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ABSTRACT

Traditional data augmentation often applies uniform transformations across all
samples, prioritizing data volume over addressing specific model limitations. This
indiscriminate approach can lead to redundant data expansion and inefficient
training. We propose ExploreAugment, a novel model-aware data augmentation
framework that dynamically targets and refines decision-critical regions in the la-
tent space. Our method first identifies key samples using task-specific selection
strategies. Then, it leverages diffusion-based latent interpolation to generate sam-
ples that are boundary-ambiguous yet semantically valid. These tailored samples
are seamlessly integrated into training via a closed-loop pipeline that continuously
adapts to the evolving model state. Extensive experiments across multiple datasets
demonstrate that ExploreAugment consistently enhances task performance while
significantly reducing augmentation overhead. Notably, our approach outperforms
the best baseline by 7.14% on ResNet-50 and 1.75% on DeiT, achieving these
gains using only about 15% of the data volume generated by other augmentation
methods. This highlights the significant advantage of our boundary-aware, model-
driven augmentation for achieving data-efficient learning.1

1 INTRODUCTION

Data augmentation is a fundamental technique in modern machine learning, widely used to expand
training datasets, alleviate overfitting, and improve the generalization ability of models (Shorten &
Khoshgoftaar, 2019; Cao et al., 2024; Wang et al., 2024a; Chen et al., 2023). Currently, mainstream
augmentation methods can be broadly categorized into three types: simple augmentation, mixing-
based methods, and distribution-based augmentation. Simple augmentation methods(Krizhevsky
et al., 2012; Perez & Wang, 2017), such as flipping, cropping, and rotation, rely on basic transfor-
mations to increase data diversity. Mixing methods, like MixUp (Zhang et al., 2018), CutMix (Yun
et al., 2019), and their variants (Uddin et al., 2021; Guo et al., 2022; Wu et al., 2023; Shen et al.,
2024; Kim et al., 2025; Hu & Wu, 2024), combine existing data points through label mixing or re-
gion control, enhancing diversity while maintaining semantic consistency. Distribution-based aug-
mentation (Islam et al., 2024b;a; Tian & Shen, 2025; Zhan et al., 2024; Wang et al., 2024b), using
generative approaches such as GAN (Karras et al., 2019) and diffusion models (Rombach et al.,
2022), aims to create more realistic samples by altering the data distribution. These methods are
typically decoupled from model training and fail to dynamically capture the classifier’s weak or
uncertain regions. By indiscriminately prioritizing the generation of large volumes of data, they
sacrifice sample efficiency, producing an overwhelming number of samples that offer little value to
the model’s learning process. As a result, there is poor alignment between the generated samples
and the training objectives, leading to ineffective learning and excessive computational overhead.

Empirical observations reveal that the introduction of only small number of highly informative sam-
ples can lead to substantial performance improvements, far exceeding the gains achieved by an equal
number of randomly selected samples (Toneva et al., 2019; Paul & Feldman, 2021). This indicates
that the key to effective data augmentation is not simply increasing quantity, but rather targeted
enhancement of the model’s most vulnerable regions. Some critical samples exhibit nonlinear gain
effects: once properly identified and learned, they can significantly improve the model’s understand-
ing of decision boundaries.

1Code: https://anonymous.4open.science/r/ExploreAugment-3C0C
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Figure 1: Visual comparison of augmented
samples. ExploreAugment generates more
coherent and boundary-relevant images than
traditional strategies.
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Figure 2: Test accuracy gains versus number
of added samples, showing BECS and Cartogra-
phy outperform random sampling, especially with
fewer samples.

Motivated by the limitations of static augmentation, we propose a new paradigm—ExploreAugment,
an exploratory and model-guided data augmentation framework. Unlike conventional methods, Ex-
ploreAugment is dynamic, adaptive, and structure-aware: it begins with the current decision state
of the model, identifies uncertain or misclassified regions using model-driven indicators such as
prediction dynamics and feature similarity (Swayamdipta et al., 2020; Paul & Feldman, 2021), and
generates boundary-ambiguous yet semantically coherent samples. These samples are progressively
injected into training with incremental weighting, iteratively optimizing the decision boundary. As
shown in Figure 1, our method generates samples closer to class boundaries in latent space than
traditional augmentations, improving alignment with decision shifts and boosting efficiency in low-
data settings.

Our main contributions are summarized as follows:

• We propose a novel exploratory, model-aware data augmentation paradigm that breaks the
limitations of traditional static, model-independent approaches.

• We develop a boundary-aware augmentation framework, ExploreAugment, enabling auto-
matic identification of critical regions and targeted sample synthesis,

• ExploreAugment outperforms existing augmentation methods across diverse datasets, im-
proving accuracy over the best baseline by 7.14% and 1.75% under the ResNet-50 and
DeiT backbones, using only about 15% of the data volume generated by other augmenta-
tion methods.

2 RELATED WORK

2.1 DATA AUGMENTATION METHODS

Data augmentation is crucial for improving model generalization and can be broadly categorized
into simple augmentation, mixing-based methods, and distribution-based augmentation (Shorten &
Khoshgoftaar, 2019; Cao et al., 2024; Wang et al., 2024a; Chen et al., 2023). 1) Simple augmentation
methods, like flipping, cropping, and rotation (Krizhevsky et al., 2012; Perez & Wang, 2017), use
basic transformations to increase data diversity but are static and model-independent, often causing
redundancy and inefficiency. 2) Perturbation-based methods such as MultiMix (Shen et al., 2024),
GradMix (Kim et al., 2025), PatchMix (Hong & Chen, 2024), and DiffuseMix (Islam et al., 2024a)
improve over traditional MixUp/CutMix by incorporating structural or semantic cues. However,
they still apply global heuristics and lack adaptivity to model uncertainty, limiting their effective-
ness near decision boundaries. 3) Distribution-based augmentation leverages generative models like
StyleGAN (Karras et al., 2019), BigGAN (Brock et al., 2019), and Stable Diffusion (Rombach
et al., 2022) to synthesize diverse samples. Works such as LatentAugment (Tronchin et al., 2023),
Text2Img (He et al., 2022), and REAL-FAKE (Yuan et al., 2024) enhance data quality or diversity
via latent perturbation, text conditioning, or real-fake matching. Despite improved sample realism,
these methods remain static and model-agnostic, failing to address evolving model weaknesses.
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2.2 MODEL-GUIDED DATA SELECTION

Model-guided methods identify informative samples using model feedback, including confidence,
feature structure, and optimization objectives. Examples include coreset reconstruction (Yang et al.,
2024), bi-level optimization (Li et al., 2024), structure-aware selection (Zhang et al., 2024b), and
consistency-based filtering for LLMs (Lee et al., 2025). While effective, these methods passively
select from existing data and lack the generative capacity to explore new decision-critical regions.2

3 MOTIVATION

Although extensive research has focused on data augmentation to improve model performance, most
existing methods follow the paradigm of ”augmentation as transformation”, applying indiscriminate
strategies that treat all data points equally, without considering the semantic structure of the data or
the current state of the model. In fact, instead of insufficient data volume, the key bottleneck often
lies in regions with unclear decision boundaries.

Notably, previous studies have shown that a small number of samples close to the decision boundary
can significantly improve model performance, outperforming randomly selected samples of equal
quantity (Toneva et al., 2019; Paul & Feldman, 2021; Yang et al., 2024; Li et al., 2024; Zhang et al.,
2024b). We further validate this by adding equal amounts of boundary samples and random samples
to the training set and observing the trend of model performance. We use two selection strategies to
identify critical samples:

• Boundary-aware Entropy and Consistency Selection (BECS): Selects uncertain and
structurally representative samples based on a joint measure of predictive entropy and fea-
ture diversity.

• Dataset Cartography: Identifies ambiguous samples by analyzing training dynamics,
specifically those with high variability (Swayamdipta et al., 2020).

As shown in Figure 2, boundary samples lead to significantly higher accuracy improvements than
random sampling, demonstrating that targeted augmentation is more effective than merely increasing
data volume.

Motivated by these findings, we propose a novel model-guided data augmentation paradigm.
By identifying vulnerable decision regions through model feedback, we synthesize boundary-
challenging samples to enhance model performance. Instead of pursuing the expansion of data
volume, our methodology shifts to “enhancement of the most vulnerable parts of the model”, which
improves decision boundaries with less data and lays a groundwork for our model-aware augmenta-
tion framework.

4 METHOD

We propose ExploreAugment, a model-aware data augmentation framework designed to dynam-
ically strengthen classifier decision boundaries through targeted sample generation. As illustrated
in Figure 3, the framework follows a closed-loop process that integrates classifier feedback with
generative modeling in three stages.

The overall process of ExploreAugment is summarized in Algorithm 1. First, we identify key sam-
ples near decision boundaries using customized selection strategies based on model uncertainty and
latent space structure. Next, we leverage a pretrained diffusion model to synthesize boundary-
ambiguous yet semantically coherent images by interpolating between selected key samples in the
latent space. Finally, the generated samples are selectively injected into the training set, enabling
adaptive augmentation and progressive decision boundary refinement.

2A more detailed discussion of related work is provided in Appendix A.
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Algorithm 1 ExploreAugment: Model-Aware Data Augmentation Framework

Input: Training set Dtrain, classifier C, generator G (with encoder ϕ and decoder ψ), iteration
count T , key sample count K, interpolation factor α, selection strategy Sselect, initial training
epochs E0, fine-tuning epochs per round Et

Output: Final enhanced classifier C∗ trained with adaptive augmentation
1: Train C on Dtrain for E0 epochs
2: for t = 1 to T do
3: // Stage 1: Key Sample Identification
4: Evaluate all samples in Dtrain using classifier C
5: Extract feature embeddings for all samples
6: Apply the specified strategy Sselect (e.g., BECS or Dataset Cartography) to select top-K key

samples Skey
7: // Stage 2: Boundary Sample Generation
8: Map Skey to latent space and perform cross-class interpolation
9: Decode interpolated representations to obtain generated sample set Xgen

10: // Stage 3: Adversarial Fusion Training
11: Filter Xgen using classifier C
12: Assign training weights to selected samples
13: Augment training set: Daug ← Dtrain ∪Xgen
14: Fine-tune C on Daug for Et epochs
15: Dtrain ← Daug
16: end for
17: return C∗

Figure 3: Overall process of ExploreAugment. Stage 1 identifies critical samples under the current
model state based on specific selection strategies. Stage 2 maps the selected samples into the latent
space of a generative model under the guidance of the classifier, and performs interpolation between
samples from different classes to synthesize new samples near the decision boundaries. Stage 3
filters and reweights the generated data before adding them back for further training.

4.1 STAGE 1: KEY SAMPLE IDENTIFICATION

In classification, boundary samples often show high uncertainty and lie far from class centers in
latent space. We employ two flexible strategies to identify such informative regions for targeted
augmentation.

(1) BECS. Samples near classification boundaries often have high uncertainty and are far from
class prototypes. Relying on a single metric is insufficient: entropy may capture noise, while cosine
similarity may overlook ambiguous samples. Therefore, we propose a composite scoring function
that combines both metrics for a growing subset S of selected samples. The score of a sample xi is
defined as:

4
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Score(xi) = (1− α) · sim(xi) + α ·Hi, (1)

where
sim(xi) =

1

|S|
∑
xj∈S

fi · fj
∥fi∥∥fj∥

, (2)

and α ∈ [0, 1] is a trade-off coefficient between entropy Hi and structural similarity. A greedy
selection process 3 is applied to select the top-k samples per class with the highest composite scores.

(2) Dataset Cartography. Following Dataset Cartography (Swayamdipta et al., 2020), we track
per-sample prediction dynamics across epochs to identify unstable or uncertain samples. For each
training sample xi, let p(e)(y∗i |xi) be the model’s predicted probability for the ground truth class in
epoch e. We compute two metrics:

Confidence(xi) =
1

E

E∑
e=1

p(e)(y∗i | xi), (3)

Variability(xi) = std
(
{p(e)(y∗i | xi)}Ee=1

)
. (4)

Samples with high variability and low confidence are labeled as ambiguous and typically lie near
class boundaries. These samples serve as valuable guides for generation, enabling the classifier to
focus on decision-critical regions. 4

The two strategies offer alternative approaches for identifying informative samples and can be flexi-
bly adopted based on the characteristics and requirements of the target task. Experiments show that
for larger models such as ResNet-50, Dataset Cartography yields better results, while for smaller
models like ResNet-34, BECS performs more effectively.

4.2 STAGE 2: BOUNDARY SAMPLE GENERATION

Once key samples are identified, high-quality boundary images are generated via diffusion-based
interpolation. The process consists of three parts:

Latent Space Mapping. Given selected key samples from the downstream classifier, we map
their features from the classifier latent space Zc to the latent space of the pretrained Stable Diffusion
model Zs. We train a mapping function f : Zc → Zs

5, ensuring the generator can decode classifier-
aware representations into semantically meaningful images.

Latent Interpolation. For a selected pair (xa, xb) from different classes, we follow the latent
interpolation strategy proposed in DiffMorpher (Zhang et al., 2024a). Specifically, we first fine-tune
the diffusion model using LoRA to obtain sample-specific low-rank updates ∆θa and ∆θb for the
UNet parameters θ. Each LoRA ∆θi is trained to minimize the denoising loss on the VAE latent
embedding z0i of the input image xi:

L(∆θi) = Eϵ,t

[∥∥ϵ− ϵθ+∆θi

(√
ᾱtz0i +

√
1− ᾱtϵ, t, ci

)∥∥2
]
, i ∈ {a, b}, (5)

where ϵ ∼ N (0, I) is Gaussian noise, ci is the text embedding, and ϵθ+∆θi denotes the LoRA-
integrated UNet. Each ∆θi is optimized separately via gradient descent. Then compute a spherical
linear interpolation (Slerp) in the latent space:

x̂λ = Slerp(xa, xb;λ), θ̂λ = (1− λ) · θa + λ · θb. (6)

The pair (x̂λ, θ̂λ) is fed into the diffusion model to synthesize ambiguous samples near the semantic
boundary. Adjusting λ ∈ [0, 1] allows control over class similarity.

3The detailed algorithm can be found in Appendix B.
4The datamap of AFHQ is provided in Appendix C.
5Details of the mapping function f and its training procedure are provided in Appendix D.
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Label Assignment. Considering that generated images are obtained via interpolation in a latent
space specifically adapted through LoRA fine-tuning on the endpoint images, relying on classifier
outputs for pseudo-labeling can be unreliable. Instead, we assign hard labels based on proximity
in this adapted latent space: for a generated sample x̂λ, we determine its nearest neighbor among
the fine-tuned endpoint images, and assign the corresponding true label (e.g., ya if closer to xa).
Since the latent space is specifically optimized to capture the high-level semantics of these endpoint
images, nearest-neighbor assignment provides a robust and accurate labeling strategy.

4.3 STAGE 3: ADVERSARIAL FUSION TRAINING

To enable joint evolution of the classifier and generator, we introduce a progressive training scheme
that injects generated samples based on model state.

Dynamic Sample Injection. Only real samples are used in the initial stage of training. After
several epochs, key regions are identified, and new synthetic samples are added. We adjust their
contribution via a scheduling function w(t), implemented as a cosine ramp-up:

w(t) =


0, t < t0,
1
2

(
1− cos

(
π t−t0

Tramp

))
, t ∈ [t0, t0 + Tramp],

1, t > t0 + Tramp.

(7)

where t0 is the epoch at which synthetic sample injection begins, and Tramp controls the duration of
the ramp-up. The total training loss is defined as:

Ltotal = Lce(Dreal) + w(t) · Lce(Dsyn), (8)

ensuring that synthetic samples gradually influence learning, in alignment with the model’s uncer-
tainty and its evolving decision boundaries.

Auxiliary Selection Mechanism. To ensure the quality of synthetic samples, we introduce a two-
stage filter. First, select samples with classifier confidence in [pmin, pmax]:

X̂1 = {x̂i ∈ X̂ | pmin ≤ C(t)(x̂i) ≤ pmax}, (9)

whereC(t)(x̂i) denotes the confidence score given by the classifier at training epoch t for the sample
x̂i. Note that this confidence is different from the previously defined equation 3, as C(t)(x̂i) reflects
the confidence at a specific training epoch, while equation 3 measures the averaged confidence over
multiple epochs. Then compute gradient sensitivity:

si =

∥∥∥∥∂C(t)(x̂i)

∂x̂i

∥∥∥∥
2

. (10)

Select the top-k% most sensitive samples:

X̂ ′ = Top-k%
(
X̂1, si

)
. (11)

Finally, merge the selected set with the real data to form the training set for the next iteration:

D(iter+1)

train = D(iter)

train ∪ X̂ ′, (12)

This closed-loop feedback continuously adapts to the classifier’s decision bottlenecks, enabling
generator-classifier co-evolution. Unlike static pre-processing, generation becomes a dynamic part
of training.

In summary, ExploreAugment enables dynamic coordination between classifier and augmentation
through key sample discovery, boundary-aware generation, and progressive training. This approach
improves coverage of decision-critical regions, and remains flexible and model-adaptive.
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(a) ResNet-50 on AFHQ
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(b) ResNet-34 on AFHQ
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(c) ResNet-50 on Flowers
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(d) ResNet-34 on Flowers

Figure 4: Accuracy comparison under two sample selection strategies across different datasets and
model capacities. Strategy 2 performs better on the larger model (ResNet-50), while Strategy 1
shows advantages on the smaller model (ResNet-34), suggesting that strategy design should align
with model capacity.

Table 1: Top-1 accuracy and augmentation ratio (i.e.,
number of added samples relative to original data) of
different augmentation methods across datasets.

Method AFHQ Flowers Birds Pets Aug. Ratio

ResNet-50 backbone
Only real data 91.07 65.08 86.97 58.21 –
Cutout 93.00 68.57 90.02 65.72 1×
Random Erase 90.60 69.52 91.05 63.05 1×
Text2Img 91.47 70.16 88.57 66.20 0.6-1×
YONA 93.47 71.11 88.60 65.81 1×
DiffMix 92.73 66.10 93.73 65.84 0.6-1×
Ours (BECS) 95.73 70.79 94.13 68.97 0.1-0.2×
Ours (Cartography) 96.78 72.38 93.82 73.34 0.1-0.2×

DeiT backbone
Only real data 95.27 95.87 92.80 87.67 –
Cutout 98.47 96.51 93.64 89.07 1×
Random Erase 98.07 97.78 93.03 88.62 1×
Text2Img 99.20 91.11 93.68 88.80 0.6-1×
YONA 99.13 96.51 90.01 89.12 1×
DiffMix 99.40 94.92 92.84 88.55 0.6-1×
Ours (BECS) 99.67 97.46 95.43 89.89 0.1-0.2×
Ours (Cartography) 99.53 98.10 94.56 89.98 0.1-0.2×

(a) DiffMorpher generates semantically co-
herent latent space transitions.

(b) VAE interpolation resembles a simple
image blend.

Figure 5: Comparison of image interpola-
tion methods.

5 EXPERIMENT

5.1 EXPERIMENTAL SETTINGS

Datasets. We select diverse, fine-grained image classification datasets, including AFHQ (Choi et al.,
2020), Birds-525-Species (Kotha, 2023), Flowers (Nilsback & Zisserman, 2008), and Oxford Pets
(Parkhi et al., 2012). These datasets collectively cover various domains and category granularity,
validating the universality and stability of our method.

Model Architectures. We employ two representative backbones: ResNet (He et al., 2016) as a
classic CNN, and DeiT (Touvron et al., 2021) as a lightweight vision transformer, which allow us to
assess the adaptability of ExploreAugment across different model inductive biases.

5.2 MAIN RESULTS

Table 1 presents the Top-1 accuracy of various data augmentation methods across four benchmark
datasets using both ResNet-50 and DeiT backbones. Compared to conventional and recent augmen-
tation techniques such as Cutout, Random Erasing, Text2Img, YONA, and DiffMix, our proposed
ExploreAugment consistently achieves superior performance across all settings.

Under the ResNet-50 backbone, ExploreAugment yields the highest accuracy on all datasets. Specif-
ically, the BECS strategy improves upon the only real data baseline by up to +7.3% on the Flowers
dataset and +7.16% on Birds, demonstrating its effectiveness in addressing fine-grained recognition
tasks. Moreover, the Cartography-based variant further enhances performance, achieving 96.78%
on AFHQ and 73.34% on Pets, highlighting its capability to identify and enhance decision-critical
regions. These improvements are particularly significant on smaller or more challenging datasets,
where traditional augmentation methods offer limited gains.
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Figure 6: Visualizations of ExploreAugment. (a) Gradient response magnitudes for original, bound-
ary, and generated samples at different interpolation levels. (b) t-SNE visualization of sample groups
in latent space. (c) Semantic interpolation enables smooth transitions between classes.

Even with the DeiT backbone, which already benefits from global self-attention mechanisms, Ex-
ploreAugment still provides substantial improvements. BECS achieves 99.67% on AFHQ and
95.43% on Birds, surpassing all baselines. Cartography reaches the highest accuracy of 98.10%
on Flowers and 89.98% on Pets. These results show that even for transformer-based models, tar-
geted boundary-aware augmentation can yield additional performance gains.

Importantly, these improvements are achieved by adding only 10% to 20% new samples relative to
the original dataset size, significantly less than other methods such as Cutout or Text2Img, which
often require augmenting by 60% to 100% or more.6 This highlights the method’s efficiency in
delivering targeted performance gains with minimal data increase.

Overall, ExploreAugment outperforms both conventional and generative augmentation methods. It
leads to more informative samples, improved efficiency, and stronger model performance, highlight-
ing the benefits of dynamic, model-aware augmentation over static, quantity-driven approaches.

5.3 ABLATION STUDY

Comparison of Sample Selection Strategies. We compare two sample selection strategies under
equal training epochs, as shown in Figure 4. On the subset of AFHQ and Flowers datasets, Strat-
egy 1 slightly outperforms Strategy 2 when using the ResNet-34 backbone. However, Strategy 2
achieves better performance on ResNet-50. These results indicate that model capacity influences
the preference for sample selection, suggesting that strategy design should align with the model’s
representational capability.

Comparison of Image Generation Methods. Figure 5 shows samples generated by DiffMor-
pher (Zhang et al., 2024a), which produces smooth transitions between two input images and yields
boundary samples that naturally combine the semantic and visual traits of both endpoints. Compared
with a VAE-based linear interpolation baseline, which often results in simple blends lacking struc-
tural continuity and semantic consistency, DiffMorpher better captures continuous latent trajectories
and delivers superior visual quality and semantic coherence.

5.4 BOUNDARY UNDERSTANDING ANALYSIS

To better understand how our augmentation framework targets decision-critical regions, we conduct
a boundary analysis through gradient response visualization and latent space projection. Figure 6a
shows gradient responses for original, boundary, and generated samples across three augmentation
rounds. Boundary and generated samples exhibit stronger gradients than originals, indicating higher
sensitivity to the classifier’s decision function. Figure 6b visualizes their t-SNE projections, reveal-
ing a gradual shift toward the decision boundary and increasing semantic ambiguity. Figure 6c
illustrates interpolation trajectories where generated samples progressively approach the bound-
ary. These results confirm that ExploreAugment produces boundary-aware samples that refine the
model’s decision boundary.

6Detailed augmented sample configurations are provided in Appendix E.
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Figure 7: Performance analysis under different hyperparameters and augmentation strategies.

5.5 HYPERPARAMETER ANALYSIS

This section analyzes three key hyperparameters of ExploreAugment, the added samples per itera-
tion, iteration count, and boundary control parameter α, to guide practical parameter tuning.

Impact of Sample Quantity and Iteration Count. To evaluate ExploreAugment under different
settings, we tested how the number of generated samples per round and total iterations affect clas-
sification accuracy on an AFHQ subset using ResNet-50 (He et al., 2016). As shown in Figure 7a,
accuracy steadily improves with more iterations (e.g., adding 10 samples per round raises accuracy
from 79.33% to 84.93%), but exceeding 50 samples per round slightly degrades performance due to
noise or redundancy. We recommend 4–5 rounds with each round adding about 3–5% of the original
training size to balance performance and efficiency.

Effect of Boundary Control Parameter α. We further analyze the impact of the boundary con-
trol parameter α shown in equation 1, which regulates how close the generated samples are to the
classifier decision boundary in latent space. We test α ∈ {0.5, 0.7, 0.9} across 1 to 5 rounds of aug-
mentation, as shown in Figure 7b. α = 0.7 yields the best accuracy with steady improvement, while
α = 0.5 is stable but slightly lower, and α = 0.9 performs worst, showing that overly strict bound-
ary constraints hinder latent exploration. We recommend α = 0.7 to balance boundary alignment
and generative diversity.

5.6 SAMPLE EFFICIENCY EVALUATION

To assess the efficiency of different augmentation strategies, we compare classification performance
with respect to the number of added samples. As shown in Figure 7c, our method achieves superior
performance using significantly fewer samples compared to conventional approaches.

On the subset of the AFHQ dataset with the ResNet-50 backbone, BECS and Cartography achieve
accuracies of 95.73% and 96.78%, outperforming Cutout at 93.00%. Remarkably, our methods
use only 10% and 16.7% of the sample volume required by Cutout, yet deliver over 2.7 and 3.7
percentage points of improvement, respectively. Similarly, compared to Text2Img, which attains
91.47%, our methods achieve significantly higher accuracy with just 15% of the sample size.

These results show that samples generated by ExploreAugment are substantially more informative
than those from traditional or generic generative methods. Notably, other methods fail to improve
performance even when generating far more images, indicating a clear performance ceiling. Our
approach requires only a modest increase in generation time but delivers meaningful accuracy gains
by focusing on decision-critical regions near the classifier’s boundary7.

6 CONCLUSION

We introduced ExploreAugment, a model-aware data augmentation framework that improves classi-
fier performance by focusing on decision boundary regions. By combining key sample identification,
diffusion-based boundary sample generation, and adversarial fusion training, ExploreAugment gen-
erates semantically coherent and informative samples that challenge the classifier. This closed-loop
design adapts augmentation based on model uncertainty, refining decision boundaries. Experiments
demonstrate the effectiveness of our approach in balancing sample quality and quantity. Future
work includes extending ExploreAugment to multimodal latent spaces and integrating it with active
learning to optimize sample generation and selection.

7Further experimental details are provided in Appendix F.
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APPENDIX

A RELATED WORK

DATA AUGMENTATION METHODS

Data augmentation plays a critical role in improving model generalization and robustness by arti-
ficially enlarging the training set and exposing models to richer variations of the data distribution.
Existing approaches can be broadly categorized into simple augmentation, mixing-based perturba-
tion, and distribution-based generation (Shorten & Khoshgoftaar, 2019; Cao et al., 2024; Wang
et al., 2024a; Chen et al., 2023), each of which focuses on different aspects of sample diversity.
Table 2 summarizes the representative methods and their key characteristics.

Simple augmentation methods apply basic transformations to increase data diversity but remain
static and model-independent. Typical operations such as flipping, cropping, rotation, and color
jittering (Krizhevsky et al., 2012; Perez & Wang, 2017) enrich low-level variations and reduce over-
fitting, thereby improving baseline accuracy in many vision tasks. However, these transformations
merely manipulate superficial appearance without exploiting semantic relationships among samples
or adapting to the model’s current decision state. Consequently, they often lead to redundant sam-
ples and provide limited performance gains once the model has been exposed to a sufficiently varied
dataset.

Perturbation-based augmentation enhances data diversity by creating synthetic samples through
controlled perturbations of existing data. Recent techniques extend classic mixup strategies by incor-
porating structural priors or adaptive selection. For example, MultiMix (Shen et al., 2024) generates
multiple interpolations per sample pair to stabilize optimization and enrich intermediate represen-
tations, while GradMix (Kim et al., 2025) leverages gradient-based selection to perform adaptive
MixUp that is particularly effective in class-incremental learning scenarios. PatchMix (Hong &
Chen, 2024) operates at the patch level, mixing local regions across images to simultaneously en-
hance local feature robustness and preserve global semantics. Another representative approach,
DiffuseMix (Islam et al., 2024a), integrates diffusion models to refine mixup outputs and enforce
structural consistency in the synthesized images. Although these methods substantially improve on
earlier mix-based strategies through structural or semantic guidance, they generally remain unaware
of the downstream model’s evolving decision boundary and thus fail to specifically target semanti-
cally ambiguous or decision-critical regions during training.

Distribution-based augmentation has received increasing attention in recent years with the rapid
advancement of generative models. State-of-the-art generators such as StyleGAN (Karras et al.,
2019), BigGAN (Brock et al., 2019), and Stable Diffusion (Rombach et al., 2022) can synthesize
high-fidelity and diverse images that closely match the distribution of real data, enabling effective
dataset expansion and improved performance in long-tailed or low-resource scenarios. Building
on these capabilities, LatentAugment (Tronchin et al., 2023) perturbs latent representations in pre-
trained generative models to produce high-value samples near class boundaries, where discrimi-
native information is most critical. Text2Img (He et al., 2022) explores the use of text-to-image
generative models to create labeled training data and systematically evaluates the impact of prompt-
driven synthesis on image recognition tasks. REAL-FAKE (Yuan et al., 2024) further improves
distributional relevance by constructing real–fake pairs that closely match the statistics of true data,
thereby enhancing both sample diversity and model relevance. Despite their impressive ability to
generate visually diverse and realistic samples, most generative augmentation methods still focus on
global data diversity rather than being guided by the model’s current decision weaknesses, limiting
their ability to target the most informative or uncertain regions of the input space.

MODEL-GUIDED DATA SELECTION

Complementary to augmentation, a growing body of research explores leveraging model signals
and training dynamics to guide the selection of valuable samples. Such approaches aim to iden-
tify data points that are most informative for improving model performance or refining decision
boundaries, thereby reducing training cost without sacrificing accuracy. For example, Boundary-
Set(Yang et al., 2024) propose a coreset selection method that explicitly reconstructs the decision
boundary, achieving over 50% data reduction on ImageNet-1K with minimal accuracy loss. Bound-
ary matters(Li et al., 2024) design a bi-level optimization framework that jointly balances sam-
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Table 2: Comparison of representative methods. ✓ denotes full support, (✓) denotes partial support,
and — denotes no support.

Method Model-Aware Generative Boundary-Targeted Adaptive Sample Efficiency

Flipping/Cropping — — — — —
MultiMix (✓) — — (✓) (✓)
GradMix ✓ — (✓) ✓ (✓)
PatchMix (✓) — — (✓) (✓)
DiffuseMix (✓) ✓ — (✓) (✓)
StyleGAN — ✓ — — —
BigGAN — ✓ — — —
Stable Diffusion — ✓ — — —
LatentAugment — ✓ (✓) — (✓)
Text2Img — ✓ — — —
REAL-FAKE — ✓ (✓) — (✓)
BoundarySet ✓ — ✓ ✓ ✓
Boundary matters ✓ — ✓ ✓ ✓
CDS ✓ — ✓ ✓ ✓
Dataset Cartog. ✓ — (✓) ✓ ✓
ExploreAugment (ours) ✓ ✓ ✓ ✓ ✓

ple diversity and boundary uncertainty, effectively selecting informative samples for fine-tuning in
resource-constrained settings. The “Contributing Dimension Structure” (CDS) approach (Zhang
et al., 2024b) measures the structural importance of deep feature dimensions to improve coreset rep-
resentativeness and maintain class balance. In addition, recent work extends dataset cartography to
large-scale language data, where mean–variance training dynamics are used to identify high-quality
alignment samples for large language models (Lee et al., 2025). These methods demonstrate that
model-informed selection can substantially enhance training efficiency and performance by focusing
learning on decision-critical data.

However, while these strategies are highly effective for identifying boundary or ambiguous exam-
ples, they operate passively over existing data and lack the ability to actively synthesize informative
samples in unexplored semantic regions. ExploreAugment addresses this gap by combining key
sample selection with generative modeling to create cross-boundary samples and establish a closed-
loop training system that co-evolves the model and its training data, thereby unifying the strengths
of targeted selection and data generation.

B BECS ALGORITHM

As shown in Algorithm 2, during the sample selection process, for each class c, we aim to identify k
representative boundary-neighborhood samples. Initially, a single seed sample is randomly selected
from all samples of class c and added to the selected set Sselected. Then, the algorithm iteratively
selects additional samples from the remaining candidates in class c, based on a combined scoring
function.

This scoring function considers two factors:

• Mean cosine similarity: Measures the average similarity between a candidate sample and
all samples already in the selected set, capturing how different the candidate is from already
selected ones.

• Predictive entropy: Reflects the uncertainty of the candidate and its proximity to the de-
cision boundary.

By jointly considering diversity and uncertainty, the sample with the highest combined score is
added to the set in each iteration, until k samples are selected. This process is repeated independently
for all classes, resulting in a final set of selected samples S used for downstream augmentation or
training.
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Algorithm 2 Boundary-aware Entropy and Consistency Selection

Input: Feature set F = {f1, . . . , fn}, entropy values H = {H1, . . . ,Hn}, labels Y =
{y1, . . . , yn}, number of classes C, per-class sample count k, trade-off coefficient α
Output: Selected sample set S

1: Initialize S ← ∅
2: for c = 1 to C do
3: Xc ← all samples with label c
4: Randomly select one seed sample x0 ∈ Xc and initialize Sc ← {x0}
5: while |Sc| < k do
6: for each xi ∈ Xc \ Sc do
7: get mean cosine similarity by equation 2
8: compute Score(xi) by equation 1
9: end for

10: Add sample with highest score to Sc

11: end while
12: Add Sc to S
13: end for
14: return S

C DATAMAP CONSTRUCTED VIA DATASET CARTOGRAPHY

Figure 8 presents the data map constructed using training dynamics on the AFHQ dataset. The
horizontal axis denotes sample variability, measured as the variance of predicted confidence across
epochs, reflecting the stability of the model’s predictions during training. The vertical axis shows the
average confidence, representing the model’s overall certainty for each sample. Based on these two
metrics, the data map reveals three characteristic regions. Samples in the top-left area are easy to
learn, with high confidence and low variability, indicating that the model consistently predicts them
correctly with high certainty. In contrast, hard-to-learn samples cluster in the bottom-left, showing
both low confidence and low variability; these are often misclassified in a consistent manner, pos-
sibly due to label noise or inherent ambiguity. Ambiguous samples appear in the top-right region,
characterized by moderate-to-high confidence but high variability, suggesting unstable predictions
and proximity to decision boundaries.

In addition to the 2D distribution, histograms on the right visualize the marginal distributions of
confidence, variability, and correctness. Most samples exhibit high average confidence, while vari-
ability tends to stay below 0.5, indicating generally stable training. The correctness histogram shows
a bimodal pattern, with peaks near 0 and 1, reflecting a mixture of consistently correct and incorrect
samples. This structure highlights the existence of both typical and boundary-challenging samples,
offering valuable guidance for designing informed augmentation strategies.

D MAPPING FUNCTION ARCHITECTURE AND TRAINING DETAILS

Architecture. The mapping function f : Zc → Zs is implemented as a multilayer perceptron
(MLP) with several fully connected layers, each followed by LayerNorm and ReLU activation to
enhance nonlinear representation capability and stabilize gradient propagation. The network takes
feature embeddings from the downstream classifier latent space Zc as input and outputs vectors with
the same dimensionality as the Stable Diffusion VAE latent space Zs.

Training Strategy. To ensure high-quality mapping, we propose a dual statistical alignment
scheme. During training, we jointly minimize the mean squared error (MSE) between the mapped
distribution’s mean µ̂s and the reference mean µs of the Stable Diffusion VAE, as well as the MSE
between the mapped log–variance log σ̂2

s and the reference log σ2
s :

L = MSE(µ̂s, µs) + γ MSE(log σ̂2
s , log σ

2
s), (13)

where γ balances the mean and variance constraints (commonly set to γ = 0.5). During optimiza-
tion, both the classifier and the Stable Diffusion VAE are kept frozen, and only the parameters of the
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Figure 8: Training dynamics based data map on the AFHQ dataset with ResNet-50.

mapping network are updated to preserve the original semantic structures of the latent spaces. Train-
ing uses the Adam optimizer with an early stopping strategy to monitor validation loss. LayerNorm
and GELU activations are applied in every MLP layer to suppress gradient explosion or vanishing,
while weight decay is introduced to further improve generalization.

E EXPERIMENTAL DETAILS

Augmented Sample Settings Across Different Methods. As shown in Table 3, our proposed
augmentation strategies, ExploreAugment with BECS and Cartography, require substantially fewer
additional samples than traditional methods. Specifically, the number of generated samples is only
about 0.10∼0.18× of the original training set, while methods like Cutout, Random Erase, and YONA
expand the dataset by 1.0×, effectively doubling the sample count. Despite using far fewer generated
samples, our methods achieve comparable or even superior performance on multiple datasets.

For example, on the Birds dataset with 84,635 original samples, BECS generates only about 13,520
new samples (approximately 16% of the original size), while Cutout and Random Erase add 84,635
samples each. Similarly, on the Pets dataset with 5,177 original samples, our methods generate
only around 515 to 618 samples, significantly fewer than the 5,177 additional samples from other
methods. Despite this drastic reduction in augmented data volume, our methods consistently achieve
comparable or even superior model performance, highlighting their higher sample efficiency.

This efficiency stems from the targeted nature of our augmentation strategy, which focuses explicitly
on ambiguous and decision-critical regions in the latent space. By avoiding redundant or low-value
transformations and instead generating a small number of highly informative samples, our approach
makes better use of the model’s capacity. These results underscore the practical advantage of sample-
efficient augmentation, especially in scenarios where labeled data are limited.

Model Architecture and Hyperparameters. This study employs two mainstream classifier ar-
chitectures: ResNet-50 and DeiT.

We use the classic ResNet-50 deep convolutional neural network with 3 input channels. The number
of output classes varies by dataset (e.g., 525 classes for the Birds dataset). The model is trained for
200 epochs using the Adam optimizer with an initial learning rate of 0.0001 and a weight decay of
1e-4. The learning rate scheduler is ReduceLROnPlateau, which dynamically adjusts the learning
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Table 3: Number of augmented and total training samples across datasets and methods, along with
the augmentation ratio relative to the original training set.

Method Augmented Total Ratio Method Augmented Total Ratio

AFHQ (Train: 14630) Flowers (Train: 6552)
only real data – 14630 0× only real data – 6552 0×
cutout 14630 29260 1× cutout 6552 13104 1×
random erase 14630 29260 1× random erase 6552 13104 1×
text2img 10000 24630 0.68× text2img 6120 12672 0.93×
YONA 14630 29260 1× YONA 6552 13104 1×
diffmix 10000 24630 0.68× diffmix 4000 10552 0.61×
ours (BECS) 1752 16382 0.12× ours (BECS) 1048 7600 0.16×
ours (Cartography) 2628 17258 0.18× ours (Cartography) 1048 7600 0.16×
Birds (Train: 84635) Pets (Train: 5177)
only real data – 84635 0× only real data – 5177 0×
cutout 84635 169270 1× cutout 5177 10354 1×
random erase 84635 169270 1× random erase 5177 10354 1×
text2img 62080 146715 0.73× text2img 5123 10300 0.99×
YONA 84635 169270 1× YONA 5177 10354 1×
diffmix 50781 135416 0.60× diffmix 5177 10354 1×
ours (BECS) 13520 98155 0.16× ours (BECS) 515 5692 0.10×
ours (Cartography) 11830 96465 0.14× ours (Cartography) 618 5795 0.12×

rate based on validation performance, with a decay factor of 0.6 and patience of 10 epochs. The
batch size is set to 512. Early stopping is applied with a patience of 200 epochs. Pretrained weights
can be optionally loaded.

Another setup uses the Vision Transformer variant DeiT Tiny, trained for 100 epochs with batch
size 512, Adam optimizer, and similar learning rate and scheduling parameters. The number of
output classes varies by dataset, and pretrained weights are loaded.Both models utilize the standard
cross-entropy loss function.

Data Augmentation and Auxiliary Modules. The interpolation-based augmentation module
DiffMorpher enables adaptive instance normalization (AdaIN) and rescheduling mechanisms, with
an interpolation depth of 5 frames. The Cartography module is used for identifying critical samples,
filtering approximately 10% of the training set based on the threshold closeness metric, enabling
dynamic sample selection and analysis during training. In the BECS configuration, the boundary
control parameter α is set to 0.7, which regulates the proximity of the generated samples to the
classifier’s decision boundary in latent space.

F COMPARISON WITH TRADITIONAL AUGMENTATION UNDER PERFORMANCE CEILING

This experiment aims to highlight the clear gap between ExploreAugment and traditional augmen-
tation methods by verifying that common transformations quickly hit a performance ceiling even
when the amount of generated data is greatly increased. We construct a small, class-balanced subset
of the AFHQ dataset to simulate a low-data regime.

Four widely used augmentation methods, Horizontal Flip (HFlip), Random Crop, Rotation, and
ColorJitter, are compared with ExploreAugment. For each method, we vary the augmentation
multiplier:

AUG MULTIPLIERS ∈ {1, 2, 3, 4, 5}, (14)

where a multiplier k indicates that the augmented training set contains k times the number of original
samples. All methods are trained with the same classifier backbone, optimizer, and training schedule
to ensure a fair comparison.

As shown in Figure 9, traditional augmentations quickly plateau after a multiplier of 2–3, with top-1
accuracy gains stalling around 45–57% despite continued dataset expansion. For instance, even at
a 5× multiplier, Horizontal Flip, Random Crop, and Rotation remain below 50.5%, and ColorJitter,
though the strongest baseline, stops near 57.52%. In sharp contrast, ExploreAugment consistently
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Figure 9: Performance Comparison of Different Augmentation Methods.

outperforms all baselines at every multiplier, starting from 48.53% at 1× and steadily climbing
to 68.80% at 5×, showing continuous accuracy improvements where other methods saturate. In
particular, ExploreAugment exceeds the best performance of all traditional methods even when
generating fewer samples, highlighting its superior efficiency and effectiveness.

These results demonstrate that merely scaling up conventional transformations cannot overcome
their inherent performance ceiling, whereas ExploreAugment leverages boundary-aware generation
to achieve sustained performance gains with only a modest increase in computational cost.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were employed solely to aid or polish the writing of this paper, such as improving gram-
mar, refining sentence structure, and enhancing clarity and readability, without altering the technical
content.

ETHICS STATEMENT

Our research focuses on algorithmic methods for data augmentation and does not involve human
subjects, personally identifiable information, or sensitive data. All datasets used are publicly avail-
able and have been widely adopted in prior research, with usage fully compliant with their respective
licenses. No harmful insights, privacy risks, or security concerns are introduced by our methods. We
have made every effort to ensure fairness, transparency, and research integrity throughout the study.

REPRODUCIBILITY STATEMENT

We have taken extensive steps to ensure the reproducibility of our work. All model architectures,
training configurations, and hyperparameter settings are described in detail in Sections 4–5 of the
main paper, with additional experimental settings provided in Appendix B–E. An anonymous imple-
mentation of our method, including training scripts and instructions, is linked in the main text, and
code of the proposed algorithms is provided in the supplementary materials to facilitate replication
of our results.
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