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Abstract

Agentic workflows, where multiple Al agents
collaborate to accomplish complex tasks, are
becoming increasingly prevalent. However,
these workflows often suffer from error propa-
gation and sub-optimal performance, largely
due to poorly designed prompts that fail to
effectively guide individual agents. This is
a critical problem because it limits the reli-
ability and scalability of these powerful sys-
tems. We introduce ProRefine, an innovative
inference-time prompt optimization method
that leverages textual feedback from large lan-
guage models (LLMs) to address this challenge.
Without additional training or ground truth la-
bels, ProRefine dynamically refines prompts
for multi-step reasoning tasks. Evaluated on
object counting, word sorting, and grade-school
math problems, ProRefine significantly sur-
passes zero-shot Chain-of-Thought baselines
by 3 to 43 percentage points. This approach not
only boosts accuracy but also allows smaller
models to match the performance of larger ones,
highlighting its potential for efficient, scalable
Al deployment, and democratizing access to
high-performing Al

1 Introduction

A critical condition for the advancement of artifi-
cial intelligence (Al) is that Al outputs align with
human values (Feng et al., 2024). Human feed-
back, a scarce and subjective resource (Gray and
Suri, 2019; Kahneman et al., 2021; Weerasooriya
et al., 2023; Prabhakar et al., 2024), plays a vi-
tal role. LLMs, trained on vast datasets, utilize
alignment techniques to generate more human-like
and accurate responses (Rao et al., 2023; Sorensen
et al., 2024; Kirk et al., 2024). Traditional meth-
ods employ Reinforcement Learning from Human
Feedback (RLHF) (Christiano et al., 2017), with
Proximal Policy Optimization (PPO) (Schulman
et al., 2017) being a popular choice for fine-tuning
LLMs.

Recent research has explored using LLMs as
judges and evaluators (Zheng et al., 2023; Chiang
and Lee, 2023; Wang et al., 2023; Liu et al., 2023;
Bavaresco et al., 2024; Li et al., 2024). Building
on use of LLMs to judge outputs, are compound
systems that use LL.Ms to generate feedback / cri-
tiques (Saunders et al., 2022; Pryzant et al., 2023).
Akyurek et al. (2023) and (Wadhwa et al., 2024)
explore agentic frameworks to detect, critique, and
refine tasks that require factual correctness. An-
other approach is to iteratively refine output us-
ing self-generated feedback (Madaan et al., 2023).
TextGrad (Yuksekgonul et al., 2024) introduced
automatic “differentiation” via text, using textual
feedback to optimize the performance of individual
components within a compound Al system. See
additional related work in Appendix A.1.

Our work focuses on optimizing the prompt, a
key element in chain-of-thought (CoT) (Wei et al.,
2022) based LLM reasoning. CoT mimics hu-
man problem-solving by breaking down complex
tasks into smaller, manageable steps. The sys-
tem we introduce here, ProRefine, (Inference-time
Prompt Refinement with Textual Feedback) builds
upon CoT by adaptively self-improving prompts
using feedback (LLM feeqpack) and an optimizer
(LLMoptimizer) to refine prompts for the task-
performing LLM (L L M,). This process is moti-
vated by the teacher-student framework (Torrey and
Taylor, 2013) where a teacher agent guides a stu-
dent agent to perform a task by providing feedback
at intermediate steps. We explore policy optimiza-
tion for aligning compound Al systems, drawing
inspiration from TextGrad and policy gradient al-
gorithms like PPO.

While prior work has explored prompt optimiza-
tion (Shin et al., 2020; Deng et al., 2022; Yang
et al., 2024; Dong et al., 2024), they all required
there to be training examples in order to produce
task-specific prompts. By contrast, ProRefine is
task agnostic and requires no additional training



Query: | have a lettuce head, a stalk of celery, two
yams, a cauliflower, a carrot, two onions, two potatoes,
and three cabbages. How many vegetables do | have?

Answer: 13

Initial prompt: You will answer a reasoning question.
Think step by step. The last line of your response
should be of the following format: 'Answer: $VALUE'
where VALUE is a numerical value.

Initial answer: 7
Intermediate model output (0): To find the total

number of vegetables, we need to count each type of
vegetable

Feedback (f): Incorrect assumption. The task is to find
the total number of individual vegetables, not just
count the types. Instead, focus on counting the
quantities of each vegetable and summing them up.

Optimized prompt (p*): You will answer a reasoning
question. Think step by step. To find the total count of
individual vegetables, count the quantities of each
vegetable separately and sum them up. Then, provide
the final numerical value. The answer should include
the total count of individual vegetables, not just the
types. Include the total count in the format \"There are
X individual vegetables.\" The last line of your
response should be of the following format: 'Answer:
$VALUE' where VALUE is a numerical value.

Final answer: 13

Figure 1: Example of ProRefine system in action, high-
lighting the utility of feedback in prompt optimization.
More examples in Appendix (Figure 5).

or ground-truth labels. ProRefine is an inference-
time optimization method that relies on the ability
of LLMs to provide and act upon feedback for
optimization, see Figure 1 for an example. ProRe-
fine’s ability to break complex tasks into smaller
steps and self-improve using feedback makes it
a practical solution for multi-step agentic work-
flows. This method is also suitable for black-box
LLMs, where the internal parameters are inacces-
sible. To demonstrate the effectiveness of ProRe-
fine, we evaluate our method across benchmark
reasoning-based datasets.

Key Contributions:

* We propose a novel method - ProRefine for
inference-time prompt optimization using tex-
tual feedback.

* We evaluate ProRefine on three datasets:
object counting, word sorting, and grade-
school math problem-solving and compare
our method against CoT.

LLMoptimizer Feedback (f) «—— LLMfeedback

Initial
Prompt (p)

Updated
prompt (p*)

LLMtask

Output (o)

Figure 2: Overview of the ProRefine system, illustrat-
ing the iterative process of prompt optimization using
feedback from LLMs in an agentic workflow.

2 ProRefine

ProRefine is an inference-time prompt optimiza-
tion algorithm that optimizes prompts by using
textual feedback. ProRefine involves interactions
between three LLMs:

LLM;,s,: Executes the task based on the cur-
rent prompt, generating the initial and subsequent
outputs.

LLM§cedpack: A more capable model that cri-
tiques the L LM, s output, providing detailed
feedback on improvements. This model needs to
be strong enough to provide insightful and accurate
critiques (Saunders et al., 2022; Bai et al., 2022).
LLMptimizer: Interprets the feedback and re-
fines the prompt, aiming for coherent and task-
focused improvements. This LLM is crucial for
ensuring the prompt evolves effectively.

ProRefine (Algorithm 1) works as follows:

Algorithm 1: ProRefine
Input: Query: g, Initial prompt: p,
tokens_per_step: k, max_steps: n,
LLMs: LLMtask, LLMfeedbacka
LLMoptimizer
Output: Optimized prompt: p*
pr=p
for: =1tondo
0; = LLM,,s1(p*,q) // Generate
1 x k tokens
Ji= LLMfeedback(q’ Oi) // Get
feedback
px = LLMoptimizer(p*’ fz)
// Optimize the prompt
if EFOS_token in o; then
| L break

return p*

Initialization: Start with an initial prompt p for
the task, a query ¢, and parameters defining the



generation and optimization process (k tokens per
step, n maximum steps).

Generation and Feedback Loop:

e Generation: Use LLM;,s to generate an
output based on the current prompt p* and
query q. This step is limited to k tokens to
control the granularity of feedback.

 Feedback: LLMfccqpack evaluates the gener-
ated output o; against the query g to provide
textual feedback f;. This feedback encapsu-
lates how the output could be improved, fo-
cusing on aspects such as accuracy, relevance,
or coherence.

» Optimization: LLM,,timizer uses the feed-
back f; to refine the prompt p*. This step
involves modifying the prompt to better align
with the task requirements or to correct identi-
fied deficiencies in previous generations.

Termination: The process iterates until either
the maximum number of steps n is reached or an
end-of-sequence (EOS) token is detected in the
output, indicating the completion of the task.

2.1 Implementation Details

The granularity and duration of the optimization
process are controlled by parameters k (tokens per
step) and n (maximum steps). These parameters
can be tuned based on task complexity and desired
output quality.

2.2 Improvements

We propose two modifications aimed at increasing
the efficiency and performance of ProRefine. Cur-
rently, ProRefine is executed on all queries sent to
LLM;,si, even when LL M, produces a correct
output. To optimize this process, we suggest the
following two approaches:

First, we propose using an LLM to evaluate the
output generated for each query. This evaluation
LLM, while not perfect and lacking ground truth,
serves to assess whether the output produced by
L LM, is correct. If the evaluation LLM deems
the output incorrect, ProRefine is executed, oth-
erwise, the output is used as is. We refer to this
method as ProRefine (LM).

Second, in cases where a “perfect” evaluator
exists such as with many mathematical problems,
where verifying a candidate solution is easier than
deriving the correct answer, we can leverage this

evaluator to judge the output of LLM;,.;. To
simulate this scenario, we compare the output of
LLM;,s, against the ground-truth. We refer to this
method as ProRefine (GT).

3 Experiments and Evaluation

3.1 Data

We evaluate ProRefine on three reasoning tasks,
each of which involves multi-step reasoning, mak-
ing them suitable for evaluating prompt optimiza-
tion in agentic workflows: object counting and
word sorting from the BIG-Bench Hard bench-
mark (100 test examples each; (Srivastava et al.,
2023)), and grade-school math problem-solving
from GSM8K (1319 test examples; (Cobbe et al.,
2021)). We use the same dataset splits and evalu-
ation as Yuksekgonul et al. (2024). Refer to Ap-
pendix Figure 4 for the system and task prompts
we use for each dataset.

3.2 Results

We report results with three models - Llama3.2-1B-
instruct, Llama3.2-3B-instruct, and Llama3.1-8B-
instruct (Meta, 2024) for L L M, .. The prompts
are optimized using Algorithm 1, with Liama3.1-
70B-instruct used for feedback generation, prompt
optimization, and evaluation. We select the val-
ues of hyperparameters £ = 10 and n = 25 to
control the granularity of feedback and duration
of optimization. We compare the performance of
our method against the zero-shot Chain-of-Thought
(CoT) baseline and report test accuracy with 95%
confidence interval. The results are shown in Fig-
ure 3. For complete tabular results, refer to Ap-
pendix Table 1.

Our results show that ProRefine is able to signifi-
cantly improve the performance of all the L L My,
models as compared to the zero-shot CoT base-
line. For object counting, the performance is im-
proved by 3 — 21 percentage points with significant
improvement observed for Llama3.2-3B-instruct
and Llama3.1-8B-instruct. For word sorting, the
performance gain ranges from 8 — 43 percentage
points with significant results observed for all the
models. For GSM8K, the maximum performance
gain is 27.5 percentage points with significant im-
provement observed for all the models however a
slight performance drop (0.012) is also observed for
ProRefine with Llama3.2-3B-instruct. It is notewor-
thy that the number of significant results increase
with model size.
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Figure 3: Test Accuracy [with 95% confidence interval] across different models and datasets. Llama3.1-70B-instruct
is used for feedback generation, prompt optimization, and evaluation. Full table of results in Appendix (Table 1).

We notice that ProRefine is able to improve the
performance of lesser capable models Llama3.2-
3B-instruct and Llama3.1-8B-instruct to that of
more capable ones Llama3.1-8B-instruct and
Llama3.1-70B-instruct respectively. We also
experiment using ProRefine with a compara-
tively smaller model (Llama3.1-8B-instruct) for
LLM eeqpack and LLM gptimizer. However, it did
not yield substantial improvement in all scenar-
ios and in fact decreased the performance in some
cases. This is consistent with the findings of the
prior work that smaller models are deficient in un-
derstanding and incorporating feedback (Saunders
et al., 2022; Bai et al., 2022).

4 Discussion

The results demonstrate that ProRefine is a broadly
applicable method for improving LLM perfor-
mance at inference-time. The “performance gap
bridging” effect is particularly significant, suggest-
ing that ProRefine can be a compute-effective alter-
native to simply scaling up model size, which could
prove critical in resource-constrained settings.
The largest performance gains are observed on
the word sorting task, indicating that tasks requir-
ing more complex reasoning or manipulation of
intermediate outputs benefit the most from ProRe-
fine’s iterative refinement. The mixed results when
using a smaller model for LL M fccqpack illustrate
the importance of “knowledge asymmetry,” i.e.,
that the feedback model needs to be “sufficiently

capable” of providing useful critiques.

ProRefine builds on TextGrad (Yuksekgonul
et al., 2024), but differs crucially in that ProRe-
fine runs at inference-time. Moreover, TextGrad is
a supervised fine-tuning method, while ProRefine
requires no training data, making its data require-
ments less onerous. ProRefine also relates to other
prompt optimization techniques (Shin et al., 2020;
Deng et al., 2022; Yang et al., 2024; Dong et al.,
2024), but combines in a novel fashion inference-
time operations with LLM-generated feedback.

ProRefine can offer a degree of interpretability
by exposing the outputs from LLM ¢ceqpack, allow-
ing insights into the model’s reasoning process.
Although evaluated on reasoning and math tasks,
ProRefine is general and applicable to other tasks.

5 Conclusion

We introduced ProRefine, a novel, practical, and
inference-time prompt optimization method for
agentic workflows. ProRefine leverages LLM-
generated textual feedback to dynamically refine
prompts, leading to significant performance im-
provements without requiring additional training
or ground-truth labels. It is particularly effective
for multi-step reasoning tasks and can bridge the
performance gap between smaller and larger LLMs.
The inference-time nature makes it readily deploy-
able and adaptable, contributing to more efficient,
transparent, and accessible Al systems.



Limitations

This work has the following limitations that we
acknowledge has potential for future explorations:

¢ Computational Cost and Scalability: ProRe-
fine’s iterative process increases computa-
tional cost compared to single-shot prompting.
Scaling to substantially larger or more com-
plex tasks presents both computational and
methodological challenges.

* Generalizability: Evaluation is currently lim-
ited to reasoning and mathematical tasks. Fur-
ther research is needed to assess performance
across a broader range of NLP tasks and do-
mains.

¢ Model Dependence and Feedback Quality:
ProRefine relies on a large, capable LLM for
feedback, which may limit accessibility. The
quality and potential biases of this feedback
are crucial factors impacting performance and
require further investigation.

* Evaluation and Bias: Using an LLM for
evaluation introduces potential biases. More
comprehensive human evaluations and ro-
bust methods for mitigating evaluator bias are
needed.

* Hyperparameter and Feedback Loop: Cur-
rent approach requires manual hyperparame-
ter tuning and iterative prompting might cause
issues, and automatic ways needs further re-
search.
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A Appendix

Table 1 shows the complete results for ProRefine
discussed in Section 3.2. Table 2 shows results for
ProRefine with/out chat history. Using the entire
chat history in each step degrades the performance
in most cases.

Figure 4 shows the system prompts used for
tasks and LLMs. Figure 5 shows an example where
the optimized prompt is unable to guide the model
to produce the right output.

A.1 Related Work

ProRefine draws inspiration from and contributes
to several interconnected research areas. A cru-
cial field is prompt engineering and optimization,
where early work focused on manual prompt craft-
ing (Wei et al., 2022), while recent efforts explore
automatic optimization. Methods like AutoPrompt
(Shin et al., 2020) and RLPrompt (Deng et al.,
2022) use gradient-based search and reinforcement
learning, respectively, but typically require training
data. Other approaches leverage LLMs themselves
for prompt generation (Yang et al., 2022; Pryzant
et al., 2023; Zhou et al., 2022; Yang et al., 2024;
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Model | Method | Object Counting | Word Sorting | GSMSK
CoT 0.48 [0.382, 0.578] 0.11 [0.048, 0.172] 0.450 [0.423, 0.476]
Llama-3.2 1B-Instruct ProRefine 0.51 [0.412, 0.608] 0.22 [0.138, 0.302] 0.636* [0.610, 0.662]
’ ProRefine (LM) 0.6 [0.503, 0.696] 0.19 [0.113, 0.267] 0.654* [0.627, 0.678]
ProRefine (GT) | 0.67 [0.577,0.763] | 0.29%[0.192, 0.368] | 0.725%% [0.701, 0.749]
CoT 0.65 [0.556, 0.744] 0.10 [0.041, 0.159] 0.809 [0.787, 0.829]
Llama3.2 3B-Instruct ProRefine 0.75 [0.665, 0.835] | 0.47%[0.372,0.568] | 0.797 [0.774, 0.818]
’ ProRefine (LM) 0.72 [0.632, 0.808] 0.32*% [0.228, 0.412] 0.866** [0.847, 0.883]
ProRefine (GT) | 0.85%[0.780,0.920] | 0.53%* [0.432, 0.628] | 0.904%%* [0.888, 0.920]
CoT 0.73 [0.643, 0.817] 0.50 [0.401, 0.598] 0.819 [0.797, 0.839]
Llama-3.1 8B-Instruct ProRefine 0.77 [0.687, 0.853] 0.68 [0.595, 0.779] 0.843 [0.823, 0.863]
: ProRefine (LM) | 0.89%* [0.839, 0.959] 0.71* [0.621, 0.799] 0.885** [0.868, 0.902]
ProRefine (GT) | 0.94** [0.893,0.987] | 0.86** [0.792,0.928] | 0.936*** [0.922, 0.949]

Llama-3.1-70B-Instruct | CoT |

0.95[0.907,0.993] |

0.85[0.780,0.920] |  0.948 [0.936, 0.960]

Table 1: Test Accuracy [with 95% confidence interval] across different models and datasets. *, **, and *** indicate
that the result is significantly better than the lowest result, the second lowest, and the third lowest result respectively.
Results in bold indicate the highest accuracy for a model-dataset combination. Lliama3.1-70B-instruct is used for

feedback generation, prompt optimization, and evaluation.

Model | Method | Object Counting | Word Sorting | GSM8K
ProRefine (LM) 0.6 0.19 0.654
Llama-3.2 1B-Instruct ProRefine (LM) with chat history 0.6 0.15 0.530
ProRefine (GT) 0.67 0.29 0.725
ProRefine (GT) with chat history 0.63 0.22 0.569
ProRefine (LM) 0.72 0.32 0.866
Llama-3.2 3B-Instruct ProRefine (LM) with chat history 0.71 0.36 0.820
ProRefine (GT) 0.85 0.53 0.904
ProRefine (GT) with chat history 0.8 0.54 0.850
ProRefine (LM) 0.89 0.71 0.885
Llama-3.1 8B-Instruct ProRefine (LM) with chat history 0.89 0.71 0.874
ProRefine (GT) 0.94 0.86 0.936
ProRefine (GT) with chat history 0.93 0.78 0.909

Table 2: Test Accuracy across different models and datasets. ProRefine (LM) and ProRefine (GT) with/out chat
history. Initial responses are evaluated using Llama3.1-70B-instruct. Llama3.1-70B-instruct is also used for

feedback generation, prompt optimization, and evaluation.

Mehta et al., 2024). ProRefine distinguishes itself
by operating at inference time without training data
or ground truth labels, extending the concept of
Chain-of-Thought prompting (Wei et al., 2022) by
iteratively refining the prompt.

Closely related is the growing body of work on
LLMs as judges and evaluators (Zheng et al., 2023;
Bavaresco et al., 2024; Chiang and Lee, 2023;
Wang et al., 2023; Liu et al., 2023; Li et al., 2024;
Verga et al., 2024; Zhuge et al., 2024). ProRefine
utilizes this concept, employing an LLM to provide
feedback (a form of evaluation), but crucially uses
this feedback for optimization.

The idea of LLM self-improvement and itera-
tive refinement is also highly relevant. Self-Refine
(Madaan et al., 2023) is a prominent example,

where an LLM generates both output and feedback,
using the latter for refinement. Other works explore
self-critiquing (Saunders et al., 2022) and rein-
forcement learning for critique generation (RL4F)
(Akyurek et al., 2023), along with various feedback
and refinement mechanisms (Wadhwa et al., 2024,
Schick et al., 2023; Qu et al., 2024; Ranaldi and Fre-
itas, 2024; Dong et al., 2024; Khattab et al., 2024).
ProRefine shares this spirit but focuses specifically
on prompt refinement, making it suitable for agen-
tic workflows and black-box LLMs, unlike direct
output modification.

ProRefine builds upon the core ideas in TextGrad
(Yuksekgonul et al., 2024), which uses textual feed-
back for optimization within compound Al sys-
tems. However, ProRefine applies this to inference-



BBH Task Prompt: "You will answer a reasoning
question. Think step by step. The last line of your
response should be of the following format: 'Answer:
$VALUE' where VALUE is a numerical value."

GSM8K Task Prompt: "You will answer a
mathemetical reasoning question. Think step by step.
The last line of your response should be of the
following format: 'Answer: $VALUE' where VALUE is a
numerical value."

Feedback system prompt: """You are a smart
language model that evaluates the output of a
language model for a given input.\n

You do not propose new output, only evaluate the
given output critically, think step-by-step, and give very
concise feedback to improve the output.

Ensure your feedback is correct and factual.\n

This is very important, if the output is correct do not
provide any feedback, respond with 'the output is
correct'.\n

Give your response by sending the feedback only. The
text you send will be used directly.\n\n"""

Optimization system prompt: """You are part of an
optimization system that improves the input prompt
given to a large language model.\n

You are given a feedback for the model output. Your
goal is to use this feedback to improve the input
prompt.

The feedback may be noisy, identify what is important
and what is correct. Pay attention to the constraints
mentioned in the input prompt.\n

This is very important. You MUST make sure that the
improved prompt does not deviate substantially from
the input prompt and is generalizable for the task.

If the input prompt cannot be improved further, your
response should be the input prompt as is.\n

Think step-by-step and send the improved prompt
between tags <IMPROVED_PROMPT> improved
prompt </IMPROVED_PROMPT>.

The text you send between the tags will be used

Query: Sort the following words alphabetically: List:
sweatshirt bone ia wagoneer doleful homeobox
hindustan convergent

Answer: bone convergent doleful hindustan
homeobox ia sweatshirt wagoneer

Initial answer: To sort the words alphabetically, we
need to compare each word and arrange them in order
from A to Z\n\nHere's the step-by-step process:
<skipped output here for space> Now, let's arrange the
words in  alphabetical order:\n\n1.  bone\n2.
convergent\n3. doleful\n4. homeobox\n5.
hindustan\n6. ia\n7. list\n8. sweatshirt\n9.
wagoneer\n\nAnswer: 9

Last step model output: Answer: bone, convergent,
doleful, homeobox, hindustan, ia, list, sweatshirt,
wagoneer

Feedback: \"List\" should not be included in the sorted
output as it was part of the original instruction. The
corrected output is: bone, convergent, doleful,
hindustan, homeobox, ia, sweatshirt, wagoneer

Optimized

prompt: <EM>IMPROVED_PROMPT</EM>\n\nYou
are given a list of words and are asked to sort them in
alphabetical order. Simply arrange the words in
alphabetical order and provide the sorted list in a
comma-separated format, excluding any words that
were part of the original instruction. Ensure that the
response includes every word from the original list in
the correct order. Explicitly state the final answer in the
format: ‘Answer: [comma-separated sorted list of
words]', without including the original instruction
words.\n\n</EM>

Final answer: "Answer: bone, convergent, doleful,
homeobox, hindustan, ia, list, sweatshirt, wagoneer"

directly to replace the system prompt for a large
language model.\n\n

Figure 5: Example illustrating a case where the opti-
mized prompt is unable to guide the model to produce
the right output.

Figure 4: System prompts for tasks and LLMs.



time prompt optimization, a key distinction. Fi-
nally, ProRefine belongs to the broader category of
inference-time methods (Snell et al., 2024), that im-
prove LLLMs without weight modification, such as
multi-agent debate (Du et al., 2024). Unlike these,
ProRefine targets the prompt itself. Recent ad-
vances in understanding reasoning in LLMs (Jaech
et al., 2024; Guo et al., 2025) also provide context
to our prompt improvement.

In essence, ProRefine uniquely integrates
inference-time operation, LLM-generated feed-
back, and prompt optimization, targeting multi-step
reasoning in agentic workflows, addressing limi-
tations of prior work related to training data and
black-box model applicability.

A.2 Computing Environment

We run all of our experiments on com-
pute nodes with a single Nvidia A100
GPU (80GB), 24 core processor, and
220GB RAM. For model’s generate
function we set the following parameters:
num_return_sequences=1, do_sample=False,
top_p=None, temperature=None.
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