ProRefine: Inference-time Prompt Refinement with Textual Feedback

Anonymous ACL submission

Abstract

Agentic workflows, where multiple Al agents
collaborate to accomplish complex tasks, are
becoming increasingly prevalent. However,
these workflows often suffer from error propa-
gation and sub-optimal performance, largely
due to poorly designed prompts that fail to
effectively guide individual agents. This is
a critical problem because it limits the reli-
ability and scalability of these powerful sys-
tems. We introduce ProRefine, an innovative
inference-time prompt optimization method
that leverages textual feedback from large lan-
guage models (LLMs) to address this challenge.
Without additional training or ground truth la-
bels, ProRefine dynamically refines prompts
for multi-step reasoning tasks. Evaluated on
object counting, word sorting, and grade-school
math problems, ProRefine significantly sur-
passes zero-shot Chain-of-Thought baselines
by 3 to 43 percentage points. This approach not
only boosts accuracy but also allows smaller
models to match the performance of larger ones,
highlighting its potential for efficient, scalable
Al deployment, and democratizing access to
high-performing Al

1 Introduction

A critical condition for the advancement of artifi-
cial intelligence (Al) is that Al outputs align with
human values (Feng et al., 2024). Human feed-
back, a scarce and subjective resource (Gray and
Suri, 2019; Kahneman et al., 2021; Weerasooriya
et al., 2023; Prabhakar et al., 2024), plays a vi-
tal role. LLMs, trained on vast datasets, utilize
alignment techniques to generate more human-like
and accurate responses (Rao et al., 2023; Sorensen
et al., 2024; Kirk et al., 2024). Traditional meth-
ods employ Reinforcement Learning from Human
Feedback (RLHF) (Christiano et al., 2017), with
Proximal Policy Optimization (PPO) (Schulman
et al., 2017) being a popular choice for fine-tuning
LLMs.

Recent research has explored using LLMs as
judges and evaluators (Zheng et al., 2023; Chiang
and Lee, 2023; Wang et al., 2023; Liu et al., 2023;
Bavaresco et al., 2024; Li et al., 2024). Building
on use of LLMs to judge outputs, are compound
systems that use LL.Ms to generate feedback / cri-
tiques (Saunders et al., 2022; Pryzant et al., 2023).
Akyurek et al. (2023) and (Wadhwa et al., 2024)
explore agentic frameworks to detect, critique, and
refine tasks that require factual correctness. An-
other approach is to iteratively refine output us-
ing self-generated feedback (Madaan et al., 2023).
TextGrad (Yuksekgonul et al., 2024) introduced
automatic “differentiation” via text, using textual
feedback to optimize the performance of individual
components within a compound Al system. See
additional related work in Appendix A.1.

Our work focuses on optimizing the prompt, a
key element in chain-of-thought (CoT) (Wei et al.,
2022) based LLM reasoning. CoT mimics hu-
man problem-solving by breaking down complex
tasks into smaller, manageable steps. The sys-
tem we introduce here, ProRefine, (Inference-time
Prompt Refinement with Textual Feedback) builds
upon CoT by adaptively self-improving prompts
using feedback (LLM feeqpack) and an optimizer
(LLMoptimizer) to refine prompts for the task-
performing LLM (L L M,). This process is moti-
vated by the teacher-student framework (Torrey and
Taylor, 2013) where a teacher agent guides a stu-
dent agent to perform a task by providing feedback
at intermediate steps. We explore policy optimiza-
tion for aligning compound Al systems, drawing
inspiration from TextGrad and policy gradient al-
gorithms like PPO.

While prior work has explored prompt optimiza-
tion (Shin et al., 2020; Deng et al., 2022; Yang
et al., 2024; Dong et al., 2024), they all required
there to be training examples in order to produce
task-specific prompts. By contrast, ProRefine is
task agnostic and requires no additional training

Query: | have a lettuce head, a stalk of celery, two
yams, a cauliflower, a carrot, two onions, two potatoes,
and three cabbages. How many vegetables do | have?

Answer: 13

Initial prompt: You will answer a reasoning question.
Think step by step. The last line of your response
should be of the following format: 'Answer: $VALUE'
where VALUE is a numerical value.

Initial answer: 7
Intermediate model output (0): To find the total

number of vegetables, we need to count each type of
vegetable

Feedback (f): Incorrect assumption. The task is to find
the total number of individual vegetables, not just
count the types. Instead, focus on counting the
quantities of each vegetable and summing them up.

Optimized prompt (p*): You will answer a reasoning
question. Think step by step. To find the total count of
individual vegetables, count the quantities of each
vegetable separately and sum them up. Then, provide
the final numerical value. The answer should include
the total count of individual vegetables, not just the
types. Include the total count in the format \"There are
X individual vegetables.\" The last line of your
response should be of the following format: 'Answer:
$VALUE' where VALUE is a numerical value.

Final answer: 13

Figure 1: Example of ProRefine system in action, high-
lighting the utility of feedback in prompt optimization.
More examples in Appendix (Figure 5).

or ground-truth labels. ProRefine is an inference-
time optimization method that relies on the ability
of LLMs to provide and act upon feedback for
optimization, see Figure 1 for an example. ProRe-
fine’s ability to break complex tasks into smaller
steps and self-improve using feedback makes it
a practical solution for multi-step agentic work-
flows. This method is also suitable for black-box
LLMs, where the internal parameters are inacces-
sible. To demonstrate the effectiveness of ProRe-
fine, we evaluate our method across benchmark
reasoning-based datasets.

Key Contributions:

* We propose a novel method - ProRefine for
inference-time prompt optimization using tex-
tual feedback.

* We evaluate ProRefine on three datasets:
object counting, word sorting, and grade-
school math problem-solving and compare
our method against CoT.

LLMoptimizer Feedback (f) «—— LLMfeedback

Initial
Prompt (p)

Updated
prompt (p*)

LLMtask

Output (o)

Figure 2: Overview of the ProRefine system, illustrat-
ing the iterative process of prompt optimization using
feedback from LLMs in an agentic workflow.

2 ProRefine

ProRefine is an inference-time prompt optimiza-
tion algorithm that optimizes prompts by using
textual feedback. ProRefine involves interactions
between three LLMs:

LLM;,s,: Executes the task based on the cur-
rent prompt, generating the initial and subsequent
outputs.

LLM§cedpack: A more capable model that cri-
tiques the L LM, s output, providing detailed
feedback on improvements. This model needs to
be strong enough to provide insightful and accurate
critiques (Saunders et al., 2022; Bai et al., 2022).
LLMptimizer: Interprets the feedback and re-
fines the prompt, aiming for coherent and task-
focused improvements. This LLM is crucial for
ensuring the prompt evolves effectively.

ProRefine (Algorithm 1) works as follows:

Algorithm 1: ProRefine
Input: Query: g, Initial prompt: p,
tokens_per_step: k, max_steps: n,
LLMs: LLMtask, LLMfeedbacka
LLMoptimizer
Output: Optimized prompt: p*
pr=p
for: =1tondo
0; = LLM,,s1(p*,q) // Generate
1 x k tokens
Ji= LLMfeedback(q’ Oi) // Get
feedback
px = LLMoptimizer(p*’ fz)
// Optimize the prompt
if EFOS_token in o; then
| L break

return p*

Initialization: Start with an initial prompt p for
the task, a query ¢, and parameters defining the

generation and optimization process (k tokens per
step, n maximum steps).

Generation and Feedback Loop:

e Generation: Use LLM;,s to generate an
output based on the current prompt p* and
query q. This step is limited to k tokens to
control the granularity of feedback.

 Feedback: LLMfccqpack evaluates the gener-
ated output o; against the query g to provide
textual feedback f;. This feedback encapsu-
lates how the output could be improved, fo-
cusing on aspects such as accuracy, relevance,
or coherence.

» Optimization: LLM,,timizer uses the feed-
back f; to refine the prompt p*. This step
involves modifying the prompt to better align
with the task requirements or to correct identi-
fied deficiencies in previous generations.

Termination: The process iterates until either
the maximum number of steps n is reached or an
end-of-sequence (EOS) token is detected in the
output, indicating the completion of the task.

2.1 Implementation Details

The granularity and duration of the optimization
process are controlled by parameters k (tokens per
step) and n (maximum steps). These parameters
can be tuned based on task complexity and desired
output quality.

2.2 Improvements

We propose two modifications aimed at increasing
the efficiency and performance of ProRefine. Cur-
rently, ProRefine is executed on all queries sent to
LLM;,si, even when LL M, produces a correct
output. To optimize this process, we suggest the
following two approaches:

First, we propose using an LLM to evaluate the
output generated for each query. This evaluation
LLM, while not perfect and lacking ground truth,
serves to assess whether the output produced by
L LM, is correct. If the evaluation LLM deems
the output incorrect, ProRefine is executed, oth-
erwise, the output is used as is. We refer to this
method as ProRefine (LM).

Second, in cases where a “perfect” evaluator
exists such as with many mathematical problems,
where verifying a candidate solution is easier than
deriving the correct answer, we can leverage this

evaluator to judge the output of LLM;,.;. To
simulate this scenario, we compare the output of
LLM;,s, against the ground-truth. We refer to this
method as ProRefine (GT).

3 Experiments and Evaluation

3.1 Data

We evaluate ProRefine on three reasoning tasks,
each of which involves multi-step reasoning, mak-
ing them suitable for evaluating prompt optimiza-
tion in agentic workflows: object counting and
word sorting from the BIG-Bench Hard bench-
mark (100 test examples each; (Srivastava et al.,
2023)), and grade-school math problem-solving
from GSM8K (1319 test examples; (Cobbe et al.,
2021)). We use the same dataset splits and evalu-
ation as Yuksekgonul et al. (2024). Refer to Ap-
pendix Figure 4 for the system and task prompts
we use for each dataset.

3.2 Results

We report results with three models - Llama3.2-1B-
instruct, Llama3.2-3B-instruct, and Llama3.1-8B-
instruct (Meta, 2024) for L L M, .. The prompts
are optimized using Algorithm 1, with Liama3.1-
70B-instruct used for feedback generation, prompt
optimization, and evaluation. We select the val-
ues of hyperparameters £ = 10 and n = 25 to
control the granularity of feedback and duration
of optimization. We compare the performance of
our method against the zero-shot Chain-of-Thought
(CoT) baseline and report test accuracy with 95%
confidence interval. The results are shown in Fig-
ure 3. For complete tabular results, refer to Ap-
pendix Table 1.

Our results show that ProRefine is able to signifi-
cantly improve the performance of all the L L My,
models as compared to the zero-shot CoT base-
line. For object counting, the performance is im-
proved by 3 — 21 percentage points with significant
improvement observed for Llama3.2-3B-instruct
and Llama3.1-8B-instruct. For word sorting, the
performance gain ranges from 8 — 43 percentage
points with significant results observed for all the
models. For GSM8K, the maximum performance
gain is 27.5 percentage points with significant im-
provement observed for all the models however a
slight performance drop (0.012) is also observed for
ProRefine with Llama3.2-3B-instruct. It is notewor-
thy that the number of significant results increase
with model size.

Test Accuracy Across Models and Tasks

1.0 { HEE Object Counting
mmm Word Sorting
Bm GSM8K

0809 075
0.8

087 0725 ges

0.6 4

Accuracy

0.4

0.2

0.0 -

N N S <8 <8 N
A N N N NS S >
& R O ¢ & REA &
o Q8 P > 2 ¢ 2
Y Y e &S ety P P 2
& & S &8 & & &S
\)"& y@ \go(“ L \9@ Ly & & \3@6‘ b

0797 443

& S & S S S
,\°';E»,"\ ,\"‘25\ N S S \<‘L’d§
& ¢ < & & N & \¢
e) 2 Q¢ D e b A9
Yas nd Y& N &S
P el o€ 78 ey ped
© 9 < &
S \go@ \9@ \god‘\ <¢ \goe < \),06‘

Models and Methods

Figure 3: Test Accuracy [with 95% confidence interval] across different models and datasets. Llama3.1-70B-instruct
is used for feedback generation, prompt optimization, and evaluation. Full table of results in Appendix (Table 1).

We notice that ProRefine is able to improve the
performance of lesser capable models Llama3.2-
3B-instruct and Llama3.1-8B-instruct to that of
more capable ones Llama3.1-8B-instruct and
Llama3.1-70B-instruct respectively. We also
experiment using ProRefine with a compara-
tively smaller model (Llama3.1-8B-instruct) for
LLM eeqpack and LLM gptimizer. However, it did
not yield substantial improvement in all scenar-
ios and in fact decreased the performance in some
cases. This is consistent with the findings of the
prior work that smaller models are deficient in un-
derstanding and incorporating feedback (Saunders
et al., 2022; Bai et al., 2022).

4 Discussion

The results demonstrate that ProRefine is a broadly
applicable method for improving LLM perfor-
mance at inference-time. The “performance gap
bridging” effect is particularly significant, suggest-
ing that ProRefine can be a compute-effective alter-
native to simply scaling up model size, which could
prove critical in resource-constrained settings.
The largest performance gains are observed on
the word sorting task, indicating that tasks requir-
ing more complex reasoning or manipulation of
intermediate outputs benefit the most from ProRe-
fine’s iterative refinement. The mixed results when
using a smaller model for LL M fccqpack illustrate
the importance of “knowledge asymmetry,” i.e.,
that the feedback model needs to be “sufficiently

capable” of providing useful critiques.

ProRefine builds on TextGrad (Yuksekgonul
et al., 2024), but differs crucially in that ProRe-
fine runs at inference-time. Moreover, TextGrad is
a supervised fine-tuning method, while ProRefine
requires no training data, making its data require-
ments less onerous. ProRefine also relates to other
prompt optimization techniques (Shin et al., 2020;
Deng et al., 2022; Yang et al., 2024; Dong et al.,
2024), but combines in a novel fashion inference-
time operations with LLM-generated feedback.

ProRefine can offer a degree of interpretability
by exposing the outputs from LLM ¢ceqpack, allow-
ing insights into the model’s reasoning process.
Although evaluated on reasoning and math tasks,
ProRefine is general and applicable to other tasks.

5 Conclusion

We introduced ProRefine, a novel, practical, and
inference-time prompt optimization method for
agentic workflows. ProRefine leverages LLM-
generated textual feedback to dynamically refine
prompts, leading to significant performance im-
provements without requiring additional training
or ground-truth labels. It is particularly effective
for multi-step reasoning tasks and can bridge the
performance gap between smaller and larger LLMs.
The inference-time nature makes it readily deploy-
able and adaptable, contributing to more efficient,
transparent, and accessible Al systems.

Limitations

This work has the following limitations that we
acknowledge has potential for future explorations:

¢ Computational Cost and Scalability: ProRe-
fine’s iterative process increases computa-
tional cost compared to single-shot prompting.
Scaling to substantially larger or more com-
plex tasks presents both computational and
methodological challenges.

* Generalizability: Evaluation is currently lim-
ited to reasoning and mathematical tasks. Fur-
ther research is needed to assess performance
across a broader range of NLP tasks and do-
mains.

¢ Model Dependence and Feedback Quality:
ProRefine relies on a large, capable LLM for
feedback, which may limit accessibility. The
quality and potential biases of this feedback
are crucial factors impacting performance and
require further investigation.

* Evaluation and Bias: Using an LLM for
evaluation introduces potential biases. More
comprehensive human evaluations and ro-
bust methods for mitigating evaluator bias are
needed.

* Hyperparameter and Feedback Loop: Cur-
rent approach requires manual hyperparame-
ter tuning and iterative prompting might cause
issues, and automatic ways needs further re-
search.

References

Afra Feyza Akyurek, Ekin Akyurek, Ashwin Kalyan,
Peter Clark, Derry Tanti Wijaya, and Niket Tandon.
2023. RL4F: Generating natural language feedback
with reinforcement learning for repairing model out-
puts. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 7716-7733, Toronto,
Canada. Association for Computational Linguistics.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu,
Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini,
Cameron McKinnon, et al. 2022. Constitutional
ai: Harmlessness from ai feedback. arXiv preprint
arXiv:2212.08073.

Anna Bavaresco, Raffaella Bernardi, Leonardo Berto-
lazzi, Desmond Elliott, Raquel Ferndndez, Albert

Gatt, Esam Ghaleb, Mario Giulianelli, Michael
Hanna, Alexander Koller, André F. T. Martins,
Philipp Mondorf, Vera Neplenbroek, Sandro Pezzelle,
Barbara Plank, David Schlangen, Alessandro Sug-
lia, Aditya K Surikuchi, Ece Takmaz, and Alberto
Testoni. 2024. Llms instead of human judges? a
large scale empirical study across 20 nlp evaluation
tasks. Preprint, arXiv:2406.18403.

Cheng-Han Chiang and Hung-yi Lee. 2023. Can large
language models be an alternative to human evalua-
tions? In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 15607-15631, Toronto,
Canada. Association for Computational Linguistics.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Mar-
tic, Shane Legg, and Dario Amodei. 2017. Deep
reinforcement learning from human preferences. In
Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yi-
han Wang, Han Guo, Tianmin Shu, Meng Song, Eric
Xing, and Zhiting Hu. 2022. RLPrompt: Optimizing
discrete text prompts with reinforcement learning.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3369-3391, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Yihong Dong, Kangcheng Luo, Xue Jiang, Zhi Jin, and
Ge Li. 2024. PACE: Improving prompt with actor-
critic editing for large language model. In Findings of
the Association for Computational Linguistics: ACL
2024, pages 73047323, Bangkok, Thailand. Associ-
ation for Computational Linguistics.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B.
Tenenbaum, and Igor Mordatch. 2024. Improving
factuality and reasoning in language models through
multiagent debate. In Forty-first International Con-
ference on Machine Learning.

Yicheng Feng, Yuxuan Wang, Jiazheng Liu, Sipeng
Zheng, and Zongqing Lu. 2024. LLaMA-rider:
Spurring large language models to explore the open
world. In Findings of the Association for Computa-
tional Linguistics: NAACL 2024, pages 4705-4724,
Mexico City, Mexico. Association for Computational
Linguistics.

Mary L. Gray and Siddharth Suri. 2019. Ghost work:
how to stop Silicon Valley from building a new global
underclass. Houghton Mifflin Harcourt, Boston.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-rl: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

https://doi.org/10.18653/v1/2023.acl-long.427
https://doi.org/10.18653/v1/2023.acl-long.427
https://doi.org/10.18653/v1/2023.acl-long.427
https://doi.org/10.18653/v1/2023.acl-long.427
https://doi.org/10.18653/v1/2023.acl-long.427
https://arxiv.org/abs/2406.18403
https://arxiv.org/abs/2406.18403
https://arxiv.org/abs/2406.18403
https://arxiv.org/abs/2406.18403
https://arxiv.org/abs/2406.18403
https://doi.org/10.18653/v1/2023.acl-long.870
https://doi.org/10.18653/v1/2023.acl-long.870
https://doi.org/10.18653/v1/2023.acl-long.870
https://doi.org/10.18653/v1/2023.acl-long.870
https://doi.org/10.18653/v1/2023.acl-long.870
https://proceedings.neurips.cc/paper_files/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
https://doi.org/10.18653/v1/2022.emnlp-main.222
https://doi.org/10.18653/v1/2022.emnlp-main.222
https://doi.org/10.18653/v1/2022.emnlp-main.222
https://doi.org/10.18653/v1/2024.findings-acl.436
https://doi.org/10.18653/v1/2024.findings-acl.436
https://doi.org/10.18653/v1/2024.findings-acl.436
https://openreview.net/forum?id=zj7YuTE4t8
https://openreview.net/forum?id=zj7YuTE4t8
https://openreview.net/forum?id=zj7YuTE4t8
https://openreview.net/forum?id=zj7YuTE4t8
https://openreview.net/forum?id=zj7YuTE4t8
https://doi.org/10.18653/v1/2024.findings-naacl.292
https://doi.org/10.18653/v1/2024.findings-naacl.292
https://doi.org/10.18653/v1/2024.findings-naacl.292
https://doi.org/10.18653/v1/2024.findings-naacl.292
https://doi.org/10.18653/v1/2024.findings-naacl.292

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard-
son, Ahmed El-Kishky, Aiden Low, Alec Helyar,
Aleksander Madry, Alex Beutel, Alex Carney, et al.
2024. Openai ol system card. arXiv preprint
arXiv:2412.16720.

Daniel Kahneman, Olivier Sibony, and Cass R. Sunstein.
2021. Noise: a flaw in human judgment, first edition
edition. Little, Brown Spark, New York. OCLC:
on1249942231.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari,
Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
hamanan A, Saiful Haq, Ashutosh Sharma, Thomas T.
Joshi, Hanna Moazam, Heather Miller, Matei Za-
haria, and Christopher Potts. 2024. DSPy: Com-
piling declarative language model calls into state-
of-the-art pipelines. In The Twelfth International
Conference on Learning Representations.

Hannah Rose Kirk, Alexander Whitefield, Paul Rottger,
Andrew Bean, Katerina Margatina, Juan Ciro, Rafael
Mosquera, Max Bartolo, Adina Williams, He He,
Bertie Vidgen, and Scott A. Hale. 2024. The
PRISM Alignment Dataset: What Participatory, Rep-
resentative and Individualised Human Feedback Re-
veals About the Subjective and Multicultural Align-
ment of Large Language Models. arXiv preprint.
ArXiv:2404.16019 [cs].

Zhen Li, Xiaohan Xu, Tao Shen, Can Xu, Jia-Chen Gu,

Yuxuan Lai, Chongyang Tao, and Shuai Ma. 2024.
Leveraging large language models for NLG evalua-
tion: Advances and challenges. In Proceedings of the
2024 Conference on Empirical Methods in Natural
Language Processing, pages 16028—16045, Miami,
Florida, USA. Association for Computational Lin-
guistics.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang,
Ruochen Xu, and Chenguang Zhu. 2023. G-eval:
NLG evaluation using gpt-4 with better human align-
ment. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 2511-2522, Singapore. Association for Com-
putational Linguistics.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2023. Self-refine: Itera-
tive refinement with self-feedback. In Advances in
Neural Information Processing Systems, volume 36,
pages 46534-46594. Curran Associates, Inc.

Maitrey Mehta, Valentina Pyatkin, and Vivek Srikumar.

2024. Promptly predicting structures: The return of
inference. In Proceedings of the 2024 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers), pages 112—
130.

Meta. 2024. Ilama-
models/models/llama3_2/MODEL_card.md at
main - meta-llama/llama-models.

Akshara Prabhakar, Thomas L. Griffiths, and R. Thomas
McCoy. 2024. Deciphering the factors influencing
the efficacy of chain-of-thought: Probability, mem-
orization, and noisy reasoning. In Findings of the
Association for Computational Linguistics: EMNLP
2024, pages 3710-3724, Miami, Florida, USA. Asso-
ciation for Computational Linguistics.

Reid Pryzant, Dan Iter, Jerry Li, Yin Lee, Chenguang
Zhu, and Michael Zeng. 2023. Automatic prompt op-
timization with “gradient descent” and beam search.
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
7957-7968, Singapore. Association for Computa-
tional Linguistics.

Yuxiao Qu, Tianjun Zhang, Naman Garg, and Aviral
Kumar. 2024. Recursive introspection: Teaching lan-
guage model agents how to self-improve. In The
Thirty-eighth Annual Conference on Neural Informa-
tion Processing Systems.

Leonardo Ranaldi and Andre Freitas. 2024. Self-refine
instruction-tuning for aligning reasoning in language
models. arXiv preprint arXiv:2405.00402.

Abhinav Sukumar Rao, Aditi Khandelwal, Kumar Tan-
may, Utkarsh Agarwal, and Monojit Choudhury.
2023. Ethical reasoning over moral alignment: A
case and framework for in-context ethical policies
in LLMs. In Findings of the Association for Com-
putational Linguistics: EMNLP 2023, pages 13370-
13388, Singapore. Association for Computational
Linguistics.

William Saunders, Catherine Yeh, Jeff Wu, Steven Bills,
Long Ouyang, Jonathan Ward, and Jan Leike. 2022.
Self-critiquing models for assisting human evaluators.
arXiv preprint. ArXiv:2206.05802 [cs].

Timo Schick, Jane A. Yu, Zhengbao Jiang, Fabio
Petroni, Patrick Lewis, Gautier Izacard, Qingfei You,
Christoforos Nalmpantis, Edouard Grave, and Sebas-
tian Riedel. 2023. PEER: A collaborative language
model. In The Eleventh International Conference on
Learning Representations.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric
Wallace, and Sameer Singh. 2020. AutoPrompt: Elic-
iting Knowledge from Language Models with Auto-
matically Generated Prompts. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 42224235,
Online. Association for Computational Linguistics.

Charlie Snell, Jachoon Lee, Kelvin Xu, and Aviral Ku-
mar. 2024. Scaling llm test-time compute optimally

https://openreview.net/forum?id=sY5N0zY5Od
https://openreview.net/forum?id=sY5N0zY5Od
https://openreview.net/forum?id=sY5N0zY5Od
https://openreview.net/forum?id=sY5N0zY5Od
https://openreview.net/forum?id=sY5N0zY5Od
https://doi.org/10.48550/arXiv.2404.16019
https://doi.org/10.48550/arXiv.2404.16019
https://doi.org/10.48550/arXiv.2404.16019
https://doi.org/10.48550/arXiv.2404.16019
https://doi.org/10.48550/arXiv.2404.16019
https://doi.org/10.48550/arXiv.2404.16019
https://doi.org/10.48550/arXiv.2404.16019
https://doi.org/10.48550/arXiv.2404.16019
https://doi.org/10.48550/arXiv.2404.16019
https://doi.org/10.18653/v1/2024.emnlp-main.896
https://doi.org/10.18653/v1/2024.emnlp-main.896
https://doi.org/10.18653/v1/2024.emnlp-main.896
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://proceedings.neurips.cc/paper_files/paper/2023/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf
https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/MODEL_CARD.md
https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/MODEL_CARD.md
https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/MODEL_CARD.md
https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/MODEL_CARD.md
https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/MODEL_CARD.md
https://doi.org/10.18653/v1/2024.findings-emnlp.212
https://doi.org/10.18653/v1/2024.findings-emnlp.212
https://doi.org/10.18653/v1/2024.findings-emnlp.212
https://doi.org/10.18653/v1/2024.findings-emnlp.212
https://doi.org/10.18653/v1/2024.findings-emnlp.212
https://doi.org/10.18653/v1/2023.emnlp-main.494
https://doi.org/10.18653/v1/2023.emnlp-main.494
https://doi.org/10.18653/v1/2023.emnlp-main.494
https://openreview.net/forum?id=DRC9pZwBwR
https://openreview.net/forum?id=DRC9pZwBwR
https://openreview.net/forum?id=DRC9pZwBwR
https://doi.org/10.18653/v1/2023.findings-emnlp.892
https://doi.org/10.18653/v1/2023.findings-emnlp.892
https://doi.org/10.18653/v1/2023.findings-emnlp.892
https://doi.org/10.18653/v1/2023.findings-emnlp.892
https://doi.org/10.18653/v1/2023.findings-emnlp.892
https://doi.org/10.48550/arXiv.2206.05802
https://openreview.net/forum?id=KbYevcLjnc
https://openreview.net/forum?id=KbYevcLjnc
https://openreview.net/forum?id=KbYevcLjnc
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314

can be more effective than scaling model parameters.
Preprint, arXiv:2408.03314.

Axel Sorensen, Siyao Peng, Barbara Plank, and Rob Van
Der Goot. 2024. EEVEE: An easy annotation tool for
natural language processing. In Proceedings of The
18th Linguistic Annotation Workshop (LAW-XVIII),
pages 216221, St. Julians, Malta. Association for
Computational Linguistics.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R Brown, Adam Santoro, Aditya Gupta, Adria
Garriga-Alonso, et al. 2023. Beyond the imitation
game: Quantifying and extrapolating the capabili-
ties of language models. Transactions on Machine
Learning Research.

Lisa Torrey and Matthew Taylor. 2013. Teaching on
a budget: Agents advising agents in reinforcement
learning. In Proceedings of the 2013 international
conference on Autonomous agents and multi-agent
systems, pages 1053—-1060.

Pat Verga, Sebastian Hofstatter, Sophia Althammer, Yix-
uan Su, Aleksandra Piktus, Arkady Arkhangorodsky,
Minjie Xu, Naomi White, and Patrick Lewis. 2024.
Replacing judges with juries: Evaluating Ilm genera-
tions with a panel of diverse models. arXiv preprint
arXiv:2404.18796.

Manya Wadhwa, Xinyu Zhao, Junyi Jessy Li, and Greg
Durrett. 2024. Learning to refine with fine-grained
natural language feedback. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2024,
pages 12281-12308, Miami, Florida, USA. Associa-
tion for Computational Linguistics.

Jiaan Wang, Yunlong Liang, Fandong Meng, Zengkui
Sun, Haoxiang Shi, Zhixu Li, Jinan Xu, Jianfeng Qu,
and Jie Zhou. 2023. Is ChatGPT a good NLG evalua-
tor? a preliminary study. In Proceedings of the 4th
New Frontiers in Summarization Workshop, pages
1-11, Singapore. Association for Computational Lin-
guistics.

Tharindu Cyril Weerasooriya, Sujan Dutta, Tharindu
Ranasinghe, Marcos Zampieri, Christopher M.
Homan, and Ashiqur R. KhudaBukhsh. 2023. Vicar-
ious Offense and Noise Audit of Offensive Speech
Classifiers: Unifying Human and Machine Dis-
agreement on What is Offensive. arXiv preprint.
ArXiv:2301.12534 [cs].

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems,
volume 35, pages 24824-24837. Curran Associates,
Inc.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu,
Quoc V. Le, Denny Zhou, and Xinyun Chen. 2024.
Large language models as optimizers. Preprint,
arXiv:2309.03409.

Kevin Yang, Yuandong Tian, Nanyun Peng, and Dan
Klein. 2022. Re3: Generating longer stories with
recursive reprompting and revision. In Proceedings
of the 2022 Conference on Empirical Methods in Nat-
ural Language Processing, pages 4393—4479, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Mert Yuksekgonul, Federico Bianchi, Joseph Boen,
Sheng Liu, Zhi Huang, Carlos Guestrin, and James
Zou. 2024. Textgrad: Automatic" differentiation” via
text. arXiv preprint arXiv:2406.07496.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang,
Joseph E Gonzalez, and Ion Stoica. 2023. Judging
IIm-as-a-judge with mt-bench and chatbot arena. In
Advances in Neural Information Processing Systems,
volume 36, pages 46595-46623. Curran Associates,
Inc.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han,
Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy
Ba. 2022. Large language models are human-level
prompt engineers. arXiv preprint arXiv:2211.01910.

Mingchen Zhuge, Changsheng Zhao, Dylan Ashley,
Wenyi Wang, Dmitrii Khizbullin, Yunyang Xiong,
Zechun Liu, Ernie Chang, Raghuraman Krishnamoor-
thi, Yuandong Tian, Yangyang Shi, Vikas Chan-
dra, and Jirgen Schmidhuber. 2024. Agent-as-
a-judge: Evaluate agents with agents. Preprint,
arXiv:2410.10934.

A Appendix

Table 1 shows the complete results for ProRefine
discussed in Section 3.2. Table 2 shows results for
ProRefine with/out chat history. Using the entire
chat history in each step degrades the performance
in most cases.

Figure 4 shows the system prompts used for
tasks and LLMs. Figure 5 shows an example where
the optimized prompt is unable to guide the model
to produce the right output.

A.1 Related Work

ProRefine draws inspiration from and contributes
to several interconnected research areas. A cru-
cial field is prompt engineering and optimization,
where early work focused on manual prompt craft-
ing (Wei et al., 2022), while recent efforts explore
automatic optimization. Methods like AutoPrompt
(Shin et al., 2020) and RLPrompt (Deng et al.,
2022) use gradient-based search and reinforcement
learning, respectively, but typically require training
data. Other approaches leverage LLMs themselves
for prompt generation (Yang et al., 2022; Pryzant
et al., 2023; Zhou et al., 2022; Yang et al., 2024;

https://arxiv.org/abs/2408.03314
https://aclanthology.org/2024.law-1.20/
https://aclanthology.org/2024.law-1.20/
https://aclanthology.org/2024.law-1.20/
https://doi.org/10.18653/v1/2024.findings-emnlp.716
https://doi.org/10.18653/v1/2024.findings-emnlp.716
https://doi.org/10.18653/v1/2024.findings-emnlp.716
https://doi.org/10.18653/v1/2023.newsum-1.1
https://doi.org/10.18653/v1/2023.newsum-1.1
https://doi.org/10.18653/v1/2023.newsum-1.1
https://doi.org/10.48550/arXiv.2301.12534
https://doi.org/10.48550/arXiv.2301.12534
https://doi.org/10.48550/arXiv.2301.12534
https://doi.org/10.48550/arXiv.2301.12534
https://doi.org/10.48550/arXiv.2301.12534
https://doi.org/10.48550/arXiv.2301.12534
https://doi.org/10.48550/arXiv.2301.12534
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://arxiv.org/abs/2309.03409
https://doi.org/10.18653/v1/2022.emnlp-main.296
https://doi.org/10.18653/v1/2022.emnlp-main.296
https://doi.org/10.18653/v1/2022.emnlp-main.296
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf
https://arxiv.org/abs/2410.10934
https://arxiv.org/abs/2410.10934
https://arxiv.org/abs/2410.10934

Model | Method | Object Counting | Word Sorting | GSMSK
CoT 0.48 [0.382, 0.578] 0.11 [0.048, 0.172] 0.450 [0.423, 0.476]
Llama-3.2 1B-Instruct ProRefine 0.51 [0.412, 0.608] 0.22 [0.138, 0.302] 0.636* [0.610, 0.662]
’ ProRefine (LM) 0.6 [0.503, 0.696] 0.19 [0.113, 0.267] 0.654* [0.627, 0.678]
ProRefine (GT) | 0.67 [0.577,0.763] | 0.29%[0.192, 0.368] | 0.725%% [0.701, 0.749]
CoT 0.65 [0.556, 0.744] 0.10 [0.041, 0.159] 0.809 [0.787, 0.829]
Llama3.2 3B-Instruct ProRefine 0.75 [0.665, 0.835] | 0.47%[0.372,0.568] | 0.797 [0.774, 0.818]
’ ProRefine (LM) 0.72 [0.632, 0.808] 0.32*% [0.228, 0.412] 0.866** [0.847, 0.883]
ProRefine (GT) | 0.85%[0.780,0.920] | 0.53%* [0.432, 0.628] | 0.904%%* [0.888, 0.920]
CoT 0.73 [0.643, 0.817] 0.50 [0.401, 0.598] 0.819 [0.797, 0.839]
Llama-3.1 8B-Instruct ProRefine 0.77 [0.687, 0.853] 0.68 [0.595, 0.779] 0.843 [0.823, 0.863]
: ProRefine (LM) | 0.89%* [0.839, 0.959] 0.71* [0.621, 0.799] 0.885** [0.868, 0.902]
ProRefine (GT) | 0.94** [0.893,0.987] | 0.86** [0.792,0.928] | 0.936*** [0.922, 0.949]

Llama-3.1-70B-Instruct | CoT |

0.95[0.907,0.993] |

0.85[0.780,0.920] | 0.948 [0.936, 0.960]

Table 1: Test Accuracy [with 95% confidence interval] across different models and datasets. *, **, and *** indicate
that the result is significantly better than the lowest result, the second lowest, and the third lowest result respectively.
Results in bold indicate the highest accuracy for a model-dataset combination. Lliama3.1-70B-instruct is used for

feedback generation, prompt optimization, and evaluation.

Model | Method | Object Counting | Word Sorting | GSM8K
ProRefine (LM) 0.6 0.19 0.654
Llama-3.2 1B-Instruct ProRefine (LM) with chat history 0.6 0.15 0.530
ProRefine (GT) 0.67 0.29 0.725
ProRefine (GT) with chat history 0.63 0.22 0.569
ProRefine (LM) 0.72 0.32 0.866
Llama-3.2 3B-Instruct ProRefine (LM) with chat history 0.71 0.36 0.820
ProRefine (GT) 0.85 0.53 0.904
ProRefine (GT) with chat history 0.8 0.54 0.850
ProRefine (LM) 0.89 0.71 0.885
Llama-3.1 8B-Instruct ProRefine (LM) with chat history 0.89 0.71 0.874
ProRefine (GT) 0.94 0.86 0.936
ProRefine (GT) with chat history 0.93 0.78 0.909

Table 2: Test Accuracy across different models and datasets. ProRefine (LM) and ProRefine (GT) with/out chat
history. Initial responses are evaluated using Llama3.1-70B-instruct. Llama3.1-70B-instruct is also used for

feedback generation, prompt optimization, and evaluation.

Mehta et al., 2024). ProRefine distinguishes itself
by operating at inference time without training data
or ground truth labels, extending the concept of
Chain-of-Thought prompting (Wei et al., 2022) by
iteratively refining the prompt.

Closely related is the growing body of work on
LLMs as judges and evaluators (Zheng et al., 2023;
Bavaresco et al., 2024; Chiang and Lee, 2023;
Wang et al., 2023; Liu et al., 2023; Li et al., 2024;
Verga et al., 2024; Zhuge et al., 2024). ProRefine
utilizes this concept, employing an LLM to provide
feedback (a form of evaluation), but crucially uses
this feedback for optimization.

The idea of LLM self-improvement and itera-
tive refinement is also highly relevant. Self-Refine
(Madaan et al., 2023) is a prominent example,

where an LLM generates both output and feedback,
using the latter for refinement. Other works explore
self-critiquing (Saunders et al., 2022) and rein-
forcement learning for critique generation (RL4F)
(Akyurek et al., 2023), along with various feedback
and refinement mechanisms (Wadhwa et al., 2024,
Schick et al., 2023; Qu et al., 2024; Ranaldi and Fre-
itas, 2024; Dong et al., 2024; Khattab et al., 2024).
ProRefine shares this spirit but focuses specifically
on prompt refinement, making it suitable for agen-
tic workflows and black-box LLMs, unlike direct
output modification.

ProRefine builds upon the core ideas in TextGrad
(Yuksekgonul et al., 2024), which uses textual feed-
back for optimization within compound Al sys-
tems. However, ProRefine applies this to inference-

BBH Task Prompt: "You will answer a reasoning
question. Think step by step. The last line of your
response should be of the following format: 'Answer:
$VALUE' where VALUE is a numerical value."

GSM8K Task Prompt: "You will answer a
mathemetical reasoning question. Think step by step.
The last line of your response should be of the
following format: 'Answer: $VALUE' where VALUE is a
numerical value."

Feedback system prompt: """You are a smart
language model that evaluates the output of a
language model for a given input.\n

You do not propose new output, only evaluate the
given output critically, think step-by-step, and give very
concise feedback to improve the output.

Ensure your feedback is correct and factual.\n

This is very important, if the output is correct do not
provide any feedback, respond with 'the output is
correct'.\n

Give your response by sending the feedback only. The
text you send will be used directly.\n\n"""

Optimization system prompt: """You are part of an
optimization system that improves the input prompt
given to a large language model.\n

You are given a feedback for the model output. Your
goal is to use this feedback to improve the input
prompt.

The feedback may be noisy, identify what is important
and what is correct. Pay attention to the constraints
mentioned in the input prompt.\n

This is very important. You MUST make sure that the
improved prompt does not deviate substantially from
the input prompt and is generalizable for the task.

If the input prompt cannot be improved further, your
response should be the input prompt as is.\n

Think step-by-step and send the improved prompt
between tags <IMPROVED_PROMPT> improved
prompt </IMPROVED_PROMPT>.

The text you send between the tags will be used

Query: Sort the following words alphabetically: List:
sweatshirt bone ia wagoneer doleful homeobox
hindustan convergent

Answer: bone convergent doleful hindustan
homeobox ia sweatshirt wagoneer

Initial answer: To sort the words alphabetically, we
need to compare each word and arrange them in order
from A to Z\n\nHere's the step-by-step process:
<skipped output here for space> Now, let's arrange the
words in alphabetical order:\n\n1. bone\n2.
convergent\n3. doleful\n4. homeobox\n5.
hindustan\n6. ia\n7. list\n8. sweatshirt\n9.
wagoneer\n\nAnswer: 9

Last step model output: Answer: bone, convergent,
doleful, homeobox, hindustan, ia, list, sweatshirt,
wagoneer

Feedback: \"List\" should not be included in the sorted
output as it was part of the original instruction. The
corrected output is: bone, convergent, doleful,
hindustan, homeobox, ia, sweatshirt, wagoneer

Optimized

prompt: IMPROVED_PROMPT\n\nYou
are given a list of words and are asked to sort them in
alphabetical order. Simply arrange the words in
alphabetical order and provide the sorted list in a
comma-separated format, excluding any words that
were part of the original instruction. Ensure that the
response includes every word from the original list in
the correct order. Explicitly state the final answer in the
format: ‘Answer: [comma-separated sorted list of
words]', without including the original instruction
words.\n\n

Final answer: "Answer: bone, convergent, doleful,
homeobox, hindustan, ia, list, sweatshirt, wagoneer"

directly to replace the system prompt for a large
language model.\n\n

Figure 5: Example illustrating a case where the opti-
mized prompt is unable to guide the model to produce
the right output.

Figure 4: System prompts for tasks and LLMs.

time prompt optimization, a key distinction. Fi-
nally, ProRefine belongs to the broader category of
inference-time methods (Snell et al., 2024), that im-
prove LLLMs without weight modification, such as
multi-agent debate (Du et al., 2024). Unlike these,
ProRefine targets the prompt itself. Recent ad-
vances in understanding reasoning in LLMs (Jaech
et al., 2024; Guo et al., 2025) also provide context
to our prompt improvement.

In essence, ProRefine uniquely integrates
inference-time operation, LLM-generated feed-
back, and prompt optimization, targeting multi-step
reasoning in agentic workflows, addressing limi-
tations of prior work related to training data and
black-box model applicability.

A.2 Computing Environment

We run all of our experiments on com-
pute nodes with a single Nvidia A100
GPU (80GB), 24 core processor, and
220GB RAM. For model’s generate
function we set the following parameters:
num_return_sequences=1, do_sample=False,
top_p=None, temperature=None.

10

	Introduction
	ProRefine
	Implementation Details
	Improvements

	Experiments and Evaluation
	Data
	Results

	Discussion
	Conclusion
	Appendix
	Related Work
	Computing Environment

