notation, let x̂n(t) and xn(t) denote inaccurate starting

point discretization process and midpoint process in Algorithm 1, respectively. And recall that in
Algorithm 1 we have

x̂n(t) =A11(t)xn +A12(t)vn + u

∫ t

0

A12(s− t)∇f(xn)ds+ 2
√
u

∫ t

0

A12(s− t)dBs (B.2)

and

xn(t) =A11(t)xn +A12(t)vn + u

∫ t

0

A12(s− t)∇f(x̂n(α))ds+ 2
√
u

∫ t

0

A12(s− t)dBs.

(B.3)

And we assume x̂n(t) is driven by the same Brownian Motion as xn(t) and x∗
n(t) at the n-th step.

Define Ωn(t) = ∥xn(t)− x∗
n(t)∥2 + ∥xn(t)− x∗

n(t) + vn(t)− v∗
n(t)∥2 and Ωn = ∥xn − x∗

n∥2 +
∥xn − x∗

n + vn − v∗
n∥2. The proof concentrates on the dynamics of the Ωn. Note that Wasserstein

distance minimizes all the couplings and Ωn(t) ≥ ∥xn(t)− x∗
n(t)∥2. Hence EΩn upper bounds of

the Wasserstein distanceW2(Law(xn), p). Given a synchronously coupled assumption, the dynamics
of Ωn(t) can be characterized as follow.

B.1.1 Proof of Lemma 5.1

Proof. Let the random process Bα
t given Bα be

dBα
t =

{
Bα−Bα

t

α−t + dB′
t, 0 ≤ t ≤ α

dBt, t ≥ α

where B′
t is an independent Brownian motion. Note that Bα

t is a Brownian bridge and Bα
α = Bα.

Then when x̂n(α) is given and x∗
n(t),xn(t) are coupled synchronously, given Bα, we have

dx∗
n(t) = v∗

n(t)dt,

dv∗
n(t) = −u∇g(x∗

n(t))dt− u∇f(x∗
n(t))dt− 2v∗

n(t)dt+ 2
√
udBα

t ,

and

dxn(t) = vn(t)dt,

dvn(t) = −u∇g(xn(t))dt− u∇f(x̂n(α))dt− 2vn(t)dt+ 2
√
udBα

t .

For simplicity, denote zn(t) = xn(t)−x∗
n(t) and ψn(t) = vn(t)−v∗

n(t). Then by Taylor’s Theorem

∇U(xn(t))−∇U(x∗
n(t)) =

∫ 1

0

∇2U(sxn(t) + (1− s)x∗
n(t))dszn(t). (B.4)

DefineHt =
∫ 1

0
∇2U(sxn(t) + (1− s)x∗

n(t))ds, then

dΩn(t)/dt =2
〈
zn(t) + ψn(t), ψn(t)− u(g(xn(t))− g(x∗

n(t)))− u
(
∇f(x̂n(α))−∇f(x∗

n(t))
)
− γψn(t)

〉
+ 2
〈
zn(t), ψn(t)

〉
=− 2

(
⟨zn(t) + ψn(t), (γ − 1)ψn(t) + uHtzn(t)⟩ − ⟨zn(t), ψn(t)⟩︸ ︷︷ ︸

A

)
+ 2u⟨zn(t) + ψn(t),∇f(xn(t))−∇f(x̂n(α)))⟩,

where in the second equality we use (B.4) and divide∇f(x̂n(α)) into∇f(xn(t)) and the difference
∇f(x̂n(α))−∇f(xn(t)). Note that A can be converted to a quadratic form

A =[zn(t)
T + ψn(t)

T , zn(t)
T ]

[
I 1

2uHt − I
1
2uHt − I I

] [
zn(t) + ψn(t)

zn(t)

]
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whose eigenvalues λi are given by characteristic function (1− λ)2 − 1
4 (uλi

(
Ht

)
+ um− 2)2 = 0.

Given the strong-convexity and Lipschitz smoothness of the potential U(x), when u is set to be 1
L+m

the eigenvalue of A is greater than 1
2κ . Therefore,

dΩn(t)/dt ≤ −
1

κ
Ωn(t) + 2u⟨zn(t) + ψn(t),∇f(xn(t))−∇f(x̂n(α)))⟩.

Then by multiplying e
t
κ and taking the integral form 0 to β, we obtain

Ωn(β) ≤ e−
β
κΩn(0) + 2u

∫ β

0

e
s−β
κ ⟨xn(s)− x∗

n(s) + vn(s)− v∗
n(s),∇f(xn(s))−∇f(x̂n(α))⟩ds.

In Algorithm 1 the random step size β ∼ ρ and thus we reach that

EΩn+1 ≤ Eβ∼ρe
− β

κEΩn + 2uEEβ∼ρ

∫ β

0

e
s−β
κ ⟨xn(s)− x∗

n(s) + vn(s)− v∗
n(s),∇f(xn(s))−∇f(x̂n(α))⟩ds.

B.2 Proof of Theorem 4.2

We devote the rest of this section to the proof of the main theorem. Lemma 5.1 shows that the
dynamics of the EΩn is driven by a shrinkage term and a local discretization error. To achieve the
claimed convergence rate, the proof aims to establish an upper bound of local error which is: (1)
dimensional-independent, (2) optimal in the sense of max step size h.

Proof. Given that EΩn is an upper bound of the squared 2-Wasserstein distance, it suffices to prove
EΩn ≤ ϵ2. By Lemma 5.1 and Lemma 5.2, we have

EΩn(β) ≤Eβ∼ρe
− β

κEΩn

+ 2uEEβ∼ρ

∫ β

0

e
s−β
κ ⟨xn(s)− x∗

n(s) + vn(s)− v∗
n(s),∇f(xn(s))−∇f(x̂n(α))⟩ds

=Eβ∼ρe
− β

κEΩn

+ 2uhC1EEβ∼ρ′⟨xn(β)− x∗
n(β) + vn(β)− v∗

n(β),∇f(xn(β))−∇f(x̂n(α))⟩︸ ︷︷ ︸
A

.

(B.5)

Next, we bound the error term A by

A =2C1uhEEβ∼ρ′⟨xn(β)− xn − x∗
n(β) + x∗

n + vn(β)− vn − v∗
n(β) + v∗

n,∇f(xn(β))−∇f(x̂n(α))⟩
+ 2C1uhE⟨xn − x∗

n + vn − v∗
n,Eα∼ρ′Eβ∼ρ′ (∇f(xn(β))−∇f(x̂n(α)))⟩

≲
uh

uh
E∥xn(β)− xn − x∗

n(β) + x∗
n + vn(β)− vn − v∗

n(β) + v∗
n∥2

+ u2h2E∥∇f(xn(β))−∇f(x̂n(α))∥2 +
h

u
uhE∥xn − x∗

n + vn − v∗
n∥2

+
u

h
uhE∥Eα∼ρ′Eβ∼ρ′(∇f(xn(β))−∇f(x̂n(α)))∥2

a

≲

(
h2Eβ∼ρEΩn(β) + h4EΩn +

u2h4L

m
tr(H) + h4∥x∗∥2

)
+ u2h2

(
h2L2EΩn +

h2L

m
tr(H) + L2h2∥x∗∥2

)
+ h2EΩn

+ u2
(
h4L2EΩn +

h4L

m
tr(H) + h4L2∥x∗∥2

)
b

≲h2EEβ∼ρΩn(β) + h2EΩn +
u2h4L

m
tr(H) + h4∥x∗∥2,
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where in inequality
a

≲, we apply Lemma D.1, Lemma 5.3 and Lemma D.5; inequality
b

≲ follows by
the observation uL = L

L+m ≤ 1. Then by plugging the upper bound of A into (B.5), there exists
constant C2 such that

EΩn(β) ≤Eβ∼ρe
− β

κEΩn + C2

(
h2EΩn(β) + h2EΩn +

u2h4L

m
tr(H) + h4∥x∗∥2

)
. (B.6)

(B.6) can be simplified as

EΩn(β) ≤
Eβ∼ρe

− β
κ + C2h

2

1− C2h2
EΩn +

C2h
4

1− C2h2

(
u2L

m
tr(H) + ∥x∗∥2

)
. (B.7)

Note that when β ∼ ρ, EΩn(β) = EΩn+1. And EΩn is an upper bound of Wasserstein distance.
Equation (B.7) characterizes the one-step discretization of the Langevin process, where the first term
indicates a linear convergence if without discretization error, and the second term is the one-step
discretization error.

Without loss of generality, letC2 ≥ 1. Since h ≤ 1 ≤ κ, we have Eβ∼ρe
− β

κ = κ
h

(
1− eh

κ

)
≤ 1− h

3κ .

Since h ≤ 1
12C2κ

, we have h ≤ 1
2C2κ

and h ≤ 1√
C2

and therefore 1 − C2h
2 ≥ 0, 2C2h

2 ≤ h
6κ .

Hence the first term of (B.7) can be bounded by

Eβ∼ρe
− β

κ + C2h
2

1− C2h2
EΩn ≤

1− h
3κ + C2h

2

1− C2h2
EΩn

=

(
− h

3κ + 2C2h
2

1− C2h2
+ 1

)
EΩn

≤

(
− h

3κ + h
6κ

1− C2h2
+ 1

)
EΩn

≤
(
1− h

6κ

)
EΩn,

(B.8)

As for error term in (B.7), since h ≤ 1
12C2κ

≤ 1√
2C2

, we have C2h
4

1−C2h2 ≤ 2C2h
4. Denote r = 1− h

6κ

and E = 2C2h
4
(

u2L
m tr(H) + ∥x∗∥2

)
and therefore

EΩN ≤ rEΩN−1 + E ≤ rNEΩ0 + E(1 + r + · · ·+ rN−1) ≤ rNEΩ0 +
E

1− r
. (B.9)

When N ≥ 6
κ log

(
2EΩ0

ϵ2

)
, we have

rNEΩ0 ≤ e
Nh
6κ EΩ0 ≤

ϵ2

2
. (B.10)

And when h ≤ ϵ2/3(
24C2κ(

u2L
m tr(H)+∥x∗∥2)

)1/3 , we get

E
1− r

≤ ϵ2

2
. (B.11)

Plugging (B.10) and (B.11) into (B.9) yields

EΩN ≤ ϵ2,

and therefore completes the proof.

C Supporting lemmas

We assume that Assumption 3.1 holds in this section and Section D.
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C.1 Proof of Lemma 5.2

We would like to point out that how to match the random step size α and ρ is critical for obtaining a
low-bias estimator. And the control for local discretization error in Lemma 5.1 involves a challenging
multiple integral. These considerations inspire our choice of ρ and ρ′. And in the following lemma,
we summarize the main properties of ρ and ρ′.
Lemma C.1. Let ρ be probability measure defined on [0, h] satisfying ρ(dt) ∝

(
1
h −

t
hκ

)
dt, and

the probability measure ρ′ defined on [0, h] satisfies ρ′(dt) ∝
(
e

t−h
κ − t

h

)
dt on [0, h]. Then for

measurable function F (t), ρ and ρ′ satisfy that

(A) There exists positive constant C1 such that Et∼ρ

∫ t

0
e

s−t
κ F (t) = C1hEt∼ρ′F (t).

(B) There exists positive constant C2 such that Et∼ρ′ |F (t)| ≤ CEt∼ρ|F (t)|.

Proof. We begin with the first claim. By the definition of ρ and integration by parts, we obtain

Et∼unif[0,1]

∫ t

0

e
s−t
κ F (s)ds =

∫ h

0

1

h

∫ t

0

e
s−t
κ F (s)dsdt

=

(
t

h

∫ t

0

e
s−t
κ F (s)ds

)∣∣∣∣h
0

−
∫ h

0

t

h

(
F (t)− 1

κ

∫ t

0

e
s−t
κ F (s)ds

)
dt

=

∫ h

0

e
t−h
κ F (t)dt−

∫ h

0

t

h
F (t)dt+

∫ h

0

t

hκ

∫ t

0

e
s−t
κ F (s)dsdt,

(C.1)

which indicates that∫ h

0

(
1

h
− t

hκ

)∫ t

0

e
s−t
κ F (s)dsdt =

∫ h

0

(
et−hκ− t

h

)
F (t)dt.

ρ ∝ 1
h −

t
hκ has a normalizing constant which is of order Θ(1). Denote the normalizing constant of∫ h

0

(
e

t−h
κ − t

h

)
ds by a scalar function Z ′(h). To obtain the first claim, it suffices to show Z ′(h) is

of order O(h). Then given that e−
h
κ ≥ 1− h

κ , Z ′(h) satisfies

Z ′(h) =

∫ h

0

(
e

t−h
κ − t

h

)
dt = κ

(
1− e−h

κ

)
− h

2
≤ h− h

2
=
h

2
,

which proves the first claim.

Then we prove the second claim of the proposition. Note that when h ≤ κ

Z ′(h) = κ
(
1− e−h

κ

)
− h

2
≥
(
1− 1

e

)
h− h

2
=

(
1

2
− 1

e

)
h.

Thus

1

Z ′(h)

(
e

t−h
κ − t

h

)
≤ 1

Z ′(h)
≲

1

h
. (C.2)

As for ρ, denote the normalizing constant of ρ by Z(h) =
∫ h

0
1
h −

t
hκ . Since h = o(1) and κ > 1,

Z(h) = 1− h

2κ
= Θ(1).

Then we have

1

Z(h)

(
1

h
− t

jκ

)
≳

1

h

(
1− t

κ

)
≳

1

h
, (C.3)

where the last inequality follows by that t ≤ h = 0(1) and κ > 1. Combining (C.2) and (C.3) yields
Claim (B).
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C.2 Convergence lemma

Lemma C.2. Let x∗ be the minimizer of the potential function, that is, x∗ = argmin{g(x)+ f(x)},
and A is a positive definite matrix that mI ⪯ A ⪯ LI . Let xn(t) and x∗

n(t) be defined as (B.3) and
(B.1). Assume that u = 1

L+m . Then we have the following bound

E∥Axn(t)∥2 ≲ L2E∥xn(t)− x∗
n(t)∥2 +

1

m
tr(A2) + L2∥x∗∥2,

E∥A(xn(t) + vn(t))∥2 ≲ L2E∥xn(t) + vn(t)− x∗
n(t)− v∗

n(t)∥2 +
1

m
tr(A2) + L2∥x∗∥2,

and

E∥A∇f(xn(t))∥2 ≲ L4E∥xn(t)− x∗
n(t)∥2 +

L2

m
tr(A2) + L2m2∥x∗∥2.

Proof. We begin with the first bound. By Young’s inequality and Lipschitz smoothness of f ,

E∥Axn(t)∥2 ≲E∥A(xn(t)− x∗
n(t))∥2 + E∥A(x∗

n(t)− x∗)∥2 + ∥Ax∗∥2

≤L2E∥xn(t)− x∗
n(t)∥2 + E∥A(x∗

n(t)− x∗)∥2 + L2∥x∗∥2.
(C.4)

Since U(·) is m strongly convex and ∥Hx∥ is a convex function with respect to x, Theorem 1.1 of
Hargé [2004] implies that

E∥A (x∗
n(t)− Ex∗

n) ∥2 ≤ Ex∼N(0, 1
m )∥Ax∥

2 =
1

m
tr(A2). (C.5)

On the other hand, by Theorem 7 of Basu and DasGupta [1997],

(Ex∗
n(t)− x∗)

TΣ−1(Ex∗
n(t)− x∗) ≤ 3,

where Σ is the covariance of p and therefore bounded by 1
m . Hence

∥A(Ex∗
n(t)− x∗)∥2 ≤

∥A∥2

m
≤ 1

m
tr(A2). (C.6)

Combining equation (C.5) and (C.6), we obtain that

E∥A(x∗
n − x∗)∥2 ≲ E∥A(x∗

n − Ex∗
n)∥2 + ∥A(Ex∗

n − x∗)∥2 ≲
1

m
tr(A2). (C.7)

Combining (C.4) and (C.7) and then we achieve the first claim.

To bound E∥A(xn(t) + vn(t))∥2, we have

E∥A(xn(t) + vn(t))∥2 ≲E∥A(xn(t) + vn(t)− x∗
n(t)− v∗

n(t))∥2

+ E∥A(x∗
n(t) + v∗

n(t)− x∗)∥2 + ∥Ax∗∥2

≲L2E∥xn(t) + vn(t)− x∗
n(t)− v∗

n(t)∥2 + E∥A(x∗
n(t)− x∗)∥2

+ E∥Av∗
n(t)∥2 + L2∥x∗∥2

≲L2E∥xn(t) + vn(t)− x∗
n(t)− v∗

n(t)∥2 +
1

m
tr(A2) +

1

m
tr(A2) + L2∥x2

∗∥

≲L2E∥xn(t) + vn(t)− x∗
n(t)− v∗

n(t)∥2 +
1

m
tr(A2) + L2∥x∗∥2,

where the second inequality follows by the Lipschitz smoothness of f(x) and Young’s inequality; in
the third inequality we use (C.7) and v ∼ N (0, 1

m ).

To prove the third claim, we have

E∥A∇f(xn(t))∥2 ≲E∥A
(
∇f(xn(t))−∇f(x∗

n(t))
)
∥2 + E∥A

(
∇f(x∗

n(t))−∇f(x∗)
)
∥2 + ∥A∇f(x∗)∥2

≲L4E∥xn(t)− x∗
n(t)∥2 + EL2∥A(x∗

n(t)− x∗)∥2 + L2∥∇f(x∗)∥2

≲L4E∥xn(t)− x∗
n(t)∥2 +

L2

m
tr(A2) + L2m2∥x∗∥2,

where in last inequality, we apply (C.7) and∇f(x∗) +mx∗ = 0.
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D Technical bounds

In this section, we present some controls that are useful in the proof of Theorem 4.2.

D.1 Bound of E∥∇f(xn(t))−∇f(x̂n(α))∥2

Lemma D.1. Let xn(t), x̂n(t) be defined as above and u = 1
L+m . For any fixed t, α ≤ h.

(i) When Assumption 3.1 hold and H is a uniform upper bound of ∇2f , i.e. ∇2f(x) ⪯ H for
all x ∈ Rd, x∗

n(t)and x̂n(α) satisfies

E∥∇f(xn(t))−∇f(x̂n(α))∥2 ≲ h2L2EΩn +
h2

m
tr(H2) + L2h2∥x∗∥2.

(ii) When Assumptions 3.1, E.1 and E.2 hold, we have

E∥∇f(xn(t))−∇f(x̂n(α))∥2 ≲ h2L2EΩn +
h2L

m
M + L2h2∥x∗∥2 + L2

2u
2h6d2.

Proof. For any x,y ∈ Rd, we have

∥∇f(x)−∇f(y)∥2 =

∥∥∥∥∫ 1

0

∇2f((1− k)x+ ky)(x− y)dk

∥∥∥∥2 . (D.1)

Denote H̄ =
∫ 1

0
∇2f(x+ k(y−x))dk and H̄ depends on x and y. Substitute x,y by xn(t), x̂n(α),

and then we obtain ∥∇f(xn(t)) − ∇f(x̂n(α))∥2 = ∥H̄(xn(t) − x̂n(α))∥2. Then by plugging in
the close-form solution into ∥H̄(xn(t)− x̂n(α))∥2,

∥H̄(xn(t)− x̂n(α))∥2

a
=
∥∥∥H̄((A11(t)−A11(α)−A12(t) +A12(α))xn + (A12(t)−A12(α))(xn + vn)+

u

∫ t

0

A12(s− t)∇f(x̂n(α))ds− u
∫ α

0

A12(s− α)∇f(xn)ds+ 2
√
u

∫ t

0

A12(s− t)dBs

− 2
√
u

∫ α

0

A12(s− α)dBs

)∥∥∥2
b

≲(A11(t)−A11(α)−A12(t) +A12(α))
2∥H̄xn∥2 + (A12(t)−A12(α))

2∥H̄(xn + vn)∥2

+ u2
∥∥∥∥∫ t

0

A12(s− t)H̄∇f(x̂n(α))ds−
∫ α

0

A12(s− α)H̄∇f(xn)ds

∥∥∥∥2︸ ︷︷ ︸
①

+ u

∥∥∥∥∫ t

0

A12(s− t)H̄dBs −
∫ α

0

A12(s− α)H̄dBs

∥∥∥∥2︸ ︷︷ ︸
②

,

(D.2)

where in a
= we use Lemma 4.1;

b

≲ follows by the Jensen’s inequality. Besides Lemma A.1 implies that
(A11(t)− A11(α)− A12(t) + A12(α))

2∥Hxn∥2 ≲ h2∥Hxn∥2 and (A12(t)− A12(α))
2∥H(xn +

vn)∥2 ≲ h2∥H(xn + vn)∥2.

20



For the expectation of term ①, we have

E
∥∥∥∥∫ t

0

A12(s− t)H̄∇f(x̂n(α))ds−
∫ α

0

A12(s− α)H̄∇f(xn)ds

∥∥∥∥2
≲E

∥∥∥∥∫ t

0

A12(s− t)H̄
(
∇f(x̂n(α))−∇f(xn)

)
ds

∥∥∥∥2 +
E
∥∥∥∥∫ t

α

A12(s− α)H̄∇f(xn)ds

∥∥∥∥2 + E
∥∥∥∥∫ t

0

(A12(s− t)−A12(s− α))H̄∇f(xn)ds

∥∥∥∥2
≤Et

∫ t

0

A12(s− t)2ds∥H̄
(
∇f(x̂n(α))−∇f(xn)

)
∥2

+ E
∣∣∣∣(α− t)∫ t

α

A12(s− α)2ds
∣∣∣∣ ∥H̄∇f(xn)∥2

+ Et
∫ t

0

(A12(s− t)−A12(s− α))2ds∥H̄∇f(xn)∥2

≲h4E∥H̄ (∇f(x̂n(α))−∇f(xn)) ∥2 + h4E∥H̄∇f(xn)∥2,

(D.3)

where in the last inequality we use that t, α < h and A12(t) = O(t). Let H̄′ =
∫ 1

0
∇2f(x̂n(α) +

k(x̂n(α) − xn))dk. By the definition of x̂n(α), E∥H̄ (∇f(x̂n(α))−∇f(xn)) ∥2 can be upper
bounded by

E∥H̄ (∇f(x̂n(α))−∇f(xn)) ∥2

≤L2E∥ (∇f(x̂n(α))−∇f(xn)) ∥2

=L2E
∥∥∥∥H̄′((A11(α)− 1)xn +A12(α)vn + u

∫ α

0

A12(t− α)∇f(xn)dt+ 2
√
u

∫ α

0

A12(t− α)dBt

)∥∥∥∥2
≲L2EA12(α)

2∥H̄′(xn + vn)∥2 + E(A11(x)−A12(x)− 1)2L2∥H̄′xn∥2

+ u2Eα
∫ α

0

L2∥A12(t− α)H̄′∇f(xn)∥2dt+ uEL2

∥∥∥∥∫ α

0

A12(t− α)H̄′dBt

∥∥∥∥2
≲h2L2E∥H̄′(xn + vn)∥2 + h2L2E∥H̄′xn∥2 + u2h4L2E∥H̄′∇f(xn)∥2

+ uL2E
∥∥∥∥∫ α

0

A12(t− α)H̄′dBt

∥∥∥∥2 ,
where in the last inequality we apply Lemma A.1. Note that xn(0) = xn and vn(0) = vn. Then by
Lemma C.2,

E∥H̄(∇f(x̂n(α))−∇f(xn))∥2

≤L2E∥∇f(x̂n(α))−∇f(xn)∥2

≲h2(L4E∥xn + vn − x∗
n − v∗

n∥2 +
L2

m
Etr(H̄′2) + L4∥x∗∥2) + h2(L4E∥xn − x∗

n∥2

+
L2

m
Etr(H̄′2) + L2∥x∗∥2) + u2h2(L4E∥xn − x∗

n∥2 +
L2

m
Etr(H̄′2) + L4m2∥x∗∥2)

+ uL2E
∥∥∥∥∫ α

0

A12(t− α)H̄′dBt

∥∥∥∥2
≲h2L4EΩn +

h2L2

m
Etr(H̄′2) + h2L4∥x∗∥2 + uL2E

∥∥∥∥∫ α

0

A12(t− α)H̄′dBt

∥∥∥∥2 ,

(D.4)

where in the last inequality we use u = 1
L+m ≤ min

{
1
L ,

1
m

}
. Plugging (D.4) into (D.3) and then we

have an upper bound of the expectation of term ①. Plugging the upper bound of term ① into (D.2),
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and thus we have the following inequality

E∥∇f(xn(t))−∇f(x̂n(α))∥2

≲h2E∥H̄xn∥2 + h2E∥H̄(xn + vn)∥2 + u2h4E∥H̄∇f(xn)∥2

+ u2h4

(
h2L4EΩn +

h2L2

m
Etr

((
H̄′)2)+ h2L4∥x∗∥2 + uEL2

∥∥∥∥∫ α

0

A12(t− α)H̄′dBt

∥∥∥∥2
)

+ uE
∥∥∥∥∫ t

0

A12(s− t)H̄dBs −
∫ α

0

A12(s− α)H̄dBs

∥∥∥∥2
≲h2L2EΩn +

h2

m
E
(
tr
((
H̄′)2)+ tr

(
H̄2
))

+ L2h2∥x∗∥2 + u3h4L2E
∥∥∥∥∫ α

0

A12(t− α)H̄′dBt

∥∥∥∥2
+ uE

∥∥∥∥∫ t

0

A12(s− t)H̄dBs −
∫ α

0

A12(s− α)H̄dBs

∥∥∥∥2 ,
where in the last inequality we use Lemma C.2 and the definition of Ωn.

When we assume∇2f(x) has a uniform upper bound H , we have

uE
∥∥∥∥∫ t

0

A12(s− t)H̄dBs −
∫ α

0

A12(s− α)H̄dBs

)∥∥∥∥2
≲uE

∥∥∥∥∥
∫ h

0

hHdBs

∥∥∥∥∥
2

≲
h3

m
tr(H2) ≤ h3L

m
tr(H)

(D.5)

and

u3h4L2E
∥∥∥∥∫ α

0

A12(t− α)H̄′dBt

∥∥∥∥2 ≤ u3h4L2h3tr(H2) ≲
h4

m
tr(H2) ≤ h4L

m
tr(H).

Besides we have tr
((
H̄′)2)+ tr

(
H̄2
)
≤ Ltr

(
H̄′)+ Ltr

(
H̄
)
≲ Ltr(H). These bounds yield the

control

E∥∇f(xn(t))−∇f(x̂n(α))∥2 ≲ h2L2EΩn +
h2L

m
tr(H) + L2h2∥x∗∥2. (D.6)

And when f is L2-Hessian smooth, by Lemmas D.2 and D.3, we have

E∥∇f(xn(t))−∇f(x̂n(α))∥2

≲h2L2EΩn +
h2

m
E
(
tr
((
H̄′)2)+ tr

(
H̄2
))

+ uh3LM + L2h2∥x∗∥2

+ L2
2u

2h6d2 + L2
2u

4L2h10d2

≲h2L2EΩn + L
h2

m
E
(
tr
(
H̄′)+ tr

(
H̄
))

+
h2L

m
M + L2h2∥x∗∥2 + L2

2u
2h6d2

≲h2L2EΩn +
Lh2M

m
+ L2h2∥x∗∥2 + L2

2u
2h6d2.

(D.7)

Lemma D.2. Let H̄ be defined as above. When Assumptions E.1 and E.2 hold, we have

E
∥∥∥∥∫ t

0

A12(s− t)H̄dBs −
∫ α

0

A12(s− α)H̄dBs

)∥∥∥∥2 ≲ h3LM + L2
2uh

6d2.
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Proof. First, we have

E
∥∥∥∥∫ t

0

A12(s− t)H̄dBs −
∫ α

0

A12(s− α)H̄dBs

)∥∥∥∥2
=E

∥∥∥∥H̄(∫ t

0

A12(s− t)dBs −
∫ α

0

A12(s− α)dBs

)∥∥∥∥2
a
≲E

∥∥∥∥(H̄ − E
[
H̄|Fn

])(∫ t

0

A12(s− t)dBs −
∫ α

0

A12(s− α)dBs

)∥∥∥∥2
+ E

∥∥∥∥E [H̄|Fn

](∫ t

0

A12(s− t)dBs −
∫ α

0

A12(s− α)dBs

)∥∥∥∥2
≲E

(∥∥H̄ − E
[
H̄|Fn

]∥∥2 ∥∥∥∥(∫ t

0

A12(s− t)dBs −
∫ α

0

A12(s− α)dBs

)∥∥∥∥2
)

+ E
∥∥∥∥E [H̄|Fn

](∫ t

0

A12(s− t)dBs −
∫ α

0

A12(s− α)dBs

)∥∥∥∥2 ,

(D.8)

where
a
≲ follows by dividing H̄ into E

[
H̄|Fn

]
and H̄ − E

[
H̄|Fn

]
. In the last inequality, E

[
H̄|Fn

]
is independent of Bs, and thus

E
∥∥∥∥E [H̄|Fn

](∫ t

0

A12(s− t)dBs −
∫ α

0

A12(s− α)dB′
s

)∥∥∥∥2
≲h2E

∥∥∥∥∥E [H̄|Fn

] ∫ h

0

dBs

∥∥∥∥∥
2

≤h3Etr
((

E
[
H̄|Fn

])2)
.

(D.9)

As for the firs term, let {B′
s}0≤s≤h be a standard Brownian motion which is indepen-

dent of {Bs}0≤s≤h. Define x̂′
n(α) = J (α,xn; {B′

s}0≤s≤α, (xn,vn)) and x′
n(t) =

J (α, x̂′
n(α); {B′

s}0≤s≤t, (xn,vn)). Then we have

E
∥∥H̄ − E

[
H̄|Fn

]∥∥2 a
≤E

∫ 1

0

∥∥∇2f((1− k)xn(t) + kx̂n(α))−∇2f((1− k)x′
n(t) + kx̂′

n(α))
∥∥2 dk

b
≤L2

2E
∫ 1

0

∥(1− k)(xn(t)− x′
n(t)) + k(x̂n(α)− x̂′

n(α))∥2dk

c
≲L2

2u
2E
∥∥∥∥∫ t

0

A12(s− t) (∇f(x̂n(α))−∇f(x̂′
n(α))) ds

∥∥∥∥2
+ L2

2uE
∥∥∥∥∫ α

0

A12(s− α)dBs −
∫ α

0

A12(s− α)dB′
s

∥∥∥∥2
+ L2

2uE
∥∥∥∥∫ t

0

A12(s− t)dBs −
∫ t

0

A12(s− t)dB′
s

∥∥∥∥2 ,
(D.10)

where
a
≤ follows by the definition of H̄ and Jensen’s inequality; in

b
≤ we use the Hessian smoothness

of f ;
c
≲ follows by the definition of xn(t),x

′
n(t), x̂n(α) and x̂′

n(α). For the first term of the last
inequality, by the definition of x̂n(α) and x̂′

n(α), we have∥∥∥∥∫ t

0

A12(s− t) (∇f(x̂n(α))−∇f(x̂′
n(α))) ds

∥∥∥∥2
≲L2h4u

∥∥∥∥∫ α

0

A12(s− α)dBs −
∫ α

0

A12(s− α)dB′
s

∥∥∥∥2 .
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And thus we have

E

(∥∥H̄ − E
[
H̄|Fn

]∥∥2 ∥∥∥∥(∫ t

0

A12(s− t)dBs −
∫ α

0

A12(s− α)dBs

)∥∥∥∥2
)

≲L2
2uE

∥∥∥∥∫ t

0

A12(s− t)dBs

∥∥∥∥4 + EL2
2u

∥∥∥∥∫ t

0

A12(s− t)dB′
s

∥∥∥∥4
+ L2

2uE
∥∥∥∥∫ α

0

A12(s− α)dBs

∥∥∥∥4 + L2
2uE

∥∥∥∥∫ α

0

A12(s− α)dB′
s

∥∥∥∥4
≲L2

2uh
6d2.

(D.11)

Plugging (D.11) and (D.9) in to control (D.8) yields

E
∥∥∥∥∫ t

0

A12(s− t)H̄dBs −
∫ α

0

A12(s− α)H̄dBs

)∥∥∥∥2
≲h3Etr

((
E[H̄|Fn]

)2)
+ L2

2uh
6d2

≤h3LM + L2
2uh

6d2,

where the last inequality follows by Assumption E.2 and the observation that Etr
((

E[H̄|Fn]
)2) ≤

LEE[tr
(
H̄
)
|Fn] ≤ LM .

Lemma D.3. Let H̄ and H̄′ be defined as above. When Assumptions E.2 and E.1 hold, we have

uL2E
∥∥∥∥∫ α

0

A12(t− α)H̄′dBt

∥∥∥∥2 ≲ uL3h3M + L2
2u

2L2h6d2.

Proof. Similar to the proof of Lemma D.2, we have

uL2E
∥∥∥∥∫ α

0

A12(t− α)H̄′dBt

∥∥∥∥2
=uL2E

∥∥∥∥H̄′
∫ α

0

A12(t− α)dBt

∥∥∥∥2
≲uL2E

∥∥∥∥(H̄′ − E
[
H̄′|Fn

]) ∫ α

0

A12(t− α)dBt

∥∥∥∥2 + uL2E
∥∥∥∥E [H̄′|Fn

] ∫ α

0

A12(t− α)dBt

∥∥∥∥2
≲uL2E

(∥∥H̄′ − E
[
H̄′|Fn

]∥∥2 ∥∥∥∥∫ α

0

A12(t− α)dBt

∥∥∥∥2
)

+ uL2h3Etr
((

E
[
H̄′|Fn

])2)
.

(D.12)

We follow the notation of B′
s and x̂′

n(α) in (D.10). Then

E

(∥∥H̄′ − E
[
H̄′|Fn

]∥∥2 ∥∥∥∥∫ α

0

A12(t− α)dBt

∥∥∥∥2
)

≲E

(
L2
2

∫ 1

0

(1− k)2 ∥x̂n(α)− x̂′
n(α)∥

2
dk

∥∥∥∥∫ α

0

A12(t− α)dBt

∥∥∥∥2
)

≲L2
2E

(
u

∥∥∥∥∫ α

0

A12(s− α)dBs −
∫ α

0

A12(s− α)dB′
s

∥∥∥∥2 ∥∥∥∥∫ α

0

A12(t− α)dBt

∥∥∥∥2
)

≲L2
2uE

∥∥∥∥∫ α

0

A12(s− α)dBs

∥∥∥∥4
≲L2

2uh
6d2.

(D.13)
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Combining (D.12) and (D.13) and using tr
(
E[H̄′|Fn]

)
≤ LM yields

uL2E
∥∥∥∥∫ α

0

A12(t− α)H̄′dBt

∥∥∥∥2 ≲ uL3h3M + L2
2u

2L2h6d2.

D.2 Bound of E∥xn(t)− xn − x∗
n(t) + x∗

n + vn(t)− vn − v∗
n(t) + v∗

n∥2

To prove Lemma 5.3, we consider the following Lemma which also includes the Hessian smooth
case.

Lemma D.4. Let xn(t),vn(t),v
∗
n(t) and v∗

n(t) be defined as above and u = 1
L+m .

(i) Under Assumption 3.1, for any t, α ≤ h, we have

E∥xn(t)− xn − x∗
n(t) + x∗

n + vn(t)− vn − v∗
n(t) + v∗

n∥2

≲h2EEt∼ρΩn(t) + h4EΩn + u2h4
L

m
tr(H) + h4∥x∗∥2.

(D.14)

(ii) Under Assumptions 3.1, E.1 and E.2, for any t, α ≤ h, we have

E∥xn(t)− xn − x∗
n(t) + x∗

n + vn(t)− vn − v∗
n(t) + v∗

n∥2

≲h2EEt∼ρΩn(t) + h4EΩn + u2
h4LM

m
+ h4∥x∗∥2 + L2

2u
4h8d2.

Proof. Since the discretized process and the continuous process are synchronously coupled,

xn(t)− xn − x∗
n(t) + x∗

n + vn(t)− vn − v∗
n(t) + v∗

n

=

∫ t

0

(vn(s)− v∗
n(s)− um(xn(s)− x∗

n(s))− 2(vn(s)− v∗
n(s))− u∇f(x̂n(α)) + u∇f(x∗

n(s)))ds.

(D.15)

Hence the square norm satisfies

∥xn(t)− xn − x∗
n(t) + x∗

n + vn(t)− vn − v∗
n(t) + v∗

n∥2

a
≤
(
3t

∫ t

0

∥vn(s)− v∗
n(s) + xn(s)− x∗

n(s)∥2ds+ 3(1− um)2t

∫ t

0

∥xn(s)− x∗
n(s)∥2ds

+ 3u2t

∫ t

0

∥∇f(x̂n(α))−∇f(x∗
n(s))∥2ds

)
b
≤3t

∫ t

0

Ωn(s)ds+ 3u2t

∫ t

0

∥∇f(x̂n(α))−∇f(x∗
n(s))∥2ds,

(D.16)

where
a
≤ follows by equation [D.15] and Jensen’s inequality; in

b
≤ we use |1−um| ≤ 1 and substitute

the square norm by Ωn(s). To bound the second term in the last inequality, we have∫ t

0

∥∇f(x̂n(α))−∇f(x∗
n(s))∥2ds

≲
∫ t

0

∥∇f(xn(s))−∇f(x∗
n(s))∥2ds+

∫ t

0

∥∇f(x̂n(α))−∇f(xn(s))∥2ds

≤L2

∫ t

0

Ωn(s)ds+

∫ t

0

∥∇f(x̂n(α))−∇f(xn(s))∥2ds,

(D.17)
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where in the second inequality, we use the Lipschitz smoothness of f and ∥xn(t)− x∗
n(t)∥ ≤ Ωn(t).

By combining bound (D.16) and (D.17), we arrive at that

E∥xn(t)− xn − x∗
n(t) + x∗

n + vn(t)− vn − v∗
n(t) + v∗

n∥2

≲t
∫ t

0

EΩn(s)ds+ u2t

∫ t

0

E∥∇f(x̂n(α))−∇f(xn(s))∥2ds

≤h2
∫ h

0

1

h
EΩn(t)dt+ u2h

∫ h

0

E∥∇f(x̂n(α))−∇f(xn(s))∥2ds.

(D.18)

By (C.3), we have h2
∫ h

0
1
hEΩn(t)dt = h2Et∼unif[0,h]EΩn(t) ≲ h2Et∼ρEΩn(t).

When the Hessian of f is upper bounded by H , by (D.6), we have

E∥xn(t)− xn − x∗
n(t) + x∗

n + vn(t)− vn − v∗
n(t) + v∗

n∥2

≲h2Et∼ρEΩn(t) + u2h2
(
h2L2EΩn +

h2L

m
tr(H) + L2h2∥x∗∥2

)
≲h2EEt∼ρΩn(t) + h4EΩn + u2

h4L

m
tr(H) + h4∥x∗∥2,

which completes the first claim.

When the f is L2-Hessian smooth, by (D.7), we have

E∥xn(t)− xn − x∗
n(t) + x∗

n + vn(t)− vn − v∗
n(t) + v∗

n∥2

≲h2Et∼ρEΩn(t) + u2h2
(
h2L2EΩn +

h2LM

m
+ L2h2∥x∗∥2 + L2

2u
2h6d2

)
≲h2EEt∼ρΩn(t) + h4EΩn + u2

h4LM

m
+ h4∥x∗∥2 + L2

2u
4h8d2,

which establishes the second claim.

D.3 Bound of E∥Eβ∼ρ′Eα∼ρ′
(
∇f(xn(β))−∇f(x̂n(α))

)
∥2

Lemma D.5. Let xn(t) and x̂n(t) be defined as above and u = 1
L+m . Then,

(i) When Assumption 3.1 holds, and H be defined as Definition 3.2. Then

E∥Eβ∼ρ′Eα∼ρ′
(
∇f(xn(β))−∇f(x̂n(α))

)
∥2 ≲ h6L2Ωn +

h6L

m
tr(H) + h6L2∥x∗∥2.

(ii) When Assumptions 3.1, E.1 and E.2 hold, we have

E∥Eβ∼ρ′Eα∼ρ′∇
(
f(xn(β))−∇f(x̂n(α))

)
∥2

≲h6L2EΩn +
h6L

m
M + h6L2∥x∗∥2 + L2

2u
2h10d2.

Proof. Note that xn(t) depends on α. First, we have

E∥Eβ∼ρ′Eα∼ρ′∇
(
f(xn(β))−∇f(x̂n(α))

)
∥2

=E∥Eα∼ρ′
(
Eβ∼ρ′∇f(xn(β))− Eα∼ρ′∇f(x̂n(α))

)
∥2

=E∥Eα∼ρ′Es∼ρ′(∇f(xn(s))−∇f(x̂n(s)))∥2

≤EEα∼ρ′Es∼ρ′∥∇f(xn(s))−∇f(x̂n(s))∥2

=Eα∼ρ′Es∼ρ′E
[
∥∇f(xn(s))−∇f(x̂n(s))∥2|α, s

]
.
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Define H̄′′ =
∫ 1

0
∇2f(xn(s) + k(x̂n(s)− xn(s))) and recall that H̄′ =

∫ 1

0
∇2f(x̂n(α) + k(xn −

x̂n(α)))dk. And then E
[
∥∇f(xn(s))−∇f(x̂n(s))∥2

∣∣α, s] can be bounded by

E
[
∥∇f(xn(s))−∇f(x̂n(s))∥2

∣∣α, s]
=E

[
∥H̄′′(xn(s)− x̂n(s))∥2

∣∣α, s]
a
=E

[∥∥∥∥uH̄′′
∫ s

0

A12(t− s)(∇f(x̂n(α))−∇f(xn))dt

∥∥∥∥2
∣∣∣∣∣α, s

]
b
≤u2h4L2E

[
∥∇f(x̂n(α))−∇f(xn)∥2

∣∣α, s] ,
where a

= is by plugging in the close-form solution of xn(s) and x̂n(s);
b
≤ follows by A12(t− s) ≲ h

and the Lipschitz continuous of∇f .

E∥Eβ∼ρ′Eα∼ρ′∇
(
f(xn(β))−∇f(x̂n(α))

)
∥2

≲u2h4L2E∥∇f(x̂n(α))−∇f(xn)∥2

a
≲u2h4

(
h2L4EΩn +

h2L2

m
Etr(H̄′2) + h2L4∥x∗∥2 + uL2E

∥∥∥∥∫ α

0

A12(t− α)H̄′dBt

∥∥∥∥2
)

≲h6L2EΩn +
h6

m
Etr(H̄′2) + h6L2∥x∗∥2 + u3h4L2E

∥∥∥∥∫ α

0

A12(t− α)H̄′dBt

∥∥∥∥2 ,
where

a
≲ follows by (D.4). When ∇2f has a uniform upper bound H , we have

E∥Eβ∼ρ′Eα∼ρ′∇
(
f(xn(β))−∇f(x̂n(α))

)
∥2

≲h6L2EΩn +
h6

m
Etr(H̄′2) + h6L2∥x∗∥2 + uh7tr(H2)

≲h6L2EΩn +
h6L

m
tr(H) + h6L2∥x∗∥2,

where in the last inequality, we use that Etr(H̄′2) ≤ LEtr(H̄′) ≤ Ltr(H) and tr(H2) ≤ Ltr(H).

And when Assumptions E.1 and E.2 hold, by Lemma D.3,

E∥Eβ∼ρ′Eα∼ρ′∇
(
f(xn(β))−∇f(x̂n(α))

)
∥2

≲h6L2EΩn +
h6

m
Etr(H̄′2) + h6L2∥x∗∥2 + uh7LM + L2

2u
2h10d2

≲h6L2EΩn +
h6L

m
M + h6L2∥x∗∥2 + L2

2u
2h10d2.

E Local Hessian bound results

As discussed in Section 4.1, here we show that the uniform Hessian upper bound can be relaxed
to local trace control with an additional Hessian smooth assumption. Specifically, we make the
following assumptions on f .
Assumption E.1. f has a L2-Lipschitz Hessian.

Assumption E.1 is a standard assumption that frequently appears in the literature of optimization and
sampling [Ma et al., 2021, Dalalyan and Riou-Durand, 2020, Durmus and Moulines, 2019].
Assumption E.2. There exist M > 0 such that for all x ∈ R, tr(∇2f(x)) ≤M .

Assumption E.2 relax the uniform Hessian bound ∇2f(x) ⪯ H for x ∈ Rd under which we obtain
a convergence rate with tr(H). Assumption E.2 only requires that the trace of Hessian can be
controlled locally. Under Assumptions E.1 and E.2, the convergence of DRUL only has a weak
dimension dependency, as stated in Theorem E.3.
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Theorem E.3. For any tolerance ϵ ∈ (0, 1), denote the minimizer of U(x) by x∗. Assume that
Assumptions 3.1, E.1 and E.2 hold. Set the step size

h ≤ min

 1

12C2κ
,

ϵ2/3(
48C2κ

(
u2L
m M + ∥x∗∥2

))1/3 , ϵ2/7

(48C2L2
2u

4d2)
1/7

 ,

where C2 ≥ 1 is a universal constant. With initial point (x0,v0), define Ω0 =
Ex∼p,v∼N (0,u)

(
∥x0 − x∥2 + ∥x0 + v0 − v − x∥2

)
. Then under Assumptions 3.1, when

n ≥ 8eκ

h
log

(
2EΩ0

ϵ2

)
,

Algorithm 1 outputs xn such that W2(Law(xn), p) ≤ ϵ.

Without loss of generality, assume x∗ = 0. Then Theorem E.3 indicates a convergence rate of
Õ
(
M1/3ϵ−2/3 + d2/7ϵ−2/7

)
, which has a lower dimension dependency both in the sense of the

order of d and the relevant ϵ coefficient. When the Hessian of any x ∈ Rd has a dimension-free trace,
we arrive at a convergence rate of O

(
ϵ−2/3 + d2/7ϵ−2/7

)
.

E.1 Proof of Theorem E.3

In this section, we prove the convergence guarantee using the upper bound of the local Hessian trace.

Proof. We follow the notations in the proof of Theorem 4.2 in Appendix B.2. Similarly, denote the
error in (B.5) by

A = 2uhC1EEβ∼ρ′⟨xn(β)− x∗
n(β) + vn(β)− v∗

n(β),∇f(xn(β))−∇f(x̂n(α))⟩.

Then

A ≤2C1uhE⟨xn(β)− xn − x∗
n(β) + x∗

n + vn(β)− vn − v∗
n(β) + v∗

n,∇f(xn(β))−∇f(x̂n(α))⟩
+ 2C1uhE⟨xn − x∗

n + vn − v∗
n,Eα∼ρ′Eβ∼ρ′ (∇f(xn(β))−∇f(x̂n(α)))⟩

≲
uh

uh
E∥xn(β)− xn − x∗

n(β) + x∗
n + vn(β)− vn − v∗

n(β) + v∗
n∥2

+ u2h2E∥∇f(xn(β))−∇f(x̂n(α))∥2 +
h

u
uhE∥xn − x∗

n + vn − v∗
n∥2

+
u

h
uhE∥Eα∼ρ′Eβ∼ρ′(∇f(xn(β))−∇f(x̂n(α)))∥2

a

≲

(
h2EEt∼ρΩn(t) + h4EΩn + u2

h4LM

m
+ h4∥x∗∥2 + L2

2u
4h8d2

)
+ u2h2

(
h2L2EΩn +

h2L

m
M + L2h2∥x∗∥2 + L2

2u
2h6d2

)
+ h2EΩn

+ u2
(
h6L2EΩn +

h6L

m
M + h6L2∥x∗∥2 + L2

2u
2h10d2

)
≲h2EEβ∼ρΩn(β) + h2EΩn +

u2h4L

m
M + h4∥x∗∥2 + L2

2u
4h8d2,

where
a

≲ follows by Lemmas D.1, D.4 and D.5. We shall note that EΩn+1 = Eβ∼ρΩn(β). Combining
the above control with (B.5), we have

EΩn+1 ≤
Eβ∼ρe

− β
κ + C2h

2

1− C2h2
EΩn +

C2h
4

1− C2h2

(
u2L

m
M + ∥x∗∥2 + L2

2u
4h4d2

)
≤
(
1− h

6κ

)
EΩn + 2C2h

4

(
u2L

m
M + ∥x∗∥2 + L2

2u
4h4d2

)
,
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where the last inequality follows by the control (B.8) and the choice of hwhich satisfies 1−C2h
2 ≥ 1

2 .

Denote r = 1− h
6κ and E ′ = 2C2h

4
(

u2L
m M + ∥x∗∥2 + L2

2u
4h4d2

)
and therefore

EΩN ≤ rEΩN−1 + E ≤ rNEΩ0 + E(1 + r + · · ·+ rN−1) ≤ rNEΩ0 +
E

1− r
.

When N ≥ 6
κ log

(
2EΩ0

ϵ2

)
, we have

rNEΩ0 ≤ e
Nh
6κ EΩ0 ≤

ϵ2

2
. (E.1)

And when

h ≤ min

 ϵ2/3(
48C2κ

(
u2L
m M + ∥x∗∥2

))1/3 , ϵ2/7

(48C2L2
2u

4d2)
1/7

 ,

we get E
1−r ≤

ϵ2

2 . Together with the (E.1), we obtain the convergence rate in Theorem E.3.

Finally, we would say that the trace of Hessian should be a more realistic factor to characterize the
complexity of Langevin algorithms. Beyond the ridge separable functions described in Section 3.3,
we illustrate the Bayesian sampling over the two-layer neural network model and show that the neural
network also has a bounded trace under suitable conditions. Note that our convergence analysis cannot
be applied to this task since neural networks are non-convex models, and we leave the extensions of
analysis to the general non-log-concave case as future work.
Proposition E.4. Define f(W,w) = w⊤σ(W⊤x), where σ is the activation function. When
∥x∥1 ≤ r1, ∥w∥ ≤ r2 and σ′′(x) ≤ α, we have tr

(
∇2f(W,w)

)
≤ αr1r2.

Proof. By direct computation, we have

∂f

∂w
= σ(W⊤x),

∂f

∂W
=
(
σ′(W⊤x)⊙w

)
⊗ x,

∂2f

∂w2
= 0,

∂2f

∂W2
= Diag(σ′′(W⊤x)⊙w)⊗ x⊗ x.

Therefore,
tr
(
∇2f(W,w)

)
) = ∥x∥2 · tr

(
Diag(σ′′(W⊤x)⊙w)

)
≤ r21 · ⟨σ′′(W⊤x),x⟩
≤ αr1r2.

(E.2)
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